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Ripple-GAN: Lane line detection with Ripple Lane

Line Detection Network and Wasserstein GAN
Youcheng Zhang, Zongqing Lu*, Dongdong Ma, Jing-Hao Xue, Qingmin Liao

Abstract—With artificial intelligence technology being ad-
vanced by leaps and bounds, intelligent driving has attracted a
huge amount of attention recently in research and development.
In intelligent driving, lane line detection is a fundamental but
challenging task particularly under complex road conditions. In
this paper, we propose a simple yet appealing network called
Ripple Lane Line Detection Network (RiLLD-Net), to exploit
quick connections and gradient maps for effective learning of lane
line features. RiLLD-Net can handle most common scenes of lane
line detection. Then, in order to address challenging scenarios
such as occluded or complex lane lines, we propose a more
powerful network called Ripple-GAN, by integrating RiLLD-
Net, confrontation training of Wasserstein generative adversarial
networks, and multi-target semantic segmentation. Experiments
show that, especially for complex or obscured lane lines, Ripple-
GAN can produce a superior detection performance to other
state-of-the-art methods.

Index Terms—Lane line detection, multi-target segmentation,
RiLLD-Net, Ripple-GAN

I. INTRODUCTION

IN the current era, cars have become an indispensable means

of transportation. Increasingly complex traffic conditions

make the advanced driver assistant system (ADAS) an essen-

tial tool for people’s safe travel by car. The ADAS uses a

variety of sensors installed on the car to collect environmental

data inside and outside the vehicle and perform relevant

data processing and analysis tasks, such as identification and

detection of static and dynamic objects, such that the driver

can detect potential dangers in the quickest time. Lane line

detection is a critical and challenging part of the ADAS. With

the help from automatic lane line detection, drivers can better

understand the conditions of current road and prepare for

different road trends in advance. When the driver is fatigued

or does not concentrate on driving, lane change maneuvers

may cause traffic accidents. Such traffic accidents can be well

prevented by properly detecting the current road and alarming

the vehicle deviation. Hence the lane line detection plays an

important role in autonomous driving technology.

To build a lane line detection system, many challenges

need to be overcome, such as different types of lane marks,

occlusion, defect and interference of lane lines. To address
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these challenges, many lane line detection methods have been

proposed. These methods can be roughly divided into two

categories: traditional methods and deep learning methods.

The traditional lane line detection methods usually use

visual characteristics of lane lines as features, such as high-

contrast colors, linear shapes, and presence in specific areas

of the image, to distinguish the lane lines from other objects

in the image. These methods often contains the following

steps: image preprocessing, feature extraction, and lane line

detection. The image preprocessing step helps to reduce com-

putational time and improve the performance of algorithms [1].

In this step, researchers may change the color space, for

instance from RGB to YCbCr [2], select regions of interest

(ROI) [3]–[5], or use some filters such as the median filter [6]

and the finite impulse response (FIR) filter [7] to eliminate in-

terference. In the step of feature extraction, brightness-related

characteristics, linearity and spectrum are three commonly

used features in the lane line detection. The Canny and Sobel

operators are often used for edge detection [2], [8]. The local

maxima of intensity, gradient maps [9] and histograms [10] are

also used to provide useful lane line information. In the step of

lane line detection, the Hough transform (HT) is a basic and

general way to estimate the parameters of lane marks [11],

[12]. [13] first divided the ROI of road image into the straight

region and the curve region, and then established the straight

model by using the HT, as well as the curve model by using

the lane-line continuity and tangent. As the vanishing point

contains global information of a road, [14], [15] use it to

guide lane line detection. However, these traditional methods

usually are developed under some strong assumptions and take

specific features and measures for specific problems in a low-

level feature space, and thus often their applications are limited

and their performances are susceptible to interference.

To avoid the drawbacks caused by the use of hand-crafted

features, learning-based approaches have been proposed in

the lane line detection. [16] used Gaussian mixture models

and hidden Markov models to predict the forthcoming vehicle

trajectory by multiple iterations. Recently, with the rise of deep

learning in the computer vision field, more and more neural

network-based lane line detection methods have emerged.

Convolutional neural networks (CNNs) are used to directly

detect the lane line from images [17]–[19]. [20] and [13] share

similar ideas of treating different types of lane lines separately.

[21] used two CNNs, with the second network to determine the

location and shape of each lane based on the edge proposals

produced by the first network. To improve the performance

of CNN, other techniques have been melded with it, for

example, CNNs were blended with other neural networks such
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Fig. 1. Lane line detection by our proposed Ripple-GAN in four different scenarios: multiple lanes, pavement textures, auxiliary road, and occlusions. All
predicted images are not post-processed.

as recurrent neural network (RNN) [22]. In this combination,

CNN is responsible for providing the geometric characteristics

of lane lines for RNN, and RNN is responsible for detecting

lines. There are also other studies combining CNN with hand-

crafted features. For instance, [23] proposed a dual-view CNN

(DVCNN), of which the input part includes both front-view

and top-view images. In general, learning-based approaches

demonstrated good performance of lane line detection on

simple road scenes, but they still face the challenges including

noise interference, shadow, different weather conditions, etc.

