
RIPEMD-160:  
A Strengthened Version of  R I P E M D  

Hans  D o b b e r t i n  1 A n t o o n  Bosselaers  2 B a r t  Preneel  2 .  

1 German Information Security Agency 
P.O. Box 20 10 63, D-53133 Bonn, Germany 

d o b b e r t  i n @ s k o m ,  r h e l n ,  d e  

2 Katholieke Universiteit Leuven, ESAT-COSIC 
K. Mercierlaan 94, B-3001 Heverlee, Belgium 

{ant  oon. b o s s e l a e r s  , b a r t .  p renee l}@esa t ,  ku leuven ,  ac . b e  

A b s t r a c t .  Cryptographic hash functions are an impor tant  tool in cryp- 
tography for applications such as digital fingerprinting of messages, mes- 
sage authentication, and key derivation. During the last five years, sev- 
eral fast software hash functions have been proposed; most of them are 
based on the design principles of Ron Rivest 's MD4. One such proposal 
was RIPEMD, which was developed in the framework of the EU project  
RIPE (Race Integrity Primitives Evaluation). Because of recent progress 
in the cryptanalysis of these hash functions, we propose a new version 
of RIPEMD with a 160-bit result, as well as a plug-in substi tute for 
RIPEMD with a 128-bit result. We also compare the software perfor- 
mance of several MD4-based algorithms, which is of independent inter- 
est. 

1 Introduction and Background 

Hash  funct ions  are  funct ions  tha t  m a p  b i t s t r ings  of  a r b i t r a r y  finite l eng th  into  
s t r ings  of  fixed length.  Given h and  an inpu t  x, compu t ing  h (x )  mus t  be easy. 
A one-way hash function must  sat isfy the  following proper t ies :  

- p r e i m a g e  r e s i s t a n c e :  i t  is c o m p u t a t i o n a l l y  infeasible to  find any  inpu t  
which hashes to any  pre-specif ied ou tpu t .  

- s e c o n d  p r e l m a g e  r e s i s t a n c e :  i t  is c o m p u t a t i o n a l l y  infeasible to f ind any  
second inpu t  which has  the  same o u t p u t  as any  specified input .  

For an ideal one-way hash  funct ion wi th  an  m - b i t  resul t ,  f inding a p re image  
or a second p re image  requires  a b o u t  2 TM opera t ions .  A collision resistant hash 
function is a one-way hash  funct ion t ha t  satisfies an  a dd i t i ona l  condi t ion:  

- c o l l i s i o n  r e s i s t a n c e :  i t  is c o m p u t a t i o n a l l y  infeasible to  f ind a collision, i.e. 
two d is t inc t  i npu t s  t h a t  hash  to  the  same  resul t .  

* N.F.W.O.  postdoctoral  researcher, sponsored by the National Fund for Scientific 
Research (Belgium). 
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For an ideal collision resistant hash function with an m-bit result, the fastest way 
to find a collision is a birthday or square root attack which needs approximately 
2 m/2 operations [19]. 

Almost all hash functions are iterative processes which hash inputs of arbi- 
trary length by processing successive fixed-size blocks of the input. The input 
X is padded to a multiple of the block length and subsequently divided into t 
blocks X1 through X~. The hash function h can then be described as follows: 

Ho = IV; H~ = f (H~_l ,  X~), 1 < i < ~ h ( X )  = H , .  

Here f is the compression function of h, Hi is the chainin9 variable between 
stage i - 1 and stage i, and IV  denotes the initial value. 

CoMsion resistant hash functions were first used in the context of practical 
digital signature schemes: in order to improve the efficiency (and the security) 
of these schemes, messages are hashed, and the (slow) digital signature is only 
applied to the short hash-result. Other applications include the protection of 
passwords, the construction of message authentication codes or MACs, and the 
derivation of key variants. 

The first constructions for hash functions were based on block ciphers (such 
as DES) [8, 9, 10]. Although some trust has been built up in the security of these 
proposals, their software performance is not very good, since they are typically 
2 . . .  4 times slower than the corresponding block cipher. Hash functions based 
on modular arithmetic axe slow as well, and serious doubt has been raised about 
their security. 

