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Abstract. In 1990 Rivest introduced the cryptographic hash function MD4. The com- 
press function of MD4 has three rounds. After partial attacks against MD4 were found, 
the stronger mode RIPEMD was designed as a European proposal in 1992 (RACE 
project). Its compress function consists of two parallel lines of modified versions of 
MD4-compress. RIPEMD is currently being considered to become an international 
standard (ISO/IEC Draft 10118-3). However, in this paper an attack against RIPEMD 
is described, which leads to comparable results with the previously known attacks 
against MD4: The reduced versions of RIPEMD, where the first or the last round of 
the compress function is omitted, are not collision-free. Moreover, it turns out that the 
methods developed in this note can be applied to find collisions for the full MD4. 

Key words. Dedicated hash functions, RIPEMD, MD4, RACE project, ISO/IEC 
10118-3. 

1. Introduction and Summary 

In 1990 Rivest  [4] introduced the hash function MD4.  The M D 4  algori thm is defined as 

an iterative application o f  a three-round compress  function. 

In view of  an attack against  the last two rounds o f  the compress  function o f  MD4,  

which was found by den Boer  and Bosselaers  [21, the stronger mode  R I P E M D  [1] was 

des igned as a European proposal  in 1992 ( R A C E  project).  The compress  funct ion ot" 

R I P E M D  consists o f  two parallel lines of  a modif ied  version of  the M D 4  compress  

function. 

In what  fol lows we show that if  the first or the last round of  the R I P E M D  compress  

function is omit ted,  then col l is ions can be found by an attack starting with a basically 

very s imple  idea. 

Thus we descr ibe an attack against  R I P E M D  leading to results which are comparab le  
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with those previously known for MD4 (see [2] and [6]), although our attack requires 
more computational effort. 

Any attack against RIPEMD has to overcome the problem that the two parallel lines of 
the compress algorithm have to be handled simultaneously. However, as we shall see this 
can be managed if we cancel the first or the last round. This weakness is caused mainly 
by the fact that in both lines the message blocks are applied in exactly the same ordering; 
while our attack in principle does not depend on the particular choices of Boolean 
functions, shifts, and constants (see the Appendix for the definition of RIPEMD). 

Therefore, although RIPEMD is certainly stronger than MD4, in our opinion the 
intention of the design has not been reached. The effect of combining two parallel chains 
of a modified MD4-compress, as is realized in the present version of RIPEMD, is not as 
strong as should be expected when the computational effort is doubled. 

It has turned out that the methods developed in this note can be applied to find collisions 
for the full MD4 (see Section 6). This attack is explained in [3]. 

It remains a challenging task trying to attack MD5, a strengthened version of MD4 
due to Rivest [5], with the techniques presented here (see "Note Added in Proof", p. 68). 

Terminology and Basic Notation. Using the term "collision of a compress function" 
we assume that the corresponding initial values coincide for both inputs. For "pseudo- 
collisions" this is not required. However, the latter are of much less practical importance 
and are not considered here. 

Throughout, all occurring variables and constants are 32-bit quantities, and accord- 
ingly the value of an expression is its remainder modulo 232. The symbols A, v, and 
are u~ed for bitwise AND, OR, and XOR, respectively. For a 32-bit word X, let X <<'~ 
denofe the 32-bit value obtained by circularly shifting (rotation) X left by s bit positions 
for 0 < s < 32. To complete this definition set X <<~-s) = X <<(32-~). If X is an expression 
then, of course, evaluate it before shifting. 

2. Main Result and Plan of the Attack 

By RIPEMD [12l (resp. RIPEMD [23]) we denote the hash functions, which are obtained as 
reductions of RIPEMD by canceling the last (resp. first) round of the compress function. 
(See the Appendix for details.) We can state our main result as follows: 

RIPEMD [121 and RIPEMD t231 are not collision-free. 

Empirical observations have shown that the attack described below, which leads to 
collisions, requires an average of about the same computational effort as 231 computations 
of a (two-round) compress function. Concretely this means that it takes on average about 
1 day on a 486-PC (66 MHz) to compute collisions. 

Our attack is separated into three parts: 

Part I: Inner Collisions. The basic idea is to find collisions for compress 1121 or 
c o m p r e s s  [23] by taking two collections Xg, )(i (i < 16) of words such that, for some i0, 
we have Xio ~ Xgo, but Xi = ,~i for i :~ i0. When the compress values of the inputs X 
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and )~ are computed, then in the first round everything coincides until we come to step 
i0. At this point the computations for X and ~" become different. However, in the second 
round, Xi0 (resp. Xio) has to be applied again at a certain step. After that, in the remaining 
steps, all inputs coincide again. Thus it is natural to try to control the computation in 
such a way that after the second application of Xi,, and Xi0 the contents in the registers 
coincide. 

Therefore we first concentrate on the steps between the first and second application 
of Xio (resp.)~i0)- In this part of the attack we try to find suitable values for the contents 
of the registers after step i0 - 1 and suitable values for Xio, -~io, and for the X~ = Xi  
occurring in the considered segment of the compress function. 

Note that the ordering, in which the variables X~ are applied, is exactly the same for 
compress112] and c o m p r e s s  [231. In both cases we take i0 = 13, since for this choice 
we get the shortest corresponding segment of the compress function. We have enough 
variables to find a simultaneous collision for the considered segment of the left and right 
line ("inner collision"), and, on the other hand, enough variables remain free for the 
second part of the attack. 

Part Ih  Backward Collisions. Suppose we have found an inner collision. Then, in 
order to find a collision of the two-round compress function, we have to determine 
values for the remaining free variables such that computing backward and starting with 
the values of the registers after step i0 - I (these values are given according to Part I) 
leads to the same initial value for the left and right line ("backward collision"). 

Experience has shown that we can even find collisions with 2 I~176 of the 2128 possible 
initial values (see Section 4). 

Part  III :  Right Initial Value ("Meet-in-the-Middle"). Finally, the problem remains 
that the initial value IVo specified by the definition of RIPEMD [121 and RIPEMD t231 (see 
the Appendix) will usually not be among the admissible initial values found in Part II. 
Therefore we randomly choose 16 input words for the compress function starting with 
11/0, until the output is admissible. This approach works, since we have a very fast test 
whether the output is admissible or not (checking a small set of equations). Thus nothing 
has to be stored and compared in lists. The computational effort necessary for this part 
is usually much smaller than for Part II. 

Since two messages found by this attack both have length 2 • 16• (length of words), 
they give a collision no matter whether the padding rule is applied or not. 

The next sections contain a detailed description of Parts I-III  of our attack. 