Most traditional methods rely too much on hand-crafted

features and often have poor performance in unfamiliar scenes.

For deep learning based methods, there is a trade-off between

the performance and the network complexity. If the network

is too shallow, the detection performance will be poor because

the feature learning is insufficient, but if the network is too

deep, the performance of network may still be poor because it

would be difficult to train the network satisfactorily. Moreover,

complex road conditions including occlusion problems are the

cases where both methods cannot handled well. In this paper,

motivated by the desire to overcome these issues and improve

the state-of-the-art work for lane line detection, we propose

a new simple network called RiLLD-Net, and then based on

RiLLD-Net develop a more powerful network called Ripple-

GAN: the simple RiLLD-Net can correctly detect lane lines

in most common scenes, and the Ripple-GAN can handle

challenging scenes, such as incomplete and complex lane lines,

by integrating the strengths of both RiLLD-Net and generative

adversarial learning. Some examples of lane lines detected

by the proposed Ripple-GAN in four different challenging

scenes are shown in Fig. 1. It can be seen from the results

that, even without post-processing, Ripple-GAN performs very

well in those four scenarios. Especially when the lane line is

complexly distributed, Ripple-GAN can predict the actual lane

lines missed in the labeled ground truth, e.g. in Fig. 1(a) the

line of an auxiliary road.

The main contributions of this paper are as follows:

• We propose RiLLD-Net, a new, simple network that

passes feature maps between modules at various dis-

tances. In this way, the network can be learned more

efficiently and the characteristics of each stage can be

fully utilized. Combined with gradient information, the

RiLLD-Net can highlight the lane line properties as well

as to remove the interference, and thus detect the lane

line effectively for most common scenes.

• We then propose a more powerful RiLLD-Net-based lane

line detection network called Ripple-GAN, to further im-

prove the detection performance under many challenging

scenarios with only partial lane line information avail-

able. In the Ripple-GAN, we combine the RiLLD-Net,

Wasserstein generative adversarial network (WGAN), and

semantic segmentation. It can be verified that integrating

generative adversarial training and multi-target segmen-

tation can help the RiLLD-Net cope well with occluded

and complex scenes.

The rest of the paper is organized as follows. Section II

reviewed the existing lane line detection work and briefly

clarifies the superiority of our approach. The proposed lane

line detection networks, RiLLD-Net and Ripple-GAN, are

introduced in Section III. In Section IV, the experimental

details and results are presented, and the effectiveness of our

methods is validated. Finally, some conclusions and future

work are presented in Section V.

II. CLOSELY-RELATED WORK

A. Semantic segmentation

In intelligent driving, the task of semantic segmentation is

to group pixels in the scene into different classes for better
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understanding of the driving situation. Usually it treats the

entire road as a whole [24], [25], and CNN-based methods are

now its mainstream for lane line detection. [26] proposed the

Spatial CNN (SCNN) for lane line detection. SCNN sequen-

tially sends and accumulates the slices of a 3D input tensor

into convolution layers, and thus is suitable for structures

with strong spatial relationship, such as continuous shape

structure. However, SCNN suffers from the presence of dashed

lines, occlusions and defects in the lane lines on the road, or

some interference with a similar spatial structure to lane lines.

Moreover, it is limited to detecting only a predefined, fixed

number of lanes. LaneNet [27] is another effective semantic

segmentation-based lane line detection method. However, the

performance of LaneNet relies on some post-processing parts

of the network for pixel embedding and curve fitting, and thus

is in turn largely affected by the LaneNet’s segmentation part,

which also cannot cope well with the challenging scenes of

partial lane information above-mentioned for SCNN. In [28],

it was suggested that a segmentation approach is not effective

for detecting elongated thin lane boundaries, and thus the

lane detection problem was posed as a CNN regression task

to predict the coordinates of 15 points on each lane line.

However, it is not practical to report only the points as the

result of lane line prediction, and the number and size of points

all affect the training of the network. Moreover, not only does

the network need to find the location of the lane line, but also

the locations of the points have to be predicted accurately,

which introduces unnecessary extra complexity.

B. Wasserstein GAN

Adversarial training in the generative adversarial network

(GAN) can be helpful to learn high-level images features of

lines, such as line connectedness when some lane lines are

only partially available or completely occluded, as well as

for semantic segmentation [29]. However, it may cause the

gradient of generator to vanish when a perfect discriminator

exists. To solve this problem, the Wasserstein distance-based

GAN (WGAN) was proposed in [30]. Soon after, WGAN-

GP [31] was proposed to make the WGAN training more

stable by putting Lipschitz constraints into the loss. A GAN-

based work related to this paper is the EL-GAN in [32] for

lane segmentation. In a similar nature to the original GAN,

the EL-GAN is trained by using an “embedding loss” on

the predictions and labels, while the detection performance

was improved by some post-processing. Different from EL-

GAN, we select WGAN-GP [31] and modify its structure

for lane line detection. To fully exploit it, we design two

discriminators, one for semantic segmentation into three tar-

gets (background, lanes, and lane lines), and the other for

emphasizing the lane lines. Also, noise is added to the input

for exploit the imagination (generative) ability of WGAN to

deal with the missed lane lines.

