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Abstract—Wireless-powered communication and reconfig-
urable intelligent surface (RIS) can complement each other
for increasing energy utilization and spectrum efficiency by
reconfiguring the surrounding radio environment, however, which
has not been sufficiently studied by the existing works. In
this paper, we propose a joint radio resource and passive
beamforming optimization scheme for a downlink RIS-assisted
wireless-powered communication network with a harvest-then-
transmit protocol to improve system energy efficiency (EE). In
the considered model, the single-antenna wireless devices (WDs)
harvest wireless energy from a multi-antenna dedicated power
station (PS) through the RIS in the downlink and transmit
their independent information to a single-antenna receiver in
the uplink by a time-division-multiple-access mode. Our goal
is to maximize the total EE of all WDs. To make full use of
the beamforming gain provided by both the PS and the RIS, we
jointly optimize the active beamforming of the PS and the passive
beamforming of the RIS. To deal with the challenging non-
convex optimization problem with multiple coupled variables, we
first consider fixing the passive beamforming, and converting the
remaining radio resource allocation problem into an equivalent
convex problem which is solved by using Lagrange dual theory.
Then, we fix the optimized resource allocation parameters and
optimize the passive beamforming of the RIS by using a semidef-
inite programming method. Simulation results demonstrate that
the proposed algorithm achieves higher EE compared to the
conventional schemes.

Index Terms—Reconfigurable intelligent surface, wireless-
powered communication, energy efficiency, passive beamforming,

This work was supported by the National Natural Science Founda-
tion of China (61601071, 62071078), the Natural Science Foundation
of Chongqing (cstc2019jcyj-xfkxX0002, cstc2019jcyj-msxmX0666), Open
Funding of Shaanxi Key Laboratory of Information Communication Network
and Security (ICNS201904), and the Fundamental Research Funds for the
Central Universities ( 2021FZZX001-21). (Corresponding authors: Yongjun

Xu.)
Y. Xu is with the School of Communication and Information Engineer-

ing, Chongqing Key Laboratory of Mobile Communications Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065,
China, and also with Shaanxi Key Laboratory of Information Communication
Network and Security, Xian University of Posts & Telecommunications, Xian,
Shaanxi 710121, China (e-mail: xuyj@cqupt.edu.cn).

Z. Gao and Z. Wang are with the Chongqing University of
Posts and Telecommunications, Chongqing 400065, China (e-mails:
S190131173@stu.cqupt.edu.cn; wangzq@cqupt.edu.cn).

C. Huang is with College of Information Science and Electronic Engineer-
ing, Zhejiang University, Hangzhou 310027, China, and with International
Joint Innovation Center, Zhejiang University, Haining 314400, China, and also
with Zhejiang Provincial Key Laboratory of Info. Proc., Commun. & Netw.
(IPCAN), Hangzhou 310027, China. (e-mail: chongwenhuang@zju.edu.cn).

Z. Yang is with the Centre for Telecommunications Research, Department
of Engineering, King’s College London, London WC2R 2LS, U.K. (e-mail:
yang.zhaohui@kcl.ac.uk).

C. Yuen is with the Engineering Product Development (EPD) Pillar,
Singapore University of Technology and Design, Singapore 487372. (e-
mail:yuenchau@sutd.edu.sg).

radio resource allocation.

I. INTRODUCTION

W ITH the rapid development of the fifth-generation (5G)

communication, tens of billions of intelligent terminals

are promising to be connected in wireless communication

networks, which inevitably cause the explosion of data trans-

mission and different service requests. Thus, the demand

for ubiquitous connectivity of wireless devices (WDs) and

high network capacity boosts many new techniques, such as

massive multiple-input multiple-output (MIMO), cloud com-

puting, cognitive networks, heterogeneous networks, etc [1]–

[4]. Although these advanced communication technologies can

improve spectrum efficiency and satisfy different communi-

cation requirements of diverse radio environments, they also

induce high energy consumption and hardware cost.

Currently, wireless-powered communication networks (W-

PCNs) have been proposed to address this problem by using

the dedicated wireless energy to charge the energy-limited de-

vices [5]–[7]. Compared with the traditional battery-powered

strategy, the WPCNs can provide suitable energy and achieve

flexible wireless energy transfer in a low-cost operation way,

such as wireless sensor networks [8], device-to-device (D2D)

communication networks [9], wireless body area networks

[40], etc. As a result, many scholars have focused on the

resource allocation (RA) problems in WPCNs to improve

system capacity, energy efficiency (EE), and prolong the

lifetime of WDs.

In particular, the authors in [11] proposed an iteration-based

time allocation algorithm to maximize the total throughput of

multiple distributed WDs under the maximum transmission

time constraint for a multiuser WPCN with a harvest-then-

transmit (HTT) protocol, where all distributed WDs harvested

the wireless energy by a hybrid access point (HAP) in the

downlink and then sent their independent information to the

HAP in the uplink by a time-division-multiple-access (TD-

MA) mode. The work in [12] considered a dual-hop WPCN

with a full-duplex HAP and maximized the sum throughput

of the uplink transmission under both amplify forward and

decode forward modes. However, the above works [11] and

[12] only considered the time allocation and ignored the

power allocation of each WD. In [13], the authors studied

the sum-throughput maximization problem for a relay-based

wireless-powered uplink cellular network by jointly optimizing

information transmission time and the transmit power of each

WD. Besides, the throughput maximization RA problems for

WPCNs were investigated in various scenarios, e.g., unmanned



aerial vehicle (UAV)-enabled networks [14]–[16], ambient

backscatter communication networks [17] and cognitive radio

networks [18]. To further improve the uplink transmission

quality of WDs with limited energy storage, the authors in

[19] investigated the joint optimization problem of energy

resource and time resource to maximize the sum rate of WDs

in a WPCN with energy storage constraints. However, the

improvement of system capacity is limited due to low energy

conservation efficiency. In order to deal with this issue, MIMO

technique was further employed in WPCNs in [20], where the

authors studied a sum-throughput maximization RA problem

by joint designing time allocation and energy beamforming

vectors. To improve the fairness of WDs, the authors in [21]

