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Abstract. Drosophila melanogaster has proven to be a
good model for understanding the physiology of ion
channels. We identified two novel Drosophila DEG/
ENaC proteins, Pickpocket (PPK) and Ripped Pocket
(RPK). Both appear to be ion channel subunits. Ex-
pression of RPK generated multimeric Na* channels
that were dominantly activated by a mutation associ-
ated with neurodegeneration. Amiloride and gadolin-
ium, which block mechanosensation in vivo, inhibited
RPK channels. Although PPK did not form channels
on its own, it associated with and reduced the current

generated by a related human brain Na* channel. RPK
transcripts were abundant in early stage embryos, sug-
gesting a role in development. In contrast, PPK was
found in sensory dendrites of a subset of peripheral
neurons in late stage embryos and early larvae. In in-
sects, such multiple dendritic neurons play key roles in
touch sensation and proprioception and their morphol-
ogy resembles human mechanosensory free nerve end-
ings. These results suggest that PPK may be a channel
subunit involved in mechanosensation.

volved in mechanotransduction, proprioception, neu-

rotransmission, and fluid and electrolyte homeosta-
sis (11, 39, 51). Members of this superfamily are united by
similarities in their amino acid sequences and in some
cases by their function. The first identified protein and the
largest number of family members are from Caenorhabditis
elegans; these include MEC-4, MEC-10, DEG-1, UNC-105,
UNC-8, and DEL-1 (10, 12, 15, 24, 33, 52). Elegant genetic
studies in that organism have suggested a role for DEG/
ENaC proteins in mechanotransduction. MEC-4 and MEC-10
are expressed in mechanosensory neurons and are required
for normal sensitivity to touch (12, 24). In addition, UNC-105
and UNC-8 are expressed in muscle and motor neurons,
respectively, and are required for coordinated movement
(33, 52). Three lines of evidence suggest that C. elegans

THE DEG/ENaC' superfamily includes proteins in-
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family members may be ion channels. First, as discussed
below, other family members have been shown to be ion
channels. Second, residues in the transmembrane sequence
of a related DEG/ ENaC channel, «’ENaC, can be substi-
tuted for residues in M2 of MEC-4 without loss of function
in the worm and vice versa (23, 56). And third, specific
mutations in several C. elegans family members cause a
phenotype marked by neuronal swelling; this may suggest
a loss of cell volume control, perhaps caused by unregu-
lated opening of an ion channel (10, 12, 15, 24). Neverthe-
less, these C. elegans, proteins have not been shown exper-
imentally to be channels either in vivo or in heterologous
expression systems.

Subunits of the vertebrate epithelial Na™ channel (ENaC)
subfamily form ion channels that mediate Na* absorption
across the apical membrane of epithelia (6, 8, 31, 35, 36,
54, 55). Studies of ENaC have served to define several
functional properties of the family. First, ENaC generates
Na™ currents that are reversibly blocked by the diuretic
amiloride. Although Na™ selectivity is not a general fea-
ture, all DEG/ENaC proteins shown to be ion channels
are amiloride-sensitive and conduct cations. Second,
ENaC functions as a multimeric complex of three sub-
units, a-, B-, and yENaC. In Xenopus oocytes, expression
of aENaC, but not B- or yENaC, generates a small
amiloride-sensitive Na™ current (6). However, when B-
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and YyENaC are coexpressed with aENaC, much larger
Na* currents are produced (8, 36). This finding illustrates
a third feature of the family: some members can form ion
channels when expressed alone, whereas others are ion
channel subunits that do not function by themselves in oo-
cytes. Fourth, biochemical studies of « ENaC revealed a
membrane topology consisting of two transmembrane do-
mains (M1 and M2), cytoplasmic NH, and COOH termini,
and a large extracellular region containing cysteine-rich
domains (7, 43, 45). Other family members are thought to
have a similar molecular organization (30).

In addition to the C. elegans proteins, three other neu-
ronal family members have been identified. FaNaCh is a
neuronal channel activated by the neuropeptide FMRF-
amide (32). Brain Na® channel 1 (BNCI, also named
MDEG and BNaCl) is widely expressed in human brain.
Although its physiologic function is unknown, its channel
activity can be enhanced by mutation of a residue associ-
ated with neuronal swelling in C. elegans DEG/ENaC pro-
teins (16, 42, 57). A channel very similar to BNC1, BNaC2
(also named ASIC), is expressed in brain and dorsal root
ganglia, and is activated by extracellular protons (16, 58).
These observations demonstrate a fifth feature of the fam-
ily; in contrast to ENaC, neuronal DEG/ENaC channels may
open only in the presence of specific stimuli or an activat-
ing mutation.

As a model system for investigating complex processes
such as mechanosensation, Drosophila melanogaster offers
several advantages. In addition to its value for genetic,
molecular, and physiologic analysis, the morphology and
development of several embryonic and larval structures
have been characterized in detail. Therefore, we sought to
identify new DEG/ENaC family members from Drosoph-
ila and to study their localization and function.

