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Abstract

We present an algorithm for the computation of Vietoris–Rips persistence barcodes
and describe its implementation in the software Ripser. The method relies on implicit
representations of the coboundary operator and the filtration order of the simplices,
avoiding the explicit construction and storage of the filtration coboundary matrix.
Moreover, it makes use of apparent pairs, a simple but powerful method for con-
structing a discrete gradient field from a total order on the simplices of a simplicial
complex, which is also of independent interest. Our implementation shows substantial
improvements over previous software both in time and memory usage.

Keyword Persistent homology . Vietoris-Rips complexes . Topological data analysis
. Discrete Morse theory

Mathematics Subject Classification 55N31 . 55-04

1 Introduction

Persistent homology is a central tool in computational topology and topological data
analysis. It captures topological features of a filtration, a growing one-parameter fam-
ily of simplicial complexes and tracks the lifespan of those features throughout the
parameter range in the form of a collection of intervals called the persistence barcode.
Each interval corresponds to the birth and death of a homological feature, and the
associated pair of simplices is called a persistence pair. One of the most common
constructions for a filtration from a geometric data set is the Vietoris–Rips complex,
which is constructed from a finite metric space by connecting any subset of the points
with diameter bounded by a specified threshold with a simplex.
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The computation of persistent homology has attracted strong interest in recent
years (Chen and Kerber 2013; Milosavljević et al. 2011), with at least 15 different
implementations publicly available to date (Bauer et al. 2014, 2017; Binchi et al.
2014; Henselman and Ghrist 2016; Huber 2013; Lewis 2013; Morozov 2006, 2014;
Nanda 2010; Perry et al. 2000; Sexton and Vejdemo-Johansson 2008; Tausz 2011;
Tausz et al. 2014; GUDHI 2015; Zhang et al. 2019, 2020; Čufar 2020).

Over the years, dramatic improvements in performance have been achieved, as
demonstrated in recent benchmarks (Otter et al. 2017).

The predominant approach to persistence computation consist of two steps: the con-
struction of a filtration boundary matrix, and the computation of persistence barcodes
using a matrix reduction algorithm similar to Gaussian elimination, which provides a
decomposition of the filtered chain complex into indecomposable summands (Baran-
nikov 1994). Among the fastest codes for the matrix reduction step is PHAT (Bauer
et al. 2017), which has been created with the goal of assessing and understanding the
relation and interplay of the various optimizations proposed in the previous literature
on the matrix reduction algorithm. In the course of that project, it became evident that
often the construction of the filtration boundary matrix becomes the bottleneck for the
computation of Vietoris–Rips barcodes.

The approach followed by Bauer (2016) is to avoid the construction and storage of
the filtration boundary matrix as a whole, discarding and recomputing parts of it when
necessary. In particular, instead of representing the coboundary map explicitly by a
matrix data structure, it is given only algorithmically, recomputing the coboundary of
a simplex whenever needed. The filtration itself is also not specified explicitly but only
algorithmically, via a method for comparing simplices with respect to their appearance
in the filtration order, together with a method for computing the cofacets of a given
simplex and their diameters. The initial motivation for pursuing this strategy was
purely to reduce the memory usage, possibly at the expense of an increased running
time. Perhaps surprisingly, however, this approach also turned out to be substantially
faster than accessing the coboundary from memory. This effect can be explained by the
fact that, on current computer architectures, memory access is much more expensive
than elementary arithmetic operations.

The computation of persistent homology as implemented in Ripser involves four key
optimizations to the matrix reduction algorithm, two of which have been proposed in
the literature before. While our implementation is specific to Vietoris–Rips filtrations,
the ideas are also applicable to persistence computations for other filtrations as well.

Clearing birth columns The standard matrix reduction algorithm does not make use
of the special structure of a boundary matrix D, which satisfies D2 = 0, i.e., boundaries
are always cycles. Ignoring this structure leads to a large number of unnecessary and
expensive matrix operations in the matrix reduction, computing a large number of
cycles that are not used subsequently. The clearing optimization (also called twist),
suggested by Chen and Kerber (2011), avoids the computation of those cycles.

Cohomology The use of cohomology for persistence computation was first suggested
by de Silva et al. (2011b). The authors establish certain dualities between persistent
homology and cohomology and between absolute and relative persistent cohomology.
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As a consequence, the computation of persistence barcodes can also be achieved as
a cohomology computation. A surprising observation, resulting from an application
of persistent cohomology to the computation of circular coordinates by de Silva et al.
(2011a), was that the computation of persistent cohomology is often much faster than
persistent homology. This effect has been subsequently confirmed by Bauer et al.
(2017), who further observed that the obtained speedup also depends heavily on the
use of the clearing optimization proposed by Chen and Kerber (2011), which is also
employed implicitly in the cohomology algorithm of de Silva et al. (2011b). Espe-
cially for Vietoris–Rips filtrations and low homological degree, a decisive speedup is
obtained, but only when both cohomology and clearing are used in conjunction. A
fully satisfactory explanation of this phenomenon has not been given previously in
the literature. In the present paper, we provide a simple counting argument that sheds
light on this computational asymmetry between persistent homology and cohomology
of Rips filtrations.

Implicit matrix reduction The computation of persistent homology usually relies on
an explicit construction of a filtration coboundary matrix, which is then transformed
to a reduced form, from which the persistence barcode can be read off directly. In con-
trast, our approach is to decouple the description of the filtration and of the boundary
operator, representing both the filtration and the coboundary matrix only algorith-
mically instead of explicitly. Specifically, using a fixed lexicographic order for the
k-simplices, independent of the filtration, the boundary and coboundary matrices in
degree k for the full simplicial complex on n vertices are completely determined by the
dimension k and the number n, and their columns can simply be recomputed instead
of being stored in memory. Likewise, the filtration order of the simplices is defined to
depend only on the distance matrix together with a fixed choice of total order on the
simplices, used to break ties when two simplices appear simultaneously in the filtra-
tion. Together, the filtration and the boundary map can be encoded using much less
information than storing the coboundary matrix explicitly. The algorithmic represen-
tation of the coboundary matrix in Ripser loosely resembles the use of lazy evaluation
in the infinite-dimensional linear algebra framework of Olver and Townsend (2014).

Furthermore, we also avoid the storage of the reduced matrix as a whole, retaining
only the much smaller reduction matrix, which encodes the column operations applied
to the coboundary matrix. Besides the current column of the reduced matrix on which
operations are performed, only information about the pivots of the reduced matrix
is stored in memory. In addition, only the pivots which can not be obtained directly
from the unreduced matrix are stored in memory, as explained next. The implicit
representation of the reduced matrix by a reduction matrix has also been used in the
cohomology algorithm by de Silva et al. (2011b), which is implemented in Dionysus
(by Morozov 2006), and in GUDHI (2015). In contrast to our implementation, however,
in those implementations the unreduced filtration coboundary matrix is still stored
explicitly.

Apparent and emergent pairs Further improvements to persistence computation, both
in terms of reduced memory usage and computational shortcuts, can be obtained by
exploiting a frequent and certain easily identifiable type of persistence pair, called an
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apparent pair. The pairing of a given simplex in an apparent pair can be determined
by a purely local condition, depending only on the facets and cofacets of the simplex,
and thus can be read off the filtration (co)boundary matrix directly without any matrix
reduction. In addition, since an apparent pair determines pivots in the boundary and the
coboundary matrix, those pivots can be recomputed quickly, and thus only the pivots
not corresponding to apparent pairs have to be stored in memory for the implicit matrix
reduction algorithm.

Generalizing the notion of apparent pairs, emergent pairs are persistence pairs that
can be identified directly during the reduction, and can be read off directly from a
partially reduced matrix together with the previously computed pairs. The construc-
tion of the filtration coboundary matrix columns can be cut short when an apparent or
emergent pair is encountered. During the enumeration of cofacets of a simplex for an
appropriate refinement of the original filtration, apparent and emergent pairs of persis-
tence 0 can be readily identified, circumventing the construction of the full coboundary
of the simplex. Since a large portion of all pairs appearing in the computation arises
this way, it becomes unnecessary to construct the entire filtration (co)boundary matrix,
and the speedup obtained from this shortcut is substantial. Apparent pairs also provide
a simple and natural construction for a discrete gradient (in the sense of discrete Morse
theory) from a simplexwise filtration.