investigated a max-min throughput RA problem in a multiuser

WPCN, where a multi-antenna HAP provided the energy

signals to WDs by an active beamforming way. Furthermore,

the weighted sum-rate maximization problems were studied

in [22], [23] by optimizing energy harvesting (EH) time and

transmit power, where the energy beamforming vector was

also considered in [23]. In order to balance transmission rate

and power consumption, the EE-based maximization problems

were addressed in [24], [25]. Although we notice that the

above works [11]–[14], [17]–[25] have optimized the data

transmission time or the EH time and the beamforming vector

of the base station (BS), the low energy transfer efficiency

caused by the obstacles and time-varying channel fading is

still a fundamental performance bottleneck of WPCNs.

Recently, reconfigurable intelligent surface (RIS) [26]–[28],

as a passive and low-energy-consumption technology, has been

attracted a lot of attention in wireless communication systems.

Specifically, an RIS integrates many passive reflecting ele-

ments that can independently change the propagation direc-

tion of the electromagnetic waves without signal processing

[29]–[31]. Moreover, information exchange can be achieved

between a smart controller of RIS and the BS [32], [33]. The

signals from the BS to the RIS can be reflected to the des-

tination by reconfiguring the surrounding radio environment.

In other words, the RIS can maximize the signal strength of

receivers by properly adjusting the reflecting elements of RIS

(e.g., phase shifts). Since the RIS has the advantage of altering

the radio propagation environment for enhancing the end-to-

end signal strength in a passive and low-energy-consumption

manner, this makes RIS become a promising solution to

improve the communication performance of WPCNs.

There are some works on RIS-assisted WPCNs [34]–[37].

For example, the authors in [34] studied a sum-rate maximiza-

tion RA problem by jointly optimizing the time scheduling

and the phase-shift matrix of the RIS. But the fairness of

WDs was not considered in [34]. Considering a more practical

case, the authors in [35] and [36] investigated the fairness-

based RA problem by maximizing the minimum throughput

and the weighted sum rate, respectively. However, the above

works [35] and [36] ignored the energy consumption of RIS.

Considering the energy consumption of circuit operation, the

authors in [37] studied a sum-rate maximization problem by

jointly optimizing the phase shifts of the RIS and network

resource in a self-sustainable RIS-assisted WPCN, where the

RIS can simultaneously harvest the energy from the HAP

and reflect the wireless signals to the receivers. However,

most of the existing works [34]–[37] employed the HAP to

transfer wireless energy and receive wireless information so

that it leads to a ‘doubly near-far’ problem1. Moreover, most

of the existing works aim to improve the system rate while

neglecting system EE, which is also a critical issue for EH-

based communication systems2.

In this paper, we study the EE-based maximization RA

problem for an RIS-assisted WPCN by jointly optimizing radio

resource and passive beamforming, where the dedicated power

station (PS) and the information receiver (IR) are separated3.

The main contributions are summarized as follows:

• We design a separated energy/information transceiver for

a multiuser RIS-assisted WPCN with a HTT protocol,

where multiple WDs first harvest energy from a multi-

antenna dedicated PS through the RIS and then transmit

their wireless signals to the IR by using the harvested

energy. Considering the minimum throughput and the EH

constraint of each WD, the maximum transmit power of

the PS, as well as the impact of circuit power consump-

tion of the RIS, the total EE maximization problem of

WDs is formulated. The formulated problem becomes a

fractional optimization problem with coupled variables,

which is challenging to solve4.

• To tackle this challenging problem, Dinkelbach’s method

is firstly used to transform the fractional problem in-

to an equivalent subtractive form. Then, an alternating

optimization approach is used to decompose the EE

maximization problem into two subproblems, i.e., the

radio RA subproblem with the fixed passive beamform-

ing and the passive beamforming subproblem with the

fixed radio RA parameters. Based on effective variable

substitutions, the radio RA subproblem is transformed

into a convex one, where the closed-form solutions are

obtained by using Lagrange dual method. Furthermore,

the passive beamforming subproblem is transformed in-

to a standard convex semidefinite programming (SDP)

problem by employing effective variable substitutions

and the semidefinite relaxation (SDR) method. Finally,

a Dinkelbach-based iterative algorithm and the computa-

1In the RIS-assisted WPCN with a HAP, the harvested energy of the far-
distance WD under the EH phase is smaller than that of the near-distance WD.
However, under the data transmission phase, the transmit power from the far-
distance WD to the HAP is much higher than that from the near-distance WD
to the HAP. This phenomenon may cause a certain unfairness.

2 For an EH-based communication network, the amount of the harvested
energy and the energy-conversion efficiency are extremely low, so that
considering a trade-off between data rates and energy consumption becomes
an important design aspect for overall performance improvement.

