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Los Alamos, NM 87545

Abstract

A new free surface flow model, RIPPLE, iz sum-
marized. RIPPLE obhtains finite difference solutions
for incompreasible low problems having strong surface
tension forces at free aurfaces of arbitrarily complex
topology. The key innovation is the Continuum Sur-
face Foree (CSF) model which represents surface tension
as a (strongly) localized volume force. Other features
include a higher-order momentum advection model, a
volume-of-fluid free surface treatment, and an efficient
two-step projection solution method. RIPPLE's unique
capabilities are illustrated with two example problems:
low-gravity jet-induced tank flow, and the collision and
caalescence of two evlindrical rods.

1. Introduction

RIPPLE models transient, two-dimensional, incom:
pressible fluid lows with surface tension on free surfaces
of general topology ' Finite difference solutions to the
incompressible Navier Stokes equations are abtained on
an Fulerian, rectilinear mesh in Cartesian or eylindrical
grometries  Free surfaces are represented with volurne-
of flind (VOF) data on the mesh  Surface tension is
maodeled as & volume foree denved from the Contin-
uum Surface Foree (CSF) model 7 A two-step projec-
tion method s used for the incempressible flnd flow
solutions, anded by an incomplete Cholesky conjugate
gradient (1C°G) solution techmque? for the pressure
Powsson equation (PPE) Momentum advection s esti-
mated with the weakly monotonie, second order upwind
method of van Leer Flow obstacles and curved hound
aris anterior to the mesh are represented with a par
tial eell treatment RIPPLE 15 a versatile toal eapable
of modeling a wide range of appheations, heing espe
cially suited for low Bond number, low Weber number,
and low Capillary number lows in whieh flind ~ ler
ations are weak and fluid restormg forces (e g, < oee
tensions) are strong A brief sumimary of the pl ysieal
maodel and nmmenieal algonthme compriving R °PLE
follows It properties are then allustrated by o ex
ample calenlations

2. Physical Maodel

Belov: we hrelly disenss the RIPPLE miodels for i
compressihle v drody nanes, free surfaces, surlace ten
sion wall adhesian and How abstacles
Hydrodynamiern

Fhe gonvernmg equations are the i ompressilahiny
conpedition
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and the transport of fluid momentum,
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where p is the fAuid density, p the scalar pressure. r the

viscous stress tensor, Fy, a hody force, and ¢ the accel-
eration due to gravity. The nonlinear advection term s
written in conservative form. The vikcous stress tensor

| = % [(\'F‘) + (\“\")T] T

where S is the rate-of-strain tensor and j is the coeffi-
cient of dynamic viscosity.

=28,

Free Surfaces

To avoul the topological restrictions associated with
modeling free surfaces with logically-connected  La
grangian points, as in the LINC technique.® or with
logically-connected massless particles, as in the MAC
technique with surface tension,®® free surfaces are rep
resented 1In RIPPLE with discrete “volume-of fluid”
(VOF) data on the mesh  The VOF method, pioneered
hy Hirt and Nichols,”® is a powerful tool that enables a
fimte difference representation of free surfaces and o
teefaces that are arbutrarily ornented with respect to
the computationai grid * It has been used with sue
cess in both Eulerisn and ALE schemes ' In the VOF
technique, an exact representation of the free surface
is not retamed  Characternistie marker data (10, the
VOF function F), adveeted as a Lagrangian mvariant,
ik propagated aecordimg to

dE OF

dt ot
where F(F, u) i given by imtializing the free surface ge
ometry In RIPPLE, F s eqeal to T the flod, 0
the voul, and 00« F - 1 at the free serface 1t as the
only avmlable Tree surface information, so the free sur
face location s needed, an approxunate reconstrus teom
of the free murface must be performed

Sharp mterfaces are mumtamed by wmsarmg sharp
gradients in P This resoits numencally from a spe
el treatment of the advective termoin Fg (1), whaeh
models the movement of the flund throngh the medh
A standard treatment of the this term (1 e,
difference or donor cell approamation) leads 1o an un
aveeptable amonnt of pumeneal diffusion and spreading

" (\" \‘) oo, (4
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of the frre surface region. An approximate reconstruc-
tion of the free surface geometry 1s the crucial step nec-
easary for computing accurate flux volumes needed for
the advective term. The reconstructed free surface is
not necessanly continuous. instead represented ar a set
of discrete, discontinuous line segments.