3. Inner  Collisions 

In this section we show how to find inner collisions for c o m p r e s s  I231. For c o m p r e s s  [ ~21 
this is much more difficult and requires many technical tricks. (The difficulties seem 
to be caused by the asymmetry of the Boolean functionF, which is involved here.) We 
restrict ourselves to the easy case, and we only give an inner collision for c o m p r e s s  t~21 
at the end of this section without proof. 
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By L - c o m p r e s s  1231 and R - c o m p r e s s  t231 we denote the left and right line of  com-  
p ress  1231, respectively. We now consider the sequence of  those steps of L - c o m p r e s s  1231 
and R - c o m p r e s s  [23] between which X~3 occurs the first and the second time, i.e., steps 
13-18. In these steps, X~3, X~4, X~5 together with the Boolean vector function 

G(X, Y, Z) = (X A Y) v (X A Z) v (Y A Z), 

and then XT, X4, and again X~3 together with the Boolean vector function 

H(X,  Y, Z) = X (9 Y (9 Z 

are applied. The constants used in c o m p r e s s  [231 are 

Ki = 0xSa827999 ,  

K2 = 0 x 6 e d 9 e b a l ,  

K3 = 0 x 5 c 4 d d 1 2 4 .  

We obtain a simultaneous collision for steps 13-18 o[  L - c o m p r e s s  [231 Lemma A. 
and R-compress [231 for 

X13 : 

X14 : 

X15 : 

X7 : 

X4 ---- 

0 x a 5 7 d 8 6 6 6  = - - K i -  1, 

0 x a 5 7 d 8 6 6 6  : - - K i -  l, 

0 x a 5 7 d 8 6 6 6  : - - K i -  1, 

0 x 9 1 2 6 1 4 5 f  = - K 2 ,  

a~i tra~,  

)713 : Xl3+ 1 : Oxa57d8667, 

f(j = Xj  (j  = 14, 15,7,4) ,  

if we use the following "initial values" for step 13 of the left and right line, respectively: 

(AL, BE, CL, DL) = (I, 0, 0, 0), 

(AR, BR, CR, DR) = ( Q , Q +  l , K I -  Q, K I -  Q -  1), 

where O is even and satisfies the equation 

( 2 Q - K I )  <<l+(2Q-KI)  < < j 2 - Q + K 2 - K 3 + I  =0.  

In fact, this equation has precisely the even solutions 

Q -- 2. OxllOd8f04, 

Q -- 2. OxSdda5bdl. 

Proof, First we consider the left line. Table 1 shows the contents A i, Bi, Ci, Di of 
the registers of the left line after the application of  steps i = 1 3 . . . . .  1 8 for the inputs 
Xi3, Xj4, X15, XT, X4 as specified above, and for 

(Ai2, BI2, Ci2, Di2) = (AL, BE, CL, DE) = (1,0, 0, 0). 
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Boolean 
Stepi Ai Bi Ci Di Zj X j constant function Shift 

12 I 0 0 0 * * * * * 

13 1 0 0 ~ - 1  - K i  - 1 Ki G I1 

14 I 0 [~] - I  -1  - K i  - I KI G 13 

15 I 1"-0-'] 0 - I  - 1  - K i  - 1 Ki G 12 

16 ~ 0 0 - I  0 - K 2  K2 H 11 

17 0 0 0 [ ~  X4 + K2 X4 K2 H 13 

18 0 0 [ ~  DL7 K 2 -  K[ - 1 - K i  - I K2 H 14 

Here we set 

zj = xj  + cons tan t  (j = 13, 14, 15, 7, 4, 13) 

for the "actual input," where cons tan t  denotes the constant of  the particular step to be 
used according to the definition of  the algorithm (see the Appendix). The boxed entries 
are those which have been modified in the respective steps. 

We have 

Di8 = DI7 = (X4 -1- K2 - !) <<13, 

Cj8 -- (Dl8 + K2 - Ki - 1) <<14. 

In order to verify Table 1 compute 

DI3 ---- ( 0 +  G ( I , 0 , 0 )  - 1) <<]l = ( - 1 )  <<tl : ( 0 x f f f f f f f f )  <<11 ---- - 1 ,  

Ci4 ---- ( 0 + G ( - I , I , 0 ) -  1) <<j3=0  <<j3=0,  

and so on. 
W e  h a v e  to c o m p a r e  th is  w i t h  Tab le  2 fo r  the  i npu t s  -~13, -~14, X l s ,  X7,  X4, w h e r e  

Xt3 ---- XI3 + 1 and .,Yj = Xj  ( j  ---- 14, 15, 7, 4). 

Table 2 

Boolean 
Step i Ai Bi Ci Di Zj ~'j constant  function Shift 

12 1 0 0 0 * * * * * 

13 1 0 0 [3~] 0 - K i  K] G I1 

14 I 0 [ ' ~  0 - 1  - K ]  - I KI G 13 

15 I [ ]  - I  0 - I  - K I  - 1 Ki G 12 

t6 [ ]  0 - 1  0 0 -K2 K2 H 11 

17 0 0 - 1 [ - ~ / ]  X4 + K2 X4 K2 H 13 

18 0 0 ~ /)17 K2 - Kt -Ka  K2 H 14 
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Table 3 

Boolean 
Stepi Ai Bi Ci Di Zj x j  const, function Shift 

12 Q Q + I  K I - Q  K t - Q - I  �9 �9 �9 �9 �9 

13 Q Q + I  K B - Q  [ ~  - K t - I  - K i - 1  0 G 11 

14 Q Q + I  1 ~  -1  - K i - I  - K t - I  0 G 13 

15 Q [ ~  0 -1 -KI  - I -KI  - I 0 G 12 

16 1 - ~  BI5 0 - 1 K3 - K2 -K2 K3 H ] 1 

17 AI6 BI5 0 [ - ~  X4 + K3 X4 K3 H 13 

18 AI6 BI5 [ ~  DI7 K3 - Ki - I - K i  - 1 K3 H 14 

We have 

/~)18 = /~17 : (X4 @ K2 - 1) <<13, 

Ct8 = (/~18 + K2 - Ks - 1) <<14. 

Thus we see that (Als,  B18, CEs, Dis)  = (,418,/~18, Ci8,/)18) as desired. 
For the right line, Tables 3 and 4 show the contents of the registers for steps 12-18. 
For verification of  Tables 3 and 4 we need the assumption that Q is even and we use 

the fact that K~ is odd, for instance: 

O13 = (Ki - Q - 1 + G ( Q ,  Q + 1, K l  - Q)  - K i  - 1) <<jl 

= ( - Q -  2 + ( (Q A (Q + 1)) v (Q A (K~ - Q)) v ((Q + 1) A (Kl - Q))))<<ll 

= ( - Q - 2 + ( Q + I ) )  <<ll = ( - 1 )  <<11 = - 1 .  

