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Abstract

Current image representation schemes have limited capability of represent-
ing 2D singularities (e.g., edges in an image). Wavelet transform has better
performance in representing 1D singularities than Fourier transform. Re-
cently invented ridgelet and curvelet transform achieve better performance
in resolving 2D singularities than wavelet transform. To further improve the
capability of representing 2D singularities, this paper proposes a new trans-
form called ripplet transform Type II (ripplet-II). The new transform is able
to capture 2D singularities along a family of curves in images. In fact, ridgelet
transform is a special case of ripplet-II transform with degree 1. Ripplet-II
transform provide the freedom in parameter settings, which can be optimized
for specific problems. Ripplet-II transform can be used for feature extrac-
tion due to its efficiency in representing edges and textures. Experiments
in texture classification and image retrieval demonstrate that the ripplet-II
transform based scheme outperforms wavelet and ridgelet transform based
approaches.

Keywords: Radon transform, ridgelet transform, wavelet transform,
texture classification, image retrieval

1. Introduction

Efficient representation of images or signals is critical for image process-
ing, computer vision, pattern recognition, and image compression. Harmonic

1Correspondence author: Prof. Dapeng Wu, wu@ece.ufl.edu,
http://www.wu.ece.ufl.edu. Some preliminary results in this work have appeared
in Ref. [1].
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analysis [2] provides a methodology to represent signals efficiently. Specif-
ically, harmonic analysis is intended to efficiently represent a signal by a
weighted sum of basis functions; here the weights are called coefficients, and
the mapping from the input signal to the coefficients is called transform.
In image processing, Fourier transform is usually used. However, Fourier
transform can only provide an efficient representation for smooth images but
not for images that contain edges. Edges or boundaries of objects cause dis-
continuities or singularities in image intensity. How to efficiently represent
singularities in images poses a great challenge to harmonic analysis. It is well
known that one-dimensional (1D) singularities in a function (which has finite
duration or is periodic) destroy the sparsity of Fourier series representation
of the function, which is known as Gibbs phenomenon. In contrast, wavelet
transform is able to efficiently represent a function with 1D singularities [3, 4].
However, typical wavelet transform is unable to resolve two-dimensional (2D)
singularities along arbitrarily shaped curves since typical 2D wavelet trans-
form is just a tensor product of two 1D wavelet transforms, which resolve 1D
horizontal and vertical singularities, respectively.

To overcome the limitation of wavelet, ridgelet transform [5, 6] was in-
troduced. Ridgelet transform can resolve 1D singularities along an arbitrary
direction (including horizontal and vertical direction). Ridgelet transform
provides information about orientation of linear edges in images since it is
based on Radon transform [7], which is capable of extracting lines of arbitrary
orientation.

Since ridgelet transform is not able to resolve 2D singularities, Candes and
Donoho proposed the first generation curvelet transform based on multi-scale
ridgelet [8, 9]. Later, they proposed the second generation curvelet trans-
form [10, 11]. Curvelet transform can resolve 2D singularities along smooth
curves. Curvelet transform uses a parabolic scaling law to achieve anisotropic
directionality. From the perspective of microlocal analysis, the anisotropic
property of curvelet transform guarantees resolving 2D singularities along C2

curves [12, 10, 11, 13]. Similar to curvelet, contourlet [14, 15] and bandlet
[16] were proposed to resolve 2D singularities.

However, it is not clear why parabolic scaling was chosen for curvelet to
achieve anisotropic directionality. To address this, we [17] proposed a new
transform called ripplet transform Type I (ripplet-I), which generalizes the
scaling law. Specifically, ripplet-I transform generalizes curvelet transform by
adding two parameters, i.e., support c and degree d; hence, curvelet transform
is just a special case of ripplet-I with c = 1 and d = 2. The new parameters,
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i.e., support c and degree d, provide ripplet-I with anisotropy capability of
representing 2D singularities along arbitrarily shaped curves.

Inspired by the success of ridgelet transform, we propose a new transform
called ripplet transform Type II (ripplet-II), which is based on generalized
Radon transform [18][19]. The generalized Radon transform converts curves
to points. It creates peaks located at the corresponding curve parameters.
Intuitively, our ripplet-II transform consists of two steps: 1) use generalized
Radon transform to convert singularities along curves into point singularities
in generalized Radon domain; 2) use wavelet transform to resolve point sin-
gularities in generalized Radon domain. In this paper, we propose orthogonal
ripplet-II transform. More thorough experimental results with complicated
feature extraction are presented in this paper compared to the preliminary
results in Ref. [1].

To elaborate, in this paper, we first define the ripplet-II functions and de-
velop ripplet-II transform and orthogonal ripplet-II transform in the contin-
uous space. Then the discrete ripplet-II transform and orthogonal ripplet-II
transform are defined. Ridgelet transform is just a special case of ripplet-II
transform with degree 1. Properties of ripplet-II transform are explored and
demonstrated by experimental results. Experimental results in texture clas-
sification and image retrieval show that ripplet-II transform provides better
feature extraction capability than ridgelet and wavelet based approaches.

The reminder of this paper is organized as below. Section 2 reviews
generalized Radon transform. In Section 3, we introduce ripplet-II transform
in both continuous and discrete cases. Section 4 presents the properties
of ripplet-II transform. Experimental results are shown in Section 5 and
followed by conclusion in Section 6.