3The separated PS and the IR can well overcome the ‘doubly near-far’
phenomenon. The reason is that under the information transmission phase,
the WD with less harvested energy may be near to the IR. The transmission
quality can be guaranteed. In other words, a WD far from a PS may require
less energy to achieve similar communication quality as the WD with more
harvested energy.

4The problem is challenging to solve: i) The fractional objective function is
difficult to deal with; ii) the joint optimization problem of the transmit power,
transmission time, the active beamforming, and the passive beamforming is
challenging for finding a suitable convex form; iii) the minimum throughput
constraint is important to guarantee the quality of service (QoS) of each WD,
but it is non-convex due to the coupled transmit power and transmission time,
which have been separately considered.
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Fig. 1. A downlink multiuser RIS-assisted WPCN.

tional complexity of the proposed algorithm are provided.

• Simulation results demonstrate that the proposed algo-

rithm has fast convergence and higher EE compared with

the baseline algorithm and the existing algorithm.

The rest of this paper is structured as follows. The system

model and problem formulation are presented in Section II.

In Section III, we design an EE-based maximization RA

algorithm. Section IV gives simulation results. The paper is

concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiuser RIS-assisted WPCN, as shown in

Fig 1, which consists of one PS with M antennas, one RIS,

K single-antenna WDs with the EH function and one IR with

a single-antenna. The direct link from the PS to the WDs is

blocked by obstacles, such as high buildings [38], [39]. The

transmission frame is given in Fig. 2, where the time frame T

is divided into wireless energy transfer (WET) time (i.e., phase

I) and wireless information transmission (WIT) time (i.e.,

phase II). During phase I, the PS transmits wireless energy

to the RIS with N passive reflecting elements. Then, the RIS

can reflect energy signals to multiple WDs in the downlink.

During phase II, WDs use the harvested energy to transmit

wireless information to the IR via a TDMA manner. Defining

the set of WDs as K = {1, 2, · · · ,K}, and the set of reflecting

elements as N = {1, 2, · · · , N}. All channels are assumed

to follow a quasi-static flat fading model, where all channel

coefficients keep constant during each block T but vary from

one block to another block. All channels are independent of

each other. Additionally, vectors and matrices are denoted by

bold lowercase letters and bold uppercase letters, respectively.

|| · || denotes the Euclidean norm of a complex vector. Tr(X)
denotes the trace of X. XT denotes the transpose of X . XH

denotes the conjugate transpose of X. X � 0 means that X is

a positive semi-define matrix. diag(X) denotes a vector whose

elements are extracted from the diagonal elements of X.

According to the frame structure, the total time satisfies

t0 +

K
∑

k=1

tk ≤ T. (1)

where t0 denotes the WET time, tk denotes the WIT time of

WD k.

PS RIS

RIS

WET
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IR IR IR
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...
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Fig. 2. The transmission frame.

A. Phase I: WET

During phase I, the PS sends the energy signals to the RIS

meanwhile the RIS reflects the obtained signals to the EH

WDs. The harvested energy of WDs is used to support the

circuit operation and data transmission for phase II. Defining

s ∈ C
M×1 as the pseudo-random energy signal transmitted by

the PS, the maximum transmit power is limited by

Tr
(

E
[

ss
H
])

= Tr (W) ≤ Pmax, (2)

where W ∈ C
M×M denotes the energy beamforming matrix,

and W � 0. Pmax denotes the maximum transmit power

threshold of the PS.

Denoting v = [v1, v2, · · · , vN ]H as the reflection coeffi-

cients of the RIS, where vn = ejθn and |vn| = 1. θn ∈ [0, 2π)
denotes the phase shift of the n-th reflecting element [29]. We

define Θ = diag(v) as the reflection matrix of the RIS and

can obtain the received energy signal of WD k, i.e.,

yEH
k = h

H
k ΘHs+ nk, (3)

where H ∈ C
N×M and hk ∈ C

N×1 represent the channel

matrix and the channel vector from the PS to the RIS and

from the RIS to the k-th WD, respectively. nk denotes the

additive white Gaussian noise (AWGN) of WD k with zero

mean and variance δ2k, namely, nk ∼ CN (0, δ2k).

Since the background noise is always small, nk can be

ignored [37]. Thus, the harvested energy at the k-th WD is

EEH
k = χt0E

[

|yEH
k |2

]

=χt0

{

(

h
H
k ΘH

)

W
(

h
H
k ΘH

)H
}

,

(4)

where χ ∈ [0, 1] denotes the energy conversion efficiency of

each WD5.

Defining PPS and Pe as the circuit power consumption of

the PS and each reflecting element, respectively. Thus, the total

5 The linear EH model is always used in EH-based wireless networks [31],
[35]–[37]. Moreover, we focus on the investigation of the EE maximization
problem in RIS-assisted WPCNs and exploring how to jointly optimize radio
resource and the passive beamforming of the RIS to maximize the total EE
of WDs. The formulated problem is a fractional optimization problem with
coupled variables, which is challenging to solve. If we apply the nonlinear
EH model, which makes the optimization problem more complex and hard to
solve. Besides, the linear EH model can be considered as a special case of
the nonlinear EH model with a piece-wise linear form [40] in some degree.
Moreover, according to [41], the linear EH model is accurate for the practical
EH circuits when the input power is small. For the above reasons, the linear
EH model is adopted in this paper.



energy consumption under phase I can be formulated as

QPhase−I(W, t0,Θ) = t0(P
PS +NPe) +

K
∑

k=1

t0P
C
k

+ t0Tr (W)−
K
∑

k=1

EEH
k ,

(5)

where PC
k denotes the circuit power consumption of WD k.