Further, we have 

BIB = BI5 = ( 2 Q  - KI)  <<12, 

Ai8 = A I 6 = ( Q - B I s -  i + K 3 - K 2 )  <<11, 

DIS : DI7 = ( X a W K 3 -  I q - ( A I s ~ B I s ) )  <<13, 

C18 ---- ( K 3 - K I  - l - - [ - ( A I s ~ B I s ~ D I s ) )  <<14, 

Table 4 

Boolean 
Step/ Ai [ti 6"i Di Zj )() const, function Shift 

12 Q Q + I  K I - Q  K I - Q - I  * * * * * 

13 Q Q + I KI - Q [-'0--] - K i  - K i  0 G I1 

14 Q Q + I  [ ' ~  0 -K~ - 1 - K i -  1 0 G 13 

15 Q ~ - I  0 - K t  - 1 - K i  - I 0 G 12 

16 ~ BI5 -- 1 0 K3 - K2 -K2 K3 H I 1 

17 /i, 16 /~15 -1 ~ X4 + K3 X4 K3 H 13 

18 ~t16 BI5 [ - ~  /)17 K3 - KI -KI  K3 H 14 
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/Yl8 = /~t5 = ( 2 Q - K I )  <<12, 

�9 rill8 = ,416 ~- (Q - /~18 - 1 + K3 - K2) <<11, 

/)18 = l)17 = ( X 4 + K 3 -  1 - ( ,4186) /~18))  <<13, 

CI8 = (K3 - KI - 1 + (-4t8 6)/~18 6 ) / ) 1 8 ) )  <<14. 

Thus we conclude that (Al8, Bls, Cis, Dis)  = (,4t8,/~ts, C'18,/)18) if and only if 

Ais 6) Bi8 = --(Al8 6) Bi8), 

i.e., Ai8 --  Bt8 or Ai8 = B18 6) 231 . The first case leads to the equation 

(Q - (2Q - Ki )  <<12 - 1 + K3 - K2) <<~l = (2Q - Ki )  <d2, 

or equivalently 

(2Q - Ki)  <<l + (2Q - Ki)  <<12 - Q + K2 - K3 + 1 = 0. 

Simply testing all even Q < 232 shows that this equation has precisely the two solutions 
given in the lemma. It takes about 30 minutes on a 486-PC. (The corresponding equation 
for Ai8 ---- Bi8 6) 231 has no solution.) This completes the proof. [] 

L e m m a  B. We obtain a simultaneous collision for steps 13-18 of L - c o m p r e s s  1121 and 
R - c o m p r e s s [  ,21 for 

X13 = 0xb6c474bc, 

XI4 = 0xle575831, 

Xl5 = 0x767f3bbb, 

X7 ---- 0x3a456372, 

X 4 = arbitral., 

z~'13 --'-- X13 -F A with A ---- 0xa954a955, 

ffj = Xj ( j  = 14, 15 ,7 ,4 ) ,  

if we use the following "initial values" for step 13 of  the left and right line, respectively: 

(AL, BL, CL, DL) = ( 0 •  0 x 0 0 0 0 0 0 0 0 , 0 x 0 0 0 0 0 0 0 0 ) ,  

(AR, BR, CR, DR) ---- (0x1021040a, 0xfb5eaffd, 0x3830a91b, 0x21485a45). 

As already mentioned we do not describe the approach leading to the inner collision 
given in Lemma B, since it is too complicated to be presented here. The computational 
effort for finding these inner collisions is, also in this case, much smaller than the effort 
for finding backward collisions. 
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Remark on almost collisions. For the inner collision of c o m p r e s s  I231 given in Lem- 
ma A, we have A = ,~13 - Xj3 = 1. This A has Hamming weight 1. Hence the corre- 
sponding input pairs, which yield collisions of compre s s  1231, give "almost collisions" 
for c o m p r e s s  [23~] (first round of c o m p r e s s  put at the end, see end of the Appendix), 
in the sense that their outputs differ only at few bit positions. The reason is that the 
difference A between two inputs affects only the very end of the last round, namely 
steps 45, 46, and 47. About a portion of 1/70 (empirical observation) of the collisions 
for compre s s  1231 found by our attack even have outputs under  c o m p r e s s  12311 different 
only at two bits. (See the end of Example A; unfortunately, a two-bit difference is the 
best result we can achieve in this way.) 

Thus it is an interesting question whether Lemma B can also be shown for some A 
with Hamming weight 1. In that case, corresponding collisions of c o m p r e s s  t121 would 
form almost collisions for the full compress function of RIPEMD. However, the best 
result that could be achieved in this way is a seven-bit difference in the hash values. The 
reason for this restriction is that the XOR operation H, which is applied in the last round, 
inherits differences. 

4. Backward Collisions 

The way to find backward collisions is the same for compress [~21 and compress 1231. 
Just to fix the notation, we consider com pre s s  1231 in what follows. 

Xj3 does not occur in steps 0-12 and 19-31. Thus, in order to derive collisions of 
c o m p r e s s  I231 from Lemma A we have to find "backward collisions" for the first 13 
steps of the left and right line. That is, we have to compute Xo, Xj . . . . .  X6, X8 . . . . .  Xt2 
and common initial values A, B, C, D such that the computation of L-compress  [231 
and R-compress  I231 arrive after step 12 at (AL, BL, CL, DL) and (AR, BR, CR, DR) as 
specified in Lemma A, respectively, where X7 = -K2 .  

Lemma 1. There is an algorithm which allows the computation of backward collisions 
in the above sense. When the algorithm is successful, about 236 classes consisting of 
backward collisions, for which the initial values A and D can be chosen freely, are 
obtained. The algorithm requires on average about the same computational effort as 23i 
computations of a (two-round) compress function. 

Proof. First we suppose that we have chosen X8 . . . . .  X~2. (Recall that X 7 is already 
fixed.) Then the contents of the registers after the application of step 6 for the left and 
the right line, respectively, say 

(A t,  B L, C~, D~) and (A~, B~, C R, D~), 

are fixed and can be found easily by computing backward. It remains to determine 
X0 . . . . .  X6 and A, B, C, D in order to find a backward collision. Table 5 shows the 
computation of steps 0-6. 

Let si denote the number of bit positions to be shifted in step i. Moreover we use the 
notations 

A U  = U R - - U L ,  
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Initial values A B C D Initial values A B C D 

Step 0 Ut. B C D Step 0 U R B C D 
Step 1 Ut. B C VL Step I l JR B C VR 
Step 2 Ui. B Wl. Vt. Step 2 U R B WR VR 
Step 3 UL B L Wl. Vl. Step 3 UR B~ WR VR 
Step 4 A~. Bl* W L VI. Step 4 A~ B~ WR VR 
Step 5 al* B~ WL D~. Step 5 a~ BI~ WR D~ 
Step 6 a~. BI* C~_ D~. Step 6 A~ B R CI~ D~ 

A V =  VR--VL, 

A W = W R -  WL. 