2. Generalized Radon Transform

Radon transform is widely applied to tomography [20]. Classical Radon
transform is defined in 2D space as the integral of an input 2D function
over straight lines. For a 2D integrable real-valued function f(x, y) where
(x, y) ∈ R

2, classical Radon transform of f(x, y) is defined by

R(r, θ) =

∫ ∫

f(x, y)δ(x cos θ + y sin θ − r)dxdy (1)

Or, we can convert f(x, y) to f(ρ, φ) in polar coordinate system, then classical
Radon transform can be calculated by
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R(r, θ) =

∫ ∫

f(ρ, φ)δ(ρ cos(φ − θ) − r)ρdρdφ (2)

(a) (b) (c)

(d) (e) (f)

Figure 1: Curves defined by Eq. (3) in Cartesian coordinates. (a) d = 1. (b) d = 2. (c)
d = 3. (d) d = −1. (e) d = −2. (f) d = −3.

The classical Radon transform is invertible. The original function can
be reconstructed based on the Projection-slice theorem [21]. To extend the
classical Radon transform, researchers proposed generalized Radon trans-
form, which is based on an integral along a family of curves [18][19]. In the
polar system with coordinates (ρ, φ), a curve can be defined by

ρ1/d cos(
1

d
(φ − θ)) = r1/d (3)

where r and θ are fixed, and d denotes degree. For d = 1 and d = 2,
Eq. (3) represents straight line and parabola as shown in Figure 1(a) and 1(b),
respectively. For d = −1 and d = −2, Eq. (3) represents circles through the
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origin and Cardioids as shown in Figure 1(d) and 1(e), respectively. When
0 < d < 1 or −1 < d < 0, curves intersect themselves at least once. Then
we have a single curve. Otherwise, curves do not intersect themselves, which
will lead to complicate situations. So we only consider |b| ≥ 1. We refer
d > 0 as ‘positive curves’ and d < 0 as ‘negative curves’ in the rest of this
paper.

The generalized Radon transform along curves can be defined in the polar
coordinates (ρ, φ) by

GRd(r, θ) =

∫ ∫

ρf(ρ, φ)δ(r − ρ cosd((φ − θ)/d))dρdφ (4)

If d = 1, Eq. (4) reduces to the classical Radon transform in Eq. (2). If
d = 2, Eq. (4) becomes [22]

GR2(r, θ) = 2
√

r

∫ ∫

ρ′f(ρ′2, 2φ′)δ(ρ′ cos(φ′ − 1

2
θ) −

√
r)dφ′dρ′

= 2
√

rR[f(ρ′2, 2φ′)](
√

r, θ/2) (5)

where R[f(x, y)](r, θ) denotes the classical Radon transform that maps f(x, y)
to R(r, θ), and is defined in Eq. (1); note that f(ρ, φ) under the polar coor-
dinate system needs to be converted to f(x, y) under Cartesian coordinate
system before computing Eq. (1). Eq. (5) shows that for d = 2, the general-
ized Radon transform can be implemented via the classical Radon transform
with appropriate substitutions of variables.

For the general case, i.e., d ∈ Z, the generalized Radon transform can be
computed via Fourier series [18][19]. Let f(ρ, φ) be a 2D function defined in
polar coordinates (ρ, φ) and GRd(r, θ) be its generalized Radon transform.
Assume that the Fourier series for f(ρ, φ) exists, i.e.,

f(ρ, φ) =
+∞
∑

n=−∞

fn(ρ)einφ (6)

where

fn(ρ) =

∫

f(ρ, φ)e−inφdφ (7)

Then the generalized Radon transform can be computed by

GRd(r, θ) =
+∞
∑

n=−∞

gn(r)einθ (8)

5



where for d > 0

gn(r) = 2

∫

∞

r

fn(ρ)
cos{(nd) cos−1(r/ρ)1/d}

(1 − (r/ρ)2/d)1/2
dρ

= 2

∫

∞

r

fn(ρ) × (1 − (r/ρ)2/d)−1/2 × Tnd((r/ρ)1/d)dρ (9)

where Tn(·) is the Chebyshev polynomial of degree n, and fn(ρ) is given by
Eq. (7).

Putting Eqs. (6), (7), (8), (9) together, we have the generalized Radon
transform of the function f as

GRd(r, θ) = 2
+∞
∑

n=−∞

[

∫

∞

r

∫

f(ρ, φ)e−inφdφ×(1−(r/ρ)2/d)−1/2×Tnd((r/ρ)1/d)dρ]einθ

(10)
The inverse transform is defined by

f(ρ, φ) = − 1

π

+∞
∑

n=−∞

[
d

dρ

∫

∞

ρ

∫ 2π

0

GRd(r, θ)e
−inθ × Tnd((r/ρ)1/d)

×((r/ρ)2/d − 1)−1/2 1/d

r
drdθ]einφ (11)

For negative curves (i.e. d < 0), the Generalized Radon transform is

GRd(r, θ) = 2
+∞
∑

n=−∞

[

∫ r

0

∫

f(ρ, φ)e−inφdφ×(1−(r/ρ)−2/d)−1/2×T−nd((r/ρ)−1/d)dρ]einθ

(12)
The inverse transform for negative curves is defined by

f(ρ, φ) =
1

π

+∞
∑

n=−∞

[
d

dρ

∫ ρ

0

∫ 2π

0

GRd(r, θ)e
−inθ × T−nd((r/ρ)−1/d)