We note that special cases of the apparent pairs construction have been described
in the literature before, and several equivalent variants have appeared in the literature,
seemingly independently from the present work, after the public release of Ripser.
In particular, Kahle (2011) described the construction of a discrete gradient on a
simplicial complex based on a total order of the vertices, which is used to derive
bounds on the topological complexity of random Vietoris–Rips complexes above the
thermodynamic limit. Indeed, our definition of apparent pairs arose from the goal of
generalizing Kahle’s construction to general filtrations of simplicial complexes. We
verify in Lemma 3.8 that the discrete gradient constructed in that paper coincides with
the apparent pairs of a simplexwise filtration given by the lexicographic order on the
simplices. Apparent pairs were also considered by Delgado-Friedrichs et al. (2015) as
close pairs in the context of cancelation of critical points in discrete Morse functions.
More recently, apparent pairs have been described by Henselman-Petrusek (2017,
see Remark 8.4.2) as minimal pairs of a linear order and employed in the software
Eirene Henselman and Ghrist (2016), which has been developed simultaneously and
independently of Ripser. In Eirene, apparent pairs are used to improve the performance
of persistence computations by avoiding the construction of large parts of the boundary
matrix, similar to the use of apparent and emergent pairs in Ripser. An elaborate focus
lies on the choice of refinement of the Vietoris–Rips filtration, aiming for a large
number of pairs. Following the first release of Ripser in 2016, apparent pairs have been
used in various ways in the literature. They have been employed by Lampret (2020) in
the more general context of algebraic discrete Morse theory under the name steepness

pairing. In a computational context, they have also been employed for parallel and
multi-scale (coarse-to fine) persistence computation on the GPU by Mendoza-Smith
and Tanner (2017), and in a hybrid GPU/CPU variant of PHAT and Ripser developed
by Zhang et al. (2019), Zhang et al. (2020). Further recent implementations based on
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Ripser include a reimplementation in Julia developed by Čufar (2020) and a lockfree
shared-memory adaptation of Ripser written by Morozov and Nigmetov (2020).

While apparent pairs have not been considered a central part of discrete Morse
theory and of persistent homology so far, we consider their importance in recent
research and their multiple discovery as strong evidence that they will play a significant
role in the further development of these theories.

2 Preliminaries

Simplicial complexes and filtrations Given a finite set X , an (abstract) simplex on X

is simply a nonempty subset σ ⊆ X . The dimension of σ is one less than its cardinality,
dim σ = |σ | − 1. Given two simplices σ ⊆ τ , we say that σ is a face of τ , and that τ

is a coface of σ . If additionally dim σ + 1 = dim τ , we say that σ is a facet of τ (a
face of codimension 1), and that τ is a cofacet of σ .

A finite (abstract) simplicial complex is a collection K of simplices X that is closed
under the face relation: if τ ∈ K and σ ⊆ τ , then σ ∈ K . The set X is called the
vertices of K , and the subsets in K are called simplices. A subcomplex of K is a subset
L ⊆ K that is itself a simplicial complex.

Given a finite simplicial complex K , a filtration of K is a collection of subcomplexes
(Ki )i∈I of K , where I is a totally ordered indexing set, such that i ≤ j implies
Ki ⊆ K j . In particular, for a finite metric space (X , d), represented by a symmetric
distance matrix, the Vietoris–Rips complex at scale t ∈ R is the abstract simplicial
complex

Ripst (X) = {∅ �= S ⊆ X | diam S ≤ t}.

Vietoris–Rips complex were first introduced by Vietoris (1927) as a means of defining
a homology theory for general compact metric spaces, and later used by Rips in
the study of hyperbolic groups (see Gromov 1987). Their usage in topological data
analysis was pioneered by Silva and Carlsson (2004), foreshadowed by results of
Hausmann (1995) and Latschev (2001) on sampling conditions for recovering the
homotopy type of a Riemannian manifold from a Vietoris–Rips complex. Letting the
scale parameter t vary, the resulting filtration, indexed by I = R, is a filtration of the
full simplicial complex �(X) on the vertex set X called the Vietoris–Rips filtration.
For this paper, other relevant indexing sets besides the real numbers R are the set of
distances {d(x, y) | x, y ∈ X} in a finite metric space (X , d), and the set of simplices of
�(X) equipped with an appropriate total order refining the order by simplex diameter,
as explained later.

We call a filtration essential if i �= j implies Ki �= K j . A simplexwise filtration of
K is a filtration such that for all i ∈ I with Ki �= ∅, there is some simplex σi ∈ K

and some index j < i ∈ I such that Ki \ K j = {σi }. In an essential simplexwise
filtration, the index j is the predecessor of i in I . Thus, essential simplexwise filtrations
correspond bijectively to total orders extending the face poset of K , up to isomorphism
of the indexing set I . In particular, in this case we often identify the indexing set with the
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set of simplices. If a simplex σ appears earlier in the filtration than another simplex τ ,
i.e., σ ∈ Ki whenever τ ∈ Ki , we say that τ is younger than σ , and σ is older than τ .

It is often convenient to think of a simplicial filtration as a diagram K• : I → Simp

of simplicial complexes indexed over some finite totally ordered set I , such that all
maps Ki → K j in the diagram (with i ≤ j) are inclusions. In terms of category
theory, K• is a functor.

Reindexing and refinement of filtrations A reindexing of a filtration F• : R → Simp

indexed over some totally ordered set R is another filtration K• : I → Simp such that
Ft = Kr(t) for some monotonic map r : R → I , called reindexing map. If there is a
complex Ki that does not occur in the filtration F•, we say that K• refines F•.

As an example, the filtration Rips•(X) is indexed by the real numbers R, but can be
condensed to an essential filtration K•, indexed by the finite set of pairwise distances
of X . In order to compute persistent homology, one needs to apply one further step
of reindexing, refining the filtration to an essential simplexwise one, as described in
detail later.
Sublevel sets of functions A function f : K → R on a simplicial complex K is
monotonic if σ ⊆ τ ∈ K implies f (σ ) ≤ f (τ ). For any t ∈ R, the sublevel set

f −1(−∞, t] of a monotonic function f is a subcomplex. The sublevel sets form
a filtration of K indexed over R. Clearly, any finite filtration K• : I → Simp of
simplicial complexes can be obtained as a reduction of some sublevel set filtration.
In particular, the Vietoris–Rips filtration is simply the sublevel set filtration of the
diameter function.
Discrete Morse theory Forman (1998) studies the topology of sublevel sets for generic
functions on simplicial complexes. A discrete vector field on a simplicial complex K

is a partition V of K into singleton sets and pairs {σ, τ } in which σ is a facet of τ . We
call such a pair a facet pair. A monotonic function f : K → R is a discrete Morse

function if the facet pairs {σ, τ } with f (σ ) = f (τ ) generate a discrete vector field V ,
which is then called the discrete gradient of f . A simplex that is not contained in any
pair of V is called a critical simplex, and the corresponding value is a critical value

of f .
Persistent homology In this paper, we only consider simplicial homology with coef-
ficients in a prime field Fp, and write H∗(K ) as a shortcut for H∗(K ; Fp). Applying
homology to a filtration of finite simplicial complexes K• : I → Simp yields another
diagram H∗(K•) : I → Vect p of finite dimensional vector spaces over Fp , often called
a persistence module (Chazal et al. 2016).

If all vector spaces have finite dimension, such diagrams have a particularly simple
structure: they decompose into a direct sum of interval persistence modules, consisting
of copies of the field Fp connected by the identity map over an interval range of indices,
and the trivial vector space outside the interval (Crawley-Boevey 2015; Zomorodian
and Carlsson 2005). This decomposition is unique up to isomorphism, and the col-
lection of intervals describing the structure, the persistence barcode, is therefore a
complete invariant of the isomorphism type, capturing the homology at each index of
the filtration together with the maps connecting any two different indices. In fact, a
corresponding decomposition exists already on the level of filtered chain complexes

123



Ripser: efficient computation of Vietoris–Rips persistence barcodes 397

(Barannikov 1994), and this decomposition is constructed by algorithms for computing
persistence barcodes.

If K• is an essential filtration and [i, j) ⊆ I is an interval in the persistence
barcode of K•, then we call i a birth index, j a death index, and the pair (i, j) an
index persistence pair. Moreover, if [i,∞) is an interval in the persistence barcode of
K , we say that i is an essential (birth) index. For an essential simplexwise filtration
K•, the indices I are in bijection with the simplices, and so in this context we also
speak about birth, death, and essential simplices, and we consider pairs of simplices
as persistence pairs. If K• is a reindexing of a sublevel set filtration for a monotonic
function f , we say that the pair (σi , σ j ) has persistence f (σ j ) − f (σi ).
Persistence computation using simplexwise refinement A reindexing K• of a filtration
F• = K• ◦ r can be used to obtain the persistent homology of F• from that of K• as

H∗(F•) = H∗(K• ◦ r) = H∗(K•) ◦ r .

Note that this is a direct consequence of the fact that the two filtrations F•, K•, the
reindexing map r , and homology H∗ are functors, and composition of functors is
associative.

If the reindexing map is not surjective, the persistence barcode of the reindexed
filtration K• may contain intervals that do not correspond to intervals in the barcode
of F•. The preimage r−1[i, j) ⊆ R of an interval [i, j) ⊆ I in the persistence barcode
of K• is then either empty, in which case we call (i, j) a zero persistence pair; if F• is
the sublevel set filtration of f , this is the case if and only if f (σ j ) = f (σi ). Otherwise,
r−1[i, j) is an interval of the persistence barcode for F•, and all such intervals arise
this way. We summarize:

Proposition 2.1 Let f : K → R be a monotonic function on a simplicial complex K ,

and let K• : I → Simp be an essential simplexwise refinement of the sublevel set

filtration F• = f −1(−∞, •], with Ki = {σk | k ∈ I , k ≤ i}. The persistence barcode

of K• determines the persistence barcode of F•,

B(H∗(F•)) =
{

r−1[i, j) �= ∅ | [i, j) ∈ B(H∗(K•))

}
,

with r−1[i, j) = [ f (σi ), f (σ j )) and r−1[i,∞) = [ f (σi ),∞).

