
AlPS+ + N-Dimensional Array Classes

A. G. WILLIS\ M.P. HEALEY1
, AND B. E. GLENDENNING2

1Dominion Radio Astrophysical Observatory, Penticton, B.C., V2A 6K3, Canada
2National Radio Astronomy Observatory, Charlottesville, VA 22903

ABSTRACT

This article describes a set of C++ classes developed for the AlPS++ project. These

classes handle arrays having an arbitrary number of dimensions. We give an overview

of the methods available in these classes and show some simple examples of their use.

Finally we describe the use of these classes to develop a radio astronomy application

and discuss some of the performance issues that must be considered when these classes

are used. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Seven radio astronomy observatories that operate

aperture synthesis radio telescopes have joined

forces to develop an object-oriented data process

ing system called AlPS++. The seven observato

ries are the National Radio Astronomy Observa

tory (NRAO), based in Charlottesville, VA, the

Netherlands Foundation for Research in Astron

omy (NFRA), the Australia Telescope National

Facility (ATJ\"F), the Nuffield Radio Astronomy

Laboratory (NRAL) at Jodrell Bank, England, The

Giant Metre Wavelength Telescope in India

(GMRT), the Berkeley - Illinois - Maryland Array

(BIMA), and the Dominion Radio Astrophysical

Observatory (DRAO) in Canada. This is truly a

worldwide project!

AlPS++ is an acronvm for Astronomical Infor

mation Processing System (incremented by one).

It is designed to be a replacement for the original

Received April 1993
Revised July 1993

DRAO is part of the Herzberg Institute of Astrophysics,
National Research Council of Canada

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 239-246 (1993)

CCC 1058-9244/94/040239-08

AlPS system developed by the NRAO in the early

1980s. The original AlPS was written in Fortran

66 so that it would be portable to almost any com

puter with a Fortran compiler. Portability was im

portant because a primary goal of AlPS was to

ensure that astronomers who observed at NRAO's

Very Large Array (VLA) radio telescope could

take data back to their home institutions and re

duce the data on a local computer.

Although AlPS has proved to be a very success

ful data reduction system installed at some 200

sites worldwide, it is showing its age. System

maintenance is difficult, and the development of

new algorithms is painful. About 2 years ago, the

decision was made to replace the original AlPS

with a modern object-oriented system written in

C++.

2 WHY DEVELOP A LIBRARY TO HANDLE
N-DIMENSIONAL ARRAYS?

Many data processing operations in aperture syn

thesis radio astronomy involve the handling of

one-, two-, or three-dimensional arrays. An ex

ample of a vector, or one-dimensional array,

would be a spectral line observation (intensity vs.

frequency at a single position on the sky). A pic-

239

240 WILLIS, HEALEY, AND GLE~DENNING

ture of a piece of sky would be stored as a two

dimensional array, or matrix. A spectral line data

cube (a series of pictures, each made at a different

frequency) is an example of a three-dimensional

array.

For AlPS++ it was decided that rather than

develop specific classes to separately handle vec

tors, matrices, and cubes, we would first develop a

class that can handle an !\'-dimensional array, the

actual number of dimensions being defined by the

application programmer. Because vectors, matri

ces, and cubes are just arrays having specific di

mensions we can then define Vector, ~atrix, and

Cube classes which inherit from the generic N

dimensional array class. At the moment most op

erations (arithmetic, logical operations, . . .) are

actually performed in the base array classes and

only obvious specializations such as indexing or

extracting the diagonal of a matrix, are imple

mented in the inherited classes.

An additional advantage of this approach is

that we can create methods in other classes that

define the generic array class as an input or out

put parameter, but then use these methods with

Vector, Matrix, or Cube objects, without having to

overload the method.

The AlPS++ array classes will implement the

mathematical functionality required for radio as

tronomical applications (image processing and the

like). At the moment the classes are at a very early

stage of development; they are only a few man

months old. Some of the discussion in this docu

ment will change as the library matures and be

comes more tuned.