×((r/ρ)−2/d − 1)−1/2 1/d

r
drdθ]einφ (13)
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3. Ripplet-II transform

3.1. Continuous Ripplet-II Transform

To present ripplet-II transform, we need to define ripplet-II functions first.
Given a smooth univariate wavelet function ϕ : R � R with

∫

ϕ(t)dt = 0, we
define a bivariate function ψa,b,d,θ : R

2
� R

2 in the polar coordinate system
by

ψa,b,d,θ(ρ, φ) = a−1/2ϕ((ρ cosd((θ − φ)/d) − b)/a) (14)

where a > 0 denotes scale, b ∈ R denotes translation, d ∈ N denotes degree,
and θ ∈ [0, 2π) denotes orientation. Function ψa,b,d,θ is called ripplet-II func-
tion. Here, we only consider d > 0 (i.e. positive curves), since positive curves
are open curves. Examples of ripplet-II functions with different parameter
settings are shown in Figure 2. Ripplet-II can be scaled, translated and ro-
tated according to the parameters a, b, θ. Note that when d = 1, ripplet-II
reduces to ridgelet as shown in Figure 3; i.e., ridgelet transform is just a
special case of ripplet-II transform with d = 1.

Forward Transform

Ripplet-II transform of a real-valued 2D function f is defined as the inner
product between the function f and ripplet-II functions

Rf (a, b, d, θ) =

∫ ∫

ψ̄a,b,d,θ(ρ, φ)f(ρ, φ)ρdρdφ (15)

where ψ̄ is the complex conjugate of ψ, and f(ρ, φ) is under the polar coor-
dinate system.

Ripplet-II transform has the capability of capturing structure information
along arbitrary curves by tuning the scale, location, orientation, and degree
parameters. From Eq. (15), we have

Rf (a, b, d, θ)
(a)
=

∫ ∫

ψ̄a,b,d,θ(ρ, φ)f(ρ, φ)ρdρdφ

(b)
=

∫ ∫

a−1/2ϕ̄((ρ cosd((θ − φ)/d) − b)/a)f(ρ, φ)ρdρdφ

=

∫ ∫

a−1/2

∫

ϕ̄((r − b)/a)δ(r − ρ cosd((θ − φ)/d))drf(ρ, φ)ρdρdφ

=

∫

a−1/2ϕ̄((r − b)/a) ×
[
∫ ∫

δ(r − ρ cosd((θ − φ)/d))f(ρ, φ)ρdρdφ

]

dr

(c)
= < ϕa,b, GRd[f ] > (16)
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(a) (b)

(c) (d)

Figure 2: Ripplet-II functions in Cartesian coordinates (x1, x2) (a) a = 1, b = 0, d = 2
and θ = 0. (b)a = 2, b = 0, d = 2 and θ = 0. (c) a = 1, b = 0.05, d = 2 and θ = 0.
(d)a = 1, b = 0, d = 2 and θ = 30.
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(a) (b)

(c) (d)

Figure 3: Ripplet-II functions in Cartesian coordinates (x1, x2) (a) a = 1, b = 0, d = 1
and θ = 0. (b)a = 2, b = 0, d = 1 and θ = 0. (c) a = 1, b = 0.05, d = 1 and θ = 0.
(d)a = 1, b = 0, d = 1 and θ = 30.
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where (a) is due to Eq. (15); (b) is due to Eq. (14); (c) is due to Eq. (4) and
GRd[f ] is the generalized Radon transform (GRT) of function f . Eq. (16)
shows that ripplet-II transform can be obtained by the inner product between
GRT and 1D wavelet, which is the 1D wavelet transform (WT) of GRT of
function f ; i.e., the ripplet-II transform of function f can be obtained by
first computing GRT of f , and then computing 1D WT of the GRT of f as
below:

f(ρ, φ)
GRT
=⇒ GRd[f ](r, θ)

1D−WT
=⇒ Rf (a, b, d, θ) (17)

where the 1D WT is with respect to (w.r.t.) r.
In details, ripplet-II transform of f can also be obtained through

Rf (a, b, d, θ) = 2
+∞
∑

n=−∞

∫

a−1/2ϕ̄((r − b)/a)

∫

∞

r

∫

f(ρ, φ)e−inφdφ

×(1 − (r/ρ)2/d)−1/2 × Tnd((r/ρ)1/d)dρeinθdr (18)

Inverse Transform

Ripplet-II transform is invertible. Given ripplet-II coefficients Rf (a, b, d, θ),
we can reconstruct the original function f through

f(ρ, φ) = − 1

π

+∞
∑

n=−∞

[
d

dρ

∫

∞

ρ

∫ 2π

0

∫

∞

0

∫

∞

−∞

1√
a
Rf (a, b, d, θ)ϕ(

r − a

b
)e−inθ

×Tnd((r/ρ)1/d) × ((r/ρ)2/d − 1)−1/2 1/d

r
dadbdrdθ]einφ (19)

Reversing the process in (17), the inverse of the ripplet-II transform of func-
tion f can be obtained by first computing inverse WT (IWT) of Rf (a, b, d, θ)
w.r.t. a and b, and then computing inverse GRT (IGRT) as below:

Rf (a, b, d, θ)
1D−IWT

=⇒ GRd[f ](r, θ)
IGRT
=⇒ f(ρ, φ) (20)

where IGRT can be computed by the method in Section 2, Eq. (11).