Filtration boundary matrices Given a simplicial complex K with a totally ordered
set of vertices X , there is a canonical basis of the simplicial chain complex C∗(K ),
consisting of the simplices oriented according to the specified total order. A simplex-
wise filtration turns this into an ordered basis and gives rise to a filtration boundary

matrix, which is the matrix of the boundary operator of the chain complex C∗(K )

with respect to that ordered basis. We may consider boundary matrices both for the
combined boundary map ∂∗ : C∗ → C∗ as well as for the individual boundary maps
∂d : Cd → Cd−1 in each dimension d. Generalizing the latter case, we say that a matrix
D with column indices Id ⊂ I and row indices Id−1 ⊂ I is a filtration d-boundary

matrix for a simplexwise filtration K• : I → Simp if for each i ∈ I , the columns of
D with indices ≤ i form a generating set of the (d − 1)-boundaries Bd−1(Ki ). This
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allows us to remove columns from a boundary matrix that are linear combinations of
the previous columns, a strategy called clearing that is discussed in Sect. 3.2.
Indexing simplices in the combinatorial number system We now describe the combi-

natorial number system (Knuth 2011; Pascal 1887), which provides a way of indexing
the simplices of the full simplex �(X) and of the Vietoris–Rips filtration Rips•(X)

by natural numbers, and which has previously been employed for persistence com-
putation by Bauer et al. (2014). Again, we assume a total order on the vertices
X = {v0, . . . , vn−1} of the filtration. Using this order, we identify each d-simplex
σ with the sorted (d + 1)-tuple of its vertex indices (id , . . . , i0) in decreasing order
id > · · · > i0. This induces a lexicographic order on the set of d-simplices, which
we refer to as the colexicographic vertex order. The combinatorial number system of
order d + 1 is the order-preserving bijection

(id , . . . , i0) �→

d∑

l=0

(
il

l + 1

)

mapping the lexicographically ordered set of decreasing (d + 1)-tuples of natural
numbers to the set of natural numbers {0, . . . ,

(
n

d+1

)
−1}, as illustrated in the following

value table for d = 2.

(2, 1, 0) (3, 1, 0) (3, 2, 0) (3, 2, 1) (4, 1, 0) . . . (n − 3, n − 2, n − 1)

0 1 2 3 4 · · ·
(

n
d+1

)
− 1

Note that for k > n the convention
(

n
k

)
= 0 is used here. As an example, the simplex

{v5, v3, v0} is assigned the number

(5, 3, 0) �→
(5

3

)
+

(3
2

)
+

(0
1

)
= 10 + 3 + 0 = 13.

Conversely, if a d-simplex σ with vertex indices (id , . . . , i0) has index N in the
combinatorial number system, the vertices of σ can be obtained by a binary search,
as described in Sect. 4.
Lexicographic refinement of the Vietoris–Rips filtration We now describe an essential
simplexwise refinement of the Vietoris–Rips filtration, as required for the computation
of persistent homology. To this end, we consider another lexicographic order on the
simplices of the full simplex �(X) with vertex set X , given by ordering the simplices

• by diameter,
• then by dimension,
• then by reverse colexicographic vertex order.

We will refer to the simplexwise filtration resulting from this total order as the lexico-

graphically refined Vietoris–Rips filtration. The choice of the reverse colexicographic
vertex order has algorithmic advantages, explained in Sect. 4.

As an example, consider the point set X = {v0 = (0, 0), v1 = (3, 0), v2 =

(0, 4), v3 = (3, 4)} ⊆ R
2, consisting of the vertices of a 3 × 4 rectangle with the
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Euclidean distance. We obtain the distance matrix

and the table of simplices (top row) with their diameters (bottom row)

(3) (2) (1) (0) (3, 2) (1, 0) (3, 1) (2, 0) (3, 0) (2, 1) (3, 2, 1) (3, 2, 0) (3, 1, 0) (2, 1, 0) (3, 2, 1, 0)

0 0 0 0 3 3 4 4 5 5 5 5 5 5 5

listed in order of the lexicographically refined Vietoris–Rips filtration.

3 Computation

In this section, we explain the algorithm for computing persistent homology imple-
mented in Ripser, and discuss the various optimization employed to achieve an efficient
implementation.

3.1 Matrix reduction

The prevalent approach to computing persistent homology is by column reduction
(Cohen-Steiner et al. 2006) of the filtration boundary matrix. We write Mi to denote
the i th column of a matrix M . The pivot index of Mi , denoted by Pivot Mi , is the largest
row index of any nonzero entry, taken to be 0 if all entries of v are 0. Otherwise, the
corresponding nonzero entry is called the pivot entry, denoted by PivotEntry Mi . We
define Pivots M =

⋃
i Pivot Mi \ {0}.

A column Mi is called reduced if Pivot Mi cannot be decreased using column
additions by scalar multiples of columns M j with j < i . Equivalently, Pivot Mi is
minimal among all pivot indices of linear combinations

∑

j≤i

λ j M j

with λi �= 0, meaning that multiplication from the right by a regular upper triangular
matrix U leaves the pivot index of the column unchanged: Pivot Mi = Pivot (MU )i .
In particular, a column Mi is reduced if either Mi = 0 or all columns M j with j < i

are reduced and satisfy Pivot M j �= Pivot Mi . A matrix M is called reduced if all of its
columns are reduced. The following proposition forms the basis of matrix reduction
algorithms for computing persistent homology.

Proposition 3.1 (Cohen-Steiner et al. 2006) Let D be a filtration boundary matrix,

and let V be a full rank upper triangular matrix such that R = D · V is reduced. Then
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400 U. Bauer

the index persistence pairs are

{(i, j) | i = Pivot R j �= 0},

and the essential indices are

{i | Ri = 0, i /∈ Pivots R}.

A basis for the filtered chain complex that is compatible with both the filtration and
the boundary maps is given by the chains

{R j | j is a death index} ∪ {V j | j is a death index} ∪ {Vi | i is an essential index},

determining a direct sum decomposition of C∗(K ) into elementary chain complexes
of the form

· · · → 0 → 〈V j 〉
∂

→ 〈R j 〉 → 0 → . . .

for each death index j and

· · · → 0 → 〈Vi 〉 → 0 → . . .

for each essential index i . Taking intersections with the filtration C∗(K•), we obtain
elementary filtered chain complexes, in which R j is a cycle appearing in the filtration
at index i = Pivot R j and becoming a boundary when V j enters the filtration at index
j , and in which an essential cycle Vi enters the filtration at index i . The persistent
homology is thus generated by the representative cycles

{R j | j is a death index} ∪ {Vi | i is an essential index},

in the sense that, for all indices k ∈ I , the homology H∗(Kk) has a basis generated by
the cycles

{R j | (i, j) is an index persistence pair with

k ∈ [i, j)} ∪ {Vi | i is an essential index with k ∈ [i,∞)},

and for all pairs of indices k, l ∈ I with k ≤ l, the image of the map in homology
H∗(Kk) → H∗(Kl) induced by inclusion has a basis generated by the cycles

{R j | (i, j) is an index persistence pair with

k, l ∈ [i, j)} ∪ {Vi | i is an essential index with k ∈ [i,∞)}.

An algorithm for computing the matrix reduction R = D · V is given below as Algo-
rithm 1. It can be applied either to the entire filtration boundary matrix in order to
compute persistence in all dimensions at once, or to the filtration d-boundary matrix,
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resulting in the persistence pairs of dimensions (d − 1, d) and the essential indices of
dimension d. This algorithm appeared for the first time in the work of Cohen-Steiner
et al. (2006), rephrasing the original algorithm for persistent homology (Edelsbrunner
et al. 2002) as a matrix algorithm. An algorithmic advantage to the decomposition
algorithm described by Barannikov (1994) is that it does not require any row opera-
tions.

Note that the column operations involving the matrix V are often omitted if the
goal is to compute just the persistence pairs and representative cycles are not required.
In Sect. 3.4, we will use the matrix V nevertheless to implicitly represent the matrix
R = D · V .

Algorithm 1 Matrix reduction and persistence pairs
Require:

D: I × J filtration boundary matrix (with row indices I and column indices J )
Ensure:

V : full rank upper triangular J × J matrix, R = D · V : reduced matrix,
P: persistence pairs, E : essential indices

P := ∅

for j ∈ J in increasing order do

R j := D j

V j := e j

while there exist k < j with Pivot Rk = Pivot R j do

λ := PivotEntry R j / PivotEntry Rk

R j := R j − λ · Rk ⊲ For implicit reduction (Sect. 3.4): change to R j := R j − λ · D · Vk

V j := V j − λ · Vk

end while

if (i := Pivot R j ) �= 0 then

append (i, j) to P

else

append j to E

end if

end for

return V , R, P , E

Typically, reducing a column at a birth index tends to be significantly more expen-
sive than one with a death index. This observation can be explained using the time
complexity analysis for the matrix reduction algorithm given in (Edelsbrunner and
Harer 2010, see Sect. VII.2): the reduction of a column for a d-simplex with death
index j and corresponding birth index i requires at most (d + 1)( j − i)2 steps, while
the reduction of a column with birth index i requires at most (d +1)(i −1)2 steps. Typ-
ically, the index persistence ( j − i) is quite small, while the reduction of birth columns
indeed becomes expensive for large birth indices i . The next subsection describes a
way to circumvent these birth column reductions whenever possible.