B. Phase II: WIT

During phase II, each WD transmits its own information to

the IR in a TDMA manner. Defining sWD
k as the transmission

symbol of WD k, satisfies E[|sWD
k |2] = 1, the transmission

signal of WD k is given by

xWD
k =

√
pks

WD
k , (6)

where pk ≥ 0 denotes the transmit power of WD k. The

received signal from WD k to the IR is

yIRk = gkx
WD
k + nIR, (7)

where gk denotes the channel coefficient from WD k to the

IR. nIR denotes the AWGN at the IR with zero mean and

variance δ2, namely nIR ∼ CN (0, δ2).
The achievable throughput of WD k is

Rk = tklog2

(

1 +
pk|gk|2

δ2

)

. (8)

Denoting t = [t1, t2, · · · , tK ]T and p = [p1, p2, · · · , pK ]T

as the time allocation vector and the transmit power vector

of WDs, respectively. Accordingly, the sum throughput of all

WDs is

R (t,p) =

K
∑

k=1

Rk=

K
∑

k=1

tklog2

(

1 +
pk|gk|2

δ2

)

. (9)

Since the transmit power of WD k (e.g., pk) is limited by

its harvested energy, we have the following transmit power

constraint

pktk+PC
k (t0 + tk) ≤ EEH

k . (10)

Defining P IR as the circuit power consumption of the IR,

the total energy consumption under phase II is formulated as

QPhase−II(t,p) =

K
∑

k=1

tkpk +

K
∑

k=1

tkP
C
k +

K
∑

k=1

tkP
IR. (11)

Based on (5) and (11), the total energy consumption of the

whole system is given by

Qtotal(W, t0, t,p,Θ) = QPhase−I(·)+QPhase−II(·)
= t0(P

PS +NPe)+
K
∑

k=1

(t0 + tk)P
C
k +t0Tr (W)+

K
∑

k=1

tk(pk+P IR)−
K
∑

k=1

χt0
{

(hH
k ΘH)W(hH

k ΘH)
H}

.

(12)

C. Problem Formulation

To reflect the impact of energy consumption on overall

performance and guarantee the QoS of each WD, an EE-based

RA problem with the minimum throughput constraint can be

formulated as

max
W,t0,t,p,Θ

R(t,p)

Qtotal (W, t0, t,p,Θ)

s.t. C1 : pktk + PC
k (t0 + tk) ≤ EEH

k ,

C2 : t0 +

K
∑

k=1

tk ≤ T, t0 ≥ 0, tk ≥ 0,

C3 : tklog2

(

1 +
pk|gk|2

δ2

)

≥ Rmin
k ,

C4 : Tr (W) ≤ Pmax,W � 0,

C5 : |Θn,n| = 1, ∀n,

(13)

where Rmin
k denotes the individual QoS constraint of WD k.

C1 ensures that the energy consumption of WD k does not

exceed the harvested energy EEH
k . C2 denotes the total time

constraint. C3 is the minimum throughput constraint of each

WD. C4 limits the maximum transmit power of the PS. C5

is the phase-shift constraint of the RIS6. Problem (13) is non-

convex due to the fractional objective function and the coupled

optimization variables.

III. ENERGY-EFFICIENT RA ALGORITHM

To solve problem (13), Dinkelbach’s method is employed

to transform the objective function into a subtractive form

[42]. Accordingly, an alternating optimization approach [30]

is used to decompose the problem into two subproblems: i)

the radio RA subproblem with the fixed passive beamforming

Θ; ii) the passive beamforming optimization subproblem with

the fixed parameters (W, t0, t,p). These two subproblems are

converted into convex problems which are resolved by using

the Lagrange dual method and the SDP method, respectively.

A. Transformation of the Objective Function

It is observed that the objective function in problem (13)

is a fractional form that is hard to solve directly. Based on

Dinkelbach’s method [42], [43], we define η as the system

EE, namely

η =
R (t,p)

Qtotal (W, t0, t,p,Θ)
. (14)

Defining η∗ as the optimal EE, η∗ can be achieved if and

only if it satisfies

max
W,t0,t,p,Θ

R(t,p)− η∗Qtotal(W, t0, t,p,Θ) = 0. (15)

As a result, for a given η, problem (13) can be solved by

the following parameters optimization problem

max
W,t0,t,p,Θ

R(t,p)− ηQtotal (W, t0, t,p,Θ)

s.t. C1 − C5.
(16)

6 In fact, the reflection coefficients of the RIS include both amplitudes and
phase shifts, i.e., βne

jθn , where βn ∈ [0, 1] and θn ∈ [0, 2π) denote the
reflection amplitude and phase shift of the n-th element, respectively. Similar
to the existing works [34]–[37], we set βn = 1, and the phase shifts satisfy
|Θn,n| = 1. As a result, each reflecting element of the RIS can provide the
phase-shift optimization for changing radio channel environments.