3.2. Continuous Orthogonal Ripplet-II Transform

As shown in (17), ripplet-II transform can be implemented as a 1D wavelet
transform along the radius of the generalized Radon domain. If we apply
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2D wavelet transform to the generalized Radon coefficients, the additional
wavelet transform along angle θ holds the potential of improving the sparsity
of transform coefficients. We call the new extension orthogonal ripplet-II

transform.
In mathematics, orthogonal ripplet-II transform of a function f(ρ, φ) in

polar coordinates is defined by

Rorth
f (a, b1, b2, d) = 2

+∞
∑

n=−∞

∫ ∫

1

a
ϕ̄(

r − b1

a
)ϕ̄(

θ − b2

a
)

∫

∞

r

∫

f(ρ, φ)e−inφdφ

×(1 − (r/ρ)2/d)−1/2Tnd((r/ρ)1/d)dρeinθdrdθ(21)

Similar to ripplet-II transform, orthogonal ripplet-II transform of the
function f can be obtained by first computing GRT of f , and then com-
puting 2D WT of the GRT of f as below:

f(ρ, φ)
GRT
=⇒ GRd[f ](r, θ)

2D−WT
=⇒ Rorth

f (a, b1, b2, d) (22)

There is no direction parameter in orthogonal ripplet-II coefficients Rorth
f (a, b1, b2, d).

This may not provide explicit information about the directions of curves.
However, due to the additional wavelet transform along angles, sparser rep-
resentation of functions is achieved.

Orthogonal ripplet-II transform is also invertible. Given orthogonal ripplet-
II coefficients Rorth

f (a, b1, b2, d), we can reconstruct the original function f
through

f(ρ, φ) = − 1

π

+∞
∑

n=−∞

[
d

dρ

∫

∞

ρ

∫ 2π

0

∫

∞

0

∫

∞

−∞

∫

∞

−∞

1

a
Rorth

f (a, b1, b2, d)ϕ(
r − a

b1

)ϕ(
θ − a

b2

)e−inθ

×Tnd((r/ρ)1/d) × ((r/ρ)2/d − 1)−1/2 1/d

r
dadb1db2drdθ]einφ(23)

Reversing the process in (22), the inverse of the orthogonal ripplet-II trans-
form of function f can be obtained by first computing inverse 2D WT (IWT)
of Rorth

f (a, b1, b2, d) w.r.t. a, b1 and b2, and then computing inverse GRT
(IGRT) as below:

Rorth
f (a, b1, b2, d)

2D−IWT
=⇒ GRd[f ](r, θ)

IGRT
=⇒ f(ρ, φ) (24)
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3.3. Discrete Ripplet-II Transform

If the input of ripplet-II transform is a digital image, we need to use dis-
crete ripplet-II transform. Following the paradigm in (17), discrete Ripplet-
II transform of function f can be obtained by first computing discrete GRT
(DGRT) of f , and then computing 1D discrete WT (DWT) of the DGRT of
f as below:

f(ρ, φ)
DGRT
=⇒ GRd[f ](r, θ)

1D−DWT
=⇒ Rf (a, b, d, θ) (25)

The discrete orthogonal ripplet-II transform follows the paradigm in (22)
and is obtained by

f(ρ, φ)
DGRT
=⇒ GRd[f ](r, θ)

2D−DWT
=⇒ Rorth

f (a, b1, b2, d) (26)

If d = 2, there is a simpler method to computer discrete ripplet-II trans-
form, the details of which will be elaborated in Section 3.4.

3.4. Discrete Ripplet-II Transform with d = 2

For d = 2, the generalized Radon transform is called parabolic Radon

transform [22]. Eq. (5) shows that for d = 2, the generalized Radon trans-
form can be implemented via the classical Radon transform with appropriate
substitutions of variables. Hence, we can compute discrete ripplet-II trans-
form via Eqs. (25) and (5).

Computation of Forward Ripplet-II Transform with d = 2. The forward
transform can be obtained by the following steps.

1. Convert Cartesian coordinates to polar coordinates, i.e., convert f(x, y)
to f(ρ, φ). For f(ρ, φ), substitute (ρ, φ) with (ρ′2, 2φ′). Convert polar
coordinates (ρ′, φ′) to Cartesian coordinates (x, y), and obtain new im-
age f1(x, y) by interpolation, where x and y are integer-valued.

2. Apply classical Radon transform to f1(x, y), resulting in R(r′, θ′). In
function R(r′, θ′), substitute (r′, θ′) with (

√
r, θ/2); and obtain the gen-

eralized Radon coefficients GR2(r, θ) via Eq. (5).

3. Apply 1D wavelet transform to GR2(r, θ) with respect to r, and obtain
the ripplet-II coefficients.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Gaussian images with a curve edge. Top row: original image f(x, y); Middle row:
Magnitude of 2D Fourier transform; Bottom row: Magnitude of 2D Fourier transform after
substituting the polar coordinate (r′, θ′) with (

√
r, θ/2). Left column: Parabolic curve.