The following equations arc casily dcrivcd: 

0 = / / < < ( - s o )  
~R  

G(UR, B, C) - G(UL, B, C) 

G(VR. UR, B) -- G(VL, UL, B) 

G(WR, VR, UR) -- G(WL, VL, UL) 

G(B~. WR, VR) --  G(B~, WL, VL) 

G(A~, B~(, WR) -- G(A L, B~, WL) 

G(D~, A~, B~) - G(D~, A~, B~) 

U <<t-so) L -1- KI, (1) 
= V[~ <t-'II} - V ( < ( - - S I )  -~ - KI, (2) 

= W <<(-r - WL<<'-"~) + e , ,  (3) 

= BR <<( ..... ) -- BL <<(-'') + K,, (4) 

a*<<( - '~ )  - A [  <<( . . . .  ) - A U  + K l ,  ( 5 )  

= D R  <<{-.`.') - -  D~_ <<( -~)  - A V  + K l ,  ( 6 )  

= CR<<( . . . .  ) --  ~L~*<<(-'%) I ~ W  + g I. (7)  

In fact, these equations follow by elimination of Xi from the two equations defining step 
i. As an example, step 1 is defined by the equations 

VL = (D + G(UL, B, C) + Xi + KI) <<sl , 

VR = ( D + G ( U R . B , C ) +  XI) <<s', 

which imply (2). 
Equations (1)-(7) must hold when we have found a backward collision. Conversely, 

if B, C, UL, VL, WL, UR, VR, WR satisfy (1)-(7), then we obtain 264 backward collisions 
by setting, for arbitrary A and D: 

l l~(--sl l)  Xo = - A - G ( B , C , D ) + ~ R  , 

Xi = - D  - G(UR, B, C) + VR <<<-r 

X2 = - C  - G ( V  R, UR, B )  + W <<t-s2). 
/:~* <<(-sO 

X3 = - B  - G(WR, V R, UR) "t- --R " ' 

, A*<<(-s4) X4 = --UR -- G(B R, WR,  VR) "~ "'R 
�9 , * r l ,<<(-ss I X5 = - V R - G ( A  R,B R , W R ) + ` . R  " , 

X6 = --WR -- G(D~, A~, B~) + C~ <<~--'~'. 

(8) 

(9) 

10) 

11) 

12) 

13) 

14) 
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Hence we try to find solutions B, C, UL, VL, WL, UR, VR, WR of ( 1 )-(7). To this end we 
make use of the following obvious fact: 

There is a very fast algorithm which allows the computation of all solutions of an 
equation of the form 

G(a0, b0, x + A x ) - G ( a l , b l , X ) = C  with givenAx, a0, b0, a l ,b j ,  andc. (15) 

In fact, simply solve this equation recursively and bitwise starting from the lowest bit. 
Empirical observations have shown that there exist solutions of (15) with a probability 
of about 2-~1, and in this case we obtain an average of 211 solutions. 

The basic idea is to derive a sequence of equations from (1)-(7), such that whenever 
the preceding equations are solved, the next equation is of the form (15). To manage this 
we make two additional settings, which in many cases will reduce the set of solutions, 
but on the other hand allow us to determine all remaining solutions very quickly: 

AU = - K  <<s~ (or (--Ki)<<'~~ (16) 

AV = - K ~  <~' (or (--Kl)<<'*'). (17) 

The reason for (16) is (1), which suggests these guesses for the value of AU without 
knowing UL and UR. Similarly (17) hopefully implies 

< < ( - ' ' '  - v (  + K, = O, 

such that (2) would have at least the trivial solution B = C. Further observe that A W is 
fixed by (7): 

A W ---- G( D~, A~, B~) - G( D~, A[, S~.) - CR <<(-s") + CL <<(-'~s) + K,. 

Equations (6), (5) . . . . .  (2), in this ordering, are now used to compute WE, VL, UL, B, 
and finally C: 

G(A~, n~, W L "1- A W )  - -  G(A~, B~, WL) = DR <<(-''~) --  DE <<(-'~) -- AV + Ki, (I) 

G(B~, WR, VL + AV) -- G(B~, WL, VL) = AR <<<-') -- AL <<( .... ) -- AU + Kt, (II) 
it/*<<(-sO R*<<(-s~) G(WR, Vp., UL Jr AU) -- G(WL, VL, UL) ~--- ~R --  ~L Jr KI, (III) 

G(VR, UR, B) - G(VL, UL, B) = W~ <~-'2) - Wl< <(-s2) + KI, (IV) 
l /<<(-sl)  V<<(-s0 G(UR, B , C ) - G ( U L ,  B,C) = "R -- + K i .  (V) 

After these preparations we can describe how the algorithm for the search of backward 
collisions works in its simplest form: 

1. Choose X8 . . . . .  Xi2 randomly and compute the associated values for A[, B~, C~, 
D~ and A~, B~, C~, D~. Determine the solutions WE of (I). If they exist, insert 
each of them into (II) in order to determine all associated VL. In case of success, 
the next step is to consider (III) in order to compute UL, and so on. Refuse each 
possibly obtained UL if it does not satisfy (l). 

2. If X8 . . . . .  Xt2 have been found such that there are solutions up to (II), then take 
these as "basic values." Change randomly one bit of each of the basic values for 
Xs . . . . .  Xt2. (The idea is that if a set of values of Xs . . . . .  X I 2  gives solutions to 
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steps (I) and (II), then values close to them again give solutions to steps (I) and (II) 

with a relatively high probability.) Only if you again come to solutions up to (II) 

take the changed value as new basic values and continue until you reach (III), and 

so on. 

Practice has shown that this leads to solutions up to (IV), and then, in most cases, 
automatically to solutions of (V). 

Observe that the set of solutions has the structure of a tree. We have a set of solutions 

WL of (I), such that to each WE there corresponds a set of solutions VL of (II), and so on. 

This "avalanche" effect has the consequence that in case we can reach (V), we even find 
2 36 or more solutions. [] 

The combination of Lemmas A and B with Lemma ! implies directly: 

L e m m a  2. There is an algorithm which allows the computation o/collisions o f  corn- 
pres s  {121 and c o m p r e s s  1231 with about 2 I~176 different initial values. It requires on average 
about the same computational effort as 2 31 computations o f  a (two-round) compress 
.[unction. 

In next example one class of 2 64 collisions for c o m p r e s s  123] is given. It has been 

found by the previously described attack (Lemmas A and 1). 

