
RIPEMD-160:
A Strengthened Version of R I P E M D

Hans D o b b e r t i n 1 A n t o o n Bosselaers 2 B a r t Preneel 2 .

1 German Information Security Agency
P.O. Box 20 10 63, D-53133 Bonn, Germany

d o b b e r t i n @ s k o m , r h e l n , d e

2 Katholieke Universiteit Leuven, ESAT-COSIC
K. Mercierlaan 94, B-3001 Heverlee, Belgium

{ant oon. b o s s e l a e r s , b a r t . p renee l}@esa t , ku leuven , ac . b e

A b s t r a c t . Cryptographic hash functions are an impor tant tool in cryp-
tography for applications such as digital fingerprinting of messages, mes-
sage authentication, and key derivation. During the last five years, sev-
eral fast software hash functions have been proposed; most of them are
based on the design principles of Ron Rivest 's MD4. One such proposal
was RIPEMD, which was developed in the framework of the EU project
RIPE (Race Integrity Primitives Evaluation). Because of recent progress
in the cryptanalysis of these hash functions, we propose a new version
of RIPEMD with a 160-bit result, as well as a plug-in substi tute for
RIPEMD with a 128-bit result. We also compare the software perfor-
mance of several MD4-based algorithms, which is of independent inter-
est.

1 Introduction and Background

Hash funct ions are funct ions tha t m a p b i t s t r ings of a r b i t r a r y finite l eng th into
s t r ings of fixed length. Given h and an inpu t x, compu t ing h (x) mus t be easy.
A one-way hash function must sat isfy the following proper t ies :

- p r e i m a g e r e s i s t a n c e : i t is c o m p u t a t i o n a l l y infeasible to find any inpu t
which hashes to any pre-specif ied ou tpu t .

- s e c o n d p r e l m a g e r e s i s t a n c e : i t is c o m p u t a t i o n a l l y infeasible to f ind any
second inpu t which has the same o u t p u t as any specified input .

For an ideal one-way hash funct ion wi th an m - b i t resul t , f inding a p re image
or a second p re image requires a b o u t 2 TM opera t ions . A collision resistant hash
function is a one-way hash funct ion t ha t satisfies an a dd i t i ona l condi t ion:

- c o l l i s i o n r e s i s t a n c e : i t is c o m p u t a t i o n a l l y infeasible to f ind a collision, i.e.
two d is t inc t i npu t s t h a t hash to the same resul t .

* N.F.W.O. postdoctoral researcher, sponsored by the National Fund for Scientific
Research (Belgium).

72

For an ideal collision resistant hash function with an m-bit result, the fastest way
to find a collision is a birthday or square root attack which needs approximately
2 m/2 operations [19].

Almost all hash functions are iterative processes which hash inputs of arbi-
trary length by processing successive fixed-size blocks of the input. The input
X is padded to a multiple of the block length and subsequently divided into t
blocks X1 through X~. The hash function h can then be described as follows:

Ho = IV; H~ = f (H~_l , X~), 1 < i < ~ h (X) = H , .

Here f is the compression function of h, Hi is the chainin9 variable between
stage i - 1 and stage i, and IV denotes the initial value.

CoMsion resistant hash functions were first used in the context of practical
digital signature schemes: in order to improve the efficiency (and the security)
of these schemes, messages are hashed, and the (slow) digital signature is only
applied to the short hash-result. Other applications include the protection of
passwords, the construction of message authentication codes or MACs, and the
derivation of key variants.

The first constructions for hash functions were based on block ciphers (such
as DES) [8, 9, 10]. Although some trust has been built up in the security of these
proposals, their software performance is not very good, since they are typically
2 . . . 4 times slower than the corresponding block cipher. Hash functions based
on modular arithmetic axe slow as well, and serious doubt has been raised about
their security.