Surface Tension

Surface tension at free surfaces is modeled in RIP-
PLE with a localized volume force prescribed by the re-
cent ('SF model.? [deally suited for Eulerian interfaces
of arhtrary topology, the C'SF model’s volume relorinu-
lation is a new and radical departure from conventicnal
finite Jifference representations of surface tension.

In RIPPLE, viscous effects are neglected at the free
surfare and the sirface tension coeflicient o is assumed
to he constant, which reduces the stress boundary con-
dition to Layplace’s formula,!!

BREpP—p =0k, (h)

where the surface pressure p, is the surface tension-
induced pressure jump, py the vapor pressure, and x
the free surface curvature, given hy:?

v (v m= (G \')Iﬁl—(\"-ﬁ)]. (6)

where th unit normal n,

n -
n= W . (7)

1% derived from a normal vector i,
n=VF, (N)

that 1« the gradient of VOF data
In the CSF model. surface tension s reformulated

as a volume foree Fy, satisving

Inn/ I-".‘(r'):!"r-- / I-T...(F.)dh', ()
A -0 av Jaw

where £ a pomt on the surfee, l"“(r') the surface
tension oree per unmit interfacial area,

Fanl 1) (10)

and h s a length comparable to the resolution afforded
by a computational mesh with spacing er The area
mtegral i over the portion AN of the serface lving
within the small volime of mtegration AV The fimte
diflerence approximations in RIPPLE replace free sur
face disrontinmties with fimite thickness transition re
gions witha: which the flind properties, or “eolor,” vary
stmoothlhy from flurd 1o vapor over o distance of C)(h)
Lhe valume foree, nonzero only within free surfaces, i«
piven i the CSE model hy?

an(rn(r,).
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where ¢ s the fhind color equated wath the VOI fune
ten Fom RIPPLE  and [o] s the jumpom enlor es e,
which iwequalto L0 when e F With the volume foree

Fo(F) (1)

fo stbue tenuion efle ts at free surlaces are modeled
arca hody foree e the moamentinm transpent equatiom
b 1

oo (1

The volume force l?“ 18 of course in addition to other
arbitrary body forces present in the flow.

Instead of a surface tensile [oree or a surface pressure
boundary condition applied at a discontinuity, a volum=
force Fy in Eq. (11) acts on fluid elements lying within
finite thickness transition regions replacing the disconti-
nuities. 10 is not appropriate, therefore, to apply in finite
difference schemes a pressure jump induced by surface
tension at a free surface “discontinuity.” Surface ten-
sion should act everywhere within the transition region,
namely through the volume force Fov.

Whall Adhesion

Wall adhesion is the sutface force acting on fluid
interfaces at points of contact with “walls,” which
are static, rigid boundaries in RIPPLE. Wall adhe-
sion forces are calculated in the same manner as vol-
ume forcea due to surface tension are calculated. using
Eq. (11) for Fay. except that a boundary condition is
applied to the free surface unit normal n prior to eval-
uating Fq. (11). The condition is applied only ‘o those
vertex normals lving on or near a rigid boundary, which
is either an interior obstacle boundary or a mesh bound-
ary. ‘Those forces F,, attributed to wall adhesion are
therefore only in cells within proximity of a wall.

The wall adhesion boundary condition becontes an
expression for the unit free surface normal n at pomnts
of contact F,, along the wall:

(13

where 6, is the static contact angle between the flind
and the wall, n, is the umt wall normal direeted e
the wall. and {,, is tangent to the wall, normal to the
contact line between the free surface and the wall at £,
The equation uses the geometrie wlentity that 0., de
fined as the angle hetween the tangent to the fhd and
tw. 18 also the angle hetween ny and . The umt tan
gent ty s directed imto the thind, computed from Eq (R)
with the VOF function F reflected at the wall The an
gle 8., 18 not a flud material property, but a system
property, depending also on properties of the wall wself
The value of 4, 15 measured experimentally when the
fluid 1w at rest We emphasize that Eq (13) s apphied
nt a wall whether or not VOF data mdicates that the
ludd 1= actually making an angle of contact equal to @,