III. THE PROPOSED METHOD

In this section we present the details of our proposed

RiLLD-Net and Ripple-GAN.

Fig. 2. (a) A residual module with pooling. (b) Overall structure of the
RiLLD-Net: R-D refers to the residual module with downsampling; R-U refers
to the residual module with upsampling; blue modules are feature maps.

A. RiLLD-Net

Inspired by the merits of U-Net [33] and deep residual

learning [34] for image segmentation and recognition, we

propose RiLLD-Net for lane line detection. The RiLLD-Net

is a simple, new network blending the ideas of the encoder-

decoder (context-localization) structure of U-Net, the residual

module with skip connections, and quick connections between

encoders and decoders. As illustrated in Fig. 2, connections

between multiple feature layers are like the ripple in the

network pond, hence we name the network RiLLD-Net.

In the RiLLD-Net, feature connections exist not only be-

tween the encoders and decoders via quick connections, but

also within each of them via skip connections. The quick

connection between a encoder and a decoder helps the decoder

to fix well the details of the target lines. The skip connection

within the residual module between adjacent feature layers

allows the network to handle different features differently

and learn deeper features of lane lines. RiLLD-Net uses skip

connections on all sampling paths. This is different from only

applying residual modules to the downsampling path to take

the place of some convolution operations, or only applying

to the bottleneck layer (the last level of downsampling path).

This helps RiLLD-Net achieve efficient learning and full use

of features. As for Ripple-GAN, we add Gaussian noise so that

the support set of original data can be extended to the entire

space. The skip connections spread the influence of Gaussian

noise on the data distribution to the training process of the

entire network. Therefore, GAN can be more efficiently and

stably trained. That is, the design of the RiLLD-Net structure

is conducive to a good performance of Ripple-GAN.

Fig. 2(a) shows the residual module of RiLLD-Net, and

Fig. 2(b) represents the overall structure of RiLLD-Net, where

the orange module labeled R-D refers to the residual module

with downsampling and the pink module labeled R-U refers to

the residual module with upsampling. We note that in RiLLD-

Net, different from [35], we did not use the Dense block.

Although high-density feature reuse can help the network

process features, we prefer a simpler and more efficient net-

work structure that facilitates real-time lane line detection with

acceptable detection performance. Experiments in section IV

show that our proposed network can fulfil this criterion.
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Fig. 3. The diagram of the RiLLD-Net for lane line detection. The input of
this network includes the original image and a gradient map.

Using the RiLLD-Net, we develop a simple network for lane

line detection, as shown in Fig. 3. The network is based on

a 10-layer RiLLD-Net and includes both the original image

and a gradient map as input. This is tailored for lane line

detection as the gradient of the image can highlight the lane

lines and suggest the directional characteristics of them. The

gradient map is obtained by processing the original image

with the Sobel operator. Using both the gradient and color

information together facilitates the highlighting of lane lines

and the removal of redundant interference information in

the background. For simplicity and efficiency, here we only

include MSE into the loss function of RiLLD-Net:

Lossmse = E[(IG − IR)
2], (1)

where IG is the output image and IR is the real labeled image.

B. Ripple-GAN

Fig. 4. The diagram of the Ripple-GAN for lane line detection. The part
above the green line is RG-S: (a) Original image. (b) Gaussian noise. (c)
Image with Gaussian noise added. (d) Three-target segmentation results. (e)
Original image & segmented results. (f) Segmented lane line result. The part
below the green line is RG-F: (g) Gradient map & segmented lane line result.
(h) Final prediction result.

In experiments, we find that the RiLLD-Net can produce

excellent results for lane line detection in most common

scenes, but not outstanding under complex road conditions

with only partial lane line information available. Therefore, to

address this issue, we combine RiLLD-Net with generative

adversarial learning to exploit the generative ability of the

WGAN, proposing a new network termed Ripple-GAN. The

diagram of Ripple-GAN for lane line detection is shown

in Fig. 4, mainly including two parts: the RG-S network

(segmentation part of Ripple-GAN) to produce the sketch of

lane, and then the RG-F network (fine-tune part of Ripple-

GAN) to fine tune the RG-S output.

1) RG-S part: A diagram of RG-S is shown above the green

line in Fig. 4, including the following components.

Gaussian noise addition. We add white Gaussian noise to

the original image to form the input of the network. In this

way, the support set of input data distribution will be closer to

the support set of Gaussian distribution, and we can better

exploit the generative ability of the generator to complete

defective or occluded lane lines. Also, this operation breaks

block structures in the original image and help the following

convolution layers to enhance elongated structures, making the

lane lines more prominent in the obtained feature maps (see

more discussion in Section IV-G).

