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RINGS WITH THE CONTRACTION PROPERTY

WILLIAM J. WICKLESS1

Abstract. A ring R (not necessarily commutative or with unit)

has the contraction property iff every ideal of every subring of R is

a contracted ideal.

It is shown that R is a primitive ring with the contraction

property iff R is an absolutely algebraic field. This result, together

with the fact that the Jacobson Radical of a ring with the contrac-

tion property is nil, shows that a nil semisimple ring with the con-

traction property is a subdirect sum of absolutely algebraic fields

(and is therefore commutative).

It is shown that if R is a torsion free nil ring with the contrac-

tion property then R2=(0). It follows that any torsion free ring

with the contraction property is the extension of a zero ring and a

subdirect sum of absolutely algebraic fields. Also, if ii is a nil ring

with the contraction property then R* is torsion as an additive

group.

1. Rings with the contraction property.

Definition 1.1. A ring R (not necessarily commutative or with

unit) has the contraction property iff every ideal of every subring of

R is a contracted ideal; that is, if 5 is a subring of R and 7 an ideal

of S, we have I=Tf~\S for some ideal T of R  [6, pp. 218-221]).

Hereafter, we call R a c-ring iff it satisfies the condition of Defini-

tion 1.1. The ring of integers is a simple example of a c-ring. Another

example is any absolutely algebraic field F [3, p. 147], for if F is

any absolutely algebraic field and S is any subring of F, it is easy to

check that S is actually a subfield of F. Thus, the only ideals of S are

(0) and 5 which are contracted ideals.

Theorem 1.1. The class of all c-rings is closed under homomorphisms,

direct sums, if each summand is a ring with unit, and is hereditary for

subrings.

Proof. (1) Let A be a c-ring and B a homomorphic image of A via

a homomorphism <p. Let 5 be a subring of B, I an ideal of S. <p~xil)

is an ideal in <p-1(S), a subring of A, thus ^>-1(7) = 7V\p-1(S)i with
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T an ideal of A. Let r' = (r+Ker <p). It is easy to check that /

=<p(T')r\s.
(2) Let {^4a|a£F} be a set of c-rings with unit and A

= zZ^ev ®Aa. Let 5 be a subring of A, I an ideal in 5. Let ira he

the projection of A onto Aa, the subring of A naturally isomorphic

to the ring Aa. For each a irail) is an ideal in 7Ta(5), a subring of the

c-ring Aa. Thus, for all a we have trail) = iraiS)r\7tt, where 7a is an

ideal in Aa. Let /= 2Zasv ©At- It is now easy to check, as each Aa

is a ring with unit, that / is an ideal in A with ir\S = I.

(3) Let B be a subring of a c-ring A, 5 be a subring of B, I he an

ideal in S. As 5 is also a subring of A, we have I = 7r\S for 7 an ideal

of A. But then, clearly, /= (Ir\B)r\S, so B is also a c-ring.

2. c-rings without nil ideals. We next consider c-rings without nil

ideals. First we classify all primitive c-rings.

Theorem 2.1. R is a primitive c-ring iff R is an absolutely algebraic

field.

Proof. We have already noted that any absolutely algebraic field

is a c-ring.

Now let R he any primitive c-ring. Let M he an irreducible R

module with centralizer T. We first note that dim iM:V) = 1, other-

wise we could find a subring SER which could be mapped homo-

morphically onto (r)2x2—the ring of all 2X2 matrices with entries

from r, [4, p. 33, Theorem 3]. But this, together with Theorem 1.1,

would imply that (r)2x2 is a c-ring—a contradiction, since

Í/0   0\) . Ub    OY)
<I )>     is an ideal in the subring     <( J>

which is not a contracted ideal. As dim (Af:T) = 1 we have R = T, T

a division ring.

We next note that T has characteristic p^O, since otherwise Z,

the ring of integers, would be a subring of V. As T is simple, no proper

ideal of Z could be contracted—a contradiction.

Let ZP denote the prime field of V. For all xGT, x must be alge-

braic over Zv, since otherwise the polynomial ring Zp[x] would be

a subring of T in which no proper ideal was contracted. Finally, as

Zp[x] is a finite field, for all xEY we have x" =x where k

= dimiZp[x]:Zp). But this means that T must be commutative [2, p.

72]. Thus, R = r is an absolutely algebraic field.

In [5, Theorem 6], we proved that the Jacobson Radical of any

c-ring is nil. This, together with 2.1, gives the following result.
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Theorem 2.2. Let R be a c-ring without nil ideals. Then R is a sub-

direct sum of absolutely algebraic fields (and is therefore commutative).

3. Nil c-rings. First we consider nilpotent c-rings.

Theorem 3.1. Let Rbe a torsion free nilpotent c-ring. Then R3 — (0).

Proof. Let P be a nilpotent c-ring of index k^4. Choose xi,

x2, ■ • • , Xk-i in P such that XiX2 ■ • ■ Xk-i^O. The set of all integral

multiples of Xi • • • Xk-i is a subgroup of P2 as k^4. As P* = (0) this

subgroup is moreover an ideal in P2. As P is a c-ring this subgroup

must actually be an ideal in P. Thus, we have xi - ■ ■ xk-2-xk-i

= mxi • ■ • Xk-2 for some integer m. This yields mxi - - - Xk-i = 0, a

contradiction since P is torsion free.

Theorem 3.2. Let Rbe a torsion free nil c-ring. Then P3 = (0).

Proof. As P is a torsion free nil c-ring, for all x£P, (x), the sub-

ring generated by x, is a torsion free nilpotent c-ring. Thus x£P

implies x3 = 0. We now can conclude that P is locally nilpotent [l,

p. 130]. Let u, v, w be any elements of P. 5, the subring generated

by u, », œ is a torsion free nilpotent c-ring. Applying 3.1 we have 53

= (0). Thus, uvw = 0 and we have P3 = (0).

Theorem 3.3. Let Rbe a torsion free nil c-ring. Then R2 = (0).

Proof. First we note that x2 = 0 for every x£P. To see this, let

(x) be the subring generated by x and m an integer with m>\. I

= {tmx+lm2x2\t, IEZ\ is an ideal of m{x). As (x) is a c-ring and

m(x) is an ideal in (x) we see that / must be an ideal in (x). Thus

mx2 = tmx-\-lm2x2 for some t, IEZ. Multiplying by x we have tmx2 = 0.

If t5¿0, as P is torsion free, we have x2 = 0. If / = 0 then (lm2 — m)x2 = 0

and lm2 — m9i0 so x2 = 0.

Now let u, v be arbitrary elements of P. We have uv-\-vu = (u-\-v)2

— u2—v2 = 0, so uv — —uv. Let 5 be the subring of P generated by u

and v. Now L= {tu+suv\t, sEZ) is an ideal in 5 since 5s = (0) and

uv—— vu. Also, K= {tu\tEZ} is an ideal in P since PP = PP = (0).

As 5 is a c-ring, we have K is an ideal in 5. Thus uv = tu for some

tEZ. If / = 0 then uv = 0; if t^0 multiplying by v yields tuv = 0 and

again uv = 0 as P is torsion free. As u, v were arbitrary we have

P2 = (0).

Corollary. Let Rbe a torsion free c-ring. Then R is the extension

of a zero ring and a subdirect sum of absolutely algebraic fields.

Corollary. Let Rbe a nil c-ring. Then R2 is torsion as an additive

group.
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