Materials and Methods

Cloning and Northern Analysis

DS06238, a P1 phage that contains a large genomic clone from the left arm
of Drosophila chromosome 2 (20, 34), and LD03440 (21), an expressed se-
quence tag clone from Drosophila embryos, were cloned and partially se-
quenced by the Berkeley Drosophila Genome Project (BDGP). DS06238
is reported to lie in chromosomal region 35A1-4, near the alcohol dehy-
drogenase (Adh) gene (34). We confirmed this location by in situ hybrid-
ization to polytene chromosome squashes (not shown). Database searches
were performed using the BLAST network server (National Center for
Biotechnology Information). Partial pickpocket (ppk) cDNAs were
cloned from adult Drosophila poly(A)* RNA (Clontech, Palo Alto, CA),
using 3’ and 5' RACE PCR (GIBCO BRL, Gaithersburg, MD) and prim-
ers designed against candidate DEG/ENaC protein sequences in
DS06238. A ¢cDNA containing the entire ppk-coding region was con-
structed from partial PCR clones. The ppk sequence was confirmed by
comparing it to the submitted sequence of DS06838, as well as the se-
quence of an independently obtained genomic clone of the region. A full-
length ripped pocket (rpk) cDNA clone (expressed sequence tag clone
LD03440) was kindly provided by BDGP; we sequenced this clone on
both strands, and confirmed the location of its start codon using 5’ RACE
PCR. PPK was named for its potential role in mechanosensation; RPK
was named for its similarity to PPK and activation of its channel function
by a specific mutation. Sequence comparisons were made using an align-
ment generated by CLUSTAL W (53). In some cases, slight adjustments
were made manually. Northern blots were performed as previously de-
scribed (42). Blots contained 2 pg of poly(A)* RNA isolated from Drosoph-
ila embryos, larvae, or adults (Clontech). The ppk probe corresponded to
the complete coding region; the rpk probe consisted of nucleotides 1-417
of the rpk cDNA.
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Expression Constructs and Antibodies

The cDNA encoding PPK was constructed using the Muta-Gene phage-
mid in vitro mutagenesis kit (Bio-Rad Laboratories, Hercules, CA). In
this construct, a NotI cloning site and a translational initiation sequence
(9) were introduced immediately upstream of the ppk coding region in
pCRII (Invitrogen, San Diego, CA). cDNAs encoding PPK,,. and RPK
were generated by PCR using the ppk cDNA and LD03440, respectively,
as templates. In PPK,,,. the myc epitope (EQKLISEEDL) was inserted at
the COOH terminus, and in RPK, the FLAG epitope (DYKDDDDK)
was inserted at the COOH terminus. The cDNA encoding RPK 5,4y Was
generated by PCR using rpk cDNA as a template. In RPK 45,4y, a valine
replaced the alanine at position 524 and the FLAG epitope was inserted at
the COOH terminus. BNCl 430y and BNClg o Were constructed by sin-
gle-stranded mutagenesis of BNC1 in pBluescript. In BNClggs0y, a valine
replaced the glycine at position 430, and in BNC1g; 5, the FLAG epitope
was inserted at the COOH terminus. The cDNAs encoding secreted alka-
line phosphatase (SEAP) and cystic fibrosis transmembrane conductance
regulator (CFTR) are described elsewhere (18, 50). All cDNA constructs
were cloned into pMT3 (50) for expression.

The anti-FLAG monoclonal antibody, M2, was obtained from Kodak
(New Haven, CT), and the anti-myc monoclonal antibody, 9E10, was a
generous gift of Robert Deschenes (University of Iowa, Iowa City, 1A).
The monoclonal antibody 22C10 was generously provided by Seymour
Benzer (California Institue of Technology, Pasadena, CA). Anti-PPK
sheep antiserum was generated against amino acids 126-200 of PPK ex-
pressed as a GST fusion protein. The antisera was then affinity purified
against the GST fusion protein covalently coupled to AminoLink coupling
gel (Pierce Chemical Co., Rockford, IL). The antisera was not reactive
with RPK or BNCI1.

Immunoprecipitations and Western Blots

COS-7 cells were transfected by electroporation, as we have previously
described (46). 1-3 d after transfection, cells were lysed in lysis buffer (1%
Triton X-100, 150 mM NacCl, 10 mM Tris, pH 7.4, 50 pg/ml aprotinin, 10
wg/ml leupeptin, 50 pg/ml pepstatin A, 1 mM PMSF). For immunoprecip-
itations, cell lysates were incubated with anti-FLAG antibody (2 pg/ml) at
4°C for 2 h. Antigen—-antibody complexes were precipitated with immobi-
lized protein G (Pharmacia Biotech, Uppsula, Sweden), then washed ex-
tensively in lysis buffer containing 500 mM NaCl. In deglycosylation ex-
periments, cell lysates or washed immunoprecipitates were treated with
endoglycosidase H (Boehringer Mannheim, Indianapolis, IN) in 1% Tri-
ton X-100, 50 mM potassium phosphate buffer (pH 6.0) for 16 h at 37°C.
Before SDS-PAGE, proteins were boiled for 5 min in sample buffer (4%
SDS, 65 mM Tris [pH 6.8], 100 mM DTT, 20% glycerol, and 0.005% bro-
mophenol blue). Proteins were separated on 8 or 10% polyacrylamide gels
using SDS-PAGE, then transferred to a polyvinylidenedifluoride mem-
brane (Millipore Corp., Bedford, MA). Western blots were incubated first
with primary antibody (anti-FLAG, anti-myc, or anti-PPK antibody) and
then with a horseradish peroxidase—coupled secondary antibody (Amer-
sham Corp., Arlington Heights, IL) at a 1:10,000 dilution. Immunoreactive
proteins were detected by enhanced chemiluminescence (Pierce Chem-
ical Co.).