Ihe RIPPLE treatment of wall adhesion s hoth a
physical and a numernieal approximation 11 as a physical
approximation beeause 4,8 assumed to be aconstant
when m reality ot depends on the local wall and fhaed
conditons (v e | veloeity, vikeosity, and surface tensions)
The numenical approximation results from an imexaet
treatment of the wall geametnies Both approiimations,
however, do not prevent the wall adhesion forees in RIP
PLE from bemg qualyatively corredl

n=n,corf,, + 1,806,

The phyrieal approximation m wall adhesion stene
from using the statie angle 0, rather than the "o
mg” contact angle fyg more appropnate o a moving,
contact line Unless RIPPLE were apphied tooa very o
cahized study of a v, contact e it wonld et hane
the resolution capabadity to make use of Che actual imey
g contact angle wineh cannot currenthy be measaired
Fhe angle Ay depend-an acompley was onmatenal and



fluid dynamic properties, being at the very least a func-
tion of 8., and the capillary number Ca = Vp/o. For
many materials the dependence has not been well char-
acterized. The present algorithm should be adequate
when the difference between fy and 8,4 is not very large,
so RIPPLE s wall adhesion treatment 1s likely to be a
good approximation when 6, is small.

Flow Obutacles

Obstacles to flow are modeled in RIPPLE as a spa-
cial case of two-phase flow. in which the first phase is the
fluid, with volume fractinn 8, and the second “phase”™ is
the obstacle, with volume fraction 1.0—6. The obstacle
is characterized as a “fluid” of inlinite density and zero
velo -ity. Since all calculations are performed in the ob-
stacie frame, obstacles are static, so the volume fraction
& 1s a ime-independent scalar field, © = O(7). that is
a step function:

_ J 1.0, i the fluid; )
O(5) =100, in the obstacle. (14)

The volume fraction O, referred to as a “partial flow
flag™. is a perfect step function only when obstacle
boundaries coincide with mesh hines representing lines
of constant r and y. In general, however, obstacle
boundaries snake arbiteanily through the mesh, cutting
theough cells This gives rige to a continuous range: of
from 0 0to 1 0, which 18 necessary to avoid a "stair-step™
maodel of a curved mtenior ohstacle boundary. ‘Those
cells having a value of 8 satishing 0 < 6 < 1 are
termed “partial flow eells™ because a portion O of their
fimte difference vohume 1s open to flow and the remain
mg portion 1.0 - 6 s occuped by an obstacle closed to
flow

3. Numerical Model

Fimte difference conventions follow that of the MAC
sehemie® in which r- and y-veloenty components are lo
cated at eell face centers on hnes of consiant ¢ and y.
respectinely, and the pressure and normalized densaty
(VOF function) are located at cell centers From Fig
I. the pressure py and VOF function ) are located
At Foy o c(ry e 4 AR200 4 (yy a2 4 A /Yy The
Foveloeits uy g, tesules at Fopypa, and the yaelonty
LIRSV restdes at r, IERTA

Fos (1) and (29 are solved an fimte difference form
with a two step projection method mvolving the time
diseretization of the momentum equation. namely
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projected onlo a zero-divergenee vector field. The *wo
equations in the second step can be combined mto a
single Poisson equation for the pressure,

v [—l- Vp"‘”] = AL .
o~ M

Although the incompressible solutions in RIPPLE are
for constant density fluids, the density in Eq. (18! 18 re-
tained insiue the Jivergence operator. This results in an
extra term in the PPE proportional to Vp. which con-
tributes to the pressure solution within the free surface
transition region where Up # 0. The PPE is formuiated
with the pressure p and density p as separate terms, -
atead of using a single term, the kinematic pressure. p/p.
as 1n the majority of incompreasibie models.

(1K)

Momentum Advection

A finite volume approximation of conservative mo-
mentum advection results from integrating the advec-
tion term in Eq. (15) over the control volume V. giving

/_ ' T (\"\") vV = z-:(\"). (F’, : ,._) 83, my . (19)

v,

where Gauss's theorem has been used and the area -
tegral has been expressed in discrete form as a suzm over
sides (8) surrounding the control volume. At each side,
the velocity is f.. the unit outward normal is n,. and
the areais 84, = b.-ls- n, The flux veloeity is U, n,. 5o
the flux volume is (V, - 1,)8 A pqy. Where 814, is the
advection time atep. The bhracketed term, (\'-').. 1s the
quantity to be fluxed, which is the veloeity for constant
density momentim advection.
The summation teem in Eq  (19) becomes, ¢ g .