Middle column: Curve with degree 3. Right column: Curve with degree 4
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To show the sparsity of ripplet-II transform with d = 2, we plot Figure 4.
As we know, ridgelet transform of a 2D function f(x, y) is computed by 1)
2D Fourier transform of f(x, y), 2) converting Cartesian coordinate system
to the polar coordinate system (ω′, θ′), 3) 1D inverse Fourier transform w.r.t.
ω′, resulting in (r′, θ′), 4) 1D wavelet transform w.r.t. r′. In contrast, ripplet-
II transform of a 2D function f(x, y) is computed by 1) 2D Fourier transform
of f1(x, y), 2) converting Cartesian coordinate system to the polar coordinate
system (ω′, θ′), 3) 1D inverse Fourier transform w.r.t. ω′, resulting in (r′, θ′),
4) substituting (r′, θ′) with (

√
r, θ/2), 5) 1D wavelet transform w.r.t. r. The

key different between ripplet-II transform and ridgelet transform in their
computing procedures is that ripplet-II transform has an extra step, i.e.,
substituting (r′, θ′) with (

√
r, θ/2). If we apply 1D wavelet transform to

the middle row in Figure 4, we obtain ridgelet transform coefficients. It is
observed that the Fourier transform coefficients in the bottom row of Figure 4
are sparser than those in the middle row of Figure 4. This is why ripplet-
II transform provides sparser coefficients than ridgelet transform. In other
words, substituting (r′, θ′) with (

√
r, θ/2) helps make coefficients sparser.

Computation of Inverse Ripplet-II Transform with d = 2. The inverse trans-
form can be obtained by the following steps.

1. Apply 1D inverse wavelet transform to ripplet-II coefficients with re-
spect to r, resulting in GR2(r, θ).

2. In function GR2(r, θ)/(2
√

r), substitute (r, θ) with (r′2, 2θ′), resulting
in R(r′, θ′).

3. Apply classical inverse Radon transform to R(r′, θ′), resulting in f1(x, y).

4. For f1(x, y), convert Cartesian coordinates (x, y) to polar coordinates
(ρ′, φ′), resulting in f1(ρ

′, φ′). For function f1(ρ
′, φ′), substitute (ρ′, φ′)

with (
√

ρ, φ/2), resulting in f(ρ, φ). For f(ρ, φ), convert polar coor-
dinates (ρ, φ) to Cartesian coordinates (x, y), and obtain f(x, y) by
interpolation, where x and y are integer-valued.

Computation of Orthogonal Ripplet-II Transform with d = 2. The computa-
tion of orthogonal ripplet-II transform is similar to that of ripplet-II trans-
form. The only difference is to replace 1D wavelet transform with 2D wavelet
transform. Particularly, the forward orthogonal ripplet-II transform is im-
plemented by first computing Step 1 and 2, and then replacing 1D wavelet
transform to 2D wavelet transform in Step3. The inverse orthogonal ripplet-
II transform is computed by first replacing 1D inverse wavelet transform to

14



2D inverse wavelet transform in Step 1, and then following the remaining
steps.

4. Properties of Ripplet-II Transform

According to the definition, we can directly find the following properties
about ripplet-II transform

• Localization: Ripplet-II with degree d decays fast along curves of poly-
nomial degree d.

• Directionality: Ripplet-II can be oriented toward arbitrary direction.

• Flexibility: Compared to ridgelet, ripplet-II provide flexible choice for
degrees. Optimal degree can be determined for specific applications.

In Figure 5, ripplet-II representation of images with different degrees are
presented. It can be observed that different degrees present different levels
of sparsity.

Figure 6 shows the magnitude of transform coefficients in a decreasing
order for wavelet, ridgelet, ripplet-II and orthogonal ripplet-II transforms;
the magnitude of coefficients of each transform is normalized by the largest
coefficient of the corresponding transform. It can be observed that ripplet-
II has the fastest decay in coefficients, compared to wavelet and ridgelet.
This is the reason why ripplet-II transform can provide sparser representa-
tion for images with edges than wavelet and ridgelet. In Figure 6, orthogonal
ripplet-II demonstrates faster decay than ripplet-II, which indicates that or-
thogonal ripplet-II transform can provide sparser representation of functions
than ripplet-II as stated in Section 3.2.

Besides the aforementioned properties, ripplet-II transform can provide
rotation invariance. We show this as below. If we have an image f1(x, y) as
well as its rotated version f2(x, y) rotated by an angle α, i.e.,

f2(x, y) = f1(x cos(α) + y sin(α),−x sin(α) + y cos(α)) (27)

In the polar coordinate system, we have

f2(ρ, φ) = f1(ρ, φ − α) (28)
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Ripplet−II d=1 (ridgelet) Ripplet−II d=2

Ripplet−II d=3 Original image

(a) Phantom

Ripplet−II d=1 (ridgelet) Ripplet−II d=2

Ripplet−II d=3 Original image

(b) Parabola

Figure 5: Ripplet-II with different degrees.
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Figure 6: Comparison of coefficient decaying between wavelet, ridgelet, ripplet-II and
orthogonal ripplet-II with d = 2. Left column: original images. Right column: coefficient
decaying comparison.
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So ripplet-II transform of f2 is