Immunocytochemistry and In Situ Hybridization

Staged Drosophila embryos were labeled using a modification of proto-
cols previously described (27, 38). PPK protein distribution was detected
using an affinity-purified, anti-PPK antibody at a 1:40 dilution in PBT (1X
PBS, 0.5% bovine serum albumin, 0.2% Triton X-100) preabsorbed over-
night at 4°C against 0-4 h Drosophila embryos immediately before use.
For standard preparations, primary antibody was detected using the
Vectastain ABC kit (Vector Laboratories, Burlingame, CA) and horse-
radish peroxidase immunochemistry following the manufacturer’s recom-
mendations. Embryos were mounted in 70% glycerol/1X PBS and photo-
graphed on a Nikon Optiphot microscope using Nomarski optics. For
fluorescent preparations, anti-PPK antibody was detected by incubating
for 1 h at room temperature with a 1:200 dilution of biotinylated anti—
sheep antibody (Zymed Labs., Inc., San Francisco, CA), washing four
times over 1 h with PBT, incubating for 1 h with 1:500 dilution of FITC-
avidin in 1X PBS, 0.1% Triton X-100 and finally washing four times over 1 h
with PBT. Embryos were mounted in 80% glycerol, 0.1 M Tris-HCI, pH
8.0, 4.6 mM PDA and imaged with a laser scanning confocal microscope
(1024; Bio-Rad Laboratories, Hercules, CA). PNS neurons were labeled
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with the 22C10 antibody and visualized using a lissamine-conjugated anti—
mouse antibody (Jackson ImmunoResearch Laboratories, West Grove,
PA). ppk or rpk transcript levels were assayed by whole mount in situ hy-
bridization with digoxygenin (DIG) incorporated probes visualized with
alkaline phosphatase conjugated anti-DIG antibody as previously de-
scribed (40). Anti-sense, ppk-specific DIG-UTP RNA probes were gener-
ated by in vitro transcription of a 958-bp fragment of ppk cDNA encoding
most of the extracellular region and M2 of the PPK protein. Anti-sense
rpk probes were generated in a similar manner and contained the entire
coding sequence.

Expression and Electrophysiological Analysis in
Xenopus Oocytes

cDNA constructs were expressed in albino Xenopus laevis oocytes (Nasco,
Fort Atkinson, WI) by nuclear injection of plasmid DNA. DNA was in-
jected at concentrations ranging from 20 to 80 ng/pl. After injection, oo-
cytes were incubated at 18°C in modified Barth’s solution and then studied
1-2 d later. Whole cell currents were measured using the two-electrode
voltage-clamp technique, as we have described previously (35). During re-
cording, oocytes were bathed in frog Ringer’s solution (116 mM NacCl or
116 mM KCI or 116 mM LiCl, 0.4 mM CaCl,, 1 mM MgCl,, 5 mM Hepes
[pH 7.4]). Amiloride or gadolinium was added directly to the bath, and
blocked current was determined by subtracting current after drug applica-
tion from the basal current. The Na*/Li* permeability ratio was calcu-
lated from the reversal potentials of amiloride-sensitive current in Na™ or
Li* Ringer’s solution (22).

Results

Identification of Two Novel DEG/ENaC Proteins
Jrom Drosophila

To begin the study of DEG/ENaC proteins in Drosophila,
we searched sequence databases and identified a Dro-
sophila genomic clone, DS06238, that shares sequence ho-
mology with the conserved M2 of known DEG/ENaC
genes. Then we used RACE PCR and primers containing
the putative M2 sequence to amplify cDNA clones from
adult Drosophila poly(A)™ RNA. With this approach, we
cloned a cDNA encoding a novel DEG/ENaC protein that
we have called PPK. Alignment of cDNA and genomic se-
quences revealed that the ppk coding region is composed
of seven exons, and is contained within 2.3 kb of genomic
DNA. Next, we searched for sequences related to PPK,
and found an expressed sequence tag clone from Drosoph-
ila embryos, LD03440, that shares homology with the
NH,-terminal portion of PPK. Further characterization of
the sequence of LD03440 revealed that it also encodes a
novel DEG/ENaC protein that we have called RPK.