[":u(")ulln.n ) "."(")l "n.,}'y_. '

[(")I"'"Hl/'.')ll,'.' '(")n"n-:l/'.',-ll'- dryyaye

for mtegration over the r momentuin control volume
The bracketed terms, 1o (u)y are estiimided wiih o)
ther an mter; slated donor cetl, < centered diflerence,
or an upstream. second order van Leer approxumation !
The van Leer algorithin gives the hest resulis i pra
tiee, hecause 1t attempts to preserve monotomenty of the
fHhuxed quant:ores within a «econd order - chene

An advection finate difference operator, i, can b
defined for component & Eq (149)

e \_..(‘-)'("' n..)n‘.i. ngy . LM

where Uoyn Vol Lt sty or s momentin

and Vi rlordy, e lor y momentum Waith e
aperator the RIPPPLL e difterenee lorm ol equatioen

Vet A e, (V) 0
leany
tate one dymenconal sweepe onder-d ry oy e evhwirn

Advection s therelare hroken down et hUN IR

At advec o tne step M tinte
al.
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Fig. 1. Location of fluid variables in a RIPPLE
computational cell. The r- and y-velocities are lo-
cated at cell faces, and the pressure p,, and VOF
function F,, are located at ecll centera.

step &t used in differencing Eq (15). The sub-cycled,
directionally-split operator gives a more accurate ap-
proximation to advective momentum transport in di-
rections misaligned with the coordinate axes. It also
adds bark some O(At?) eontributions that are lost in a
first order, forward time differenze of Eq (15).

Estimating momentum advection with four 1-D
sweeps per time step in RIPPLE s not computation-
ally intensive in practice, requirmg about an extra 10%
of CPU time relative to the one pass, noneonservative
advection raleulation,

PPE Solution

A fimtehifference approximation to Fog o (1X) leads
to a system of hnear equations. ‘The resalting mat rix
equanion s solved with an 1CCG Oneomplete Cholesky
conpugate gradient) solution techiigue® that returns the
time 1" preasure i oevery cell, regardless of whether
that cell represents hund, surface, vend, or an obstacle.
Special attention must therefore he paid 10 cell faee val
ues of the ratio of a grometae coefficient to the flind
density (1e . a/p) in eells within an obstacle, a voud,
or the free surface (Although pas constant everywhere
m the ld. ot s retined mside the divergenee opera
tor heeause we need a pressure solution within the free
surface transition region where To # 00) This ratio s
expressed within the free aurface as a quatient of two av
erages rather than an average of two quotients, therehy
keeping the primeipal contnibution withan the free sur
face regron eather than at the edge near the vond

Wre obhtam a matny M that i< svimnetnie and peos
iive defimite o additinn to bemg sparse and banded,
thus mverted easily and quichly with 100G methods
The 1CC Comethod s a by brod matnx aeheme that com
Lines an aeomplete Cholesky decamportion preconds
tionmg of M owith a conjugate gradient iteraten L he
decomprmition teansforms M o LDL' 4 E. where
L na lower toangular matnix 1Y 4o a dingonal marnis
{ar. approxvanate plentity matny) and Fosoa small e
ror matniy A conpgate gradient then nocelerates an
equinalent problem neglecting B tomard the solution x

v /T
iy

A

R 20

Fig. 2. Inthe CSF model for surface tension. a cell-

centered volume force due to surface temsion, Iy,
is derived from a free surface curvature x at the cell
center and unit normals n at the 4 cell vertices.

of L-'M(LT)-"(L"x) = L-'y. where (LLT)~1 15 used

a8 an approximate inverae for M.
VOF Advection

A numerical solution of Eq. (4) requires flux vol
uines for the advective term. The flux volumes are ob-
tamned in RIPPLE with n free surface recaonstruction us-
ing the Hirt-Nichols (H-N) algorithm®. The {ree surface
is reconstructed either horizontally or vertically in each
surface cell, depending upon its relation to neighboring
cells. This reconstruciion 18 presumably more aceurate
than the SLIC algorithin.'? where the reconatructed free
surface 1« nlways foreed perpendicular to the flung d
rection, but less aceurate than the Youngs algonthm.!®
where the reconstructed free surface in allowed to have
nonzero slope

The numenical solution of Fq (4) s mtiasted by
defimng a tilde value of F,

R R A (A (22
10 as be completed with a “divergence correction.”
RO ks (TO0) 24)

bringing F 1o F4!