Rf2
(a, b, d, θ) =

∫ ∫

ψ̄a,b,d,θ(ρ, φ)f2(ρ, φ)ρdρdφ

=

∫ ∫

ψ̄a,b,d,θ(ρ, φ)f1(ρ, φ − α)ρdρdφ

=

∫ ∫

ψ̄a,b,d,θ−α(ρ, φ)f1(ρ, φ)ρdρdφ

= Rf1
(a, b, d, θ − α) (29)

Applying 1D Fourier transform on both sides of Eq. (29) with respect to θ,
we have

F{Rf2
(a, b, d, θ)} =

∫

Rf1
(a, b, d, θ − α)e−iωθdθ = e−iωαF{Rf1

(a, b, d, θ)}
(30)

Obviously, we have |F{Rf1
(a, b, d, θ)}| = |F{Rf2

(a, b, d, θ)}|; i.e., the
magnitude of 1D Fourier transform (w.r.t. θ) of ripplet-II transform is ro-
tation invariant. Hence, ripplet-II transform can provide rotation invariant
features. Since there is no explicit direction parameter in orthogonal ripplet-
II coefficient, orthogonal ripplet-II transform does not have the rotation in-
variant property.

5. Experimental Results

In this section, we evaluate the performance of ripplet-II transform in
the problems of texture classification and image retrieval, where ripplet-II
transform serves as a feature extractor. Our experiments use the texture
volume in USC-SIPI image database [23]. The texture volume consists of 2
sub-databases, all of which contain monochrome texture images.

5.1. Texture Classification

This experiment is to compare ripplet-II with other transforms as feature
extraction tools in the scenario of texture classification. A sub-database
named Rotated Textures [24] in the texture volume contains a set of rotated
textures. Each image in the sub-database is of size 512×152 pixels. The
sub-database contains a total of 13 textures as shown in Figure 7 and each
texture has 7 versions, which are rotated by 0°, 30°, 60°, 90°, 120°, 150°,
and 200°. Hence, the sub-database contains a total of 13 × 7 = 91 images.

18



Given a image from the sub-database, the algorithm will return a label that
indicates which texture the image belongs to. Next, we describe the feature
extraction and classification algorithms used in the experiments.

Figure 7: Textures used in texture classification.

Table 1: Information extracted from data

Notation Equation Description

C1 1
NM

∑N
i=1

∑M
j=1 |R(i, j)| first absolute moment

C2 1
NM−1

∑N
i=1

∑M
j=1 |R(i, j) − R̄(i, j)|2 variance

C3 1
NM

∑N
i=1

∑M
j=1 |R(i, j)|2 average energy

C4 −∑k
i=1 Pi log Pi entropy

Feature extractor 1. We first partition the transform coefficient matrix into
ND nonoverlapped blocks. So the feature dimension is ND. The feature ex-
tracted from transform domains is the statistical information from nonover-
lapped blocks of size N × M . Information such as first absolute moment,
variance, average energy and entropy carries geometry information from the
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Table 2: Error rate under different transforms using feature extractor 1

C1
Feature dimension ND Wavelet Ridgelet Ripplet-II Orth-Ripplet-II

1 0.4885 0.9341 0.2802 0.1099

4 0.0441 0.8462 0.0019 0.1319

16 0.0187 0.7912 0 0.0879

64 0.0057 0.8462 0 0.0879

256 0.0024 0.9121 0 0.0879

C2

1 0.2826 0.4286 0.1715 0.1099

4 0.0929 0.3516 0.0728 0.1099

16 0.0536 0.4176 0.0608 0.1319

64 0.0374 0.5385 0.0580 0.1429

256 0.0172 0.5824 0.0656 0.1099

C3

1 0.2883 0.4286 0.1844 0.1209

4 0.0072 0.3077 0.0024 0.1319

16 0.0010 0.3846 0.0010 0.1099

64 0.0010 0.4835 0.0010 0.1099

256 0.0019 0.5055 0 0.0879

C4

1 0.6624 0.8352 0.4061 0.5824

4 0.8841 0.8352 0.1049 0.3407

16 0.9176 0.7143 0.0532 0.2967

64 0.9746 0.6923 0.2055 0.2967

256 0.9909 0.6374 0.1173 0.2857
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Figure 8: Textures rotated with different angles.

original image as shown in Table 1 [25] . The rotation invariant property
of ripplet-II transform guarantees that rotated images have almost the same
feature vector as that of the original image. The statistical information from
Table 1 can also provide rotation invariant property for wavelet transform
approach.

Feature extractor 2. We apply a transform to each image and obtain a vec-
tor of transform coefficients. Assume that we have Nt images for training.
Then, we have Nt vectors of transform coefficients, which form a matrix. We
apply principle component analysis (PCA) [26] to this transform coefficient
matrix and obtain eigenvalues/eigenvectors of the matrix. PCA provides
a transformation matrix, which consists of principle components (normal-
ized eigenvectors); we multiply the transformation matrix and a transform
coefficient vector, resulting in a feature vector. We choose the feature dimen-
sions that corresponds to the ND principal components whose eigenvalues are
largest. Hence, the resulting feature vector is ND-dimensional.