The most popular hash functions, which are currently used in a wide variety 
of applications, are the custom designed hash functions from the MD4-family. 
MD4 was proposed in 1990 by R. Rivest [13, 14]; it is a very fast hash function 
tuned towards 32-bit processors. Because of unexpected vulnerabilities identified 
in [3] (namely collisions for two rounds our of three), R. Rivest designed in 1991 
a strengthened version of MD4, called MD5 [15]. An additional argument was 
that  although MD4 was not a very conservative design, it was being implemented 
fast into products. MD5 is probably the most widely used hash function, in spite 
of the fact that  it was shown in [4] that  the compression function of MD5 is not 
collision resistant: the collision found changes the chaining variables rather than 
the message block. This does not pose a threat for standard applications of MD5, 
but still implies a violation of one of the design principles. 

The RIPE consortium 3 had as goal to propose a portfolio of recommended 
integrity primitives [12]. Based on its independent evaluation of MD4 and MD5 
[3, 4] the consortium proposed a strengthened version of MD4, which was called 
RIPEMD. RIPEMD consists of essentially two parallel versions of MD4, with 
some improvements to the shifts and the order of the message words; the two par- 
allel instances differ only in the round constants. At the end of the compression 
function, the words of left and right halves are added. 

s C.W.I. (NL) prime contractor, ~trhus University (DK), KPN (NL), K.U.Leuven (B), 
Phillps Crypto B.V. (NL), and Siemens AG (D). 
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A second alternative for MD5 is the Secure Hash Algorithm (SHA-1), which 
was designed by NSA and published by NIST (National Insti tute of Standards 
and Technology, US) [7]. The two main improvements are the increased size of 
the result (160 bits compared to 128 bits for the other schemes), and the fact 
that  the message words in the different rounds are not permuted but computed 
as the sum of previous message words. This has as main consequence that  it is 
much harder to make local changes confined to a few bits: individual message 
bits influence the calculations at a large number of places. The first version of 
SHA, which was published in May 1993, had a weaker form of this property (no 
mixing was done between bits at different positions in a word), and apparent ly 
this can be exploited to produce collisions faster than 2 s~ operations. However, 
no details have been made available. This weakness was removed in the improved 
version, published in April '95. 

The remainder of this paper is organized as follows. In w we discuss in more 
detail why a new version of RIPEMD is proposed. In w we give a description of 
the new schemes, and in w we motivate the design decisions. In w the perfor- 
mance of the new versions of RIPEMD are compared to other MD4-based hash 
functions. w presents the conclusions. 

2 M o t i v a t i o n  f o r  a N e w  V e r s i o n  o f  R I P E M D  

The main contribution of MD4 is that  it is the first cryptographic hash function 
which made optimal use of the structure of current 32-bit processors. The use of 
serial operations and the favorable t reatment  of little-endian architectures show 
that  MD4 is tuned towards software implementations. 

However, introducing a new structure in cryptographic algorithms also in- 
volves the risk of unexpected weaknesses. It  became clear that  existing tech- 
niques such as differential or linear cryptanalysis were not applicable, and that  
any successful cryptanalysis would require the development of new techniques. 
The at tacks by B. den Boer and A. Bosselaers on two (out of three) rounds of 
MD4 [3] and on the compression function of MD5 [4] were the first indications 
that  some structural properties of the algorithms can be exploited, but  did not 
seem a serious threat  to the overall algorithm. More recently, the at tack on MD4 
was improved by S. Vaudenay [18] yielding two hash-results that  differ only in 
a few bits. This was a clear illustration that  MD4 did not behave as one could 
expect from a random function (e.g., it is not correlation resistant as defined in 
[1]). 

Early '95 H. Dobbertin found collisions for the last two out of three (and 
later for the first two) rounds of RIPEMD [5]. While this is not an immediate  
threat  to RIPEMD with three rounds, the at tack was quite surprising. Moreover, 
it introduced a new technique to cryptanalyze this type of functions. In the Fall 
of '95, H. Dobbertin was able to extend these techniques to produce collisions 
for MD4 [6], and for the compression function of the extended version of MD4 
[13] (see also w 3.3). The at tack on MD4 requires only a few seconds on a PC, 



74 

and still leaves some freedom to the message; it clearly rules out the use of MD4 
as a collision resistant function. 

It is anticipated that  these techniques can be used to produce collisions for 
MD5 and perhaps also for RIPEMD. This will probably require an additional 
effort, but it no longer seems as far away as it was a year ago. 