The most popular hash functions, which are currently used in a wide variety
of applications, are the custom designed hash functions from the MD4-family.
MD4 was proposed in 1990 by R. Rivest [13, 14]; it is a very fast hash function
tuned towards 32-bit processors. Because of unexpected vulnerabilities identified
in [3] (namely collisions for two rounds our of three), R. Rivest designed in 1991
a strengthened version of MD4, called MD5 [15]. An additional argument was
that although MD4 was not a very conservative design, it was being implemented
fast into products. MD5 is probably the most widely used hash function, in spite
of the fact that it was shown in [4] that the compression function of MD5 is not
collision resistant: the collision found changes the chaining variables rather than
the message block. This does not pose a threat for standard applications of MD5,
but still implies a violation of one of the design principles.

The RIPE consortium 3 had as goal to propose a portfolio of recommended
integrity primitives [12]. Based on its independent evaluation of MD4 and MD5
[3, 4] the consortium proposed a strengthened version of MD4, which was called
RIPEMD. RIPEMD consists of essentially two parallel versions of MD4, with
some improvements to the shifts and the order of the message words; the two par-
allel instances differ only in the round constants. At the end of the compression
function, the words of left and right halves are added.

s C.W.I. (NL) prime contractor, ~trhus University (DK), KPN (NL), K.U.Leuven (B),
Phillps Crypto B.V. (NL), and Siemens AG (D).

73

A second alternative for MD5 is the Secure Hash Algorithm (SHA-1), which
was designed by NSA and published by NIST (National Insti tute of Standards
and Technology, US) [7]. The two main improvements are the increased size of
the result (160 bits compared to 128 bits for the other schemes), and the fact
that the message words in the different rounds are not permuted but computed
as the sum of previous message words. This has as main consequence that it is
much harder to make local changes confined to a few bits: individual message
bits influence the calculations at a large number of places. The first version of
SHA, which was published in May 1993, had a weaker form of this property (no
mixing was done between bits at different positions in a word), and apparent ly
this can be exploited to produce collisions faster than 2 s~ operations. However,
no details have been made available. This weakness was removed in the improved
version, published in April '95.

The remainder of this paper is organized as follows. In w we discuss in more
detail why a new version of RIPEMD is proposed. In w we give a description of
the new schemes, and in w we motivate the design decisions. In w the perfor-
mance of the new versions of RIPEMD are compared to other MD4-based hash
functions. w presents the conclusions.

2 M o t i v a t i o n f o r a N e w V e r s i o n o f R I P E M D

The main contribution of MD4 is that it is the first cryptographic hash function
which made optimal use of the structure of current 32-bit processors. The use of
serial operations and the favorable t reatment of little-endian architectures show
that MD4 is tuned towards software implementations.

However, introducing a new structure in cryptographic algorithms also in-
volves the risk of unexpected weaknesses. It became clear that existing tech-
niques such as differential or linear cryptanalysis were not applicable, and that
any successful cryptanalysis would require the development of new techniques.
The at tacks by B. den Boer and A. Bosselaers on two (out of three) rounds of
MD4 [3] and on the compression function of MD5 [4] were the first indications
that some structural properties of the algorithms can be exploited, but did not
seem a serious threat to the overall algorithm. More recently, the at tack on MD4
was improved by S. Vaudenay [18] yielding two hash-results that differ only in
a few bits. This was a clear illustration that MD4 did not behave as one could
expect from a random function (e.g., it is not correlation resistant as defined in
[1]).

Early '95 H. Dobbertin found collisions for the last two out of three (and
later for the first two) rounds of RIPEMD [5]. While this is not an immediate
threat to RIPEMD with three rounds, the at tack was quite surprising. Moreover,
it introduced a new technique to cryptanalyze this type of functions. In the Fall
of '95, H. Dobbertin was able to extend these techniques to produce collisions
for MD4 [6], and for the compression function of the extended version of MD4
[13] (see also w 3.3). The at tack on MD4 requires only a few seconds on a PC,

74

and still leaves some freedom to the message; it clearly rules out the use of MD4
as a collision resistant function.

It is anticipated that these techniques can be used to produce collisions for
MD5 and perhaps also for RIPEMD. This will probably require an additional
effort, but it no longer seems as far away as it was a year ago.