Classification algorithm. We use k-nearest-neighbor (kNN) classifier where
k = 5. The distance measure used in kNN is ND-dimensional Euclidean
distance. A leave-one-out cross-validation classification algorithm is used to
evaluate the classification performance. Specifically, we first compute the
distance between a test feature vector and each of the feature vectors with
known labels, and then determine the class label of the test feature vector
by a k-nearest-neighbor classifier. Our performance measure is error rate,
which is the ratio of the number of mis-classified images to the total number
of images tested.
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We test four types of transforms, i.e., ridgelet, wavelet, ripplet-II and
orthogonal ripplet-II transform. Ridgelet transform implementation is avail-
able [27] and default settings are used. Wavelet transform uses ’Daubechies
4’(db4) wavelets. Ripplet-II with degree 2 and orthogonal ripplet-II with
degree 2 are used in this experiment. Texture classification performances
are listed in Table 2 and Table 3 corresponding to feature extractor 1 and
feature extractor 2, respectively. Table 2 shows that ripplet-II transform
achieves lower error rate than wavelet transform under all feature vector
lengths tested and under C1, C3, and C4; ripplet-II transform achieves higher
error rate than wavelet transform under C2 for feature vector length larger
than or equal to 16. Results also indicate that the entropy method C4
is not a good statistical feature. Table 2 shows that ripplet-II transform
outperforms other transforms in almost all cases by achieving lowest error
rate. However, orthogonal ripplet-II transform is worse than ripplet-II and
wavelet. Table 3 shows that ripplet-II transform achieves lower error rate
than ridgelet, wavelet and orthogonal ripplet-II transform under all feature
dimensions tested. The reason why ripplet-II transform achieves the best
classification performance is two-folded. First, ripplet-II transform is able
to provide sparser feature vectors than ridgelet and wavelet transform. Sec-
ond, the rotation invariant property of ripplet-II transform guarantees that
rotated images have almost the same feature vector as that of the original
image.

Table 3: Error rate under different transforms using feature extractor 2

Feature dimension ND Ridgelet Wavelet Ripplet-II Orth-Ripplet-II

1 0.3908 0.2639 0.1341 0.1758
2 0.2648 0.0752 0.0172 0.1538
4 0.2261 0.0527 0.0029 0.1538
8 0.1676 0.0350 0.0005 0.1319
16 0.1058 0.0177 0 0.1319
32 0.0704 0.0105 0 0.1319

In Table 4, we present the best performance of various transform based
approaches on the sub-database with 91 images. Gabor wavelet [28, 29] is
used for feature extraction. The frequency range is [0.05, 0.4] and Gabor
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Table 4: Error rate comparisons

Transform Best error rate

Ridgelet 0.07
Gabor Wavelet 0.11

Ripplet-I 0
Ripplet-II 0

envelop is calculated accordingly [28, 29]. Gabor wavelet filters with 5 scales
and 6 directions are applied to obtain 30 subbands coefficients of an image.
The feature vector consists of the mean and standard derivation of each sub-
band as [30]. Then the feature dimension is 60. When we apply ripplet-I [17]
to images, we will have ripplet-I coefficients with different scales and differ-
ent directions. Due to the property of ripplet-I, the numbers of directions at
each scale are different. The feature vector of ripplet-I consists of the mean
and standard derivation of each subband from the ripplet-I coefficients. In
this experiment, the dimension of ripplet-I feature is 38.

Results in Table 4 show that both ripplet-I and ripplet-II achieve better
classification performance for the sub-database used in the experiment than
Gabor wavelet and ridgelet based approaches. The reason is that both trans-
forms are capable of efficiently representing images with 2D singularities. To
achieve the same error rate, ripplet-II feature has smaller dimension than
ripplet-I.

5.2. Image Retrieval

We also conduct experiments to demonstrate the performance of Ripplet-
II in content based texture image retrieval.

A sub-database named Textures [31] in the texture volume contains 58
images, each of which contains one type of texture. Among the 58 images,
33 images are of size 512×152 pixels and 25 images are of size 1024×1024
pixels. To test the rotation-invariant capability of different transforms, we
need to create rotated versions of the images in the sub-database. To achieve
this, we first rotate a texture image by angles from 0° to 350° with a stepsize
10°; then we crop a patch of size 128×128 pixels from the center region of the
rotated image. By doing so, we obtain 58×36 = 2088 images. Given a image
from the sub-database, the algorithm will return a set of images considered
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as the rotated version w.r.t. the given image.
Image retrieval is done in the following steps. First, a test image is given