From (14) to (16), we give the transformation process of the

objective function in problem (13) from the fractional form to

an equivalent subtractive form. To better illustrate the updating

process of η, we provide a flow chart as shown in Fig. 3,

where η(0) = 0 denotes the initial value of η, η(i) denotes the

i-th iteration value of η, ε denotes the convergence precision.

Problem (16) is still a non-convex problem due to the coupled

variables (e.g., (W, t0,Θ) is coupled, (t,p) is coupled). Then,

we use the alternating optimization approach [30] to solve

problem (16).

Begin

Initialize: system parameters and  

Obtain the solution  

Update

Obtain 

End

Obtain

No

Yes

Solve problem (16)

via (14)

Fig. 3. The flow chart of updating η.

B. Radio RA Subproblem

Under the fixed Θ, the cascaded channel from the PS to the

k-th WD can be defined as Gk = h
H
k ΘH. Substituting (4)

into problem (16), we can obtain the following optimization

problem

max
W,t0,t,p

R(t,p)− ηQtotal (W, t0, t,p)

s.t. C2 − C4,

C̃1 : pktk + PC
k (t0 + tk) ≤ χt0(GkWG

H
k ).

(17)

Problem (17) is still a non-convex optimization problem due

to the coupled variables (i.e., W, t0, tk, pk) in the objective

function and the constraints. To resolve the problem, define

the auxiliary variables W̄ = t0W, fk(W̄) = χ(GkW̄G
H
k )

and p̄ = [p̄1, p̄2, · · · , p̄K ]T (i.e., p̄k = pktk), based on (9) and

(12), problem (17) can be written as

max
W̄,t0,t,p̄

K
∑

k=1

tklog2

(

1 +
p̄k|gk|2
tkδ2

)

− η

{

K
∑

k=1

p̄k

+ t0
(

PPS +NPe) +

K
∑

k=1

(t0 + tk)P
C
k

+

K
∑

k=1

tkP
IR +Tr

(

W̄
)

−
K
∑

k=1

fk(W̄)

}

(18)

s.t. C2, C̄1 : p̄k + PC
k (t0 + tk) ≤ fk(W̄),

C̄3 : tklog2

(

1 +
p̄k|gk|2
tkδ2

)

≥ Rmin
k ,

C̄4 : Tr
(

W̄
)

≤ t0P
max.

Problem (18) is a standard convex optimization problem that

can be solved by using the Lagrangian dual method [44]. The

Lagrangian function of problem (18) is given by

L
(

W̄, t0, t, p̄,ϕ,β, κ, µ
)

=
K
∑

k=1

tklog2

(

1 + p̄k|gk|
2

tkδ2

)

−η

{

t0(P
PS +NPe) +

K
∑

k=1

(t0 + tk)P
C
k +

K
∑

k=1

p̄k

+
K
∑

k=1

tkP
IR +Tr(W̄)−

K
∑

k=1

fk(W̄)

}

+
K
∑

k=1

ϕk

{

fk(W̄)−
(

p̄k + PC
k (t0 + tk)

)}

+
K
∑

k=1

βk

{

tklog2

(

1 + p̄k|gk|
2

tkδ2

)

−Rmin
k

}

+κ(T − t0 −
K
∑

k=1

tk) + µ
{

t0P
max − Tr(W̄)

}

,

(19)

where ϕ = [ϕ1, ϕ2, · · · , ϕK ]T, β = [β1, β2, · · · , βK ]T, κ,

and µ are non-negative Lagrange multipliers. Therefore, the

dual function is

Γ (ϕ,β, κ, µ) = max
W̄,t0,t,p̄

L
(

W̄, t0, t, p̄,ϕ,β, κ, µ
)

. (20)

The dual problem is given as

min
ϕ,β,κ,µ

Γ (ϕ,β, κ, µ)

s.t. ϕ � 0,β � 0, κ ≥ 0, µ ≥ 0.
(21)

To obtain the optimal W̄∗, (19) can be rewritten as

L(W̄, t0, t, p̄,ϕ,β, κ, µ) = L̄(t0, t, p̄,ϕ,β, κ, µ)
+ Tr(ḠW̄),

(22)

where Ḡ =
K
∑

k=1

(η + ϕk)χG
H
k Gk − (η + µ) IM , and

L̄ (t0, t, p̄,ϕ,β, κ, µ) =
K
∑

k=1

(1 + βk) tklog2

(

1 + p̄k|gk|
2

tkδ2

)

+κ

(

T − t0 −
K
∑

k=1

tk

)

− η

{

t0(P
PS +NPe) +

K
∑

k=1

p̄k

+
K
∑

k=1

(t0 + tk)P
C
k +

K
∑

k=1

tkP
IR

}

+ µt0P
max

−
K
∑

k=1

ϕk

{

p̄k + PC
k (t0 + tk)

}

−
K
∑

k=1

βkR
min
k .



As a result, the solution of W̄ can be obtained by using the

following lemma.

Lemma 1: Defining G =
K
∑

k=1

(η + ϕk)χG
H
k Gk, for the

fixed (t0, η, ϕk, µ), W̄
∗ and µ∗ are

{

W̄
∗ = t0P

max
u1u1

H,

µ∗ = σ1 − η,
(23)

where σ1 and u1 are the largest eigenvalue and its associated

eigenvector of G, respectively. Since W̄ = t0W, the closed-

form solution of W∗ is

W
∗ = Pmax

u1u
H
1 . (24)

Proof : See Appendix A. �

Furthermore, in order to get the updating expression of

t0, we take the partial derivative of L
(

W̄, t0, t, p̄,ϕ,β, κ, µ
)

with respect to t0, namely

∂L(W̄,t0,t,p̄,ϕ,β,κ,µ)
∂t0

= µPmax − κ−
K
∑

k=1

ϕkP
C
k

− η

{

(PPS +NPe)−
K
∑

k=1

PC
k

}

.