Eq (21} w diseretized by integratieg over the ouss
control volume, whowe houndanes are the eell hound
anes, gGIVIng

-n a' n .
F|] ’.I’ ;I-ﬁ-.r {r:OI/"".:ll,-_l ,(’ )ll

VRS |'/...(")||

M
ty,

L ':‘.“u"”"l o
where subsonpts I T T and Hodenate queantaties taken
at the Lottom tap left  and nght <des Tive |y
of vell (e anmed the coperanpt & o the vl ey

Pespie
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Fig. 3. RIPPLE treatment of the wall adhesion
boundary condition on a “right™ wall. The bound-
ary condition is applied at two rightmoat vertex
normals, and since the free surface makes an angle
6 # 8., at the wall, a nonzero wall adhenion force
results that tends to puil the fluid into a 0 = 6,
configuration.

constant equal to 1 in evlindrical and 0 in Cartesian ge-
ometry In RIPPLE, VOF advection is computed a* the
end of each computational eycle, completing the “sec-
ond step” of the projection method, o the velocities
adveeting F in equation above are those at the time
1"+ Rracketed quantities ((F)) are the fractional fluid
volumes crosming each cell boundary. These quantities
are estimated with a free surface reconstruction. Given
below  as an examgple, are the RIPPLE expressions for

(F)n when ":‘:||I'-'.; = 0 Caleulation of (F) values fol-

low direetly from the H N reconstruction algorithm, as
stated previously

The VOF function fluxed at the right face of eoll
(1g) 15 the sum of an “upstream” value F,,, plus an
merement AF ’

(F)n - Faay V AF, (25)
where the VOF merement,
oo
w 00 or w o |u:':||/._,JM|. (26)

Py A ,,'"'". ) ’.'"‘ . ) ( 1 "'lll". 1 MI I) af

IERYEN)

00« we ||".|

s, M0

(Y7)
depends upon the relative valne of a “voud swillth”™ o,
defined nonzero only when the reconstrueted surface i
paralel ta the fang direction, given by

| i
w (_" -’ ’)h',

l'nlln ) l|.| '
The quantiiy Ty, w oot necessanly the apstieam
VOP as can seen by case anabvas Singlar free an
e recomntrgcbons are |n-r|nr|||w| fosr estumantes of Huy
quantities Sy (HY L and ()
he ©SE NModel

(2R)

The volume force in the CSF model is easily calcu-
lated by taking first and second order spatial derivates of
the color data, which for RIPPLE is the VOF function
F. At each point within the free surface transition re-

gion, a cell-centered value F., is defined which is propor-
tional to the curvature « of the constant VOF surface at
that point, as illustrated in Fig. 2. The force is normal-
ized to recover the conventional description of surface
tension as the local product xh — 0. Its line integral
directed norinmally through the free susface transition re-
gion is approximiately equal to the surface pressure in
Eq. \5). Whall adhesion 18 inrorporated by enforcing a
simple boundary condition.

Surface tension modeled with the continunm method
eliminates the need for interface reconstruction, so re-
strictions on the number, complexity, or dynamic evo-
lution of interfaces having surface tension are not im-
posed. Direct comparisons between modeling surface
tension with the CSF model in RIPPLE and with a pop-
ular interface reconstruction model'*!3 gshow that the
('SF mode] makes more accurate une of the free surface
VOF data.? The volume force always tends to force 1he
free surface to srek & minitnum surface energy configu-
ration. Reconstruction models, on the other ﬁmd. tend
to induce numerical noise from computed graininess in
the surface pressures, often leading to unphysical free
surface disruptions. In addition to nroviding a more
accurate finite difference representation of surfacs ten-
sion without the topological restrictions, the ('SF model
is ensy to implement computationally. Surface tensmion
in easily included by calculating and applyving an ex-
tra bady force, F,,, 1n the momentum equation. The
application of F,, completes the change of the V" veloce-
ity field 1. the V' velocity field oceurring over one time
step. n the majonty of RIPPLE caleulations, only a
few percent of extra CPU time is spent computing sur
face tension effects,

Using equation , 7 at (i4 1/2+1/2) is given by
(".HIJH - l"n”l”.'ly + ("‘Hl) - ’.lll)byul

(fyy + oy ) br gy

for the £ component, and

";OIL)I'-ﬂ 4 ("‘IIH
Lhr, 4 ""I'l)byjoll'.'