The library is fully templated. Originally the

templates were based upon the Texas Instrument

"COOL" preprocessor [1], although the classes

are currently being converted to "ARM" [2] style

templates as they are now widely available. With

AR~ templates it is much easier to specialize op

erations for certain types, and optimizations to

(e.g., BLAS) will be made more frequently in the

derived types.

The array classes use reference counting to im

plement array sections ("slicing" in Rogue Wave)

and return by value. At the moment the copy con

structor uses reference semantics although this

may change because it violates the "principle of

least astonishment." Copy-on-write semantics

are not supported.

Note that from the viewpoint of the applications

programmer array indexing in AlPS++ is done in

Fortran columnwise order. Also, we want it to be

possible to map F90 on to the AlPS++ arrays, so

that F90 machines can do the actual arithmetic. A

concrete example where this affected things was

that conformance rules were changed so that only

the shape, not the origin, was considered as in

F90.

At the time we started this project we were not

aware of any other !\'-dimensional array classes

that were implemented with templates. Our

understanding is that Rogue Wave's latest

math.h + + library has similar features. However,

the AlPS++ package will eventually be made

freelv available under the conditions of the GNC

General Public License to any astronomical insti

tution (or any one else for that matter) that re

quests a copy of the package. Because many small

astronomical institutions are unable to afford

commercial software, all components of AlPS++

must be self-contained and not relv on calls to

commercial software packages.

3 ARRAY EXAMPLES

The easiest wav to introduce the AlPS++ Array

classes is to give some examples.

3.1 Declaration of Arrays

The array classes are templated. So when you use

an array, you must specify what type of data it will

hold. To declare a floating point array, use Array
(float), to declare an array of integers, use Array
(Int), etc. There are four constructors for class Ar

ray. Here are examples of each:

Array(float) a;

This example invokes the constructor

Array(T): :Array(T) ()

and produces an array with no elements (where T

in this case is float).

II An IPosition is a zero-based
11 vector used for indexing arrays of
II arbitrary dimension.
IPosition shape(2), origin(2);
shape (0) = 5;
shape(1) = 6;
origin(O) = 10;
origin(1) = 15;
Array(float) a (shape, origin);

Here we invoke the constructor

Array(T): :Array(T) (canst

!Position&, canst !Position&)

The first IPosi tion defines the shape of the

array, in this case it is two dimensional, with five

elements on its first axis and six on its second. The

second IPosi tion defines the origin of the array,

in this case (10, 15).

IPosi tion shape (2);

shape (0) = 5;

shape (1) = 6;

Array(float) a (shape);

This example invokes the constructor

Array(T): :Array(T) (canst !Position&)

This makes a two-dimensional array, with five

elements on its first axis and six on its second. By

default, its origin is (0,0).

!Position shape(1);

shape (0) = 10;

Array(Int) a (shape);

//one dimensional array with

//10 elements

Array(Int) b (a) ;

//Array(Int) b =a; is identical

This invokes the copy constructor

Array(T): :Array(T) (canst Array(T)&)

The array b, however, is not a copy of a; it is

actually a reference.

!Position shape(3);

shape(O) 1024;

shape(1) = 1024;

shape (2) = 8;

Array(float) a (shape);

AlPS++ N-DL\1E:"'SIONAL ARRAY CLASSES 241

3.2 Indexing

Indexing is achieved using operator() and

IPosi tion. For example, given a four-dimen

sional array a, you could index a certain element

using a four-element !Position:

Array(Int) a(shape);

//assume shape is a

//4-element !Position

!Position index(4);

Index (0) 1;

Index (1) 2;

Index (2) 3;

Index (3) 4;

Int saved_value = a (index) ;

//save a (1,2,3,4)

a (index) = 0. 0;

//set a(1,2,3,4) to 0.

One advantage of the derived classes Vector,

Matrix, and Cube is that we may index them

using integers, without need of IPos it ions:

Matrix(float) m(5,5);

m(1, 2) = 5. 5; I /set element (1, 2) to 5. 5

41NQUIRY

Often it is necessary to ask an Array about its

properties. For example, a function may wish to

know how many elements there are in the array or

what its dimension is. There are several arrav

functions to provide this information. Examples:

Int dimension= a.ndim();

ulnt nurn_els = a.nelements();

//"dimension" gets 3.