An independent reason to upgrade RIPEMD is the limited resistance against
a brute force collision search attack. P. van Oorschot and M. Wiener present in
[17] a design for a $10 million collision search machine for MD5 that could find
a collision in 24 days. If only a $1 million budget is available, and the memory
of an existing computer network is used, the computation would require about 6
months. Taking into account the fact that the cost of computation and memory
is divided by four every three years (this observation is known as Moore's law),
one can conclude that a 128-bit hash-result does not offer sufficient protection
for the next ten years. Note that collisions obtained in this way need less than
10 random looking bytes; the rest of the inputs can be chosen arbitrarily.

RIPEMD is in use in several banking applications, and is (together with
SHA-1) currently under consideration as a candidate for standardization within
ISO/IEC JTC1/SC27. However, the current situation brings us to the conclusion
that it would be prudent to upgrade current implementations, and to consider
a more secure scheme for standardization. Therefore the authors designed a
strengthened version of RIPEMD-160 which should be secure for ten years or
more. Also, an improved 128-bit version is proposed, which should only be used
to replace RIPEMD in current applications.

SHA-1 has already a 160-bit result, and because of some of its properties it
is quite likely that SHA-1 is not vulnerable to the known attacks. However, its
design criteria and the attack on the first version are secret.

3 D e s c r i p t i o n o f t h e N e w R I P E M D

In this section we briefly describe RIPEMD-160, RIPEMD-128, and two variants
which give a longer hash-result. We assume that the reader is familiar with the
structure and notation of MD4 (see for example [13]).

3.1 R I P E M D - 1 6 0

The bitsize of the hash-result and chaining variable for RIPEMD-160 are in-
creased to 160 bits (five 32-bit words), the number of rounds is increased from
three to five, and the two lines are made more different (not only the constants
are modified, but also the Boolean functions and the order of the message words).

This results in the following parameters (pseudo-code for RIPEMD-160 is
given in Appendix A):

1. O p e r a t i o n s in o n e s t e p . A :-- (A + f(B, C, D) + X + K) <<" + E and
C := C <<1~ Here <<" denotes cyclic shift (rotation) over s positions.

2. O r d e r i n g o f t h e m e s s a g e words . Take the following permutation p:

75

Further define the permutat ion 7r by setting ~r(i) = 9i + 5 (mod 16). The
order of the message words is then given by the following table:

Line II Round 1 Round 2 Round 3 Round 4 Round ~ I
left id p p2 p3 p4

right 7r ~rp ~rp ~ ~rp ~ ~rp 4

3. Boolean functions. Define the following Boolean functions:

f l (x, Y~

f2(x, y,

13(x, y,

f4(x, y,

fs(x, y,

z) = x @ y e z ,
z) = (~ A y) V (-~x A z),

~) = (~ v ~y) �9 z,

~) -- (~ A ~) v (y A -,~),

~) = �9 �9 (y v -~) .

These Boolean functions are applied as follows:

Line [] Round 1 Round 2 Round 3 Round 4 Round 5

left f l f2 f3 f4 f5
right f5 f4 f3 f2 f l

4. Sh i f t s . For both lines we take the following shifts:

[Round[IX01Xl Ix21xa]x4[xslxalxTlxslxglxlolXll]x121xlalx;_~.lx15]
1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
2 12 13 11 15 6 9 9 7 12 15 11 13 7 8 7 7
3 13 15 14 11 7 7 6 8 13 14 13 12 5 5 6 9
4 14 11 12 14 8 6 5 5 15 12 15 14 9 9 8 6
5 15 12 13 13 9 5 8 6 14 11 12 11 8 6 5 5

5. C o n s t a n t s . Take the integer parts of the following numbers:

Line

left

right

[[Round 1 Round 2 Round 3 Round 4 Round 5

0 23~ "v~ 230 .v~ 2 ~~ .v~ 230 -v~
23~ -~/2 230 .~/3 2 ~~ .~/5 230 - ~ 0

76

3.2 R I P E M D - 1 2 8

The main difference with tLIPEMD-160 is that we keep a hash-result and chain-
ing variable of 128 bits (four 32-bit words); only four rounds are used.