as a query to the image retrieval system. Second, apply a feature extraction
algorithm (which is the same as that in Section 5.1) to the test image, and
obtain a feature vector. Third, apply kNN classifier (where k = 35) to the
test feature vector and the 2088 images serve as training samples for the
kNN classifier; the distance measure used in kNN is ND-dimensional Euclid-
ean distance. Assume that in the k images (which are output of the kNN
classifier), Nr images are rotated versions of the test image. We call Nr/k
as retrieval rate, which represents the success rate of image retrieval. We
test four types of transforms, i.e., ridgelet, wavelet, ripplet-II and orthogo-
nal ripplet-II transform. Ridgelet transform implementation is available [27]
and default settings are used. Wavelet transform uses ’Daubechies 4’(db4)
wavelets. Ripplet-II with degree 2 and orthogonal ripplet-II with degree 2
are used in this experiment. Table 5 and 6 list average retrieval rate us-
ing different feature extraction approaches. Table 5 shows that ripplet-II
and orthogonal ripplet-II transforms have higher average retrieval rate than
wavelet transform in most cases. Ripplet-II and orthogonal ripplet-II trans-
forms have similar performance in C1, C2 and C3. Results show that C4 is
not a good feature for image retrieval. Table 6 shows that ripplet-II trans-
form achieves higher average retrieval rate than ridgelet and wavelet trans-
form under all feature dimensions tested. Orthogonal ripplet-II transform
outperforms wavelet and ridgelet transform.

Compared to the database in Section 5.1, the database used here has
smaller in-class distance. Experimental results show that ripplet-II works
well for both large and small in-class distances. Orthogonal ripplet-II trans-
form only works for small in-class distance case. The reason is that orthog-
onal ripplet-II transform contains no direction information. When there are
large rotations involved, features based on orthogonal ripplet-II transform
will not provide similar descriptions about rotated images from the same
texture. However, Ripplet-II transform can capture the directions of con-
tent, so ripplet-II transform outperforms other transforms when applied to
texture classification with rotated images.

In Table 7, we present the best performance of various transform based
approaches in image retrieval. Gabor wavelet [28, 29] is used for feature
extraction. The frequency range is [0.05, 0.4] and Gabor envelop is calculated
accordingly [28, 29]. Gabor wavelet filters with 5 scales and 6 directions are
applied to obtain 30 subbands coefficients of an image. The feature vector
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Table 5: Average retrieval rate under different transforms using feature extractor 1

C1
Feature dimension ND Wavelet Ridgelet Ripplet-II Orth-Ripplet-II

1 0.4174 0.4521 0.6312 0.8135

4 0.6669 0.6544 0.9948 0.8540

16 0.7034 0.6869 0.9959 0.9409

64 0.7016 0.6632 0.9927 0.9425

256 0.7382 0.6094 0.9876 0.9695

C2

1 0.6394 0.4489 0.7653 0.7659

4 0.7182 0.6438 0.7883 0.7692

16 0.7591 0.6079 0.7884 0.8386

64 0.7885 0.5237 0.7894 0.8967

256 0.8070 0.4536 0.7905 0.8876

C3

1 0.6384 0.3344 0.7581 0.7536

4 0.8511 0.5968 0.9299 0.7870

16 0.8384 0.5682 0.9413 0.9220

64 0.7863 0.5290 0.9485 0.9632

256 0.7532 0.4923 0.8701 0.7731

C4

1 0.1754 0.1810 0.5551 0.2421

4 0.0911 0.1529 0.7660 0.3226

16 0.0539 0.1203 0.7687 0.3963

64 0.0278 0.0883 0.4248 0.3810

256 0.0190 0.0507 0.5305 0.3749
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Table 6: Average retrieval rate under different transforms using feature extractor 2

Feature Dimension ND Ridgelet Wavelet Ripplet-II Orth-Ripplet-II

1 0.5013 0.6426 0.803 0.8016
2 0.5773 0.8513 0.9495 0.8940
4 0.5921 0.8898 0.9831 0.9343
8 0.6343 0.9154 0.986 0.9831
16 0.7054 0.941 0.9869 0.9866

Table 7: Retrieval rate comparisons

Transform Best retrieval rate

Ridgelet 0.7
Gabor Wavelet 0.47

Ripplet-I 0.91
Ripplet-II 0.98

consists of the mean and standard derivation of each subband as [30]. Then
the feature dimension is 60. When we apply ripplet-I [17] to images, we
will have ripplet-I coefficients with different scales and different directions.
Due to the property of ripplet-I, the numbers of directions at each scale are
different. The feature vector of ripplet-I consists of the mean and standard
derivation of each subband from the ripplet-I coefficients. In this experiment,
the dimension of ripplet-I feature is 38.

Results in Table 7 show that both ripplet-I and ripplet-II achieve bet-
ter classification performance for the sub-database used in the experiment
than Gabor wavelet and ridgelet based approaches. The reason is that both
transforms are capable of efficiently representing images with 2D singulari-
ties. To achieve the same error rate, ripplet-II feature has smaller dimension
than ripplet-I. Results also show that Gabor wavelet is not suitable for small
in-class distance case.
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6. Conclusion

In this paper, we proposed a new transform called ripplet transform Type
II (ripplet-II) for resolving 2D singularities. Ripplet-II transform is basically
generalized Radon transform followed by 1D wavelet transform. Both for-
ward and inverse ripplet-II transform were developed for continuous and
discrete cases. Ripplet-II transform with d = 2 can achieve sparser represen-
tation for 2D images, compared to ridgelet. Hence, ripplet-II transform can
be used for feature extraction due to its efficiency in representing edges and
textures. Ripplet-II transform also enjoys rotation invariant property, which
can be leveraged by applications such as texture classification and image
retrieval. Experiments in texture classification and image retrieval demon-
strate that the ripplet-II transform based scheme outperforms wavelet and
ridgelet transform based approaches.
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