Three-target segmentation. In RG-S, we design the gen-

erator to achieve three-target segmentation for background,

lanes and lane lines. In traffic scenes, lane lines only account

for a very small part of the whole picture, hence a method

of directly predicting the lane line pixels is insufficient for

accurate detection. Such lane lines could be easily ignored by

a generator as their influence on the loss function is small,

so lane lines have to be emphasized during the adversarial

training. For this reason, we have added lanes and background

into semantic segmentation in RG-S: Lane information can

regulate the shapes of lane lines, and the background can

narrow down the ROI areas of lane lines in the image and

eliminate the interference from the background on lane line

detection, as shown in Fig. 4(d).

Gradient map. In RG-F, we input the gradient map together

with lane lines segmented by RG-S into the RiLLD-Net

to predict the final results. In addition to emphasizing the

lane line information, the gradient map in RG-F can provide

supplementary scene information.

Fig. 5. (a) A traditional GAN-based segmentation network. (b) The proposed
new RiLLD-Net-based GAN in RG-S.

RiLLD-Net-based GAN. Traditional GAN-based semantic

segmentation networks treat the segmentor as the generator,

as shown in Figure 5(a). The performance of such a network

can be improved by jointly considering its generative, segmen-

tation, and discriminative abilities. To this end, we propose a

new RiLLD-Net-based GAN structure for the RG-S, as shown

in Fig. 5(b). RG-S implements a RiLLD-Net-based generator

to simultaneously predict the three types of targets, and then
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designs two discriminators: the input of the first discriminator

is the original training image and the three-target segmentation

map; the input of the second discriminator is the generated

binary map of lane lines. In this way, not only the relationship

between the original scene and what the generator produced is

strengthened by the first discriminator, but also the lane lines

are highlighted by the second discriminator.

Loss function. The generator loss function of RG-S consists

of two terms: one term called Llow measures the fitness

between the low-level pixel-wise prediction and the label; the

other term called Lhigh preserves the higher-level consistency

conditioned on the input image and binary map:

LG(x, y; θG, θD1
, θD2

) = λ1Llow(G(x; θG), y)

+λ2Lhigh(x,G(x; θG); θD1
, θD2

), (2)

where x and y are the input image and the true segmentation

map; θG, θD1
and θD2

are the parameters of the generator

and two discriminators; G(x; θG) represents a transformation

on the input image x, imposed by the generator network

parameterized by θG; and λ1 and λ2 are the relative weights

of the two terms.

The loss term Llow contained two parts, the mean square

error (MSE) and the Dice distance, as shown in (4):

Dice(G(x; θG), y) =
2|G(x; θG) ∩ y|

|G(x; θG)|+ |y|
, (3)

Llow(G(x; θG), y) = β1||G(x; θG)− y||

+ β2(1−Dice(G(x; θG), y)), (4)

where β1 and β2 are the relative weights. Minimizing MSE

can reduce the Euclidean distance between the real data and

the fake data generated by generator. The Dice distance, as

shown in (3), is commonly used in semantic segmentation,

measuring the similarity between two data sets, the prediction

results G(x; θG) and the real data set y.

The loss term Lhigh is to make the data produced by the

generator more similar in distribution to the true data. It is

often formulated by a binary cross entropy loss between zero

and the binary prediction results of the discriminator. How-

ever, the gradient of the generator would be explosive if the

performance of discriminator is sufficiently good. Hence we

use the Wasserstein loss to promote the network convergence

and remove the sigmoid layer from the discriminators:

Lhigh = −E[D1(x,G(x; θG); θD1
)]− E[D2(x̃; θD2

)], (5)

where D1(x,G(x; θG); θD1
) is the first discriminator, which

compares the segmented three-target images of the faked and

real images; and D2(x̃; θD2
) is the second discriminator, which

focuses on distinguishing the forged lane lines x̃ and the binary

map of true lane lines ỹ. Moreover, during the training process,

RG-S benefits from WGAN-GP by applying weight clipping

to the loss term, which revises the loss terms of the two

discriminators to be

LD1
= −E[D1(x, y; θD1

)] + E[D1(x,G(x; θG); θD1
)]

+ γ1E[|| ▽ζ D1(ζ; θD1
)||p − 1]2, (6)

ζ = (x, y) + α1[(x,G(x; θG))− (x, y)], (7)

where (x, y) is a concatenation of x and y, and so does

(x,G(x; θG)); and

LD2
= −E[D2(ỹ; θD2

)] + E[D2(x̃; θD2
)]

+ γ2E[|| ▽η D2(η; θD2
)||p − 1]2, (8)

η = ỹ + α2(x̃− ỹ), (9)

where α is a random number between 0 and 1, and p refers

to the p-norm.

2) RG-F part: In the RG-S network we add Gaussian noise

into the original image, such that the generator can complete

partial lane lines in the scenario. However, during the training

process, the imagination of the generator may produce the

deviated prediction results. Hence, we design a simple fine-

tune part in Ripple-GAN called RG-F, to refine the prediction

results of lane lines. RG-F is shown below the green line in

Fig. 4. It consists of a simple shallow RiLLD-Net. The input

of RG-F includes the lane lines obtained from three-target

segmentation results by RG-S. In the meantime, there should

also be some information from the original scene to guide RG-

F to refine the lane lines. Hence, we use both the gradient maps

of original images and the extracted lane lines as the input part

of RG-F. The loss function of RG-F is just the mean square

error (MSE) as in (1) for simplicity. Because of the simple

structure and complexity of RG-F, the overall complexity of

the Ripple-GAN has not been increased much from using a

two-stage network structure.