The cDNAs encoding PPK and RPK predict proteins of
69 (606 amino acids) and 65 kD (562 amino acids), respec-
tively. Hydrophobicity analysis suggests that PPK and RPK,
like other DEG/ENaC proteins, possess two transmem-
brane domains (M1 and M2, Fig. 1 A). Both proteins con-
tain all of the conserved sequences present in known

Figure 1. Sequence and alignment of PPK and RPK with other
DEG/ENaC family members. (A) Amino acid sequence of PPK
and RPK, and BNCI, their closest relative. Similar residues are
indicated by shading. Transmembrane domains are indicated
with solid bars. Diamonds indicate conserved cysteines. An aster-
isk indicates residue analogous to that which causes neurodegen-
eration in C. elegans when mutated. Hatched bars indicate resi-
dues of PPK encoded by the fourth exon of the ppk coding
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region. (B) The DEG/ENaC family. Sequence analysis indicates
that the family can be divided into five subfamilies: C. elegans
members (MEC-4, MEC-10, DEG-1, UNC-8, UNC-105, and
DEL-1), mammalian ENaC subunits (a-, B-, and yENaC and
8NaCh), mammalian neuronal channels (BNC1 and BNaC2),
Drosophila PPK and RPK, and FaNaCh. Proteins are named as
suggested in the first published report of their primary structure.
DEG/ENaC proteins can also be classified by gross features of
their extracellular regions. The schematic diagrams on the left
represent a typical member from each subfamily (MEC-4, «ENaC,
PPK, BNC1, and FaNaCh), and show that members within each
subfamily possess a characteristic extracellular domain not found
in members of other subfamilies. Shading indicates regions con-
taining sequences conserved in all DEG/ENaC proteins; check-
ered shading represents regions of conserved cysteines; black in-
dicates the conserved transmembrane domains, M1 and M2;
white indicates regions with poorly conserved sequences; hatched
white bars indicates subfamily-specific extracellular domains.
Note that within each subfamily there are some differences in
length of the various domains.
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Figure 2. Expression and Northern analysis of PPK. (A and B)
COS-7 cells were transfected with cDNA encoding PPK ... Cell
lysates were incubated overnight with or without endoglycosidase
H, as indicated. Proteins were separated on 8% polyacrylamide
gels, and detected by Western blot using either anti-myc antibody
(A), or anti-PPK antibody (B). (C) Northern blot analysis of
Drosophila embryonic, larval, and adult poly(A)* RNA using a
ppk probe. Exposure time was 36 h.

DEG/ENaC proteins including conserved cysteines (Fig. 1 A,
diamonds) in the predicted large extracellular region. PPK
contains seven potential N-linked glycosylation sites within
its predicted extracellular region, and RPK possesses two.
Among known DEG/ENaC proteins, PPK and RPK most
closely resemble each other, with 38% amino acid identity
and 60% similarity. The next closest relative is the human
neuronal ion channel BNC1 (15, 42, 57), which is 24%
identical and 45% similar to PPK and 22% identical and
46% similar to RPK (Fig. 1, A and B). Within their pre-
dicted extracellular regions, PPK and RPK possess a unique
domain not found in other family members (Fig. 1, A and
B, hatched bars). This region is encoded largely by a single
exon in the ppk gene. Phylogenetic analysis indicated that
PPK and RPK may represent a new DEG/ENaC subfam-
ily (Fig. 1 B).

Expression of PPK in a Subset of Peripheral Neurons

To confirm that ppk cDNA was capable of encoding pro-
tein in vivo, we transfected COS-7 cells with an epitope-
tagged ppk construct, and examined expressed protein by
Western blot. Expression of ppk cDNA yielded a 95-kD
glycoprotein, that could be deglycosylated with endogly-
cosidase H (Fig. 2 A) or protein N-glycosidase (not shown).
The deglycosylated form of PPK protein migrated at 69 kD,
consistent with its predicted molecular mass. PPK could
also be detected by Western blot using an antibody raised
against a portion of its extracellular region (Fig. 2 B).

Northern analysis showed a 2.7-kb ppk transcript in em-
bryonic, larval, and adult poly(A)* RNA, as well as larger
embryonic transcripts that may be alternatively processed
(Fig. 2 C). The presence of ppk mRNA at all three stages
suggested that PPK may have a functional role throughout
the Drosophila life cycle.

To determine the tissue distribution of PPK, we labeled
Drosophila embryos and early first instar larvae with ei-
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ther an antisense ppk probe (Fig. 3 A), or with anti-PPK
antibody (Fig. 3 B). Using both methods, we detected PPK
expression exclusively in a subset of peripheral neurons.
Expression became apparent in late stage embryos (stage 17)
and was present in early larvae. To confirm that the cells
expressing PPK were peripheral neurons, we double labeled
embryos with both anti-PPK antibody and monoclonal an-
tibody 22C10 that recognizes peripheral neurons (60). Fig.
3 C shows abdominal peripheral neurons labeled with
22C10, and Fig. 3 D shows that cells expressing PPK (ar-
rows) were also recognized by 22C10. The colocalization is
shown at higher magnification for one neuron in Fig. 3, E-G.