1. O p e r a t i o n in one s tep . A : : (A q- f (B, C, D) -k X q- K) <<S.
2. B o o l e a n f u n c t i o n s . The Boolean functions are applied as follows:

Line H Round 1 Round 2 Round 3 Round 4

left]1 f2 Is f4
right fa f3]2 f l

3. C o n s t a n t s . Take the integer parts of the following numbers:

Line I I Round 1 Round 2 Round 3 Round 4

left 0 280. v/2 280. ~ 280. V/5

right 280. ~ 280. ~/3 230. ~ 0

3.3 O p t i o n a l E x t e n s i o n s to 256 and 320 bit H a s h - R e s u l t s

Some applications of hash functions require a longer hash-result, without needing
a larger security level. A straightforward way to achieve this would be to use
two parallel instances of the same hash function with different initial values;
however, this might result in unwanted dependencies between the two chains
(such dependencies have been exploited in the attack on RIPEMD). Therefore
it is advisable to have a stronger interaction between the two instances.

In [13] an extension of MD4 was proposed which yields a 256-bit hash-result
by running two parallel instances of MD4 which differ only in the initial values
and in the constants in the second and third round. After every application of
the compression function, the value of the register A is interchanged between
the two chains. H. Dobbertin was able to produce collisions for the compression
function of this extension; moreover, we anticipate that it is possible to construct
collisions for the complete extension as well.

RIPEMD-128 and RIPEMD-160 have already two parallel lines, hence a dou-
ble length extension (to 256 respectively 320 bits) can be constructed without
the need for two parallel instances: it is sufficient to omit the combination of
the two lines at the end of every application of the compression function. We
propose to introduce interaction between the lines by swapping after round 1
the contents of registers A and A', after round 2 the contents of registers B and
B', etc.

4 M o t i v a t i o n of the Design Decisions

The main design principle of RIPEMD-160 is to overcome the problems raised
in ~2, but with as few changes as possible to the original structure to maximize

77

on confidence previously gained with R IP EMD and its predecessors MD4 and
MDS.

Also, it was decided to aim for a rather conservative design which offers a
high security level, rather than to push the limits of performance with the risk
of a redesign a few years from now.

The basic design philosophy of RIPEMD was to have two parallel iterations;
the two main improvements are that the number of rounds is increased from three
to five (four for RIPEMD-128) and tha t the two parallel rounds are made more
different. From the at tack on R IP EMD we conclude that having only different
additive constants in the two lines is not sufficient. In RIPEMD-160, the order of
the message blocks in the two iterations is completely different; in addition, the
order of the Boolean functions is reversed. We envisage that in the next years it
will become possible to at tack one of the two lines and up to three rounds of the
two parallel lines, but that the combination of the two parallel lines will resist
attacks.

The operation for RIPEMD-160 on the A register is related to tha t of MD5
(but five words are involved); the rotate of the C register has been added to
avoid the MD5 at tack which focuses on the most significant bit [4]. SHA-1 has
two rotates as well, but in different locations. The value of 10 for the C register
was chosen since it is not used for the other rotations. The step operation for
RIPEMD-128 is identical to that of MD4 (and RIPEMD).

The permutat ion of the message words of RIPEMD was designed such that
two words tha t are 'close' in round 1-2 are far apar t in round 2-3 (and vice
versa). I f this permutat ion would have been applied in RIPEMD-160, this crite-
rion would not have been satisfied (message blocks 2 and 13 form an undesirable
pat tern due to a cycle of length 2 [5]). Therefore, it was decided to exchange the
values for 12 and 13, resulting in the permutat ion p of ~3.1. The permutat ion
7r was chosen such that two message words which are close in the left half will
always be at least seven positions apar t in the right half. For the Boolean func-
tions, it was decided to eliminate the majori ty function because of its symmet ry
properties and a performance disadvantage. The Boolean functions are now the
same as those used in MD5. As mentioned above, the Boolean functions in the
left and right half are used in a different order.