In summary, with gradient maps, the RiLLD-Net has good

performance in lane line detection for most common scenes,

and by further exploiting the strength of adversarial learning,

the Ripple-GAN is able to handle more challenging situations

in lane line detection, for example, when the lane line is

damaged or obstructed. In the next section we shall verify

the superiority of Ripple-GAN.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the TuSimple dataset and

the training setup used in the experiments. Then we investigate

the effects of various components (three-target prediction,

Gaussian noise addition and gradient map) on the performance

of the Ripple-GAN. Finally, we compare our Ripple-GAN

with other state-of-the-art methods.

A. Datasets and experimental settings

Fig. 6. A generated heatmap (left) and its binarized version (right).
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1) TuSimple dataset: Up to present, there is few lane line

detection dataset for deep learning methods. The TuSimple

lane dataset1 is a large scale dataset published for a lane detec-

tion challenge. There are series of images of size 720×1280

taken on the US highway, under medium to good weather

conditions during daytime. The training set consists of over

four sequences divided into many different sections. Each

section contains twenty frames and the last frame is given the

annotation. Totally, 3262 training images and 2782 test images

are annotated. From the train set, 604 images were used as a

validation set. The annotation indicating x-position of the lane

lines at a number of discretized y-position comes in a json

format and records 2-lane to 5-lane in different scenarios. To

generate the labels for our proposed network, we use the given

points to generate a heatmap of the lane line according to the

distance between the pixels. This strategy eliminates the fitting

process of the lane line and can directly generate the lane line

labels by binarization, as shown in Fig. 6.

2) Architecture and training setup: All the input images

are scaled to a resolution of 256×256 and normalized.

In the RiLLD-Net, the depth is 10. It is trained by using

Adam with a batch size 16 and a learning rate 1e-4 until

convergence. Its architecture is detailed in Table I.

In the Ripple-GAN, the two parts, RG-S and RG-F, are

trained in succession. The RG-S network is trained first, and

then the RG-F network is trained by using the training set and

the validation set tested by the RG-S network. Both parts are

trained with a RiLLD-Net with depth of ten. The batch size

is 8 for RG-S and 16 for RG-F. The two parts are all trained

by using Adam at the 1e-4 learning rate until convergence. In

(2), λ1 and λ2 are set to 1; in (4), β1 and β2 are set to 100;

and in (6) and (8), γ1 and γ2 are set to 10.

TABLE I
ARCHITECTURE IN DETAIL OF RILLD-NET.

Instruction Layer name Size of feature map

Input Generator. Input (batch size, 64,256,256)

Generator. Res1 (batch size, 128,128,128)
Generator. Res2 (batch size, 256,64,64)

Downsample Generator. Res3 (batch size, 512,32,32)
Generator. Res4 (batch size, 1024,16,16)
Generator. Res5 (batch size, 1024,8,8)

Generator. Res6 (batch size, 1024,16,16)
Generator. Res7 (batch size, 512,32,32)

Upsample Generator. Res8 (batch size, 256,64,64)
Generator. Res9 (batch size, 128,128,128)

Generator. Res10 (batch size, 64,256,256)

Normalize Generator. OutputN (batch size, 128,256,256)

Output Generator. Output (batch size, 3,256,256)

B. Analysis of three-target prediction

Different from other segmentation-based lane line detection

methods, our Ripple-GAN predicts the lane line, lane and

background simultaneously. In this section, we explore how

the three segmentation tasks jointly improve the performance

of each other.

1https://github.com/TuSimple/tusimple-benchmark/issues/3

Fig. 7. Feature maps at three residual modules for one-target segmentation
(upper row) or three-target segmentation (lower row). In order to display the
maps clearly, no noise is added to the input here.

The feature maps of first three residual modules of RG-S are

shown in pseudo color in Fig. 7, with the upper row obtained

from the one-target (line) segmentation and the lower row for

the three-target (background, lane, line) segmentation. It can

be seen that the left and right boundaries of the road in the

lower row are clearer than those in the upper row, so do the

lane lines on the road. There is also a tendency in the three-

target segmentation to predict the position of the straight lane

line through the dotted lane line. These indicates that adding

the background and lanes as the segmentation targets has a

positive effect on the lane line detection. The segmentation

of background can make the foreground (i.e. the area where

the lane line and the lane are located) and the background

separate better, and the segmentation of lanes can make the

lane line segmentation more accurate. The performances of

Ripple-GAN in the cases of three-target segmentation and

one-target segmentation are shown in Table II. The amount

of Gaussian noise is consistent in both cases.

TABLE II
PERFORMANCE OF RIPPLE-GAN WITH THREE-TARGET SEGMENTATION

AND ONE-TARGET SEGMENTATION.