(Fag e AT LEaTE]

for the y component

The curvature follows fron an indirect didlerentia
tion of the umt normal n. as gaven by th twa tepms on
the RHS of equating Eq (6) The denivatives of o com
ponents follow enealy from knowledge of i at vertices,
represeniatives values are given by

in, 1
Ty ol LY RTRVER IRV by
L]

Wy oagrgeagy e oy, |/'.']-"--"-”

(%),

Wovaazoe 1y Wy rey |'-l (i

{"-nl/" vt Y g



Fig. 4.

Fluld velocity vectors and free surface configurations at times of (left-to-right.top-to-bottom)

200. 600, 1200. 1400. 1600, 2000, 2200. 2403. 2600. and 3000 s for the Jet-Induced tann flow problem.
The velocity of fluid exiting the Jet at the tank bottom is 4 em/s.

The cell-centered normal is the average of vertex nor-
mals,
1

Ty = ('T.w,l:',.n/'_v + 0,00

4

+'7.-|/'.v,+|/'.-+'7...|/:-,-|/'.-) (31)
As stated previously. face.centered values of F, are
needed for the computation of flind aceeleration due to
surfare tension 1 RIPPLE The required face-centered
values are easily obtamed by mterpolating from the two
nearest cell eentered values, giving,

"|"‘lvr|0|[ ¢ AJ'H"'.l\rl.;
0"'l 'A-"lOl '

’..l\l'IOIITJ E (32)

for the r component at the right face of cell (19), and

Mpbavygo 2 by,
by, 4 “.'l) 41
for the y .omponent at the top face The face contered

(3

| 2
cavye b 1/2

components of F,, are then used 10 compute flind ac
celerations using,
HIE
"
compdeting, the firse step of the two step projection
metheod

Whall Adhesion

(1)

av

J he wall adheaon boundary comdition s enforced by

compating the normal at wall”™ vertwes foom b 011,

rather than from VOF data. While this procedure n
troduces finite-difference errors in general, it produces
a qualitatively correct restoring foree,

The wall adhesion boundary conditicn v Fq. (14)
is applied only to unit free surface normals residing at
vertices, 8o the well boundary is in effect forced always
to coincide with cell boundanes. This 1s, of conrse, an
error for those celis contaming a rigid, mterior olista
cle boundary that does not comeide with a gnd line
An example is in Fig. 3. where a wall boundary cnts
through the interior of & cell ax shown I this case,
ﬂ/') « n. 1t < 1. so the wall 1s assumed 10 be i
“right”™ wall, henee, equation s apphed only to the twe
i 4 1/2 vertex normals  Similar consideratvms apply
for “left™ walls (the twe 1 - 172 vertices), “top” walls
(the twa ) + 1/2 vertices), and “hottom™ walls (the twao
1 /2 vertices) The result of Eq (14)n Fig 3s 10
foree the surface normal n to take on the value i1 wonld
have in static contact with the wall (with the geametry
displayed in Fig 3 rather than the value that would he
caleulated from VOF data Thia gives rise to a strong
local vidume foree Foy that qanekly dovves the flind 1oa
configueation mnch closer to the equibibnnm geometry
whereupon the local volume foree I-:.\ becomes i b
smnller  This treatment of wall adheson s found 10
give the correct wign for the wall athesion foree Lint un
derestimates its magmitude, espeaally e the wall ol
having a large frartional ar-<a blocked 1o flow

4. Expmple Caleulntions

RIPPLE has been apphied to g wide vanety of o
speed fhow preblenee some of have been repuated mo e
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Fig. 5. Trajectories of Lagrangian marker parti-
clen initially located at various positions (denoted
by dots) in the tank flow displayed in Fig. 4.

hterature.!? Two examples illustrating RIPPLE's ca-
pabihities are discussed in the following.