(25)

Since (25) is a linear function of t0, t0 can be updated by

using the subgradient method [45], namely

t
(l+1)
0 =

[

t
(l)
0 −∆

(l)
1 × ∂L(W̄,t0,t,p̄,ϕ,β,κ,µ)

∂t0

]+

, (26)

where [x]
+ ∆

= max (0, x). l is the iteration number. ∆1

represents the step size.

To obtain the optimal p∗k and t∗k, (19) can be rewritten as

L
(

W̄, t0, t, p̄,ϕ,β, κ, µ
)

=
K
∑

k=1

Lk (tk, p̄k, ϕk, βk, κ)

−η

{

t0
(

PPS +NPe

)

+Tr(W̄)−
K
∑

k=1

fk(W̄)

+
K
∑

k=1

t0P
C
k

}

+ κ (T − t0) + µ
{

t0P
max − Tr

(

W̄
)}

+
K
∑

k=1

ϕk

{

fk(W̄)− PC
k t0
}

−
K
∑

k=1

βkR
min
k ,

(27)

where

Lk (tk, p̄k, ϕk, βk, κ) = tk(1 + βk)log2

(

1 + p̄k|gk|
2

tkδ2

)

−tk
{

κ+ ηP IR + PC
k (η + ϕk)

}

− p̄k(η + ϕk).

By taking the partial derivative of Lk (tk, p̄k, ϕk, βk, κ) with

respect to p̄k and tk, respectively, we have

∂Lk(tk,p̄k,ϕk,βk,κ)
∂p̄k

= 1+βk

ln 2

(

tk|gk|
2

tkδ2+p̄k|gk|
2

)

− η − ϕk.
(28)

∂Lk(tk,p̄k,ϕk,βk,κ)
∂tk

= (1+βk) log2

(

1 + pk|gk|
2

δ2

)

−
{

κ+ ηP IR + PC
k (η + ϕk)

}

− pk(η + ϕk).
(29)

Based on Karush-Kuhn-Tucker (KKT) conditions [45],

the closed-form solution of pk can be obtained by

∂Lk(tk,p̄k,ϕk,βk,κ)
∂p̄k

= 0, i.e.,

p∗k =
p̄∗k
tk

=

[

1 + βk

ln 2 (η + ϕk)
− δ2

|gk|2

]+

. (30)

Since (29) is a linear function of tk, we have

t
(l+1)
k =

[

t
(l)
k −∆

(l)
2 × ∂Lk (tk, p̄k, ϕk, βk, κ)

∂tk

]+

, (31)

where ∆2 is the step size. Similarly, Lagrangian multipliers

can be updated by

ϕ
(l+1)
k = [ϕ

(l)
k −∆

(l)
3 × {fk(W̄)− (tkpk + PC

k (t0 + tk))}]+,
(32)

β
(l+1)
k =

[

β
(l)
k −∆

(l)
4 × {tklog2(1 + pk|gk|

2

δ2 )−Rmin
k }

]+

,

(33)

κ(l+1) =

[

κ(l) −∆
(l)
5 ×

(

T − t0 −
K
∑

k=1

tk

)]+

, (34)

where ∆3, ∆4, and ∆5 are the corresponding step sizes of

Lagrange multipliers.

C. Passive Beamforming Subproblem

Defining Φk=diag
(

h
H
k

)

H, we have

h
H
k ΘH=vHdiag

(

h
H
k

)

H = vH
Φk. Unedr the fixed

(W, t0, t,p), based on (4) and (13), the passive beamforming

subproblem of problem (16) becomes

max
v

K
∑

k=1

χt0

(

vH
ΦkWΦ

H
k v
)

s.t. Ĉ1 : pktk + PC
k (t0 + tk) ≤ χt0

(

v
H
ΦkWΦ

H
k v

)

,

Ĉ5 : |vn|2 = 1, ∀n.

(35)

Problem (35) is a non-convex problem, since Ĉ5

is a non-convex quadratic equality constraint. We have

vH
ΦkWΦ

H
k v = Tr

(

ΦkWΦ
H
k vv

H
)

and define V = vvH,

where Rank(V) = 1 and V � 0 [42]. However, the rank-one

constraint is non-convex. Based on the SDR method, problem

(35) can be relaxed as

max
V

K
∑

k=1

χt0Tr
(

ΦkWΦ
H
k V

)

s.t.
⌣

C1 : pktk + PC
k (t0 + tk) ≤ χt0Tr

(

ΦkWΦ
H
k V

)

,

⌣

C5 : Vn,n = 1, ∀n,V � 0.

(36)

Problem (36) is a standard SDP that can be solved by

using convex optimization tools [45]. However, the optimal

solution of (36) may not satisfy the rank-one condition,

namely Rank (V) 6= 1. Therefore, the Gaussian randomization

method [30], [46] is further employed to solve it. An iteration-

based RA algorithm is summarized in Algorithm 1.