//"num_els" is 8388608 (1024*1024*8)

!Position o, s, e;

0 a. origin() ; 1/"o" is (0,0,0)

s - a. shape(); //"s" is (1024, 1024, 8);

e - a. end(); //"e" is (1023, 1023, 7);

242 WILLIS, HEALEY, AND GLENDENNING

Another inquiry function is conform(), which

tells whether two arrays are identical in shape:

if(a.conform(b)) {

cout << "a and b are the same

shape. " << endl;

} else {

}

cout << "a and b are not the same

shape. " << endl;

Note that conform will return true for two arrays

that do not have the same origin, as along as they

have the same shape.

4. 1 Iteration

Special iterator classes are provided to allow itera

tion of arrays by a certain dimension. This is most

useful when dealing with an object of the base

class Array of unknown dimension. For example,

given an array of dimension 2 or higher, you can

use a Vectorlterator to iterate it one Vector at

a time:

!Position shape(2);

shape(O) = 10; shape(1) = 8;

Array(float) m(shape);

Vectorlterator(float) iter(m);

I I Construct a Vectoriterator for "m".

while(!iter.pastEnd()) {

}

II iter.vector() returns a

//reference to a 10 element

//vector, actually a

II column of m.

iter.vector() (4) = 0.0;

iter. next();

Given a three (or more)-dimensional array, you

mav iterate it a matrix at a time:

!Position shape(3);

shape(O) = 5; shape(1) = 4;

shape (2)

Array(Int) c(shape);

Matrixiterator(Int) iter(c);

3· ,

II construct a Matrixiterator for "c"

while(!iter.pastEnd()) {

}

II iter.matrix() .row(1) = 5.0;

II set row 1 of each matrix to 5.0.

iter.next(); II advance the iterator.

Another way to iterate an object is using the

class IPos it ion Iter a tor. Instead of returning

a reference to a vector or matrix within the object

that is being iterated, this type of iterator returns

the index of an element of the object, in the form

of an IPosi tion. Here is an example to illus

trate:

Matrix(float) m(20, 10);
m = 1.0; //set all elements to 1.0

ArrayPositioniterator
element_iter(m.shape(), m.origin(), 0);

ArrayPositioniterator

vector_iter(m.shape(), m.origin(), 1);

The last parameter of the previous two declara

tions tells the iterator what dimension to iterate

by. The pos () function is used to get a reference

to the current IPosi tion of the iteration:

int sum = 0;

while(!element_iter.pastEnd() {

sum+= m(element_iter.pos());

element_iter.next();

}

The above code sums all the elements in the

matrix m. Another example:

int sum = 0;

while(!vector_iter.pastEnd() {

sum+= m(vector_iter.pos());

//use vector_iter instead of elem_iter

vector_iter.next();

}

This code sums all of the elements (0,0), (0,1),

(0,2), ... , (0,8), (0,9). Note that the ArrayPo

si tionlterator is not actuallv associated with

the array it is iterating; It is essentially a server that

returns subsequent indices for any array of the

shape and origin provided in its constructor.

In the future, iterators will allow access in arbi

trary order, not just "bottom to top."

5 A GENERAL PURPOSE METHOD
USING ARRAYS

To describe the use of Array methods in an actual

application we will discuss the development of the

function conv_correct () from the AlPS++

class Gr i dTool. Aperture synthesis radio tele

scopes collect data in the Fourier domain; this

data must be convolved on to a regular grid before

AlPS++ "1/-DIMENSIOI\AL ARRAY CLASSES 243

a FFT to the real image domain can be done. This

convolution causes the resulting image to be at

tenuated by a factor that increases with distance

from the image center and which must be cor

rected for. Each element of the image must be

multiplied by a correction factor that varies over

the image. The image to be corrected might be a

matrix or a cube.