3.2 Clearing inessential birth columns

An optimization to the matrix reduction algorithm, due to Chen and Kerber (2011),
is based on the observation that for any birth index i , the column Ri of the reduced
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matrix will necessarily be 0. Reducing those columns to zero is therefore unnecessary,
and avoiding their reduction can lead to dramatic improvements in running time. The
clearing optimization thus simply sets a column Ri to 0 whenever i is identified as
the pivot index of another column, i = Pivot R j .

As proposed by Chen and Kerber (2011), clearing yields only the reduced matrix R,
and the method is described in the survey by Morozov and Edelsbrunner (2017) as
incompatible with the computation of the reduction matrix V . In fact, however, the
clearing optimization can actually be extended to also obtain the reduction matrix,
which plays a crucial role in our implementation. To see this, consider an inessential
birth index i = Pivot R j , corresponding to a cleared column. Obtaining the requisite
full rank upper triangular reduction matrix V requires an appropriate column Vi such
that D · Vi = Ri = 0, i.e., Vi is a cycle. It suffices to simply take Vi = R j ; by
construction, this column is a boundary, and since Pivot Vi = i , the resulting matrix
V will be full rank upper triangular.

Algorithm 2 Matrix reduction and persistence pairs with clearing
Require:

D: I × J filtration d-boundary matrix (with row indices I and column indices J ),
R̃: reduced filtration (d + 1)-boundary matrix, P̃: persistence pairs of dimensions (d, d + 1)

Ensure:

V : full rank upper triangular J × J matrix, R = D · V : reduced filtration d-boundary matrix,
P: persistence pairs of dimensions (d − 1, d), E : essential indices of dimension d

Ĵ := J \ Pivots R̃

D̂ := I × Ĵ submatrix of D

Apply Algorithm 1 to reduce D̂ to R̂ = D̂ · V̂ and obtain the persistence pairs P and the essential indices
E

Extend R̂ to a I × J matrix R by filling in zeros
Extend V̂ to a J × J matrix V by filling in zeros
for (i, j) ∈ P̃ do

Vi := R̃ j

end for

return V , R, P , E

The birth index i of a persistence pairs (i, j) is determined after identified with the
reduction of column j . In order to ensure that this happens before the algorithm starts
reducing column i , so that the column is cleared already before it would get reduced,
the matrices for the boundary maps ∂d are reduced in order of decreasing dimension
d = (p+1), . . . , 1. For each index persistence pair (i, j) computed in the reduction of
the boundary matrix for ∂d , the corresponding column for index i can now be removed
from the boundary matrix for ∂d−1. Note however that computing persistent homology
in dimensions 0 ≤ d ≤ p still requires the reduction of the full boundary matrix ∂p+1.
This can become very expensive, especially if there are many (p + 1)-simplices, as
in the case of a Vietoris–Rips filtration. In this setting, the complex K is the (p + 1)-
skeleton of the full simplex on n vertices. The standard matrix reduction algorithm for
persistent homology requires the reduction of one column per simplex of dimension
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1 ≤ d ≤ p + 1, amounting to

p+1∑

d=1

(
n

d + 1

)

︸ ︷︷ ︸
dim Cd (K )

=

p+1∑

d=1

(
n − 1

d

)

︸ ︷︷ ︸
dim Bd−1(K )

+

p+1∑

d=1

(
n − 1

d + 1

)

︸ ︷︷ ︸
dim Zd (K )

columns in total. Note that dim Bd−1(K ) equals the number of columns with a death
index and dim Zd(K ) equals the number of columns with a birth index in the d-
boundary matrix. As an example, for p = 2, n = 192 we obtain 56 050 096 columns,
of which 1 161 471 are death columns and 54 888 625 are birth columns. Using the
clearing optimization, this number is lowered to

p+1∑

d=1

(
n − 1

d

)

︸ ︷︷ ︸
dim Bd−1(K )

+

(
n − 1

p + 2

)

︸ ︷︷ ︸
dim Z p+1(K )

=

p+2∑

d=1

(
n − 1

d

)
=

p+1∑

d=0

(
n − 1

d + 1

)

columns; again, for p = 2, n = 192 this still yields 54 888 816 columns, of which
1 161 471 are death columns and 53 727 345 are birth columns. Because of the large
number of birth columns arising from (p+1)-simplices, the use of clearing alone thus
does not lead to a substantial improvement yet.

3.3 Persistent cohomology

The clearing optimization can be used to a much greater effect by computing persis-
tence barcodes using cohomology instead of homology of Vietoris–Rips filtrations.
As noted by de Silva et al. (2011b), for a filtration K• of a simplicial complex K the
persistence barcodes for homology H∗(K•) and cohomology H∗(K•) coincide, since
for coefficients in a field, cohomology is a vector space dual to homology (Munkres
1984), and the barcode of persistent homology (and more generally, of any pointwise
finite-dimensional persistence module) is uniquely determined by the ranks of the
internal linear maps in the persistence module, which are preserved by vector space
duality.

The filtration of chain complexes C∗(K•) gives rise to a diagram of cochain com-
plexes Cd(K•), with reversed order on the indexing set. Since cohomology is a
contravariant functor, the morphisms in this diagrams are however surjections instead
of injections. To obtain a setting that is suitable for our reduction algorithms, we
instead consider the filtration of relative cochain complexes Cd(K , K•). The filtration

coboundary matrix for δ : Cd(K , K•) → Cd+1(K , K•) is given as the transpose of
the filtration boundary matrix with rows and columns ordered in reverse filtration order
(de Silva et al. 2011b). The persistence barcodes for relative cohomology H∗(K , K•)

uniquely determine those for absolute cohomology H∗(K•) (and coincide with the
respective homology barcodes by duality). This correspondence can be seen as a con-
sequence of the fact that the short exact sequence of cochain complexes of persistence
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modules

0 → C∗(K , K•) → C∗(K ) → C∗(K•) → 0

(where C∗(K ) is interpreted as a complex of constant persistence modules) gives rise
to a long exact sequence

· · · → Hd(K ) → Hd(K , K•)
δ∗

→ Hd+1(K•) → Hd+1(K ) → · · ·

in cohomology, which can be seen to split at Hd(K , K•) and at Hd+1(K•), with im δ∗

as the summand corresponding to the bounded intervals in either barcode (Bauer and
Schmahl 2020). Now the persistence pairs ( j, i) of dimensions (d, d − 1) for rel-
ative cohomology Hd(K , Ki ) correspond to persistence pairs (i, j) of dimensions
(d − 1, d) for (absolute) homology Hd−1(Ki ) in one dimension below, i.e., a death
index becomes a dual inessential birth index and vice versa, while the essential birth
indices for Hd(K , Ki ) remain essential birth indices for Hd(Ki ) in the same dimen-
sion. Thus, the persistence barcode can also be computed by matrix reduction of
the filtration coboundary matrix. Note that this is equivalent to row reduction of the
filtration boundary matrix, reducing the rows from bottom to top.

Since the coboundary map increases the degree, in order to apply the clearing opti-
mization described in Sect. 3.2, the filtration d-coboundary matrices are now reduced
in order of increasing dimension using Algorithm 2. This yields the relative persis-
tence pairs of dimensions (d + 1, d) for Hd+1(K , Ki ), corresponding to the absolute
persistence pairs of dimensions (d, d + 1) for Hd(Ki ), and the essential indices of
dimension d. This is the approach used in Ripser.

The crucial advantage of using cohomology to compute the Vietoris–Rips persis-
tence barcodes in dimensions 0 ≤ d ≤ p lies in avoiding the expensive reduction
of columns whose birth indices correspond to (p + 1)-simplices, as discussed in
Sect. 3.2. To illustrate the difference, we first consider cohomology without clearing.
Note that for persistent cohomology, the number of column reductions performed by
the standard matrix reduction (Algorithm 1) is

p∑

d=0

(
n

d + 1

)

︸ ︷︷ ︸
dim Cd (K )

=

p∑

d=0

(
n − 1

d + 1

)

︸ ︷︷ ︸
dim Bd+1(K )

+

p∑

d=0

(
n − 1

d

)

︸ ︷︷ ︸
dim Zd (K )

;

again, for K the (p+1)-skeleton of the full simplex on n vertices with p = 2, n = 192,
this amounts to 1 179 808 columns, of which 1 161 471 are death columns and 18 337
are birth columns. While this number is significantly smaller than for homology, for
small values of d the number of rows of the coboundary matrix,

(
n

d+1

)
, is much larger

than that of the boundary matrix,
(

n
d

)
, and thus the reduction of birth columns becomes

prohibitively expensive in practice. Consequently, reducing the coboundary matrix
without clearing has not been observed as more efficient in practice than reducing
the boundary matrix (Bauer et al. 2017). However, in conjunction with the clearing
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optimization, only

p∑

d=0

(
n − 1

d + 1

)

︸ ︷︷ ︸
dim Bd+1(K )

+

(
n − 1

0

)

︸ ︷︷ ︸
dim Z0(K )

=

p+1∑

d=0

(
n − 1

d

)

columns remain to be reduced; for p = 2, n = 192 we get 1 161 472 columns, of
which 1 161 471 are death columns and only one is a birth column, corresponding to
the single essential class in dimension 0. In addition, typically a large fraction of the
death columns will be reduced already from the beginning, as observed in Sect. 5.
Thus, in practice, the combination of clearing and cohomology drastically reduces the
number of columns operations in comparison to Algorithm 1.