Example  A (Class of Collisions for compress[231). For arbitrary A and D set 

(B,C) : (0x828a0950,0x98080110), 

X 0 = 

XI = 

X2 = 

X 3 = 

X4 = 

X5 = 

X 6 = 

X 7 = 

X8 = 

X9 = 

XIO = 

XII ~--- 

XI2 = 

XI3 = 

X14 = 

XI5 = 

0 x 1 2 4 8 1 0 5 9  + G(B,  C, O) - G(B ,  C, D) - A, 

0xa9368b18 -- D, 

0xdf3dae71, 

0x88bacd2a, 

0x618ec5d2 

0x53b59054 

0xlbb396fc 

0x9126145f 

0x972a229d 

0xe9098eee 

0xf0fl721d 

0xf8dbb766 

0x753ed5cb 

0xa57d8666 

0xa57d8666 

0xa57d8666 
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Xi = Xi fo r /  < 16, i - 9 1 3 ,  

-~13 = XI3 Ac 1 : 0 x a 5 7 d 8 6 6 7 .  

Then we have 

compress[231(A, B, C, D; X0 . . . . .  X15) = compress[231(A, B, C, D; J(0 . . . . .  )(15). 

Explicitly, if for instance we set A = 0 x 0 3 d 0 6 d a 3  and D = 0 x 6 a 6 4 5 c 7 4 ,  then the 
common output under c o m p r e s s  [231 is 

0 x 7 f 7 3 3 e 3 b  0 x 3 b a c 8 4 2 a  0 x 0 6 1 c 7 c a c  0 x 0 c a 4 1 0 8 9 .  

Moreover, we have 

compress12311(A, B, C, D; X) 

= 0 x 9 b 8 8 8 2 7 2  0 x 6 6 4 8 3 2 1 1  0 x 0 6 9 2 b 4 6 4  0 x 7 5 8 f 5 4 8 b ,  

compress123~l(A, B, C, D; X) 

---- 0 x 9 b 8 8 8 2 f 2  0 x 6 6 4 8 3 2 9 1  0 x 0 6 9 2 b 4 6 4  0 x 7 5 8 f 5 4 8 b .  

That is, the outputs under c o m p r e s s  [2311 differ only at two bits. 

5. Right Initial Value 

By Lemma 2 we find large classes of  collisions for the compress functions of  RIPEMD llel 
and RIPEMD E23], but not yet for these hash functions, because the required fixed initial 
value IVo will usually not be among the admissible initial values for collisions found. 
However, as we shall see below, this problem is easily avoided by a straightforward 
meet-in-the-middle attack. 

Example B (Collision for RIPEMD[121). 
following words: 

M0 
MI 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 

Mio 
Mjl 
Ml2 
Mi3 
MI4 
MI5 

: Ox179ee2b9, 

: Ox6e14b784, 

: Ox2fa520b7, 

: OxO9e5c84a, 

= Ox6a81e3b5 

= Ox5Oc8fbfe 

= Ox6d390c47 

= Ox7f5292b4, 

= Ox50f05934, 

= Ox2acd6dd7, 

: Ox4afbae78, 

= Ox28eda5c3, 

= Ox3217765e, 

= Oxl6f6ela4, 

= Ox54b57bbO, 

= Ox46cbe2b6, 

The first message M is the sequence of the 

MI6 : Ox61dfbl82, 

m17 : Ox1808647d, 

m18 : Oxfd84f2el, 

m19 = Oxb8647a90, 

M20 = Oxc3dd8441, 

M21 = Oxalfeflel, 

M22 = Ox7d15c061, 

M23 : Ox3a456372, 

M24 : OxO20828dd, 

M25 = Ox2beOl4ea, 

M26 = Ox321373f7, 

M27 = OxOb2266e7, 

M28 = Ox87e9ddd2, 

M29 = Oxb6c474bc, 

M3o = Oxle575831, 

M31 = Ox767f3bbb. 
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The second message/~/is  defined by setting AT/i = Mi (i < 32, i # 29) and 

/~29 ---: 0x60191ell. 

RIPEMD [121 associates to M and ,~/the same hash value, namely 

63 

0x7b4d3b7f 0x792ae282 0xfee3cfeO 0xb8cee276, 

where the padding rule is also considered. It requires that the 16 words 

0x80,  0, 0 . . . . .  0, 0x400,  0 

have to be added to M a n d / ~  (see [1]). 

This example has been found as follows. First, based on Lemma B, the algorithm 
described in the proof of Lemma 1 is applied (i.e., X13 = M29, Xl4 = M30, X15 = M31, 
X7 = M23 are given according to Lemma B). In this way we find X8 = M 2 4  . . . . .  X12  = 

M28 such that we have a complete tree of  solutions for WE, WR, VL, VR, UL, UR, B, and 
C satisfying (I)-(V). (Note that here we have to modify the equations in Section 4 by 
replacing Kl by - K 0 ,  because we are now dealing with the first two instead of  the last 
two rounds.) 

From this tree we take a collection of  fixed values for WE, WR, VL, VR, UL, and UR, 
i.e., (I)-(III) are satisfied. In view of (12), (13), (14) the words X4 = M20, X5 = M21, 
X 6 = M22 are now fixed. 

Finally choose values for M0 . . . . .  Ml5 randomly, compute 

compressU2](IVo; Mo . . . . .  Mls) = (A, B, C, D) 

with 

IVo = 0x67452301 0xefcdab89 0x98badcfe 0xi0325476 

(see the Appendix) and test, for B and C, the following equations: 

F(VR, UR, B) -- F(VL, UL, B) -: W <<(-s2) - W <<(-s2) - Ko, (IV) 

F(UR, B, C) - F(UL, B, C) = V (<(-s') - VL <<(-'') -- Ko. (V) 

If  the test is passed, then (A, B, C, D) is an admissible initial value for the second 
application of  c o m p r e s s  [~2], and we define Xo : M~6, Xl = M17, X2 : M~8, and 
X3 : M19 using (8)-(11). 

Concretely in our above example, we have chosen 

WL : 0xcef895d6, 

WR : 0x140279c4, 

VL : 0x0d5e7745, 

VR : 0xb0580b6d, 

QL : 0x83901a28, 

QR : 0x97ef4cad 
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from a complete tree of solutions of (I)-(V) which have been found. There are 232 pairs 
(B, C) satisfying (IV) and (V) in this case. 

We can improve this attack by selecting not only one, but several collections of values 
for WL, WR, VL, VR, UL, UR from the tree of solutions of (I)-(III). Another trick reducing 
the effort is taking Mo . . . . .  M I 4  fixed and changing only M15. Then only one round of 
the compress function has to be computed. 

6. MD4 Is Not Collision-Free 

We have found that the methods developed in this note can be applied to MD4 very 
effectively [3]. In fact, collisions can be found for the full MD4 in less than 1 minute on 
a PC. 