Segmentation Recall FN FP

one-target 0.9677 0.0407 0.0049
three-target 0.9728 0.0289 0.0048

C. Analysis of Gaussian noise addition

In the input part of RG-S, we add Gaussian noise into

the original image. Now we shall verify that the addition

of Gaussian noise allows the network to fully exploit the

imagination ability of GAN to address detection tasks in

unfamiliar complex scenes, as well as a positive effect of

Gaussian noise on improving the convergence of the network.

1) Influence of Gaussian noise on the network performance:

Fig. 8 shows the feature maps of the first three residual

modules of RG-S, in the case with or without Gaussian

noise added. It can be seen from the feature maps that: with
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Fig. 8. Feature maps at residual modules without Gaussian noise (upper row)
or with Gaussian noise added (lower row).

Gaussian noise added in the input, the feature maps become

more blurring after convolutions, and in the meantime the lane

lines become more significant, compared with the case of no

Gaussian noise added. This indicates that the Gaussian noise

addition can help the network quickly learn the characteristics

of the lane lines.

Fig. 9. Prediction results in four typical challenging scenarios: light changes,
textures similar to lane lines on the road, special lane line distribution, and
dynamic background occlusion.

We also selected from the test set some complex scenes:

scenes with missing lane line information, scenes with com-

plex lane lines, and scenes with lane-line-like texture interfer-

ence on the road. We tested the performance of Ripple-GAN

with Gaussian noise in these challenging scenarios, and some

results without any post-processing are in shown in Fig. 9.

As can be seen, the Ripple-GAN with Gaussian noise can

cope well with occlusion or complex road conditions, and help

eliminate interference caused by different road textures.

To quantitatively evaluate the effect of Gaussian noise

addition on the performance of Ripple-GAN, we selected 185

representative challenging scenes (e.g. large-area occlusion,

complicated road conditions, and different pavement textures)

from the test set to form a challenging test set. The Ripple-

GANs with Gaussian noise of different standard deviations

were tested on this data set. The test results are listed in

Table III, where standard deviation equal to zero denotes

the case without Gaussian noise. The results show that the

performance of Ripple-GAN with Gaussian noise is better than

TABLE III
PERFORMANCE OF RIPPLE-GAN WITH GAUSSIAN NOISE OF DIFFERENT

STANDARD DEVIATION ON A CHALLENGING TEST SET. THE STANDARD

DEVIATION EQUAL TO 0 INDICATES THAT GAUSSIAN NOISE IS NOT

INVOLVED IN THE TRAINING PROCESS.

Standard deviation Recall FN FP

0.0 0.9478 0.0683 0.0103
0.1 0.9569 0.0599 0.0082

0.3 0.9502 0.0748 0.0105
0.5 0.9438 0.0838 0.0104
0.7 0.9386 0.1203 0.0160
1.0 0.9518 0.0548 0.0141

TABLE IV
PERFORMANCE OF RIPPLE-GAN WITH GAUSSIAN NOISE OF

FINE-GRAINED STANDARD DEVIATION ON A CHALLENGING TEST SET.

Standard deviation Recall FN FP

0.01 0.9613 0.0464 0.0061

0.03 0.9631 0.0532 0.0085
0.07 0.9665 0.0332 0.0084
0.08 0.9617 0.0459 0.0062
0.09 0.9631 0.0532 0.0085
0.10 0.9569 0.0599 0.0082
0.11 0.9592 0.0586 0.0089
0.12 0.9631 0.0396 0.0105
0.13 0.9564 0.0599 0.0113

that of Ripple-GAN without Gaussian noise on the challenging

test set. Gaussian noise with a standard deviation of 0.1

makes the biggest improvement of network performance in

terms of recall. To further explore the relationship between

the Gaussian noise addition and the network performance, we

fine-grained the interval between the standard deviations of

Gaussian noise around 0.1. The fine-grained test results are

listed in Table IV. It can be seen that we can even obtain

better test results around the noise standard deviation of 0.1.

2) Influence of Gaussian noise on the network training effi-

ciency: From the experiments, we found that adding Gaussian

noise not only improves the ability of the Ripple-GAN to

detect lane lines, but also helps to speed up the network

convergence. As analyzed in Section III-B1, the addition of

Gaussian noise can make the network be more stably trained,

and thus accelerate network convergence. The convergences

(loss curves) of the network, under Gaussian noise with five

standard deviations (std) from 0 to 1 are tested. The loss

function values of the first 13 epochs were recorded.

For illustration, in Fig. 10 we plot the change in loss after

adding Gaussian noise (with standard deviation 0.1 vs without

noise, or with standard deviation 1 vs without noise). It can

be seen that, although due to the random initialization of the

parameters these loss curves have different initial values, all

losses have a big drop after the first epoch, and then the

networks with Gaussian noise added have generally lower loss

than the networks without Gaussian noise added.

D. Analysis of gradient map

Adding the gradient map into the input of the network helps

supplement the input with the scene information and highlight

the texture. In order to verify the effectiveness of the gradient

map on improving the network performance, we compared the
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(a) Loss under no noise (std0) or standard deviation 0.1 (std0.1)

(b) Loss under no noise (std0) or standard deviation 1 (std1)

Fig. 10. The convergence of the network under Gaussian noise with different
standard deviations (std).

performances of Ripple-GAN between the situations of input

with and without the gradient map. The experimental results

are listed in the Table V. The amount of Gaussian noise is

consistent in both cases.