3.4 Implicit matrix reduction

The matrix reduction algorithm can be modified slightly to yield a variant in which
only the reduction matrix V is represented explicitly in memory. The columns of the
coboundary matrix D are computed on the fly instead, by a method that enumerates
the nonzero entries in a given column of D in reverse colexicographic vertex order
of the corresponding rows. Specifically, using the combinatorial number system to
index the simplices on the vertex set {0, . . . , n − 1}, the cofacets of a simplex can be
enumerated efficiently, as described in more detail in Sect. 4. The matrix R = D · V

is now determined implicitly by D and V . During the execution of the algorithm,
only the current column R j on which additions are performed is kept in memory. For
all previously reduced columns Rk , with k < j , only the pivot index and its entry,
Pivot Rk and PivotEntry Rk , are stored in memory. Whenever needed in the algorithm,
those columns are recomputed on the fly as Rk = D · Vk (see Sect. 1). Note that the
extension of clearing to the reduction matrix described in Sect. 3.2 is crucial for an
efficient implementation of implicit matrix reduction.

To further decrease the memory usage, we apply another minor optimization. Note
that in the matrix reduction algorithm Algorithm 1, only a death index k (Rk = D·Vk �=

0) may satisfy the condition Pivot Rk = Pivot R j in Algorithm 1. Hence, only columns
with a death index are used later in the computation to eliminate pivots. Consequently,
our implementation does not actually maintain the entire matrix V , but only stores
those columns of V with a death index. In other words, it does not store explicit
generating cocycles for persistent cohomology, but only their cobounding cochains.

3.5 Apparent pairs

We now discuss a class of persistence pairs that can be identified in a Vietoris–Rips
filtration directly from the boundary matrix without reduction, and often even without
actually enumerating all cofacets, i.e., without entirely constructing the corresponding
columns of the coboundary matrix. The columns in question are already reduced in
the coboundary matrix, and hence remain unaffected by the reduction algorithm. Most
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relevant to us are persistence pairs that have persistence zero with respect to the original
filtration parameter, meaning that they arise only as an artifact of the lexicographic
refinement and do not contribute to the Vietoris–Rips barcode itself. In practice, most
of the pairs arising in the computation of Vietoris–Rips persistence are of this kind
(see Sect. 5, and also Zhang et al. 2019, Sect. 4.2 ).

Definition 3.2 Consider a simplexwise filtration K• of a finite simplicial complex K .
We call a pair of simplices (σ, τ ) of K an apparent pair of K• if both

• σ is the youngest facet of τ , and
• τ is the oldest cofacet of σ .

Equivalently, all entries in the filtration boundary matrix of K• below or to the left of
(σ, τ ) are 0.

The notion of apparent pairs applies to any simplexwise filtration K•, which may
arise as a simplexwise refinement of some coarser filtration F•, such as our lex-
icographic refinement of the Vietoris–Rips filtration. As an example, consider the
Vietoris–Rips filtration on the vertices of a rectangle from Sect. 2. The filtration bound-
ary matrices are

with bold entries corresponding to apparent pairs. The apparent pairs thus are

((0), (1, 0)), ((2), (3, 2)); ((2, 1), (3, 2, 1)), ((3, 0), (3, 2, 0)); ((2, 1, 0), (3, 2, 1, 0)).

Apparent pairs provide a connection between persistence and discrete Morse theory
(Forman 1998). The collection of all apparent pairs pairs of a simplexwise filtration K•

constitutes a subset of the persistence pairs (Lemma 3.3), while at the same time also
forming a discrete gradient in the sense of discrete Morse theory (Lemma 3.5).
Apparent pairs as persistence pairs As an immediate consequence of the definition
of an apparent pair, we get the following lemma.

Lemma 3.3 Any apparent pair of a simplexwise filtration is a persistence pair.

Proof Since the entries in the filtration boundary matrix of K• to the left of an apparent
pair (σ, τ ) are 0, the index of σ is the pivot of the column of τ in the filtration boundary
matrix. Thus, the column of τ in the boundary matrix is already reduced from the
beginning, and Proposition 3.1 yields the claim. ⊓⊔

Remark 3.4 Note that the property of being an apparent pair does not depend on the
choice of the coefficient field. Indeed, the above statement holds for any choice of
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coefficient field for (co)homology. In that sense, the apparent pairs are universal per-

sistence pairs.
Specifically, given an apparent pair (σ, τ ), the chain complex · · · → 0 → 〈τ 〉 →

〈∂τ 〉 → 0 → . . . can easily be seen to yield an indecomposable summand of the
filtered chain complex C∗(K•; Z) with integer coefficients (by intersecting the chain
complexes), and to generate an interval summand of persistent homology (as a diagram
of Abelian groups indexed by a totally ordered set), and thus any other coefficients, by
the universal coefficient theorem. The boundary ∂τ enters the filtration simultaneously
with σ , and the appearance of σ and τ in the filtration determine the endpoints of the
resulting interval.

Dually, the coboundary δσ enters the filtration simultaneously with τ , and the
cochain complex · · · → 0 → 〈σ 〉 → 〈δσ 〉 → 0 → . . . yields an indecomposable
summand of C∗(K•; Z), generating an interval summand of H∗(K•; Z) corresponding
to the one mentioned above.

Apparent pairs as gradient pairs The next two lemmas relate apparent pairs to discrete
Morse theory. First, we show that apparent pairs are gradient pairs.

Lemma 3.5 The apparent pairs of a simplexwise filtration form a discrete gradient.

Proof Let (σ, τ ) be an apparent pair, with dim σ = d. By definition, τ is uniquely
determined by σ , and so σ cannot appear in another apparent pair (σ, ψ) for any
(d + 1)-simplex ψ �= τ . We show that σ also does not appear in another apparent
pair (φ, σ ) for any (d −1)-simplex φ. To see this, note that there is another d-simplex
ρ �= σ that is also a facet of τ and a cofacet of φ. Since σ is assumed to be the youngest
facet of τ , the simplex ρ is older than σ . In particular, σ is not the oldest cofacet of φ,
and so (φ, σ ) is not an apparent pair. We conclude that no simplex appears in more
than one apparent pair, i.e., the apparent pairs define a discrete vector field.

To show that this discrete vector field is a gradient, let σ1, . . . , σm be the simplices
of K in filtration order, and consider the function

f : σ j �→

{
i if there is an apparent pair (σi , σ j ),

j otherwise.

To verify that f is a discrete Morse function, first note that f (σk) ≤ k. Now let σi be
a facet of σ j . Then i < j . If (σi , σ j ) is not an apparent pair, we have f (σi ) ≤ i <

j = f (σ j ). On the other hand, if (σi , σ j ) is an apparent pair, then σi is the youngest
facet of σ j , i.e., k ≤ i for every facet σk of σ j , and thus f (σk) ≤ k ≤ i = f (σ j ), with
equality holding if and only if i = k. We conclude that f is a discrete Morse function
whose sublevel set filtration is refined by K and whose gradient pairs are exactly the
apparent pairs of the filtration. ⊓⊔

For the previous example of a simplexwise filtration obtained fron the vertices of
a rectangle, the resulting discrete Morse function as constructed in the above proof is
shown in the following table.

(3) (2) (1) (0) (3, 2) (1, 0) (3, 1) (2, 0) (3, 0) (2, 1) (3, 2, 1) (3, 2, 0) (3, 1, 0) (2, 1, 0) (3, 2, 1, 0)

0 1 2 3 1 0 6 7 8 9 9 8 12 13 13

123



408 U. Bauer

The following lemma is a partial converse of the above Lemma 3.5, showing that
the gradient pairs of a discrete Morse function form a subset of the apparent pairs.

Lemma 3.6 Let f be a discrete Morse function, and let K• be a simplexwise refinement

of the sublevel set filtration F• = K•◦r for f . Then the gradient pairs of f are precisely

the zero persistence apparent pairs of K•.

Proof Any 0-persistence pair (σ, τ ) satisfies f (σ ) = f (τ ) and thus, by definition of
a discrete Morse function, forms a gradient pair of f .

Conversely, any gradient pair (σ, τ ) of f satisfies f (σ ) = f (τ ) and f (ρ) < f (τ )

for any facet ρ �= σ of τ , and similarly, f (υ) > f (τ ) for any cofacet ρ �= τ of σ .
Thus, in any simplexwise refinement of the sublevel set filtration, σ is the youngest
facet of τ , and τ is the oldest cofacet of σ . This means that (σ, τ ) is an apparent zero
persistence pair. ⊓⊔

Note that there might be apparent pairs of nonzero persistence. In particular, starting
with a discrete Morse function f and constructing another discrete Morse function
f̃ from f as in the proof of Lemma 3.5, the gradient pairs of f form a subset of the
gradient pairs of f̃ . In particular, the nonzero persistence apparent pairs of f will be
gradient pairs of f̃ , but not of f .