Example C (Collision for MD4). The first message M is the sequence of the follow- 

Mo = Ox13985e12, M8 = Oxabel7beO. 

Ml = Ox748a810b, M9 = Oxedled4b3. 

M2 = Ox4dldfl5a, MIO = Ox412Oabf5. 

M3 = OxlSld1516, MII = 0x20771029. 

M4 = Ox2d6eO9ac, MI2 = 0x20771027. 

M 5 = Ox4b6dbdb9, MI3 = Oxfdfffbff. 

M6 = Ox6464bOcS, MI4 = Oxffffbffb. 

M7 = Oxfbalc097, MI5 = Ox6774bed2. 

ing 32-bit words: 

The second message M is defined by setting/14i = Mi (i < 16, i -r 12) and 

/~12 = MI2 -[- 1. 

MD4 associates to M and )~ the same hash value 

Ox711ad51b Oxbbab5e22 Ox618blc76 0x17c15892. 
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Appendix 

The hash function RIPEMD is defined as the iteration of a certain compress function, 
which we specify below. The computation starts with the initial value 

IVo= 0x67452301 Oxefcdab89 Ox98badcfe 0xi0325476. 

Each application of the compress function uses four words as initial values and 16 words 
of the message as input, and it gives four words output, which are then used as initial 
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values for the next application. The final output is the hash value. This works, since there 
is a padding rule (addition of bits to the message such that its length is a multiple of 
512 = 16 x (length of words)). A complete description of RIPEMD can be found in [1 ]. 

A. 1. Compress Function of RIPEMD 

Define the constants 

Ko = 0x50a28be6, 

KI = 0x5a827999, 

K2 = 0x6ed9ebal, 

K 3 = 0x5c4dd124 

and the Boolean vector functions 

F(X, Y, Z) = 

G(X, Y, Z) = 

H(X, Y, Z) = 

(X A Y) v (-,X A Z), 

(X A Y) v (X A Z) v (Y/x Z), 

X @ Y ~ Z .  

Further, let F F(a, b, c, d, Z, s), GG(a, b, c, d, Z, s), and H H (a, b, c, d, Z, s) denote 
the operations 

a := (a + F(b, c, d) + Z) <<s, 

a := (a + G(b, c,d) + Z) <<s, 

a := (a + H(b,c,d) + Z) <<', 

respectively. In order to define compress for RIPEMD suppose now that initial val- 
ues A, B, C, D and inputs X0 . . . . .  XI5 are given. Copy A, B, C, D into the registers 
aa, bb, cc, dd of the left line and the registers aaa, bbb, ccc, ddd of the right line. Then 
apply the following steps: 

First round 

step 0 FF(aa, bb, cc, dd, X0, 11) FF(aaa, bbb, ccc, ddd, Xo + K0, 11) 
step 1 FF(dd, aa, bb, cc, Xl, 14) FF(ddd, aaa, bbb, ccc, Xj + Ko, 14) 
step 2 FF(cc, dd, aa, bb, X2, 15) FF(ccc, ddd, aaa, bbb, X2 + Ko, 15) 
step 3 FF(bb, cc, dd, aa, X3, 12) FF(bbb, ccc, ddd, aaa, X3 + Ko, 12) 
step 4 FF(aa, bb, cc, dd, X4, 5) FF(aaa, bbb, ccc, ddd, X4 + Ko, 5) 
step 5 FF(dd, aa, bb, cc, Xs, 8) FF(ddd, aaa, bbb, ccc, X5 + Ko, 8) 
step 6 FF(cc, dd, aa, bb, X6, 7) FF(ccc, ddd, aaa, bbb, X6 + Ko, 7) 
step 7 FF(bb, cc, dd, aa, X7, 9) FF(bbb, ccc, ddd, aaa, X7 + Ko, 9) 
step8 FF(aa, bb, cc, dd, X8,11) FF(aaa, bbb, ccc, ddd, X8 + Ko, ll)  
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step 9 
step 10 
step 11 
step 12 
step 13 
step 14 
step 15 

step 16 
step 17 
step 18 
step 19 
step 20 
step 21 
step 22 
step 23 
step 24 
step 25 
step 26 
step 27 
step 28 
step 29 
step 30 
step 31 

step 32 
step 33 
step 34 
step 35 
step 36 
step 37 
step 38 
step 39 
step 40 
step 41 
step 42 
step 43 
step 44 
step 45 
step 46 
step 47 

F F (dd, aa, bb, cc, X9, 13) 
FF(cc, dd, aa, bb, Xlo, 14) 
F F(bb, cc, dd, aa, Xll, 15) 
F F(aa, bb, cc, dd, Xl2, 6) 
FF(dd, aa, bb, cc, X13, 7) 
F F(cc, dd, aa, bb, Xl4, 9) 
F F (bb, cc, dd, aa, X ls, 8) 

FF(ddd, aaa, bbb, ccc, X9 + Ko, 13) 
FF(ccc, ddd, aaa, bbb, Xlo 4- Ko, 14) 
FF(bbb, ccc, ddd, aaa, Xll + Ko, 15) 
F F(aaa, bbb, ccc, ddd, X12 + Ko, 6) 
FF(ddd, aaa, bbb, ccc, X13 4- Ko, 7) 
FF(ccc, ddd, aaa, bbb, Xi4 4- Ko, 9) 
F F(bbb, ccc, ddd, aaa, XI5 + Ko, 8) 

Second round 

GG(aa, bb, cc, dd, 
GG(dd, aa, bb, cc, 
GG(cc, dd, aa, bb, 
GG(bb, cc, dd, aa, 
GG(aa, bb, cc, dd, 
GG(dd, aa, bb, cc, 
GG(cc, dd, aa, bb, 
GG(bb, cc, dd, aa, 
GG(aa, bb, cc, dd, 
GG(dd, aa, bb, cc, 
GG(cc, dd, aa, bb, 

X7 + K1,7) 
X4 4- Kl, 6) 
S13 4- K1,8) 
X1 + KI, 13) 
Xj0 + Kl, 11) 
X6 4- Kl, 9) 
X15 + K~, 7) 
X3 4- KI, 15) 
XI2 + Kj, 7) 
Xo + KI, 12) 
X9 4- KI, 15) 

GG(bb, cc, dd, aa, X5 + K1, 9) 
GG(aa, bb, cc, dd, XI4 4- K1,7)  
GG(dd, aa, bb, cc, X2 + Kl, 11) 
GG(cc, dd, aa, bb, XII + KI, 13) 
GG(bb, cc, dd, aa, X8 4- K1, 12) 