TABLE V
RESULTS OF GRADIENT MAP ABLATION EXPERIMENT.

Gradient map Recall Precision F1

no 0.9669 0.9801 0.9734
yes 0.9728 0.9806 0.9767

We can observe that, after the gradient map was added,

all the prediction recall, precision and F1 score (a function

of recall and precision) of Ripple-GAN have increased. That

is, the gradient map has made a certain contribution to the

improvement of network performance. More broadly speaking,

the addition of manually-crafted features can help train neural

networks more effectively.

E. Evaluation on the TuSimple database

Now we introduce some measures for lane line detection

and compare our proposed two networks with the outstanding

methods in the TuSimple Lane Line competition.

1) Metrics: In the Tusimple lane detection competition, the

predicted lane line position is compared with 56 points of the

true values to calculate the accuracy, the false positive rate

(FP) and the false negative rate (FN). As the proportion of

the pixels occupied by the lane line is a minority, in order to

highlight the effect of lane line detection, the denominator in

accuracy contains only the true values of all lane lines, and

the numerator is the correctly predicted lane line points. That

is, the accuracy here is actually the recall. In order to express

accurately and avoid confusion, here we use the term ‘recall’.

Precision is also used as one of the evaluation measures.

Recall. The recall of each lane line is defined as

recall =
TP

ground truth
=

TP

FN + TP
, (10)

where TP and FN are pixel counts in the true positive and

false negative regions, respectively.

Precision. The precision of each lane line is defined as

precision =
TP

FP + TP
, (11)

where TP and FP are pixel counts in the true positive and

false positive regions, respectively.

MIoU. The mean intersection over union (MIoU) is a

standard measure to calculate the ratio of intersections and

unions between the set of ground truth and the set of predicted

values. The MIoU metric for a single test image is defined as

MIoU =
1

k

k−1∑

i=0

TPi

FNi + FPi + TPi

, (12)

where k is number of classes and in our case k = 2
representing lane lines and background.

F1 scores. F scores is an indicator used in statistics to

measure the accuracy of a binary model. It simultaneously

takes into account the precision and recall. F1 score can be

regarded as a harmonic average of the precision and recall,

with a maximum of 1 and a minimum of 0. It is defined as

F1 = 2×
precision× recall

precision+ recall
. (13)

2) Comparison with state-of-the-art methods: To further

verify the effectiveness of our proposed Ripple-GAN, we

compare it with several state-of-the-art methods: SCNN, EL-

GAN and LaneNet. In order to maintain consistency in the

comparison, we perform a simple post-processing of the re-

sults: a number of key points are extracted from each lane line

as representative. The comparison results is listed in Table VI,

in terms of recall, FN, FP, precision and F1 score.

TABLE VI
PERFORMANCE ON THE TUSIMPLE DATABASE. TOP TWO RESULTS ARE

HIGHLIGHTED IN BOLDFACE.

Models Recall FN FP Precision F1

SCNN [26] 0.9653 0.0180 0.0617 0.7964 0.8727
EL-GAN [32] 0.9639 0.0336 0.0412 0.8540 0.9056
LaneNet [27] 0.9638 0.0244 0.0780 0.7554 0.8470

RiLLD-Net 0.9513 0.0502 0.0189 0.9264 0.9386
Ripple-GAN no noise 0.9652 0.0301 0.0123 0.9515 0.9538

Ripple-GAN with noise 0.9728 0.0289 0.0048 0.9806 0.9767
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(a) Complex road conditions (b) Occluded road conditions

(c) Different textured roads (d) Lane line blur, multiple lanes and lane line color changes

Fig. 11. Comparison of lane line detection results by different methods in challenging scenarios.

As can be seen from the Table VI, the recall of RiLLD-Net

is not as high as EL-GAN and LaneNet, but it has smaller

FN and FP, which makes the F1 score of RiLLD-Net higher

than EL-GAN and LaneNet. As adversarial training in Ripple-

GAN improves RiLLD-Net by being more strict on whether a

pixel is detected as on a lane line, the recall of Ripple-GAN is

increased, the FN and FP of Ripple-GAN is greatly reduced,

and thus the precision and F1 score of Ripple-GAN exceed

the other three state-of-the-art methods. Moreover, after adding

Gaussian noise to the input of Ripple-GAN, the network can

better deal with complex and obstructed road conditions, hence

overall the Ripple-GAN with noise performs the best and

achieves a very high F1 score. Examples of lane line detection

results by different methods in different challenging scenarios

are shown in Fig. 11.

We also compare the difference between the binary map

of ground truth and the predicted result at the pixel level,

and calculate the precision, recall and MIoU, as shown in

Fig. 12 for the RiLLD-Net, the Ripple-GAN without noise

and the Ripple-GAN with noise. We can observe that the

three networks have similar precisions at the pixel level.

However, both the RiLLD-Net and the Ripple-GAN predict

lane lines with high recall and MIoU, and the Ripple-GAN

Fig. 12. Precision, recall and MIoU of test results of the proposed methods.

with Gaussian noise remains the best performer.