We start with two definitions of this (over

loaded) function: one that operates on matrices,

and another that operates on cubes. Here is the

function that operates on matrices:

void
GridTool: :conv_correct(Matrix(float)& image)

II
II This function corrects an image for the attenuation
II caused by convolution in the fourier plane when the data were gridded.

II
II calling parameters:
//image -matrix of data containing the image to be corrected

II
{

}

int rows
int cols

image. nrow () ;
image. ncolumn ();

II get the number of rows in "image"
II get the number of columns in "image"

//"grid" is a two element vector that will hold the current values of
//loop counters i and j. This vector is passed as an argument to
1 /the function "gric:Lcorr () ", which returns the correct value associated
//with position (i, j) in "image".

Vector(Int) grid(dimension); //"dimension" is a GridTool private member
II which has value 2 for a Matrix

grid = 0;
for (int j=O; j<cols; j++) {

grid(l) = j;

//zero all elements of the vector "grid"
//i and j iterate all elements of "image"

}

for (int i = 0; i < rows; i++) {

}

grid(O) = i; //grid is now the vector(i, j)
//Now, perform the necessary transformation on location

;;of the matrix "image":
image(i, j) = image(i, j) * gric:Lcorr(grid);

(i' j)

Here is the same function that operates on cubes:

void
GridTool: :conv_correct(Cube(float) &image)

II
II image - cube of data describing the image to be corrected

II
{

int rows, cols, nz;
//Get the number of rows, columns, and planes from the cube "image"
image.shape(rows, cols, nz);

//"grid" is now a three element vector that will hold the current
//values of loop counters i, j, and k.

vector(Int) grid(dimension); //"dimension" has value 3 for a Cube

244 WILLIS, HEALEY, A:'IID GLENDEN;\II~G

grid = 0;

for (int k
II zero all elements of "grid"

0; k < nz; k++) { //i, j, and k iterate all

II elements of "image"
grid (2) k;

for (int j = 0; j < cols; j++) {

grid(l) = j;

for (int i = 0; i < rows; i++) {

grid(O) = i;

II "grid" is now the vector (i, j, k).

II Perform the transformation

II on location (i, j, k) of the cube "image":

image(i, j, k) = image(i, j, k) * grid_corr(grid);

}

}

}

}

Aside from the use of overloading, this is how

this problem would be coded in any imperative

programming language such as Cor Fortran. Can

we improve on this using object-oriented tech

niques and the AlPS++ library? First, these two

void

However, how we go about doing this can have

a significant impact on performance. (Note: the

following discussion is based on the initial

AlPS++ library. As the library develops and is

GridTool: :conv_correct(Array(float) &image) {

}

functions are virtually identical. Also both the

class Matrix and the class Cube inherit from the

class Array. Therefore, we can merge the two

functions into the following one which uses the

generic Array class.

void

made more efficient, many of these details likely

will not apply.) Here is a first attempt at the func

tion, which uses class ArrayPosi tionitera

tor:

GridTool: :conv_correct(Array(float) &image)

{

}

//construct an ArrayPostioniterator to iterate "image":

ArrayPositioniterator position(image.shape(), image. origin(), 0);

!Position index;

int size = image. nelements (); I I "Size" is the number of elements

II in "image"

for(int i=O; i<size; i++) {

}

index= position.pos();

image(index *= grid_corr(index):

Position. next() ;

//get the current index values

//perform correction

//advance iterator

An ArrayPosi tioniterator is now used to

iterate each of the elements in the array image.

We have succeeded in replacing the two func

tions conv_correct with a function that is

shorter, more elegant, and in fact more powerful,

because it can operate on arrays of any dimen

sion. There is one problem though: let's say that

our original function for the class Matrix took X

seconds to process a 1024 X 1024 ~latrix, which

represents a fairly standard size of image we can

expect to handle in AlPS++. Cnfortunately our

new "generic" function will take roughly three

times as long! Clearly, this performance hit is not

acceptable.