GG(aaa, bbb, ccc, ddd, X7, 7) 
GG(ddd, aaa, bbb, ccc, X4, 6) 
GG(ccc, ddd, aaa, bbb, X13, 8) 
GG(bbb, ccc, ddd, aaa, X1, 13) 
GG(aaa, bbb, ccc, ddd, Xlo, 11) 
GG(ddd, aaa, bbb, ccc, X6, 9) 
GG(ccc, ddd, aaa, bbb, Xls, 7) 
GG(bbb, ccc, ddd, aaa, X3, 15) 
GG(aaa, bbb, ccc, ddd, X12, 7) 
GG(ddd, aaa, bbb, ccc, Xo, 12) 
GG(ccc, ddd, aaa, bbb, X9, 15) 
GG(bbb, ccc, ddd, aaa, Xs, 9) 
GG(aaa, bbb, ccc, ddd, XI4, 7) 
GG(ddd, aaa, bbb, ccc, X2, 11) 
GG(ccc, ddd, aaa, bbb, Xij, 13) 
GG(bbb, ccc, ddd, aaa, Xs, 12) 

Third round 

H H (aa, bb, cc, dd, 
H H (dd, aa, bb, cc, 
HH(cc, dd, aa, bb, 
HH(bb, cc, dd, aa, 
HH(aa, bb, cc, dd, 
HH(dd, aa, bb, cc, 
HH(cc, dd, aa, bb, 
HH(bb, cc, dd, aa, 
HH(aa, bb, cc, dd, 
HH(dd, aa, bb, cc, 
HH(cc, dd, aa, bb, 

X3 + K2, 11) 
Xlo 4- K2, 13) 
X2 4- K2, 14) 
X4 + K2, 7) 
X9 4- K2, 14) 
XI5 4- K2, 9) 
X8 + K2, 13) 
X~ 4- K2, 15) 
XI4 4- K2, 6) 
X7 4- K2, 8) 
Xo 4- K2, 13) 

HH(bb, cc, dd, aa, X6 + K2, 6) 
HH(aa, bb, cc, dd, Xll + K2, 12) 
HH(dd, aa, bb, cc, Xl3 + K2, 5) 
HH(cc, dd, aa, bb, X5 + K2, 7) 
HH(bb, cc, dd, aa, Xl2 + K2, 5) 

HH(aaa, bbb, ccc, ddd, 
HH(ddd, aaa, bbb, ccc, 
l-I H (ccc, ddd, aaa, bbb, 
H H (bbb, ccc, ddd, aaa, 
H H (aaa, bbb, ccc, ddd, 
HH(ddd, aaa, bbb, ccc, 
H H (ccc, ddd, aaa, bbb, 
H H (bbb, ccc, ddd, aaa, 
HH(aaa, bbb, ccc, ddd, 
HH(ddd, aaa, bbb, ccc, 
HH(ccc, ddd, aaa, bbb, 
H H (bbb, ccc, ddd, aaa, 
H H (aaa, bbb, ccc, ddd, 
H H (ddd, aaa, bbb, ccc, 
HH(ccc, ddd, aaa, bbb, 
H H (bbb, ccc, ddd, aaa, 

X3 + K3, 11) 
Xlo 4- K3, 13) 
X2 + K3, 14) 
X4 + K3, 7) 
X9 + K3, 14) 
X15 + K3, 9) 
X8 + K3, 13) 
X1 4- K3, 15) 
X14 4- K3, 6) 
X7 + K3, 8) 
Xo + K3, 13) 
X6 4- K3, 6) 
XII -t- K3, 12) 
XI3 4- K3, 5) 
X5 + K3, 7) 
XI2 -t- K3, 5) 
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Finally compute the output AA,  BB, CC, DD as follows: 

AA = B 4- cc 4- ddd, 

B B = C 4- dd 4- aaa, 

CC = D 4- aa 4- bbb, 

D D = A 4- bb 4- ccc. 

That is one sets 

compress(A,  B, C, D; X0, Xi . . . . .  X15 ) = (AA, BB, CC, DD). 

A.2. Compress Functions of RIPEMD [121 and RIPEMD E231 

By compress [~21 we denote the reduced version of compress, where the last round 
(steps 32~J~7) is omitted. Similarly, compress [231 denotes the reduced version of com- 
press, where the first round (steps 0-15) is omitted and--for the sake of convenience-- 
the application of the Xi is permuted such that they occur in their natural ordering in the 
first round of compress [23] (i.e., the second round of compress). Explicitly the steps 
of compress [231 are therefore: 

First round of compress [23] 

step 0 GG(aa, bb, cc, dd, Xo 4- Kj, 7) 
step 1 GG(dd,  aa, bb, cc, Xl 4- Kl, 6) 
step 2 GG(cc, dd, aa, bb, X2 + K1, 8) 
step 3 GG(bb, cc, dd, aa, X3 + K~, 13) 
step 4 GG(aa, bb, cc, dd, X4 4- K I ,  1 1) 

step 5 GG(dd,  aa, bb, cc, X5 4- KI, 9) 
step 6 GG(cc, dd, aa, bb, X6 4- Kl, 7) 
step 7 GG(bb, cc, dd, aa, X7 4- Kj, 15) 
step 8 GG(aa, bb, cc, dd, Xs 4- Kl, 7) 
step9 GG(dd,  aa,bb,  cc, X94- Ki, 12) 
step 10 GG(cc, dd, aa, bb, Xlo 4- Kl, 15) 
s tepl l  GG(bb, cc, dd, aa, Xll 4- Ki ,9)  
step 12 GG(aa, bb, cc, dd, X12 4- Kl, 7) 
step 13 GG(dd,  aa, bb, cc, X13 + Ki, 11) 
step 14 GG(cc, dd, aa, bb, Xj4 + Kl ,13)  
step 15 GG(bb, cc, dd, aa, Xj5 + KI, 12) 

GG(aaa, bbb, ccc, ddd, Xo, 7) 
GG(ddd,  aaa, bbb, ccc, Xl,  6) 
GG(ccc, ddd, aaa, bbb, X2, 8) 
GG(bbb, ccc, ddd, aaa, X3, 13) 
GG(aaa, bbb, ccc, ddd, X4, 11) 
GG(ddd,  aaa, bbb, ccc, Xs, 9) 
GG(ccc, ddd, aaa, bbb, X6, 7) 
GG(bbb, ccc, ddd, aaa, X7, 15) 
GG(aaa, bbb, ccc, ddd, X8, 7) 
GG(ddd,  aaa, bbb, ccc, X9, 12) 
GG(ccc, ddd, aaa, bbb, Xio, 15) 
GG(bbb, ccc, ddd, aaa, Xl l ,  9) 
GG(aaa, bbb, ccc, ddd, X12, 7) 
GG(ddd,  aaa, bbb, ccc, X13, 1 1) 
GG(ccc, ddd, aaa, bbb, Xj4, 13) 
GG(bbb, ccc, ddd, aaa, Xls, 12) 