F. Algorithm complexity

1) Computational efficiency: The computational efficien-

cies of RiLLD-Net and Ripple-GAN are listed in the Table VII.

Compared with Ripple-GAN, RiLLD-Net is of simpler

structure, and thus its detection is faster. Although its detection
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TABLE VII
COMPUTATIONAL EFFICIENCIES OF RILLD-NET AND RIPPLE-GAN

Models Training time / epoch Test time / frame Recall

RiLLD-Net 187.5s (4GPU) 0.2s (1GPU) 95.13

Ripple-GAN 566.7s (4GPU) 0.5s (1GPU) 97.28

recall is 95.13%, not as high as that of Ripple-GAN (97.28%),

RiLLD-Net can perform rapid detection while ensuring a good

accuracy when a vehicle drives at high speeds under relatively

simple road conditions. The driving will usually slow down

when the road conditions are complicated, and in this case it is

appropriate to choose Ripple-GAN, which is good at handling

complicated road conditions.

2) Space complexity: The Ripple-GAN algorithm consists

of two parts, RG-S and RG-F, with an overall parameter size

of 426.5M. The numbers of weights for RG-S and RG-F are

234.7M and 191.8M, respectively. RG-F and RiLLD-Net are

equal in the space complexity.

G. Discussion

In this subsection, we discuss why our algorithm can be

superior to other lane line detection algorithms, from the

following aspects. Firstly, the RiLLD-Net with multi-layer

feature interaction enables the network to learn the effective

and comprehensive characteristics of the target in a timely

manner, thereby improving the accuracy of the detection.

Secondly, adding the scene gradient feature map is equiva-

lent to enhancing the importance of this feature in the neural

network. This strategy can be applied to a variety of detection

tasks, if such a manually extracted feature holds a strong

correlation with the detection target.

Thirdly, multi-task detection is an approach to effectively

improving the accuracy of lane detection. In a scene, the

proportion of the lane line is very small. Since the loss

function is calculated over the whole graph, even if the entire

lane line is detected incorrectly, the contribution to the loss

function will not be large. This makes the network fail to

achieve the expected segmentation of lane lines even if it

converges. Hence we added the background and lane, which

are associated with the lane line, as the segmentation targets.

These two targets have much larger proportions in the scene

and thus are relatively easier targets of segmentation. The

correct segmentation of the background can reduce the pixels

outside the road that are misclassified as lane lines; the correct

segmentation of the lane can further ensure the segmentation

of the lane lines. In short, the correct segmentation of the

surrounding pixels can assist the small target detection.

Finally, it can be seen from the feature map of convolution

layer that adding Gaussian noise can enhance the texture of

the strip in the picture, make the area with homogeneous

structure such as sky and road less structural and be discarded

in the subsequent processing of the network. Thus the linear

structure can be highlighted. As seen from the second layer

feature map in Fig. 8, the outline of the background mountain

and the lane line are enhanced by the addition of noise into

the network input. Later, deeper networks capable of learning

more advanced features can eliminate the effects of noise on

the background and filter out contours other than lane lines.

The original GAN uses the Jensen-Shannon (JS) divergence

as the optimization objective, but when there exists a perfect

discriminator, the discriminator gradient disappears and the

update of the generator cannot get enough gradient, resulting

in poor performance of the generator [30]. WGAN uses the

Wasserstein distance to solve the shortcomings of the JS

divergence, but there are still cases where the training is

unstable and the network is not easy to converge.

To fix the instability issue, [36] suggests adding continuous

noise to the inputs of the discriminator to smoothen the data

distribution. It says that noisy samples can be guided to the

direction of the real data manifold during the training. Inspired

by this, in Ripple-GAN, we add moderate noise directly to

the original data distribution. This operation can extend the

support set of original data distribution to the entire space,

ensuring that the new data distribution and the target data

distribution have a shared support set. Experiments show that

the network performance is indeed improved after adding

Gaussian noise (see Section IV-C).

V. CONCLUSION

In this paper, we proposed an effective lane line detec-

tion method called Ripple-GAN. We first proposed RiLLD-

Net, a simpler and basic network structure of Ripple-GAN.

The RiLLD-Net can learn features efficiently, and enhancing

RiLLD-Net with gradient features from the scene can make

RiLLD-Net an efficient and decent detector in most traffic

scenarios. To cope with challenging situations of complex,

incomplete or obscured lane lines, we blended RiLLD-Net

with the idea of WGAN to develop Ripple-GAN. In Ripple-

GAN, the generator is a multi-target segmentation network

and Gaussian noise is added into the input of the network,

equipping Ripple-GAN with the ability to cope with detection

tasks in more challenging road conditions. The proposed

Ripple-GAN has achieved satisfactory results on the TuSimple

dataset, and its F1 score is higher than those of the existing

methods. We also verified the positive impacts of multi-tasking

and noise on lane line detection by experiments.

It is a bigger challenge to detect lane line when the road

surface is completely or partly occluded, for example, a street

surface with dim lights. This is a direction of our future work.
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