Notice that the line index = position

. pos () ; is also executed over one million times

for our test array. Although pos () is an inlined

function, the compiler we have been using does

not seem to have given us the performance we

require. Is there some way around this? There is,

but it is a little tricky. First, the ArrayPosi

tioniterator: : pos () function does not actu

ally return on !Position object, but a constant ref

erence to an !Position object. Its prototype is:

const !Position

&ArrayPositioniterator: :pos() const;

Note: An !Position is an n-element vector of

void

AIPS++ ~-DIME~SIO~AL ARRAY CLASSES 245

ence may not be used as an 1-value, I.e., this is

illegal:

IPosi tion I;

ArrayPositioniterator iterator(shape,

origin, step) ;

Iterator.pos() =I; //Error, can't

assign to const reference!

Without the const modifier, the above code

would be legal and correct (assuming that I is the

correct dimension). The second const keyword

simply says that the function pos() does not mod

ify the ArrayPositionlterator with which it is asso

ciated. In other words, if we make the declaration:

const ArrayPositioniterator iterator

(shape, origin, step) ;

then the call

i terator. pos ()

is legal and does not modify the constant object

i terator. A call to a nonconst function, such as

next () , is illegal for the const object. Armed with

this understanding of the function pos () , we can

make the following improvement to our code:

GridTool: :conv_correct(Array(float) &image)

{

int i, Size;

ArrayPositioniterator Position(image.shape(), image. origin(), 0);

Size= image.nelements();

const !Position& index= Position.pos();

for (i=O; i<Size; i++) {

}

}

image(index *= grid_corr(index);

Position. next() ;

positive numbers. If the IPosi tion index has

the value (0,0), and image is a matrix or two

dimensional array, then image (index) returns

the value at image (0, 0) . This means that the

function pos () returns a reference to, or alias for,

some IPosi tion that is (in this case) a private

member of the class ArrayPosi tionlterator.

The first const keyword indicates that this refer-

//perform correction

//advance iterator

Now, what is happening is that the IPosi tion

object referenced by the return value of the call to

Position. pos () is also referenced by the

const IPosi tion& index. So, we can move the

call to the pos () function outside the while loop

the calls to Position. next() update the

IPosi tion referred to by the call to Position

. pos () , and hence also the IPosi tion referred

246 WILLIS, HEALEY, A:"'D GLENDENNING

to by index. So, next time around, image (in

dex) is the next element of image. The above

code gets us down to about 2X seconds to process

a 1024 X 1024 array. Things are getting better

but ...

The next logical step is to try to reduce or

eliminate calls to ArrayPosi tioniterator::

next () . To do that let us use a Vector

Iter a tor. This is somewhat like an Array

Posi tionlterator, but it is associated with

a specific array object. Recall that the method

Vectoriterator: :vector() returns a const

reference to the current vector of the iteration.

Calls to Vectoriterator:: next() move on to

the next vector of the object being iterated. Let us

see if this can help us:

void

started with, and now equally efficient. This tech

nique of reducing ann-dimensional problem to a

series of one- or two-dimensional problems using

iterators has proved useful in several places in the

AlPS++ library.

GridTool: :conv_correct(Array(float)& image)

{

}

Vectoriterator(float) image_iter(image);

Int start, end;

image_iter.vector().origin(start); //start and end refer to the

II starting index

image_iter.vector().end(end); //and last index of the vector

II "image_iter.vector()".

!Position index(image.ndim());

wile (! image_iter.pastEnd()) {

}

index= image_iter.pos(); //get the current !Position.

for(Int i=start; i <=end; i++) { //iterate the current vector.

image_iter.vector() (i) *= grict__corr(index);

index(O)++; //advance the index manually--avoid calls to next().

}

image_iter.net();

Because the i loop is counting the correct num

ber of elements for a column, we do not need to

worrv about index (0) ++ giving us an illegal in

dex .. This code finally gets us to about X seconds

to process a 1024 X 1 024 array. We have perhaps

lost some readability during this process of refine

ment, but this code is still better than the code we

REFERENCES

[1] Texas Instruments Inc., C++ Object-Oriented Li

brary User's Manual. Austin, TX: Information

Technology Group, 1990.

[2] M. A. Ellis and B. Stroustrup, The Annotated C++

Reference Manual. Reading, .\1A, Addison-Wesley,

1990.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