The shifts in RIPEMD were chosen according to a specific strategy, which
was only documented in an internal report . The same strategy has been extended
to the strengthened algorithms in a straightforward way. The design criteria ax'e
the following:

- the shifts are chosen between 5 and 15 (too small/large shifts are considered
not very good, and a choice larger than 16 does not help much);

- every message block should be rotated over different amounts, not all of them
having the same parity;

- the shifts applied to each register should not have a special pa t tern (for
example, the total should not be divisible by 32);

- not too many shift constants should be divisible by four.

78

Note that the design decisions require a compromise: it is not possible to
make a good choice of message ordering and shift constants for five rounds that
is also 'optimal' for three rounds out of five.

5 Performance Evaluation

In this section we compare the performance of RIPEMD-160, RIPEMD-128,
RIPEMD, SHA-1, MD5, and MD4. Implementations were written in Assembly
language optimized for the Pentium processor (90 MHz). Note that the numbers
are for realistic inputs, i.e., 256 Megabyte of data are hashed using an 8 K buffer
(this is slower than hashing short blocks from the cache memory). The relative
speeds coincide more or less with predictions based on a simple count of the
number of operations. RIPEMD-160 is about 15% slower than SHA-1, half the
speed of RIPEMD, and four times slower than MD4. On a big-endian RISC
machine, the difference between SHA-1 and RIPEMD-160 will be slightly larger.
RIPEMD-128 is 30% slower than RIPEMD. Optimized C implementations are
a factor of 1.8.. . 2.2 slower; for MD5 the speed of our C code is 36% faster than
that of [16].

Table I . Performance of several MD4-based hash functions on a 90 MHz Pentium

algorithm performance (Mbit/s)
Assembly C

MD4
MD5
SHA-1
RIPEMD
RIPEMD-128
RIPEMD-160

165.7 81.4
113.5 59.7
46.5 21.2
82.1 44.0
63.8 35.6
39.8 19.3

6 Concluding Remarks

We have proposed RIPEMD-160, which is an enhanced version of RIPEMD. The
design is made such that the confidence built up with RIPEMD is transferred
to the new algorithm. The significant increase in security comes at the cost of a
reduced performance (a factor of two), but the resulting speed is still acceptable.
We encourage comments and results on the security of RIPEMD-160.

A c k n o w l e d g m e n t s We would like to thank Bert den Boer, Markus Dichtl,
Walter Fumy, and Peter Landrock for encouragement and advice.

79

References

1. R. Anderson, "The classification of hash functions," Proe. of the IMA Confer-
ence on Cryptography and Coding, Cirencester, December 1993, Oxford University
Press, 1995, pp. 83-95,

2. I.B. Damgs "A design principle for hash functions," Advances in Cryptology,
Proc. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416-427.

3. B. den Boer, A. Bosselaers, "An attack on the last two rounds of MD4," Advances
in Cryptology, Proc. Crypto'91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag,
1992, pp. 194-203.

4. B. den Boer, A. Bosselaers, "Collisions for the compression function of MD5," Ad-
vances in Cryptology, Proe. Euroerypt'93, LNCS 765, T. Helleseth, Ed., Springer-
Verlag, 1994, pp. 293-304.

5. H. Dobbertin, "RIPEMD with two-round compress function is not collisionfree,"
Journal of Cryptology, to appear.

6. H. Dobbertin, "Cryptanalysis of MD4," Fast Soft~oare Encryption, this volume.
7. FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washing-

ton D.C., April 1995.
8. R. Merkle, "One way hash functions and DES," Advances in Cryptology, Proc.

Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428-446.
9. C.H. Meyer, M. Schilling, "Secure program load with Manipulation Detection

Code," Proc. Securicom 1988, pp. 111-130.
10. B. Preneel, R. Govaerts, J. VandewaUe, "Hash functions based on block ciphers:

a synthetic approach," Advances in Cryptology, Proc. Crypto'93, LNCS 773,
D. Stinson, Ed., Sprlnger-Verlag, 1994, pp. 368-378.