Remark 3.7 The notion of apparent pairs generalizes to the setting of algebraic Morse
theory (Jöllenbeck and Welker 2009; Kozlov 2005; Sköldberg 2006) in a straightfor-
ward way (Lampret 2020). In this setting, one considers a finitely generated free chain
complex of free modules Cd over some ring R, equipped with a fixed ordered basis
�d , which is assumed to induce a filtration by subcomplexes. In this setting, the facet
and cofacet relations are defined by the more general condition that two basis elements
σ ∈ �d and τ ∈ �d+1 have a nonzero coefficient in the boundary matrix for ∂d+1.
In addition, an algebraic apparent pair (σ, τ ) is required to satisfy the additional con-
dition that this boundary coefficient is a unit in R. Similarly to the simplicial setting,
in this case σ cannot appear in another apparent pair (φ, σ ) for any facet φ of σ . To
see this, note that again there has to be another basis element ρ �= σ ∈ �d that is
also a facet of τ and a cofacet of φ; if σ were the only such basis element, then the
coefficient of (φ, τ ) in the matrix of ∂q ◦ ∂q+1 would be nonzero, which is excluded
by the chain complex property. The above Lemmas 3.3, 3.5 and 3.6 therefore hold
in this generalized setting as well. Note however that in this case, apparent pairs are
no longer guaranteed to be universal persistence pairs, as the condition defining the
apparent pairs now depends of the choice of coefficients. When working with Z as the
coefficient ring, apparent pairs are universal persistence pairs in the sense of 3.4.

Lexicographic discrete gradients The construction proposed by Kahle (2011) for
a discrete gradient VL on a simplicial complex K from a total vertex order can be
understood as a special case of the apparent pairs gradient. The definition of the
gradient VL is as follows. Consider the vertices v1, . . . vn of the simplicial complex K

in some fixed total order. Whenever possible, pair a simplex σ = {vid
, . . . vi1}, id >

· · · > i1, with the simplex τ = {vid
, . . . vi1 , vi0} for which i0 < i1 is minimal. These

pairs (σ, τ ) form a discrete gradient (Kahle 2011), which we call the lexicographic

gradient.
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We illustrate how this gradient VL can be considered as a special case of our defi-
nition of apparent pairs for the lexicographic filtration of K , where the simplices are
ordered by dimension, and simplices of the same dimension are ordered lexicograph-
ically according to the chosen vertex order.

Lemma 3.8 The lexicographic gradient VL is the apparent pairs gradient of the lexi-

cographic filtration.

Proof To see that any pair (σ, τ ) in VL is an apparent pair, observe that i0 is chosen
such that τ is the lexicographically smallest cofacet of σ . Moreover, σ is clearly the
lexicographically largest facet of τ .

Conversely, assume that (σ, τ ) is an apparent pair for the lexicographic filtration.
Let τ = {vid

, . . . , vi1 , vi0}. Then σ = {vid
, . . . , vi1} is the lexicographically largest

facet of τ , and we have i0 < i1. Moreover, since τ is the lexicographically smallest
cofacet of σ , the index i0 is minimal among all indices i such that {vid

, . . . , vi1 , vi0}

forms a simplex. ⊓⊔

Vietoris–Rips filtrations Having discussed the Morse-theoretic interpretation of
apparent pairs, we now illustrate their relevance for the computation of persistence.
Focusing on the lexicographically refined Rips filtration, we first describe the apparent
pair of persistence zero in a way that is suitable for computation.

Proposition 3.9 Let σ, τ be simplices in the lexicographically refined Rips filtration.

Then (σ, τ ) is a zero persistence apparent pair if and only if

• τ is the lexicographically maximal cofacet of σ such that diam(τ ) = diam(σ ),

and

• σ is the lexicographically minimal facet of τ such that diam(τ ) = diam(σ ).

Proof The two conditions hold for any zero persistence apparent pair by definition. It
remains to show that the two conditions also imply that (σ, τ ) is an apparent pair. Recall
that in the lexicographically refined Rips filtration, simplices are sorted by diameter,
then by dimension, and then in (reverse) lexicographic order. The simplex τ must be
the oldest cofacet of σ in the filtration order: no cofacet of σ can have a diameter
less than diam τ = diam σ , and among the cofacets of σ with the same diameter
as τ , the lexicographically maximal cofacet τ is the oldest one by construction of
the lexicographic filtration order. Similarly, σ must be the oldest cofacet of σ in the
filtration order. ⊓⊔

As it turns out, a large portion of all persistence pairs arising in the persistence
computation for Rips filtrations can be found this way, and the savings from not
having to enumerate all cofacets are substantial. The following theorem gives a partial
explanation of this observation, for generic finite metric spaces and persistence in
dimension 1.

To set the stage, note that in a a simplexwise refinement of a Vietoris–Rips filtration,
any apparent pair, and more generally, any emergent facet pair (σ, τ ) of dimensions
(k, k + 1) with k ≥ 1 necessarily has persistence zero, as the diameter of τ equals the
maximal diameter of its facets, which by definition is the diameter of σ . The following
theorem establishes a partial converse to this fact in dimension 1 and under a certain
genericity assumption on the metric space.
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Theorem 3.10 Let (X , d) be a finite metric space with distinct pairwise distances, and

let K• be a simplexwise refinement of the Vietoris–Rips filtration for X. Among the

persistence pairs of K• in dimension 1, the zero persistence pairs are precisely the

apparent pairs.

Proof As noted above, every apparent pair is a zero persistence pair. Conversely, let
(σ, τ ) be a zero persistence pair of dimensions (1, 2). Since the edge diameters are
assumed to be distinct, the edge σ must be the youngest facet of τ in K•. Now let ψ

be the oldest cofacet of σ . We then have diam(σ ) ≤ diam(ψ) ≤ diam(τ ), and since
(σ, τ ) is a zero persistence pair, this implies diam(σ ) = diam(ψ) = diam(τ ). Since
pairwise distances are assumed to be distinct, any edge ρ ⊂ ψ , ρ �= σ must satisfy
diam(ρ) < diam(ψ). This implies that σ has to be the youngest facet of ψ . Hence,
(σ, ψ) is an apparent pair. But since (σ, τ ) is assumed to be a persistence pair, we
conclude with Lemma 3.3 that ψ = τ , and so (σ, τ ) is an apparent pair. ⊓⊔

This result implies that every column in the filtration 1-coboundary matrix that is
not amenable to the emergent shortcut described in Sect. 3.5 actually corresponds to
a proper interval in the Vietoris–Rips barcode. In other words, the zero persistence
pairs of the simplexwise refinement do not incur any computational cost in the matrix
reduction.
Emergent persistence pairs The definition of apparent pairs generalizes to the per-
sistence pairs in a simplexwise filtration that become apparent in the reduced matrix
during the matrix reduction, and are therefore called emergent pairs. They come in
two flavors.

Definition 3.11 Consider a simplexwise filtration (Ki )i∈I of a finite simplicial com-
plex K . A persistence pair (σ, τ ) of this filtration is an emergent facet pair if σ is the
youngest facet of τ , and an emergent cofacet pair if τ is the oldest cofacet of σ .

In other words, (σ, τ ) is an emergent facet pair if the column of τ in the filtration
boundary matrix is reduced, and an emergent cofacet pair if the column of σ in the
coboundary matrix is reduced. Thus, the columns corresponding to emergent pairs are
precisely the ones that are unmodified by the matrix reduction algorithm.

Note that (σ, τ ) is an apparent pair if and only if it is both an emergent facet pair
and an emergent cofacet pair. In contrast to the notion of an apparent pair, however,
the property of being an emergent pair does depend on the choice of the coefficient
field.

Proposition 3.12 Let σ, τ be simplices in the lexicographically refined Rips filtration.

Then (σ, τ ) is a zero persistence emergent cofacet pair if and only if

• τ is the lexicographically maximal cofacet of σ such that diam(τ ) = diam(σ ),

and

• τ does not form a persistence pair (ρ, τ ) with any simplex ρ younger than σ .

A dual statement holds for emergent facet pairs.

Proof Similar to Proposition 3.9, both conditions hold for any zero persistence emer-
gent cofacet pair, and it remains to show that the conditions imply that (σ, τ ) is an
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emergent cofacet pair. Again, the first condition implies that τ is the oldest cofacet
of σ in the filtration order. Now if τ is not paired with some younger simplex ρ, we
conclude from Proposition 3.1 that (σ, τ ) forms a persistence pair, which is then an
emergent cofacet pair. ⊓⊔

Shortcuts for apparent and emergent pairs In practice, zero persistence apparent
and emergent pairs provide a way to identify persistence pairs (σ, τ ) without even
enumerating all cofacets of the simplex σ , and thus without fully constructing the
coboundary matrix for the reduction algorithm.

We first describe how to determine whether a simplex σ appears in an apparent pair
(σ, τ ). Following Proposition 3.9, enumerate the cofacets of σ in reverse lexicographic
order until encountering the first cofacet τ with the same diameter as σ . Subsequently,
enumerate the facets of τ in forward lexicographic order, until encountering the first
facet of τ with the same diameter as τ . Now (σ, τ ) is an apparent pair if and only
if that facet equals σ . No further cofacets of σ need to be enumerated; this is the
mentioned shortcut. This way, we can determine for a given simplex σ whether it
appears in an apparent pair (σ, τ ), and identify the corresponding cofacet τ . By an
analogous strategy, we can also determine whether a simplex τ appears in an apparent
pair (σ, τ ), and identify the corresponding facet σ .