An independent reason to upgrade RIPEMD is the limited resistance against 
a brute force collision search attack. P. van Oorschot and M. Wiener present in 
[17] a design for a $10 million collision search machine for MD5 that could find 
a collision in 24 days. If only a $1 million budget is available, and the memory 
of an existing computer network is used, the computation would require about 6 
months. Taking into account the fact that  the cost of computation and memory 
is divided by four every three years (this observation is known as Moore's law), 
one can conclude that  a 128-bit hash-result does not offer sufficient protection 
for the next ten years. Note that  collisions obtained in this way need less than 
10 random looking bytes; the rest of the inputs can be chosen arbitrarily. 

RIPEMD is in use in several banking applications, and is (together with 
SHA-1) currently under consideration as a candidate for standardization within 
ISO/IEC JTC1/SC27.  However, the current situation brings us to the conclusion 
that  it would be prudent to upgrade current implementations, and to consider 
a more secure scheme for standardization. Therefore the authors designed a 
strengthened version of RIPEMD-160 which should be secure for ten years or 
more. Also, an improved 128-bit version is proposed, which should only be used 
to replace RIPEMD in current applications. 

SHA-1 has already a 160-bit result, and because of some of its properties it 
is quite likely that  SHA-1 is not vulnerable to the known attacks. However, its 
design criteria and the attack on the first version are secret. 

3 D e s c r i p t i o n  o f  t h e  N e w  R I P E M D  

In this section we briefly describe RIPEMD-160, RIPEMD-128, and two variants 
which give a longer hash-result. We assume that  the reader is familiar with the 
structure and notation of MD4 (see for example [13]). 

3.1 R I P E M D - 1 6 0  

The bitsize of the hash-result and chaining variable for RIPEMD-160 are in- 
creased to 160 bits (five 32-bit words), the number of rounds is increased from 
three to five, and the two lines are made more different (not only the constants 
are modified, but also the Boolean functions and the order of the message words). 

This results in the following parameters (pseudo-code for RIPEMD-160 is 
given in Appendix A): 

1. O p e r a t i o n s  in  o n e  s t e p .  A :-- (A + f(B, C, D) + X + K) <<" + E and 
C := C <<1~ Here <<" denotes cyclic shift (rotation) over s positions. 

2. O r d e r i n g  o f  t h e  m e s s a g e  words .  Take the following permutation p: 
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Further define the permutat ion 7r by setting ~r(i) = 9i + 5 (mod 16). The 
order of the message words is then given by the following table: 

Line II Round 1 Round 2 Round 3 Round 4 Round ~ I 
left id p p2 p3 p4 

right 7r ~rp ~rp ~ ~rp ~ ~rp 4 

3. Boolean functions. Define the following Boolean functions: 

f l  ( x, Y~ 

f2(x, y, 

13(x, y, 

f4(x, y, 

fs(x,  y, 

z ) = x @ y e z ,  
z) = (~ A y) V (-~x A z), 

~) = (~ v ~y) �9 z, 

~) -- (~ A ~) v (y A -,~), 

~) = �9 �9 (y v -~ ) .  

These Boolean functions are applied as follows: 

Line [] Round 1 Round 2 Round 3 Round 4 Round 5 

left f l  f2 f3 f4 f5 
right f5 f4 f3 f2 f l  

4. Sh i f t s .  For both lines we take the following shifts: 

[Round[IX01Xl Ix21xa]x4[xslxalxTlxslxglxlolXll]x121xlalx;_~.lx15] 
1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8 
2 12 13 11 15 6 9 9 7 12 15 11 13 7 8 7 7 
3 13 15 14 11 7 7 6 8 13 14 13 12 5 5 6 9 
4 14 11 12 14 8 6 5 5 15 12 15 14 9 9 8 6 
5 15 12 13 13 9 5 8 6 14 11 12 11 8 6 5 5 

5. C o n s t a n t s .  Take the integer parts  of the following numbers: 

Line 

left 

right 

[[ Round 1 Round 2 Round 3 Round 4 Round 5 

0 23~ "v~ 230 .v~  2 ~~ .v~  230 -v~ 
23~ -~/2 230 .~/3 2 ~~ .~/5 230 - ~  0 
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3.2 R I P E M D - 1 2 8  

The main difference with tLIPEMD-160 is that  we keep a hash-result and chain- 
ing variable of 128 bits (four 32-bit words); only four rounds are used. 