11. B. Preneel, Cryptographic Hash Functions, Kluwer Academic Publishers, to ap-
pear.

12. RIPE, "Integrity Primitives for Secure Information Systems. Final Report
of RACE Integrity Primitives Evaluation (RIPE-RACE 1040)," LNCS 1007,
Springer-Verlag, 1995.

13. R.L. Rivest, "The MD4 message digest algorithm," Advances in Cryptology, Proe.
Crypto'90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303-311.

14. R.L. Rivest, "The MD4 message-digest algorithm," Request for Comments (RFC)
1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

15. R.L. Rivest, "The MD5 message-dlgest algorithm," Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

16. J. Touch, "Report on MD5 performance," Request for Comments (RFC) 1810,
Internet Activities Board, Internet Privacy Task Force, June 1995.

17. P.C. van Oorschot, M.J. Wiener, "Parallel collision search with application to hash
functions and discrete logarithms," Proc. 2nd A CM Conference on Computer and
Communications Security, ACM, 1994, pp. 210-218.

18. S. Vaudenay, "On the need for multipermutations: cryptanalysis of MD4 and
SAFER," Fast Software Eneryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag,
1995, pp. 286-297.

19. G. Yuval, "How to swindle Rabin," Cryptologia, Vol. 3, No. 3, 1979, pp. 187-189.

80

A P s e u d o - c o d e f o r R I P E M D - 1 6 0

RIPEMD-160 is an iterative hash function that operates on 32-bit words. The
round function takes as input a 5-word chaining variable and a 16-word message
block and maps this to a new chaining variable. All operations axe defined on
32-bit words. Padding is identical to that of MD4 [13, 14]. Test values axe listed
in Appendix B. First we define all the constants and functions.

R I P E M D - 1 6 0 : definit ions

nonlinear functions at bit level: exor, mux, -, mux, -

f (j , z , y , z) = x e y e z

f (j , z, y, z) = (z A y) v (-~z A z)
f (j , ~, y, z) = (~ v ~y) �9
f(j, ~, y, ~) = (z A ~) v (y A ~)
f (j , ~, y, ~) = �9 ~ (y v -~z)

(0 _< j _< 15)
(16 <_ j _< 31)
(32 _< j _< 47)
(48 _< j _< 63)
(64 _< j _< 79)

added constants (hexadecimal)

K (j) = O0000000x (0 <_ j < 15)
g (j) : 5 A 8 2 7 9 9 9 x (16 < j ~ 31) L 2a~ v~J
g (j) = 6ED9EBAlx (32 ~ j <_ 47) L2 a~ v~J
K (j) : 8 F 1 B B C D C x (48 < j _< 63) [2 s~ v/'5J
K (j) = A9SSFD4Ex (64 ~ j _< 79) [28~ v~J
K'(j) = SOA28BE6x (0 ~ j ~ 15) L 2s~ �9 r
g ' (j) = SC4DD124x (16 < j < 31) [2 s~ ~f3J
g'(j) = 6 D Z O 3 R F 3 x (32 < j < 47) [280 �9 # g]
g'(j) = 7A6DZ6Egx (48 _< j _< 63) L 28~ qVJ
g ' (j) = O000oOOOx (64 ~ j _< 79)

selection of message word
r (j)

r(16..31)
r(32..47)
r(48..63)
r(64..79)
r'(0..15)
r'(I6..31)
~'(32..47)
C(48..63)
r'(64..79)

= j (0 < j < 15)
= 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
= 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
= 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
= 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
= 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
= 6, 11, 3, 7, 0, 13, 5, I0, 14, 15, 8, 12, 4, 9, I, 2
= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11