For the emergent pairs, recall that the columns of the coboundary filtration matrix
are processed in reverse filtration order, from youngest to oldest simplex. Assume
that D is the filtration k-coboundary matrix, corresponding to the coboundary oper-
ator δk : Ck(K ) → Ck+1(K ). Let σ be the current simplex whose column is to be
reduced, i.e., the columns of the matrix R = D · V corresponding to younger sim-
plices are already reduced, while the current column is still unmodified, containing
the coboundary of σ . Following Lemma 3.12, enumerate the cofacets of the simplex
σ in reverse lexicographic order. When we encounter the first cofacet τ with the same
diameter as σ , we know that τ is the youngest cofacet of σ . Equivalently, the index of
τ is the pivot index of the column for σ in the coboundary matrix. Up to this point, all
persistence pairs (ρ, φ) with simplices ρ younger than σ have been identified already,
since the algorithm processes simplices from youngest to oldest. Thus, if τ has not
previously been paired with any simplex, we conclude from Proposition 3.1 that (σ, τ )

is an emergent cofacet pair. Again, no further cofacets of σ need to be enumerated,
shortcutting the construction of the coboundary column for σ .

4 Implementation

We now discuss the main data structures and the relevant implementation details of
Ripser, the C++ implementation of the algorithms discussed in this paper. The code
is licensed under the MIT license and available at www.ripser.org. The development
of Ripser started in October 2015, with support for the emergent pairs shortcut added
in March 2016, and support for sparse distance matrices added in September 2016.
The first version of Ripser has been released in July 2016. The version discussed in
the present article (v1.2.1) has been released in March 2021.
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Input The input to Ripser is a finite metric space (X , d), encoded in a comma
(or whitespace, or other non-numerical character) separated list as either a dis-
tance matrix (full, lower, or upper triangular part), or as a list of points in some
Euclidean space (euclidean_distance_matrix), from which a distance matrix
is constructed. The data type for distance values and coordinates is a 32 bit float-
ing point number (value_t). There are two data structures for storing distance
matrices: compressed_distance_matrix is used for dense distance matrices,
storing the entries of the lower (or upper) triangular part of the distance matrix in a
std::vector, sorted lexicographically by row index, then column index. The adja-
cency list data structure sparse_distance_matrix is used when the persistence
barcode is computed only up to a specified threshold, storing only the distances below
that threshold. If no threshold is specified, the minimum enclosing radius

min
x∈X

max
y∈X

d(x, y)

of the input is used as a threshold, as suggested by ? ] and implemented in Eirene.
Above that threshold, for any point x ∈ X minimizing the above formula for the
enclosing radius, the Vietoris–Rips complex is a simplicial cone with apex x , and so
the homology remains trivial afterwards.
Vertices and simplices Vertices are identified with natural numbers {0, . . . , n − 1},
where n is the cardinality of the input space. Simplices are indexed by natural numbers
according to the combinatorial number system. The data type for both is index_t,
which is defined as a 64 bit signed integer (int64_t). The dimension of a simplex
is not encoded explicitly, but passed to methods as an extra parameter.

The enumeration of the vertices of a simplex encoded in the combinatorial number
system can be performed efficiently in decreasing order of the vertices. It is based on
the following simple observation.

Lemma 4.1 Let N be the number of a d-simplex σ in the combinatorial number

system with vertex indices id > · · · > i0. Then the largest vertex index of σ is

id = max
{

i ∈ N |
(

i
d+1

)
≤ N

}
.

Proof First note that
(

id

d+1

)
is a summand of N =

∑d
l=0

(
il

l+1

)
, and so we have

(
id

d + 1

)
≤ N .

For the maximality of id , note that σ is a d-simplex on the vertex set {0, . . . , id}.
In total, there are

(
id+1
d+1

)
d-simplices on that vertex set, indexed in the combinatorial

number system with the numbers 0, . . . ,
(

id+1
d+1

)
− 1. Thus, we have

N <

(
id + 1

d + 1

)
.

⊓⊔
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Using this lemma, the largest vertex index of a simplex can be found by performing a
binary search, implemented in the methodget_max_vertex. Moreover, the second
largest vertex index, id−1, equals the largest vertex index of the simplex with vertex
indices (id , . . . , i0), which has number N −

(
id

d+1

)
. This way, the numbers of any

simplex can be computed by iteratively applying the above lemma. This is implemented
in the method get_simplex_vertices.

The binary search for the maximal vertex of a simplex is implemented in
get_max_vertex. The requisite computation of binomial coefficients is done in
advance and stored in a lookup table (binomial_coeff_table).
Enumerating cofacets and facets of a simplex The columns of the cobound-
ary matrix are computed by enumerating the cofacets (implemented in the class
simplex_coboundary_enumerator). There are two implementations, one for
sparse and one for dense distance matrices. For the enumeration of facets there is only
one implementation (implemented in the class simplex_coboundary_enumerator),
as every facet of a simplex has to be contained in the filtration by the property that a
simplicial complex is closed under the fact relation.

For sparse distance matrices with a distance threshold t

(sparse_distance_matrix), the cofacets of a simplex are obtained by taking
the intersection of the neighbor sets for the vertices of the simplex,

⋂

x∈σ

{y ∈ X | d(x, y) ≤ t}.

More specifically, the distances are stored in an adjacency list data structure,
maintaining for every vertex an ordered list of its neighbors together with the
corresponding distance, sorted by the indices of the neighbors
(std::vector<std::vector<index_diameter_t>> neighbors).
The enumeration of cofacets of a given simplex (ripser<sparse_
distance_matrix>::simplex_coboundary_enumerator) searches
through the adjacency lists for the vertices of the simplex for common neighbors
(in the method (has_next). Any common neighbor then gives rise to a cofacet of
the simplex.

For dense distance matrices, the following straightforward method is used to enu-
merate the cofacets of a d-simplex σ = {vid

, . . . , vi0} in reverse colexicographic
order, represented by their indices in the combinatorial number system. Enumerating
j = n − 1, . . . , 0, for each j /∈ {id , . . . , i0} there is a unique subindex k ∈ {0, . . . , d}

with ik+1 > j > ik ; the corner cases j > id and i0 > j are covered by letting id+1 = n

and i−1 = −1. For the corresponding kth cofacet of σ we obtain the number

(vid
, . . . , vik+1 , v j , vik

. . . , vi0) �→

d∑

l=k+1

(
il

l + 2

)
+

(
j

k + 1

)
+

k∑

l=0

(
il

l + 1

)
.

Thus, the cofacets of σ can easily be enumerated in reverse colexicographic vertex
order by maintaining and updating the values of the two partial sums appearing in the
above equation, starting from the number for the simplex σ , starting from the value 0
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for the left partial sum (idx_above) and the number for the simplex σ for the right
partial sum (idx_below). The coboundary coefficient of the corresponding cofacet
is (−1)k .

Returning to the example from Sect. 2, the cofacets of the simplex {v5, v3, v0} in
the full simplex on seven vertices {v0, . . . , v6} are, in reverse colexicographic vertex
order, the simplices with numbers

(6, 5, 3, 0) �→ 0 +
(6

4

)
+

((5
3

)
+

(3
2

)
+

(0
1

))
= 0 + 15 + (10 + 3 + 0)

= 0 + 15 + 13 = 28,

(5, 4, 3, 0) �→
(5

4

)
+

(4
3

)
+

((3
2

)
+

(0
1

))
= 5 + 4 + (3 + 0) = 5 + 4 + 3 = 12,

(5, 3, 2, 0) �→
((5

4

)
+

(3
3

))
+

(2
2

)
+

(0
1

)
= (5 + 1) + 1 + 0 = 6 + 1 + 0 = 7,

(5, 3, 1, 0) �→
((5

4

)
+

(3
3

)
+

(1
2

))
+

(0
1

)
+ 0 = (5 + 1 + 0) + 0 + 0

= 6 + 0 + 0 = 6.

The facets of a d-simplex σ = {vid
, . . . , vi0} can be enumerated in a similar

way, this time in forward colexicographic vertex order (implemented in the class
simplex_coboundary_enumerator). Enumerating k = d + 1, . . . , 1, 0 and
letting j = ik , for the corresponding kth facet of σ we obtain the number

(vid
, . . . , vik+1 , vik−1 , . . . , vi0) �→

d∑

l=k+1

(
il

l

)
+

k−1∑

l=0

(
il

l + 1

)
.

The facets of σ can easily be enumerated in (forward) colexicographic vertex order
by maintaining and updating the values of the two partial sums appearing in the above
equation, starting from the value 0 for the left partial sum (idx_above) and the
number for the simplex σ for the right partial sum (idx_below).