1. O p e r a t i o n  in one  s tep .  A : :  (A q- f (B,  C, D) -k X q- K)  <<S. 
2. B o o l e a n  f u n c t i o n s .  The Boolean functions are applied as follows: 

Line H Round 1 Round 2 Round 3 Round 4 

left ]1 f2 Is f4 
right fa f3 ]2 f l  

3. C o n s t a n t s .  Take the integer parts of the following numbers: 

Line I I Round 1 Round 2 Round 3 Round 4 

left 0 280. v/2 280. ~ 280. V/5 

right 280. ~ 280. ~/3 230. ~ 0 

3.3 O p t i o n a l  E x t e n s i o n s  to  256 and  320 bit H a s h - R e s u l t s  

Some applications of hash functions require a longer hash-result, without needing 
a larger security level. A straightforward way to achieve this would be to use 
two parallel instances of the same hash function with different initial values; 
however, this might result in unwanted dependencies between the two chains 
(such dependencies have been exploited in the attack on RIPEMD). Therefore 
it is advisable to have a stronger interaction between the two instances. 

In [13] an extension of MD4 was proposed which yields a 256-bit hash-result 
by running two parallel instances of MD4 which differ only in the initial values 
and in the constants in the second and third round. After every application of 
the compression function, the value of the register A is interchanged between 
the two chains. H. Dobbertin was able to produce collisions for the compression 
function of this extension; moreover, we anticipate that it is possible to construct 
collisions for the complete extension as well. 

RIPEMD-128 and RIPEMD-160 have already two parallel lines, hence a dou- 
ble length extension (to 256 respectively 320 bits) can be constructed without 
the need for two parallel instances: it is sufficient to omit the combination of 
the two lines at the end of every application of the compression function. We 
propose to introduce interaction between the lines by swapping after round 1 
the contents of registers A and A', after round 2 the contents of registers B and 
B', etc. 

4 M o t i v a t i o n  of  the Design Decisions 

The main design principle of RIPEMD-160 is to overcome the problems raised 
in ~2, but with as few changes as possible to the original structure to maximize 
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on confidence previously gained with R IP EMD and its predecessors MD4 and 
MDS. 

Also, it was decided to aim for a rather  conservative design which offers a 
high security level, rather  than to push the limits of performance with the risk 
of a redesign a few years from now. 

The basic design philosophy of RIPEMD was to have two parallel iterations; 
the two main improvements are that  the number of rounds is increased from three 
to five (four for RIPEMD-128) and tha t  the two parallel rounds are made more 
different. From the at tack on R IP EMD we conclude that  having only different 
additive constants in the two lines is not sufficient. In RIPEMD-160, the order of 
the message blocks in the two iterations is completely different; in addition, the 
order of the Boolean functions is reversed. We envisage that  in the next years it 
will become possible to at tack one of the two lines and up to three rounds of the 
two parallel lines, but that  the combination of the two parallel lines will resist 
attacks. 

The operation for RIPEMD-160 on the A register is related to tha t  of MD5 
(but five words are involved); the rotate  of the C register has been added to 
avoid the MD5 at tack which focuses on the most significant bit [4]. SHA-1 has 
two rotates  as well, but in different locations. The value of 10 for the C register 
was chosen since it is not used for the other rotations. The step operation for 
RIPEMD-128 is identical to that  of MD4 (and RIPEMD).  

The permutat ion of the message words of RIPEMD was designed such that  
two words tha t  are 'close' in round 1-2 are far apar t  in round 2-3 (and vice 
versa). I f  this permutat ion would have been applied in RIPEMD-160,  this crite- 
rion would not have been satisfied (message blocks 2 and 13 form an undesirable 
pat tern  due to a cycle of length 2 [5]). Therefore, it was decided to exchange the 
values for 12 and 13, resulting in the permutat ion p of ~3.1. The permutat ion 
7r was chosen such that  two message words which are close in the left half will 
always be at least seven positions apar t  in the right half. For the Boolean func- 
tions, it was decided to eliminate the majori ty  function because of its symmet ry  
properties and a performance disadvantage. The Boolean functions are now the 
same as those used in MD5. As mentioned above, the Boolean functions in the 
left and right half are used in a different order. 

The shifts in RIPEMD were chosen according to a specific strategy, which 
was only documented in an internal report .  The same strategy has been extended 
to the strengthened algorithms in a straightforward way. The design criteria ax'e 
the following: 

- the shifts are chosen between 5 and 15 (too small/large shifts are considered 
not very good, and a choice larger than 16 does not help much); 

- every message block should be rotated over different amounts,  not all of them 
having the same parity; 

- the shifts applied to each register should not have a special pa t tern  (for 
example, the total  should not be divisible by 32); 

- not too many  shift constants should be divisible by four. 
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Note that  the design decisions require a compromise: it is not possible to 
make a good choice of message ordering and shift constants for five rounds that  
is also 'optimal'  for three rounds out of five. 