Jot-Induced Tank Mixing

A number of fluid flow scenarios in a reduced grav-
ity environment call for the use of a jet, for example, to
fill tanks to full eapacity or to induee mixing of fluid in
partially-fill-d tanks Jet-induced mixing helps to pre-
vent excessive thermal stratification of tank fld that
s heated by tank walls exposed to the sun. The jet
enhaneex thermal transport by inducing mix, insuring
a inore uniform flind temperature. Jets might also he
used in no-vent fill” processes. i which a tank s filled
to capacity without venting the remaming vapor.'® The
residuai vapor must be condensed during the fili process
to make room for inconung hgqmd — An important jet
design component that can be addressed with RIPPLE
s the optimal veloeity of the jet, which depends upon
the apphreation  For example, an optunal jet veloeny
mght be one that maximizes flued recicculation with-
out penetrating or disrupting the free suriace, whirh
conld destroy the mxing process On the ather hand,
peneteation of the free surface nught be desired, which
allowe the jet to ampinge upon the opposite tank walls
and promote vapor condensation as an aid to the no
vent fill procesy

As an example of low gravity tank flows mndueeq
Ly an imternal jet, consder a large tank (radius 210
cin. herght 1020 em) that s half full of bhgud hydrogen
(LH.3 The tank s a moddel of a protetype design 1o
be carnied om orlatal transfer velucles  An ointerpal et
tradius 10 e heght 60 cmjas centered on the exlin
drcal was at the “hottom™ of the taek The jet veloe
1y v st at 4 em/s coreesponding to Weher numbers
(M oV e where s the et radius) of approv
mately 6 The THL prior to turming on the et s
tally mean equihbonim memisons posation with A, 4°
as the «qunbibinmun contact angle-

Fhe ptandueed tank flow s coarsely resolved with
A nonuntlarm
tank ave

11« 31 aesh that i retined along 1he
of svmmietes aned wall The flued i< given thy

properties of inviscid LH, in cgs units. and is initially
upright in an equilibrium meniscus position. firavity 1s
zero. Momentum advection is computed with the ron-
servative, second-order van Leer-limited algorithm. Ac-
curate time resolution over this flow period follows from
limiting the time step to a value of 2.0 s. The obstacle
enclosing the jet is characterized with small modifica-
tions to the RIPPLF source code.

For a jet velocity of 3 + .n/s (We ~ 3.5), RIPPLE
calculations indicate that surface tension forces are just
able to hold back the laminar jet. As shown in Fig 4.
the cane is different for a laminar jet of 4 cm/s (We ~ 8).
Blobs of fluid are detached from an intense central
geyser of fluid. At times later than 3000 s (where Fig. 4
ends) blohs are thrown against the top of the tank. The
first blob wets the tank fairly evenly, while the second
accumulates around the jet impingement region. How-
ever, & more accurate treatment of wall adhesion might
diminish this central accumulation, forciag more fluid
to wet the walls.

A new feature in RIPPLE i. the capability to track
fluid properties sampled by Lagrangian marker part-
cles. This permits a more detailed analysis of complex
flow fields. Some marker trajectories are displayed in
Fig 5 for the jet-induced tank flow. ‘rhe most intn-
cate motions are displayed by particles near the tank
centerline. For these particles the initial motion during
entrainment may he directed either toward or away from
the jet. There follows an entrained motion terminating
near the free surface. whereupon the particle motions
become very chaotic, reflecting the complex pattern of
s rface waver generated by the jet  Particles near the
tank walls have shorter and less intricate trajectonies,
except for particles near the fluid surface. The La-
grangian particles are an important diagnostic in this
calculation, showing twa fratures of the flow that are
not otherwise readily apparent. (1) tank flind far from
the centerline 1s nat entrained by the laminar jet. and
(2) tank fluid near the jet opening comprises the leading
portion of the hlob that is ejected from the mam fluid
body.