Assembling column indices of the filtration coboundary matrix The above methods
for enumerating cofacets of a simplex are also used to enumerate the d-simplices
corresponding to the columns in the filtration coboundary matrix, i.e., the essen-
tial simplices and the death simplices for relative cohomology (in the method
assemble_columns_to_reduce). A list of the (d − 1)-simplices is passed
as an argument. Instead of enumerating all cofacets of each (d − 1)-simplex
σ = {vid−1 , . . . , vi0} in the list of (d − 1)-simplices, only the cofacets of the form
(v j , vid−1 , . . . , vi0) with j > id−1 are enumerated (using the method has_nextwith
parameter all_cofacets set to false). This way, each d-simplex (vid

, . . . , vi0)

is enumerated exactly once, as a cofacet of (vid−1 , . . . , vi0).
Since version 1.2, Ripser only assembles column indices that do not correspond

to simplices appearing in a zero persistence apparent pair. This strategy, adopted
from the parallel GPU implementation of Ripser by Zhang et al. (2020), leads to
another significant improvement both in memory usage and in computation time. The
methodis_in_zero_apparent_pair) checks whether a simplex has a zero per-
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sistence apparent cofacet or facet. Since low-dimensional simplices in Vietoris–Rips
filtration more frequently have apparent cofacets than apparent facets, the check for
cofacets is carried out first. To check for a zero persistence apparent cofacet of a sim-
plex (get_zero_apparent_cofacet), following Proposition3.9, the method
get_zero_pivot_cofacet searches for the lexicographically maximal cofacet
with the same diameter as the simplex, and then in turn get_zero_pivot_facet
searches for its lexicographically minimal facet with the same diameter. If that facet
is the initial simplex, a zero apparent pair is found. Checking for an apparent facet
(get_apparent_facet) works analogously.

Coefficients Ripser supports the computation of persistent homology with coef-
ficients in a prime field Fp, for any prime number p < 216. The support for
coefficients in as prime field can be enabled or disabled by setting a compiler flag
(USE_COEFFICIENTS). The data type for coefficients iscoeff_t, which is defined
as a 16 bit unsigned integer (uint16_t), admitting fast multiplication without
overflow on 64 bit architectures. Fast division in modular arithmetic is obtained by pre-
computing the multiplicative inverses of nonzero elements of the field (in the method
multiplicative_inverse_vector).

Column and matrix data sutrctures The basic data type for entries in a
(diameter_entry_t) boundary or coefficient matrix is a tuple consisting of a
simplex index (index_t), a floating point value (value_t) caching the diam-
eter of the simplex with that index, and a coefficient (coeff_t) if coefficients
are enabled. The type diameter_entry_t thus represents a scalar multiple of
an oriented d-simplex, seen as basis element of the cochain vector space Cd(K ).
If support for coefficients is enabled, the index (48 bit) and the coefficient (16
bit) are packed into a single 64 bit word (using __attribute__((packed))).
The actual number of bits used for the coefficients can be adjusted by changing
num_coefficient_bits, in order to accommodate a larger number of possible
simplex indices.

The reduction matrix V used in the persistence computation is represented as a list
of columns in a sparse matrix format (compressed_sparse_matrix), with each
column storing only a collection of nonzero entries, encoding a linear combination
of the basis elements for the row space. The diagonal entries of V are always 1
and are therefore not stored explicitly in the data structure. Note that the rows and
columns of V are not indexed by the combinatorial number system, but by a prefix
of the natural numbers corresponding to a filtration-ordered list of boundary columns
(columns_to_reduce).

Pivot extraction During the matrix reduction, the current working columns V j and
R j on which column operations are performed (working_reduction_column
andworking_coboundary) are maintained as binary heaps (std::priority_
queue) with value type diameter_entry_t, using a comparison function object
to specify the ordering of the heap elements (greater_diameter_or_smaller_
index) in reverse filtration order (of the simplices in the lexicographically refined
Rips filtration), thus providing fast access to the pivot entry of a column.
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A heap encodes a column vector as a sum of scalar multiples of the row basis
elements, the summands being encoded in the data type diameter_entry_t. The
heap may actually contain several entries with the same row index, and should thus
be considered as a lazily evaluated representation of a formal linear combination. In
particular, the pivot entry of the column is obtained (in the method pop_pivot) by
iteratively extracting the top entries of the heap and summing up their coefficients
as long as their row index does not change. At any point, the coefficient sum might
become zero, in which case the procedure continues with the next top entry regardless
of its row index. A similar lazy heap data structure has been used already in PHAT
(Bauer et al. 2017) and DIPHA (Bauer et al. 2014).

Coboundary matrix The method init_coboundary_and_get_pivot initial-
izes both working columns as V j = e j and R j = D j and returns the pivot of the
column D j . During the construction of D j , the method checks for a possible emer-
gent pair (i, j) while enumerating the cofacets of the simplex with index j . If the
pivot index of D j is found to form an emergent pair with j , the method immediately
returns the pivot, without completing the construction of D j . Since the implicit matrix
reduction variant of Algorithm 1 discards this column afterwards, retaining only the
pivot index (i = Pivot R j ) and the pivot entry (PivotEntry R j ), this shortcut does not
affect the correctness of the computation.
Persistence pairs The computation of persistence barcodes proceeds by applying
Algorithm 2 to the filtration coboundary matrix, as described in Sect. 3.3. First, the
persistent cohomology in degree 0 is computed (incompute_dim_0_pairs) using
Kruskal’s minimum spanning tree algorithm (Kruskal 1956) with a union-find (Tarjan
1979) data structure (union_find). After that, the remaining barcodes are computed
in increasing dimension (compute_dim_0_pairs).

Apparent pairs are not stored in the hash table. Consequently, the check for a column
with a given pivot index proceeds in two steps: first querying the hash table, and if no
pair is found, checking for an apparent pair (get_apparent_facet). The method
add_coboundary performs the columns additions R j = R j − λ j · D · Vk and
V j = V j − λ j · Vk in Algorithm 1.

If the reduction at column index j finishes with a nonzero working cobound-
ary R j and thus a persistence pair (i, j) is found, the index in the vector
columns_to_reduce corresponding to column R j is stored at key i in the hash
table pivot_column_index (std::unordered_map), providing fast queries
for the column j with a given pivot index i = Pivot R j , as required in Algorithm 1.
The working reduction column V j is written into the compressed reduction matrix,
while the working coboundary R j is discarded.

Since the keys of the hash table are precisely the birth indices of persistence
pairs, by the clearing optimization these indices are excluded when assembling the
column indices for the coboundary matrix in the next dimension (in the method
assemble_columns_to_reduce). The key type for the hash table is entry_t,
and the key in the hash table contains Pivot R j (in the index_t member of the type
entry_t) as well as PivotEntry R j (in the coefficient_t member). Only the
index_t field is used for hashing and comparing keys.
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5 Experiments

We compare Ripser (v1.2) to the four most efficient publicly available implementa-
tions for the computation of Vietoris–Rips persistence: Dionysus 2 (v2.0.8) (Morozov
2006), DIPHA (v2.1.0) (Bauer et al. 2014), Gudhi (v3.2.0) (GUDHI 2015), and
Eirene (v1.3.5) (Henselman and Ghrist 2016). All results were obtained on a desktop
computer with 4 GHz Intel Core i7 processor and 32 GB 1600 MHz DDR3 RAM.
The benchmark is implemented in Docker and can be reproduced using the com-
mand docker build github.com/Ripser/ripser-benchmark on any
machine with sufficient memory. The software DIPHA, written to support parallel
and distributed persistence computation, was configured to run on all 4 physical cores.
The data set sphere3 consists of 192 random points on the unit sphere in R

3. It is taken
from the benchmark for PHAT (Bauer et al. 2017). The data set o3 consists of 4096
random orthogonal 3 × 3 matrices. For this data set, we computed cohomology up to
degree 3 and up to a diameter threshold of 1.4. We also used a prefix of the o3 dataset
consisting of 1024 matrices, for which we used the threshold 1.8. The data set torus4

consists of 50000 random points from the Clifford torus S1 × S1 ⊂ R
4, for which

we used a diameter threshold of 0.15. The data sets dragon, fractal-r, and random16

are taken from the extensive benchmark (Otter et al. 2017). Our results are shown in
Table 1.
Apparent and emergent pairs For typical data sets, a large portion of the persistence
pairs are apparent or emergent pairs of persistence 0 and can thus be identified using
the shortcuts described in Sect. 3.5, as shown in Table 2. This table shows the counts
of various pairs for the data sets in each dimension, starting from 1. As predicted
by Theorem 3.10, in dimension 1 every zero pair is an apparent pair and hence also
an emergent pair. However, some non-zero emergent pairs appear as well. In higher
dimensions, there are non-emergent zero persistence pairs. The speedup obtained by
the emergent and apparent pair optimizations is shown in Table 3.
Implicit reduction matrix Implicit matrix reduction (Sect. 3.4) is a prerequisite for
discarding the columns of the reduced matrix R = D · V instead of storing them in
memory. This, in turn, is a prerequisite for the emergent pairs shortcut, which does
not even fully construct all columns of the boundary matrix. Finally, the apparent
pairs shortcut further avoids storing apparent pairs in the pivot hash table and the
list of columns to be reduced. Table 3 exemplifies the speedup obtained by these
optimizations. The running times shown in this table are obtained by making small
modification to Ripser to disable the optimizations in the order of their dependencies.

Given the similar timings of implicit reduction (with storing the reduced matrix)
and of explicit reduction (also using the reduced matrix for columns additions), we
observe that the extra cost of recreating the reduced columns, as required for implicit
reduction, is actually negligible in practice.
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