The Drosophila peripheral nervous system (PNS) as-
sumes a stereotypical pattern (Fig. 3, C-J) with three main
types of neurons (3, 17, 26). External sensory (es) and
chordotonal (ch) neurons innervate specific mechanosen-
sory organs. These neurons each have a single uniterminal
sensory dendrite. Multiple dendritic (md) neurons possess
variable numbers of fine dendritic processes that lie be-
neath the epidermis (3). Higher magnification revealed
PPK staining on the surface of the cell bodies and in multi-
ple fine processes that extended from the cell (Fig. 3, H-I),
indicating that PPK was expressed in md neurons. On the
basis of their dendritic morphology, md neurons are classi-
fied into three types; da (dendrites that arborize), td (tra-
cheal-associated dendrites), and bd (bipolar dendrites; ref-
erence 3). Moreover, like other PNS neurons, each md
neuron occupies a well-defined and stereotypical position
in the PNS. Based on their morphology, number and ana-
tomical position, PPK* neurons represented a subset of da
neurons (Fig. 3 J). In the abdominal segments Al-A7,
PPK was expressed in one of the six dmd neurons, in the
v’ada neuron, and in one of the five vind neurons (3). In
the thoracic segments T1-T3, PPK was expressed in one of
five dmd neurons and in one of five v’md neurons.

Since da neurons serve a variety of mechanosensory
functions in insects (14, 37, 59), the neuronal expression
pattern of PPK suggested that it might play a role in mech-
anosensation. Along the dendrites of PPK" neurons, PPK
staining was observed at a number of discrete varicosities,
giving the dendrites a beaded appearance (Fig. 3, H-I). In-
terestingly, in the butterfly Pieris rapae crucivora, varicosi-
ties on the dendritic processes of da neurons are thought
to be sites of mechanotransduction (47, 48). Thus, the
presence of PPK in dendritic varicosities also suggested a
mechanosensory function.

PPK Alters the Function of a Related DEG/ENaC
Ion Channel

We tested the hypothesis that PPK might form an ion
channel by expressing it in Xenopus oocytes and measur-
ing whole cell current with the two-electrode voltage-clamp.
Expression of PPK alone failed to generate basal currents
larger than those of uninjected control oocytes (not shown).
In this respect, PPK resembled several other DEG/ENaC
proteins, such as MEC-4 and MEC-10 (unpublished data)
and B- and yENaC subunits (8, 36), that do not produce
current when expressed in Xenopus oocytes. These obser-
vations suggested that activation of PPK might require a
specific, unknown ligand, or coexpression with other DEG/
ENaC proteins.

146



Figure 3. Embryonic expres-
sion pattern of PPK. (A and
B) Late stage Drosophila
embryos labeled with either
an antisense ppk riboprobe
(A, purple) or anti-PPK anti-
body (B, brown). (C) Periph-
eral neurons in five abdomi-
nal hemisegments labeled
with antibody 22C10, which
labels peripheral neurons.

(D) Abdominal hemiseg-
ments labeled with both anti-
PPK antibody (green) and
22C10 (orange). Neurons ex-
pressing PPK are stained by
both antibodies and are yel-
low (arrows). (E and F) High

magnification of dorsal clus-
ter of abdominal peripheral
neurons double labeled with
22C10 and anti-PPK anti-
body. Panels show 22C10
staining (E, red), anti-PPK
staining (neuron dmd6; F,
green), and colocalization
(G, yellow). (H and I) High
magnification views of PPK*
neurons labeled with anti-PPK
antibody showing dendritic
arborization and varicosities

e A O~ eSs
' -ach

(1, arrow). (J) Schematic dia-
gram of abdominal PNS neu-
rons. PPK is expressed in one
neuron (green) in each clus-
ter of neurons. Diagram and
nomenclature are according
to Brewster and Bodmer (5).

Although PPK did not produce currents when expressed
alone, its structural similarity to DEG/ENaC channels sug-
gested it was likely to participate in the formation of chan-
nels. To test this possibility, we coexpressed PPK with a
closely related DEG/ENaC protein, BNCI1. The rationale
for this experiment was based on the observation that
channels can be composed of multiple ENaC subunits, even
though some of the subunits do not form channels by
themselves (8). We used a BNC1 mutant, BNC1g430y, that
contains an activating mutation and produces much larger

Adams et al. RPK and PPK: Drosophila DEG/ENaC Family Members

whole cell currents than wild-type BNC1 (57). Expression
of PPK with BNCl1g43pv generated amiloride-sensitive cur-
rents that were much smaller than currents in oocytes ex-
pressing BNC1 430y With control proteins (SEAP or CFTR;
Fig. 4 A). An interaction between BNC1 and PPK was also
detected biochemically; Fig. 4 B shows that PPK coimmu-
noprecipitated with BNCI1. Our data do not tell us how as-
sociation of PPK disrupts the function of BNC1; it could
alter gating, conduction, or delivery to the cell surface. Nev-
ertheless, the biochemical and functional association of
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Figure 4. Coexpression of PPK and BNCI1. (A) Oocytes ex-
pressed BNClgy30y plus either SEAP, CFTR, or PPK. Current
inhibited by a maximal dose of amiloride (100 puM) at —100 mV
was measured. Amiloride-sensitive currents (I,piorige) Were nor-
malized to average current from the SEAP control group on that
day. For each group, n = 10 oocytes. Error bars represent SEM;
asterisk indicates a significant difference from control current (P <
0.0001). In oocytes expressing BNClgys0y and SEAP, I, ioride
averaged 1912 * 159 nA. (B) Coimmunoprecipitation of PPK
with BNC1. COS-7 cells were transfected with cDNAs encoding
BNCl1gp oG and/or PPK ... Cell lysates were immunoprecipitated
with anti-FLAG antibody. Precipitating protein was separated on
a 10% polyacrylamide gel and detected by Western blot using the
anti-myc antibody.