Jet-induced flows are excellent examples of flnd
flows that can he madeled more realistically when vur
oulent effects are included  The jet in these calenlations
would tend to dilfuse radially, dissibating a portwn of
its kinetic energy ainto turbulent energy, with the addi
tion of a turhulence model such as the £+ mode] VY
The turbulent yet velocities requured ta geyser the free
surface would hkely be lagher than the laninar jet e
locitien computed with the standard veraon RIPPLE
In heu of a turbulenee model, however, turhulent effeons
can be estimated with RIPPLE by usimg a tarbulont
eddy viecosity, 1y One estimate for 17, s 1y ~ fok!'
where s the fraction of jet hinetie energy dissapiated
mto turbulence, & 4 the tarbulent length seale and & s
the turbuilent kinetie energy densany
for the jet are [ D10 & B2 where s the et
tachius. and k- fr ;"/'.‘ where voas the et velonty. Warh

Heasonable values

a0 em/s et velocts the addition of a tarblent edidy
viveowity worh these values desapates the et enongh 1o,
present its penetration throngh the free sarfon e

Water Rod Collision



Fig- 6.

Fluid velocity vectors and free surface configuraticns at times of (left-to-right.top-to-bottom)

0.0. 0.1. 0.2, 0.3. 0.4. 0.5. 0.8, and 0.7 & for two rods of water. each with a radius of 1.3 em. rolliding at
an equal and oppusite velocity of 10 em/s. The collision overlap is one radius.

Consider the eollision of two water “drops™, or in-
finte rads 1n two dimensions. impacting each other
head-on at equal and opposite velocities  While the
phenomena of drop eallimion and coalescence is inher-
ently three-dimensional. a two-dimensional “rod eolli-
ston” v interesting hecause 1t displays the campetition
between mertial and surface forces. and exhibits the hy-
drodynanue phenomena of breakup and coalescence [t
also poses a significant ~hallenge ta the computational
mealel many of winch such as houndary imtegral meth-
ods cannot readily cimulate such phenomena without
special modifications RIPPLE can, however, compute
straght through phenomena such as pinch-off (see Fig 7
awed the example in reference 1) and coaleseenee (see
Fig 0

A ltem x 10 rm comprrational domann, partitioned
i planar geometry with a 10 x Aimesh (br = Ay = 025
ey s chomen to pesalve the eallision of two 15 em
rachine redds that are gnen the properties of water ex.
copt for viseonity wha s neglected The rods are i
tialls given equal and opposite y velocities (one moving
up and the other moving down)  They collide liead
on everlapping by one radius Wee wish 1o explore the
competiten hetween inertial and surface tension forees,
whih determunes whether or not the rods
I'wo different impact velocties are
chowen for the rods 10 e /s (We ~ B2 shown an
Fag % oand I em/« (e - In0) <hownom b 7

The tan redds Sorm mtially form a larger rod after
it that
the syt

i the end
remman coaleseed

heeanse of the net aneular momentur, n
Whether or nint
the iarger rodd mamtams ms mtegrity or boeaks up e
per s apen the relatnve magmtede of sirface toanertal
foar-es e the AW numbeers It ovpdent from Fig 6
that the nertval forees pesyltme from a 10 cmds ol

rotates 1 oo hwise wepse

listom are tedt el o onesenqne the surface 1o paon

foa-s Ihe bLndee of wmater at g N7 Gas warbgect ta

sufficiently strong surface forces to prevent breakup In
Fig. 7. a collision velocity nf 15 em/s produces inertial
forces sufficient to overcome surface forces, permutting
the two rods to exchange momentum hbut retain thar
identity. The rods coalesce and then break up. pinch-
ing off at about 0 6 s, The lack of saymmetsy evident i
Fig 7 is the result of directional-sphtting of the VOF
advection algorithm

5. Status of RIPPLE

Like all numerical madels, RIPPLE s fontimuing
to evolve with the help of aluonthm enbancement.
improvements, and addinons  One recent addition,
Lagrangian marker particles. e ntributes substantially
to understanding and daagneeing a flove fiell A re
cently implemented Youngs free surface reconstruction
madel' permits a nonzers slope free serface, producing
anmore accurate VOF advection algorithin The peeds of
a growmng user carmmunity will soon require iehision of
heat and turbulence transport imods s, as well as med
els for vanable surface tension effecte A detaled neer
manual' 1w avalable aed the RIPPLE souiree ol can
be obtamed from the Natuonal boergy Seftware Center
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Fig. 7.

Fluid velocity vectors and free surface configurations at times of (left -to-right.top-to-bottom)

0.0, 0.1. 0.2, 0.3. 0.4, 0.5. 0.6. and 0.7 & for two rods of water. each with a radius of 1.5 em. colliding at
an equal and opposite veloeity of 15 em/s8. The collision overlap is one radiua.
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