Second round of 

step 16 HH(aa ,  bb, cc, dd, X7 4- K2, 1 1) 
step 17 H H ( d d ,  aa, bb, cc, X4 4- K2, 13) 
step 18 HH(cc ,  dd, aa, bb, Xl3 4- K2, 14) 

compress [23] 

H H (aaa, bbb, ccc, ddd, X 7 4- K3, I 1) 
H H ( d d d ,  aaa, bbb, ccc, X4 4- K3, 13) 
HH(ccc ,  ddd, aaa, bbb, X13 + K3, 14) 
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step 19 HH(bb, cc, dd, aa, XI + K2, 7) 
step 20 HH(aa, bb, cc, dd, XI0 -1- K2, 14) 
step 21 HH(dd, aa, bb, cc, X6 + K2, 9) 
step 22 HH(cc, dd, aa, bb, Xj5 + K2, 13) 
step 23 HH(bb, cc, dd, aa, X3 + Ke, 15) 
step 24 HH(aa, bb, cc, dd, Xl2 + K2, 6) 
step 25 H H (dd, aa, bb, cc, Xo + K2, 8) 
step 26 HH(cc, dd, aa, bb, X9 + K2, 13) 
step 27 HH(bb, cc, dd, aa, X5 + K2, 6) 
step 28 HH(aa, bb, cc, dd, Xl4 + K2, 12) 
step 29 HH(dd, aa, bb, cc, X2 + K2, 5) 
step 30 HH(cc, dd, aa, bb, Xll + K2, 7) 
step 31 HH(bb, cc, dd, aa, X8 + K2, 5) 

H H (bbb, ccc, ddd, aaa, X j + K3, 7) 
HH(aaa, bbb, ccc, ddd, Xlo + K3, 14) 
HH(ddd, aaa, bbb, ccc, X6 + K3, 9) 
HH(ccc, ddd, aaa, bbb, Xl5 + K3, 13) 
HH(bbb, ccc, ddd, aaa, X3 + K3, 15) 
HH(aaa, bbb, ccc, ddd, Xl2 + K3, 6) 
H H (ddd, aaa, bbb, ccc, Xo + K3, 8) 
HH(ccc, ddd, aaa, bbb, X9 + K3, 13) 
H H (bbb, ccc, ddd, aaa, X5 + K3, 6) 
HH(aaa, bbb, ccc, ddd, X14 § K3, 12) 
H H (ddd, aaa, bbb, ccc, X2 + K3, 5) 
HH(ccc, ddd, aaa, bbb, X11 + K3, 7) 
H H (bbb, ccc, ddd, aaa, X8 + K3, 5) 

The reduced version of RIPEMD, where compress is replaced by compress [~2] 
(resp. compress[23]), is denoted by RIPEMD [12] (resp. RIPEMD[231). 

Because we refer to it in a remark concerning almost collisions (see the end of Sec- 
tion 3), we finally define the three-round compress function compress t2311 as a modifi- 
cation of the original RIPEMD compress, where the first round is put at the end. The 
first two rounds of compress [23~] coincide with compress 123]. The ordering in which 
the blocks Xi are applied in the single steps of c o m p r e s s  [2311 is the same as for com- 
press, since this ordering is a fundamental design principle of RIPEMD. The last round 
of compress 123JJ is therefore defined as follows: 

step 32 FF(aa, bb, cc, dd, X3, 1 l) 
step 33 FF(dd, aa, bb, cc, Xlo, 14) 
step 34 FF(cc, dd, aa, bb, X2, 15) 
step 35 FF(bb, cc, dd, aa, X4, 12) 
step 36 FF(aa, bb, cc, dd, Xg, 5) 
step 37 FF(dd, aa, bb, cc, Xl5, 8) 
step 38 FF(cc, dd, aa, bb, X8, 7) 
step 39 FF(bb, cc, dd, aa, Xl, 9) 
step 40 FF(aa, bb, cc, dd, XI4, 11) 
step 41 FF(dd, aa, bb, cc, X7, 13) 
step 42 FF(cc, dd, aa, bb, Xo, 14) 
step 43 FF(bb, cc, dd, aa, X6, 15) 
step 44 FF(aa, bb, cc, dd, XII, 6) 
step 45 FF(dd, aa, bb, cc, X13, 7) 
step 46 FF(cc, dd, aa, bb, Xs, 9) 
step 47 FF(bb, cc, dd, aa, Xl2, 8) 

FF(aaa, bbb, ccc, ddd, X3 + Ko, I l) 
FF(ddd, aaa, bbb, ccc, Xlo + Ko, 14) 
FF(ccc, ddd, aaa, bbb, X2 + Ko, 15) 
FF(bbb, ccc, ddd, aaa, X4 + Ko, 12) 
F F(aaa, bbb, cec, ddd, X9 + Ko, 5) 
F F(ddd, aaa, bbb, ccc, XI5 -~- K0, 8) 
FF(ccc, ddd, aaa, bbb, X8 + Ko, 7) 
FF(bbb, ccc, ddd, aaa, XI + Ko, 9) 
FF(aaa, bbb, ccc, ddd, XI4 + Ko, 11) 
FF(ddd, aaa, bbb, ccc, X7 + Ko, 13) 
FF(ccc, ddd, aaa, bbb, Xo + Ko, 14) 
F F(bbb, ccc, ddd, aaa, X6 + Ko, 15) 
FF(aaa, bbb, ccc, ddd, X~l + Ko, 6) 
FF(ddd, aaa, bbb, ccc, Xl3 + Ko, 7) 
FF(ccc, ddd, aaa, bbb, X5 + Ko, 9) 
FF(bbb, ccc, ddd, aaa, Xl2 + Ko, 8) 

Note Added in Proof(July 1996). As a reaction to the presented attack, RIPEMD has 
meanwhile been replaced in the ISO/IEC Draft 10118-3 by its strengthened succes- 
sors RIPEMD-160 and RIPEMD-128 (H. Dobbertin, A. Bosselaers, and B. Preneel, 
RIPEMD- 160: A strengthened version of RIPEMD, Fast Software Encryption (Proceed- 
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ings of the 1996 Cambridge Workshop on Cryptographic Algorithms), Lecture Notes in 
Computer Science, vol. 1039, Springer-Verlag, Berlin, 1996, pp. 71-82). 

Very recently it has been demonstrated that collisions of the compress function of 
MD5 can be found (H. Dobbertin, The status of MD5 after a recent attack, CryptoBytes, 
The technical newsletter of RSA Laboratories, vol. 2, Summer issue, 1996). 
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