PPK with BNCI1 suggested that PPK may be an ion chan-
nel subunit that is dependent upon another DEG/ENaC
protein for its channel function.

RPK Is Encoded by Maternal Messages in
Drosophila Embryos

We also examined the molecular and functional character-
istics of RPK. Expression of an epitope-tagged RPK con-
struct in COS-7 cells generated a 73-kD glycoprotein that
could be deglycosylated to its predicted molecular mass of
65 kD (Fig. 5 A). On Northern analysis, an rpk probe de-
tected transcripts only in embryonic and adult RNA, where
we observed a major 3.4-kb transcript, as well as two smal-
ler less-abundant messages (Fig. 5 B). Thus, the expression
patterns of RPK and PPK were different.

To determine the embryonic expression pattern of rpk
transcripts, we performed in situ hybridization to whole
mount embryos using an antisense rpk probe. In contrast
to ppk transcripts, rpk transcripts were detected in early
stage (0-3 h) embryos, but were not present in later stages
of embryogenesis (Fig. 5, C and D). Furthermore, in early
stage embryos, rpk transcripts were not localized to a spe-
cific embryonic region or cell type. In Drosophila em-
bryos, zygotic transcription does not initiate until the third
hour of development. Because rpk mRNA was detected in
embryos before the initiation of zygotic transcription, this
result suggested that embryonic rpk message is of maternal
origin, and that RPK may play a role in early development.

RPK Is a Na* Channel That Is Dominantly Activated
by the Deg Mutation

When expressed in Xenopus oocytes, RPK generated small
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Figure 5. Expression, Northern blot analysis, and in situ hybrid-
ization of RPK. (A) RPK is a glycoprotein. COS-7 cells were
transfected with cDNA encoding RPK. Cell lysates were incu-
bated overnight with or without endoglycosidase H, as indicated.
Proteins were separated on 8% polyacrylamide gels, and de-
tected by Western blot using anti-FLAG antibody. (B) Northern
blot analysis of Drosophila embryonic, larval and adult poly(A)*
RNA using an rpk probe. Exposure time was 12 h. The same blot
was used for both ppk (Fig. 2 C) and rpk hybridizations. The
presence of ppk message in larval RNA (Fig. 2 C) served as a
positive control. The intensity of the rpk signal suggests that in
embryos and adults rpk transcripts may be more abundant than
ppk transcripts. (C and D) 0-3 h Drosophila embryos labeled
with either a sense (C) or antisense (D) rpk riboprobe. rpk tran-
scripts appear dark.

whole cell Na* currents that were reversibly blocked by
amiloride (Fig. 6 A). RPK was impermeable to K*, as
shown by the elimination of inward current when external
Na* was replaced with K* (Fig. 6 B). Thus, in contrast to
PPK, RPK formed functional ion channels by itself.

In several C. elegans degenerins, mutation of a specific
residue near M2, the “Deg” mutation, causes a dominant
form of neurodegeneration suggestive of constitutive ion
channel activity (10, 12, 24). Similarly, BNC1 containing a
Deg mutation (BNClgysgy) is activated, producing much
larger currents in Xenopus oocytes (57). To learn whether
RPK could also be activated by the Deg mutation, we in-
corporated a valine residue at the appropriate position
(residue 524). Like wild-type RPK, RPK,s,,y generated
Na*-selective currents that were reversibly inhibited by
amiloride (Fig. 7, A and B). However, RPK 5,4y currents
were 20-50 times larger than wild-type RPK currents (Fig.
7 C). This indicated that the Deg mutation activated RPK.
RPK 4554y Was slightly more permeable to Li* than Na*
(Pna/Pri = 0.89 + 0.03, n = 5) but was impermeable to K*
(Fig. 7, A and B). RPK 5,4y was significantly more sensi-
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Figure 6. Na™ channel currents in oocytes expressing RPK. (A)
Current tracing from an oocyte expressing RPK. Oocyte was
bathed in Na* Ringers solution. Membrane voltage was clamped
at —80 mV. Amiloride (100 uM) was present in the bath during
time indicated by the solid bar. Time and current scales are
shown. (B) Current-voltage relationships of amiloride-sensitive
current from representative oocyte expressing either RPK or
SEAP (control). Oocytes were bathed in Na* or K* Ringers, as
indicated.

tive to amiloride than wild-type RPK (Fig. 7 D). Whereas
9.0 £ 0.1 M amiloride blocked half of wild-type current,
half-maximal inhibition of RPK 45,4y current required only
450 = 50 nM amiloride. Interestingly, gadolinium, an in-

A

amiloride:

hibitor of mechanosensation and some stretch-activated
channels (19), also reversibly inhibited RPK s,y current
with half-maximal inhibition at 100 = 5 uM (Fig. 7, E and F).