5 Performance Evaluation 

In this section we compare the performance of RIPEMD-160, RIPEMD-128, 
RIPEMD, SHA-1, MD5, and MD4. Implementations were written in Assembly 
language optimized for the Pentium processor (90 MHz). Note that  the numbers 
are for realistic inputs, i.e., 256 Megabyte of data  are hashed using an 8 K buffer 
(this is slower than hashing short blocks from the cache memory). The relative 
speeds coincide more or less with predictions based on a simple count of the 
number of operations. RIPEMD-160 is about 15% slower than SHA-1, half the 
speed of RIPEMD, and four times slower than MD4. On a big-endian RISC 
machine, the difference between SHA-1 and RIPEMD-160 will be slightly larger. 
RIPEMD-128 is 30% slower than RIPEMD. Optimized C implementations are 
a factor of 1.8.. .  2.2 slower; for MD5 the speed of our C code is 36% faster than 
that  of [16]. 

Table  I .  Performance of several MD4-based hash functions on a 90 MHz Pentium 

algorithm performance (Mbit/s) 
Assembly C 

MD4 
MD5 
SHA-1 
RIPEMD 
RIPEMD-128 
RIPEMD-160 

165.7 81.4 
113.5 59.7 
46.5 21.2 
82.1 44.0 
63.8 35.6 
39.8 19.3 

6 Concluding Remarks 

We have proposed RIPEMD-160, which is an enhanced version of RIPEMD. The 
design is made such that  the confidence built up with RIPEMD is transferred 
to the new algorithm. The significant increase in security comes at the cost of a 
reduced performance (a factor of two), but the resulting speed is still acceptable. 
We encourage comments and results on the security of RIPEMD-160. 

A c k n o w l e d g m e n t s  We would like to thank Bert den Boer, Markus Dichtl, 
Walter Fumy, and Peter Landrock for encouragement and advice. 
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A P s e u d o - c o d e  f o r  R I P E M D - 1 6 0  

RIPEMD-160 is an iterative hash function that  operates on 32-bit words. The 
round function takes as input a 5-word chaining variable and a 16-word message 
block and maps this to a new chaining variable. All operations axe defined on 
32-bit words. Padding is identical to that  of MD4 [13, 14]. Test values axe listed 
in Appendix B. First we define all the constants and functions. 

R I P E M D - 1 6 0 :  definit ions 

nonlinear functions at bit level: exor, mux, -, mux, - 

f ( j , z , y , z )  = x e y e z  

f ( j ,  z, y, z) = (z A y) v (-~z A z) 
f ( j ,  ~, y, z) = (~ v ~y)  �9 
f(j, ~, y, ~) = (z A ~) v (y A ~ )  
f ( j ,  ~, y, ~) = �9 ~ (y v -~z) 

(0 _< j _< 15) 
(16 <_ j _< 31) 
(32 _< j _< 47) 
(48 _< j _< 63) 
(64 _< j _< 79) 

added constants (hexadecimal) 

K ( j )  = O0000000x (0 <_ j < 15) 
g ( j )  : 5 A 8 2 7 9 9 9  x (16 < j ~ 31) L 2a~ v~J 
g ( j )  = 6ED9EBAlx (32 ~ j <_ 47) L2 a~ v~J  
K ( j )  : 8 F 1 B B C D C  x (48 < j _< 63) [2 s~ v/'5J 
K ( j )  = A9SSFD4Ex (64 ~ j _< 79) [28~ v~J 
K'(j) = SOA28BE6x (0 ~ j ~ 15) L 2s~ �9 r 
g ' ( j )  = SC4DD124x (16 < j < 31) [2 s~ ~f3J 
g'( j )  = 6 D Z O 3 R F 3  x (32 < j < 47) [280 �9 # g ]  
g'( j )  = 7A6DZ6Egx (48 _< j _< 63) L 28~ qVJ 
g ' ( j )  = O000oOOOx (64 ~ j _< 79) 

selection of message word 
r ( j )  

r(16..31) 
r(32..47) 
r(48..63) 
r(64..79) 
r'(0..15) 
r'(I6..31) 
~'(32..47) 
C(48..63) 
r'(64..79) 