Defining V̄ as the optimal solution of problem (36), we

can obtain the singular value decomposition V̄ = ΠΛΠ
H,



Algorithm 1 A Dinkelbach-based Iterative Algorithm

1: Initialize the maximum inner iteration number Lmax, the

maximum outer iteration number Imax, the convergence

precision ε, M , N , K, T , H, hk, gk, δ2, Pmax, χ, PC
k ,

PPS,Pe, P IR, Rmin
k ;

2: Initialize i = 0, t
(0)
0 , t

(0)
k , ϕk > 0, βk > 0, κ > 0, µ > 0,

∆
(0)
1 ∼ ∆

(0)
5 ;

3: while i ≤ Imax or
∣

∣

∣
R(t(i),p(i))− η(i−1)Qtotal(W(i), t

(i)
0 , t(i),p(i),Θ(i))

∣

∣

∣
>

ε do

4: Under the fixed Θ, update (W, t0, t,p);
5: for l = 1 to Lmax do

6: Update W by (24) and calculate µ by (23);

7: Update t0 by (26);

8: for k = 1 to K do

9: Update pk by (30);

10: Update tk by (31);

11: Update ϕk, βk, κ by (32), (33) and (34);

12: Update p̄k = tkpk;

13: end for

14: Update W̄ = t0W;

15: if
∥

∥W
(l) −W

(l−1)
∥

∥

2 ≤ ε and

∣

∣

∣
t
(l)
0 − t

(l−1)
0

∣

∣

∣
≤ ε

and
∥

∥p(l) − p(l−1)
∥

∥

2 ≤ ε and
∥

∥t(l) − t(l−1)
∥

∥

2 ≤ ε

then

16: 1) Obtain the optimal W∗ = W
(l);

17: 2) Obtain the optimal t∗0 = t
(l)
0 ;

18: 3) Obtain the optimal p∗ = p(l);

19: 4) Obtain the optimal t∗ = t(l);

break;

20: end if;

21: end for;

22: Under the fixed (W, t0, t,p), update Θ;

23: Obtain Θ by solving (36) via CVX tools [45] and the

Gaussian randomization method [46];

24: i = i+ 1;

25: η(i) =
R(t(i−1),p(i−1))

Qtotal
(

W(i−1),t
(i−1)
0 ,t(i−1),p(i−1),Θ(i−1)

) ;

26: end while

where Π=[π1, · · · ,πN ]H and Λ= diag (λ1, · · · , λN ) are the

unitary matrix and the diagonal matrix, respectively. Then,

the suboptimal solution of problem (35) can be constructed

as v̄ = ΠΛ
1/2r, where r ∼ CN (0, IN ) is a random

vector. The maximum objective function of problem (35)

can be obtained by finding the best r∗. Therefore, we can

obtain v̄∗ = ΠΛ
1/2r∗. Since v̄∗ is the suboptimal solution of

problem (35), we have v∗ = exp
{

j arg
([

v̄∗

v̄∗N

]

1:N

)}

. As a

result, the optimal phase-shift matrix is Θ
∗ = diag (v∗).

D. Complexity Analysis

In this subsection, we analyze the computational complexity

of Algorithm 1. Since the maximum inner iteration number

is Lmax, the calculation of W
∗ requires the eigenvalue de-

composition of a M × M matrix G with the complexity of

O
(

LmaxM
3
)

[36]. According to (30), the iteration number

(0,0)
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IR

RIS

y

x

Obstacles

d0

WD1 WD2 WDK gk

...

d1
(-8,2)

(60,0)

Fig. 4. The simulated network model.

for pk is O(LmaxK). Based on the subgradient method, the

maximum iteration number is O (LmaxK) according to (26),

(31), and (32)-(34). Thus, the complexity of problem (17) is

O
(

LmaxM
3
)

. The SDP problem (36) can be solved with a

worst-case complexity of O
{

(N + 1)4.5
}

[36]. In summary,

the computational complexity of the proposed algorithm is

O
{

Imax(LmaxM
3 + (N + 1)

4.5
)
}

.

IV. SIMULATION RESULTS

In this section, simulation results are provided to evaluate

the effectiveness of the proposed algorithm. The simulated

network model is illustrated in Fig. 4. The coordinates of

the PS, the RIS and the IR are (-8, 2), (2, 2), and (60, 0),

respectively. The WDs are randomly and uniformly distributed

within a circular area centered at (2, 0) with radius 1 m. The

path-loss model is Γ(d) = Γ0(
d
dR

)−α, where Γ0 ∼ CN (0, 1)
denotes the path-loss factor at the reference distance dR = 1
m, d is the distance between one transmitter and one receiver,

and α ∈ [2, 5] denotes the path-loss exponent [34]–[36]. Other

parameters are: χ = 0.8, PC
k = 7 dBm, Pe = 1.8 dBm,

PPS = 17 dBm, P IR = 17 dBm, δ2 = −80 dBm, Pmax = 25
dBm, Rmin

k = 0.5 bits/Hz, Imax = 105, Lmax = 105,

ε = 10−5, d0 = 10 m, d1 = 60 m, T = 1 s, M = 6,

N = 30, and K = 4.

A. Performance Evaluation of the Proposed Algorithm

Fig. 5 shows the total EE of WDs versus the number of

iterations. The value of the minimum throughput threshold of

each WD is set to Rmin
k = 0.5 bits/Hz. The proposed algorithm

can converge quickly even if the values of M and N are large.