Individual DEG/ENaC proteins are subunits that form
homo- or heteromultimeric ion channels. Because DEG/
ENaC proteins with Deg mutations produce a genetically
dominant phenotype in C. elegans, it is thought that the Deg
mutation in one or a few subunits might activate the chan-
nel complex, producing larger currents. We tested the hy-
pothesis that the Deg mutation is dominant at the molecu-
lar level by asking if channels composed of both wild-type
RPK and RPK 45,4y would generate small or large Na* cur-
rents. Coexpression of RPK and RPK,s4y generated
large Na* currents that were similar in size to those gener-
ated by RPK sy alone (Fig. 7 C). However, the amil-
oride sensitivity of the current (half-maximal inhibition =
5.5 = 0.3 pM), was similar to that generated by wild-type
RPK alone (Fig. 7 D). These observations indicated that
the increase in current amplitude depended on RPK 4554y,
and the low amiloride sensitivity depended on wild-type
RPK. Thus, the data suggested that at least two subunits
combine to produce multimeric channels, that the A524V
mutation dominantly activated the channel, and that Ala524

Figure 7. Activation of RPK by the Deg mu-
tation. (A) Current tracing from an oocyte ex-
pressing RPK,so4y. Oocyte was bathed in
Na* or K* Ringers solution, as indicated by
top bars. Membrane voltage was clamped at
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—80 mV. Amiloride (100 uM) was present in
the bath during time indicated by solid bars.
Time and current scales are shown; dashed
line indicates zero current. (B) Current-volt-
age relationships of amiloride-sensitive cur-
rent in oocytes expressing RPKjsyy and
bathed in Na* or K* Ringers, as indicated.
(C) Amount of amiloride-sensitive current in
oocytes expressing either RPK, RPK 454y, Or
a 1:1 ratio of RPK and RPK 4 5,4y. Control oo-
cytes were injected with SEAP. Current in-
hibited by a maximal dose of amiloride (1
mM) at —60 mV was measured. Data are av-
erage = SEM from at least eight oocytes. As-
terisks indicate a significant difference from
RPK current (P < 0.01). Currents in oocytes
expressing RPK,s4v or both RPK and
RPK 4554y Were not significantly different (P
> 0.1). (D) Dose-response curves showing

RPK + RPKasz4y
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effect of amiloride on oocytes expressing
RPK, RPK 54y, or a 1:1 ratio of RPK and
RPK 4504y at —60 mV. Data are average =
SEM from at least 8 oocytes; error bars are
hidden by symbols. (E) Current tracing from
an oocyte expressing RPK 45,4y. Oocyte was
bathed in Na* Ringers solution and mem-
brane voltage was clamped to —60 mV. Dur-
ing time indicated by the hatched bar, Gd**
(at concentrations ranging from 1 pM to 1
mM) was present in bath solution. Solid bars
indicate 10 uM amiloride. (F) Dose-response
curve showing effect of Gd** on oocytes ex-
pressing RPK o554y at —60 mV. Data are aver-
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age = SEM from eight oocytes; error bars are

log [Gd3+] hidden by symbols.
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dominantly determined amiloride sensitivity. Gadolinium
also inhibited wild-type RPK current, and gadolinium sen-
sitivity was not significantly altered by the presence of
wild-type RPK in a complex with RPK 5,4y (not shown).
Coexpression of PPK with RPK or RPK 5,4y did not sig-
nificantly alter the amount, ionic selectivity, or amiloride
sensitivity of RPK or RPK 45,4y current (not shown). Thus,
it appeared that PPK and RPK are not subunits of the
same ion channel but likely have distinct physiological
roles.

Discussion

PPK and RPK are novel Drosophila members of the
DEGJ/ENaC protein superfamily (39). The two proteins
share several features. First, their primary sequence is sim-
ilar and they appear to represent a new subfamily. A fea-
ture that differentiates PPK and RPK from other family
members is a unique domain in the large extracellular re-
gion (Fig. 1 B). In PPK this domain is mostly encoded by
one exon, perhaps suggesting its evolutionary origin. Much
of the variability, as well as most of the conservation, be-
tween different DEG/ENaC proteins and DEG/ENacC pro-
tein subfamilies occurs in the extracellular region. The lo-
cation of inserts within the extracellular region allows a
grouping of the subfamilies (Fig. 1 B). However, we do not
know the functional significance of the extracellular region.
This region may form a ligand-binding site in FaNaCh and
BNaC2 (32, 58). In addition, genetic studies with C. ele-
gans DEG/ENaC proteins suggest an interaction with pro-
teins in the extracellular matrix and perhaps a role in chan-
nel gating (13, 15, 33). Thus, it is possible that the unique
extracellular sequences in PPK and RPK confer unique in-
teractions and possibly regulation on these channels.