= j (0 < j < 15) 
= 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 
= 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 
= 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 
= 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 
= 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 
= 6, 11, 3, 7, 0, 13, 5, I0, 14, 15, 8, 12, 4, 9, I, 2 
= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 
= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 
= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 
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amount for rotate left (rol) 
s(0..15) : 11, 14, 15, !2, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 

s(16..31) : 7, 6, 8, 13, II, 9, 7, 15, 7, 12, 15, 9, II, 7, 13, 12 
s(32..47) : II, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 
s(48.,63) : II, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 
s(64..79) : 9, 15, 5, II, 6, 8, 13, 12, 5, 12, 13, 14, II, 8, 5, 6 
s'(O..15) : 8, 9, 9, II, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 
s'(16..31) :9,13,15,7,12,8,9,11,7,7,12,7,6,15,13,11 
s'(32..47) : 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 
s'(48..63) : 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 
s'(64..79) : 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, II, 11 

initial value (hexadecimal) 
h0 : 67452301x;  h i  : EFCDAB89x; h 2 : 98BADCFEx; 

h3 = I0325476x; h4 = C3D2E1FOx; 

I t  is assumed t h a t  the message af ter  padding  consists of  t 16-word blocks 
t ha t  will be denoted with  X~[j], with 0 < { < t - 1 and  0 ~ j < 15. T h e  symbo l  
[] denotes addi t ion modulo  232 and  rol, denotes  cyclic left shift ( ro ta te)  over 

s positions. The  pseudo-code for R I P E M D - 1 6 0  is then  given below. 

R I P E M D - 1 6 0 :  p s e u d o - c o d e  

fori  := 0 t o t -  1 { 

A := ho; B := hi ;  C := h2; D = h3; E = h4; 

A' := h0; B' :=  hi ;  C' :=  h2; D' = h3; E' = h4; 

for j := O to 7 9 {  

T := rol,(j)(A [] ] ( j , S ,  C, D) [] X~[r(j)] [] g ( j ) ) +  E; 
A :-- E;  E := D; D := folio(C); C := B; B := T; 
T := r o / , ( j ) ( A ' [ ]  f (79  - j ,  B ' ,  C ' ,  D ' )  [] X~[r ' ( j )]  [] g ' ( j ) )  + E; 
A' :=  E'; E' :-- D'; D' :=  rollo(C'); C' := B'; B' :=  T;  

} 
h0 := hi [] C [] D'; hi := h2 [] D [] E'; h2 := h3 [] E [] A'; 
h3 : = h 4 [ ] A [ ] B S ; h 4 : = h 3 [ ] B [ ~ C ' ;  
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B Test  V a l u e s  

RIPEMD-160:  

1HI 

9cl  185aScSe9fc54612808977ee8f548b2258d31 
"a" 

Obdc9d2d256b3ee9daae347be6f 4dc835a467f f e "a" 
"abe" 
8eb208f 7eOEd987a9bO44a8e98c6bO87f 15aObfc "abc" 
"message d i g e s t "  
5dO689ef49d2faeS726881b123a85ffa21595f36 "message d i g e s t "  
"abcdef ghijklmnopqrstuvwxyz" 
f 71c27109c692clbE6bbdcebSb9d2865b3708dbc 
"abcdb cde cde f de f gel  ghf gh i sh i  j h i j  k i j  k l  j klmk]Janlamomnopnopq" 
12aOE3384a9cOc88e405aO6c27dcf49ada62eb2b 
"ABCD~GHI3KI~NOPQRSTUVI~XYZabcdef ghijklmnopqrstuvwxyz0123456789" 
bOe20b6e3116640286ed3a87aS713079621f5189 
8 t imes  "1234567890" 
96752e45573d4639f 4dbd3323cab82bf 63326bfb 

RIPEMD-128:  

l i l t  

cdf 26213alSOdc3ecb610f 18f6638646 
i l a l l  

86be7afa339dOf c7cfc785e72f578d33 
"a'bc" 
c14a12199c66e4ba84636bOf69144c77 
"message d i g e s t "  
9e327b3d6e523062afc l132d7df9dt  b8 
"abcdefghi jk lmnopqrs tuv .xyz"  
fd2aa6OTf 71dc8f  510714922b371834e 
"abcdbcdecdef defgef g h f s t L i s h i j h i j k i j  k l j  klmklamlmnonmopnopq" 
alaaO689dOfafa2ddc22e88b49133a06 
"AB CDEFGH 13KU4NDP qRSTUVk-lYZabcdef 8hi j  klmnopqrstuvwxyzO 123456789" 
dl  e959eb179c911faea4624c60cScT02 
8 t imes  "1234567890" 
3 f 4 5 e f  194732c2dbb2c4a2c769795fa3 