81

amount for rotate left (rol)
s(0..15) : 11, 14, 15, !2, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8

s(16..31) : 7, 6, 8, 13, II, 9, 7, 15, 7, 12, 15, 9, II, 7, 13, 12
s(32..47) : II, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
s(48.,63) : II, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
s(64..79) : 9, 15, 5, II, 6, 8, 13, 12, 5, 12, 13, 14, II, 8, 5, 6
s'(O..15) : 8, 9, 9, II, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
s'(16..31) :9,13,15,7,12,8,9,11,7,7,12,7,6,15,13,11
s'(32..47) : 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
s'(48..63) : 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
s'(64..79) : 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, II, 11

initial value (hexadecimal)
h0 : 67452301x; h i : EFCDAB89x; h 2 : 98BADCFEx;

h3 = I0325476x; h4 = C3D2E1FOx;

I t is assumed t h a t the message af ter padding consists of t 16-word blocks
t ha t will be denoted with X~[j], with 0 < { < t - 1 and 0 ~ j < 15. T h e symbo l
[] denotes addi t ion modulo 232 and rol, denotes cyclic left shift (ro ta te) over

s positions. The pseudo-code for R I P E M D - 1 6 0 is then given below.

R I P E M D - 1 6 0 : p s e u d o - c o d e

fori := 0 t o t - 1 {

A := ho; B := hi ; C := h2; D = h3; E = h4;

A' := h0; B' := hi ; C' := h2; D' = h3; E' = h4;

for j := O to 7 9 {

T := rol,(j)(A []] (j , S , C, D) [] X~[r(j)] [] g (j)) + E;
A :-- E; E := D; D := folio(C); C := B; B := T;
T := r o / , (j) (A ' [] f (79 - j , B ' , C ' , D ') [] X~[r ' (j)] [] g ' (j)) + E;
A' := E'; E' :-- D'; D' := rollo(C'); C' := B'; B' := T;

}
h0 := hi [] C [] D'; hi := h2 [] D [] E'; h2 := h3 [] E [] A';
h3 : = h 4 [] A [] B S ; h 4 : = h 3 [] B [~ C ' ;

82

B Test V a l u e s

RIPEMD-160:

1HI

9cl 185aScSe9fc54612808977ee8f548b2258d31
"a"

Obdc9d2d256b3ee9daae347be6f 4dc835a467f f e "a"
"abe"
8eb208f 7eOEd987a9bO44a8e98c6bO87f 15aObfc "abc"
"message d i g e s t "
5dO689ef49d2faeS726881b123a85ffa21595f36 "message d i g e s t "
"abcdef ghijklmnopqrstuvwxyz"
f 71c27109c692clbE6bbdcebSb9d2865b3708dbc
"abcdb cde cde f de f gel ghf gh i sh i j h i j k i j k l j klmk]Janlamomnopnopq"
12aOE3384a9cOc88e405aO6c27dcf49ada62eb2b
"ABCD~GHI3KI~NOPQRSTUVI~XYZabcdef ghijklmnopqrstuvwxyz0123456789"
bOe20b6e3116640286ed3a87aS713079621f5189
8 t imes "1234567890"
96752e45573d4639f 4dbd3323cab82bf 63326bfb

RIPEMD-128:

l i l t

cdf 26213alSOdc3ecb610f 18f6638646
i l a l l

86be7afa339dOf c7cfc785e72f578d33
"a'bc"
c14a12199c66e4ba84636bOf69144c77
"message d i g e s t "
9e327b3d6e523062afc l132d7df9dt b8
"abcdefghi jk lmnopqrs tuv .xyz"
fd2aa6OTf 71dc8f 510714922b371834e
"abcdbcdecdef defgef g h f s t L i s h i j h i j k i j k l j klmklamlmnonmopnopq"
alaaO689dOfafa2ddc22e88b49133a06
"AB CDEFGH 13KU4NDP qRSTUVk-lYZabcdef 8hi j klmnopqrstuvwxyzO 123456789"
dl e959eb179c911faea4624c60cScT02
8 t imes "1234567890"
3 f 4 5 e f 194732c2dbb2c4a2c769795fa3