A second similarity is that both PPK and RPK appear to
be ion channel subunits. The data is most direct for RPK
which produced channels when expressed in Xenopus oo-
cytes. In this regard, RPK is similar to aENaC, 8NaCh,
and BNCI, which generate small amiloride-sensitive Na*
currents when expressed alone. Several observations sug-
gest that PPK is also a channel subunit: the sequence of
PPK is similar to that of RPK; PPK associated with the re-
lated channel BNC1 as assessed by coimmunoprecipita-
tion; and when coexpressed, PPK reduced current gener-
ated by BNC1.

Despite their similarities, PPK and RPK have significant
differences. For example, the DEG mutation activated
RPK, but not PPK (not shown). Another striking differ-
ence was that PPK, but not RPK, was expressed in the
PNS of embryos and larvae. In addition, RPK transcripts
were probably maternally derived, whereas PPK was ex-
pressed late in embryogenesis and in larvae. These data,
plus the finding that coexpressing PPK with RPK did not
alter RPK currents, indicate that the two subunits are not
part of the same channel complex.

The expression pattern and function of RPK suggest it is
a Na™ channel involved in early development. Amiloride-
sensitive Na™ channels in mammalian embryos play an im-
portant role in fluid transport across the trophectoderm and
in formation of the blastocyst (2). Like RPK, these Na* chan-
nels have a low sensitivity to amiloride (Ki = 12 pM; 44).

The effect of blockers on RPK is also interesting. First,

The Journal of Cell Biology, Volume 140, 1998

in contrast to other channels in the family, RPK is rela-
tively insensitive to amiloride. This raises the possibility
that some native DEG/ENaC channels may not be highly
sensitive to amiloride. Alternatively, RPK may associate
with other subunits in vivo to form channels with different
amiloride sensitivity. Second, the Deg mutation increased
amiloride sensitivity. An alanine at position 524 was domi-
nant in conferring low sensitivity to amiloride and a valine
at position 524 was dominant in activating the channel.
Thus, the residue at the position of the Deg mutation in-
fluenced both channel activation and amiloride sensitivity.
Third, although all DEG/ENaC proteins known to func-
tion as channels are blocked by amiloride, RPK is the first
DEG/ENaC channel shown to be blocked by gadolinium.
Interestingly, the doses of gadolinium required for inhibi-
tion of RPK 45,4y Were similar to those needed for block of
mechanosensitive channels in rat supraoptic neurons (41).
Nevertheless, both amiloride and gadolinium can have tar-
gets other than DEG/ENaC proteins and stretch-activated
channels. Thus, sensitivity to these agents by itself does
not necessarily imply a role for RPK in mechanosensation.

PPK was expressed in a subset of the da type of md neurons
and, to our knowledge, is the first described protein expressed
exclusively in md neurons. da neurons are distinguished by
their dendritic network that extends beyond segmental
boundaries, arborizes extensively, and ramifies beneath
the epidermis (3, 14, 26, 59). The dendrites from one da
neuron often overlap considerably with dendrites from
other da neurons, and the full complement of da dendrites
gives the appearance of a “spiderweb” that covers the em-
bryo. PPK expression was detectable only late in da neuron
differentiation, suggesting that PPK is not involved in neu-
ronal development, but may play a role in sensory function.

md neurons are found in most, if not all, insect species,
and the structure and function of md neurons have been
extensively characterized in several species (14, 26, 37, 59).
In adult insects, md neurons are touch or stretch receptors
that monitor a wide range of mechanical stimuli, including
muscle tension, gut motility, and limb and wing position.
Interestingly, most mechanosensation in humans occurs
via free nerve endings that are morphologically similar to
insect md neurons (1, 14). In several ways, the da neurons
of Drosophila embryos and larvae closely resemble the
larval subepidermal da neurons of the blowfly, Phormia
regina. In Phormia, each larval abdominal hemisegment
possesses 15 da neurons that are located directly beneath
the epidermal cell layer and send out a meshwork of den-
drites that terminate on the epidermis (14). Ultrastructural
studies of these dendrites show that they penetrate the
basement membrane and directly contact the basolateral
surface of epidermal cells. Furthermore, since mechanical
stimuli increase the frequency of neuronal firing, the sub-
epidermal da neurons of Phormia larvae are clearly mech-
anoreceptive, and are positioned to sense both touch and
internal mechanical forces (14). Thus, the cellular location
of PPK suggests a mechanosensory function. Along the
dendrites of PPK-stained da neurons, PPK was observed
in varicosities. In stretch-sensitive da neurons of the but-
terfly, Pieris rapae crucivora, similar dendritic varicosities
are sites of epithelial contact and are thought to be sites of
mechanotransduction (48). Of note, Kernan et al. (29)
have produced Drosophila mutants with mechanosensory
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defects. However, the neurons affected by those mutations
innervate bristles and thus are probably not da neurons
and do not express PPK.

Might PPK be a mechanosensor? Our evidence suggest-
ing that PPK may be an ion channel subunit is consistent
with theoretical and experimental data that mechanosen-
sors are ion channels (25, 28, 49). Although studies with
blockers are not definitive, the notion is consistent with
the ability of amiloride and gadolinium to block the re-
lated RPK channel at doses similar to those needed to
block mechanosensation in vivo (19). Finally, its restricted
localization to a subset of da neurons suggests that PPK is
in the appropriate place to play an important role in mech-
anosensation.
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