Additionally, the total EE of WDs increases with the increasing

N . The reason is that a large number of reflecting elements

can reflect more energy signals to the WDs and increase the

harvested energy.

Fig. 6 depicts the total EE of WDs versus the number of

antennas of the PS. From the figure, the total EE of WDs

improves quickly with the increasing number of antennas M .

What’s more, with the increasing transmit power threshold

Pmax, the total EE of WDs increases accordingly. Since a

bigger Pmax provides more available energy signals to the

WDs so that they can harvest more wireless energy for the

data transmission during phase II.

Fig. 7 depicts the total EE of WDs versus the minimum

throughput threshold of each WD. The total EE of WDs
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Fig. 5. The convergence of the proposed algorithm.
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Fig. 6. The total EE of WDs versus the number of antennas of the PS M .

decreases with the increasing throughput threshold Rmin
k .

Because each WD requires to provide more transmit power

for guaranteeing the QoS constraint so that the total power

consumption of WDs under phase II increases a lot. Addition-

ally, the improvement of throughput of WDs is smaller than

that of total transmit power consumption.

Fig. 8 shows the total EE of WDs versus the number of

reflecting elements of the RIS N . With the increasing N ,

the total EE of WDs increases quickly and then moderately.

Since the harvested energy of WDs increases with the bigger

N , and the total EE improves a lot accordingly. Moreover,

the circuit power consumption of the RIS increases with the

increasing number of reflecting elements, which leads to a

slowly increasing EE. Furthermore, the total EE under a small

Pe is larger than that under a big Pe, because the total EE is

a monotonically decreasing function with Pe.

B. Performance Comparison

To further demonstrate the effectiveness of the proposed

algorithm, we compare the proposed algorithm with different
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Fig. 7. The total EE of WDs versus the minimum throughput threshold of
each WD Rmin

k
.
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Fig. 8. The total EE of WDs versus the number of reflecting elements of
the RIS N .

algorithms.

• The baseline algorithm: the EE-based maximization RA

algorithm is achieved under random phase shifts.

• The existing algorithm: the throughput-based maximiza-

tion algorithm is obtained via [36].

Fig. 9 shows the total EE of WDs versus the maximum

transmit power of the PS under different algorithms. Obvious-

ly, the total EE of WDs under both the proposed algorithm

and the baseline algorithm increase with the increase of

the transmit power threshold of the PS Pmax. However, the

total EE of the existing algorithm first increases and then

decreases (e.g., after Pmax = 26 dBm). The reason is that the

existing algorithm consumes more transmit power to improve

the sum throughput of the WDs, but ignores the trade-off

between the improvement of the total throughput and the total

power consumption. Moreover, the total EE of the proposed

algorithm is the best one.



22 24 26 28 30 32

The maximum transmit power of the PS  Pmax  (dBm)

30

35

40

45

50

55

60

65

70

75

80

T
he

 to
ta

l E
E

 o
f W

D
s 

 (
bi

ts
/H

z/
Jo

ul
e)

The baseline algorithm
The proposed algorithm
The existing algorithm [36]

Fig. 9. The total EE of WDs versus the maximum transmit power of the PS
Pmax.
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Fig. 10. The total EE of WDs versus the minimum throughput threshold of
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k
.

Fig. 10 depicts the total EE of WDs versus the minimum

throughput of the WD (i.e., Rmin
k ) under different algorithms.

The number of antennas of the PS is set to M = 6. It is

observed that the total EE of WDs remains unchanged under

a small throughput threshold and then decreases under a large

throughput threshold. The proposed algorithm has the highest

EE. The existing algorithm has the lowest EE. The reason is

that, under the small throughput requirement, the throughput

constraint is easy to guarantee so that the optimal solution does

not change. The total EE remains unchanged. In addition,

under a large throughput threshold, the feasible region of the

RA problem becomes small so that the total EE of WDs

decreases accordingly.

Fig. 11 shows the total EE of WDs versus the distance

between the IR and the WDs under different algorithms. It

can be seen that with the increasing distance between the IR

and the WDs (i.e., d1), the total EE of WDs decreases a lot.

The reason is that, under the same distance between the PS
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Fig. 11. The total EE of WDs versus the distance between the IR and WDs
d1.
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Fig. 12. The total EE of WDs versus the number of WDs K.

and the RIS (i.e., d0), the sum throughput of WDs decreases

as the increasing distance from WDs to the IR. Moreover, the

transmit power of WDs increases accordingly. As a result, the

total EE of WDs decreases. Moreover, the total EE of WDs

decreases with the increasing distance between the PS and the

RIS (i.e., d0). Because the bigger d0 means that the available

energy arrived at the RIS is small so that the harvested energy

of WDs becomes small.

Fig. 12 depicts the total EE of WDs versus the number of

WDs under different algorithms. With the increasing number

of WDs (i.e., K), the total EE of WDs under different

algorithms increases accordingly. The reason is that more

wireless energy is harvested under the increasing number of

WDs. In addition, the total EE of WDs under the proposed

algorithm is much larger than that of the other algorithms.

Fig. 13 shows the total EE of WDs versus the power

consumption of each reflecting element under different algo-

rithms. From the figure, the total EE of WDs under different

algorithms decreases with the increasing Pe. Based on the
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Fig. 13. The total EE of WDs versus the power consumption of each
reflecting element Pe.

objective function in problem (13), the total EE is a decreasing

function with the circuit power consumption of the RIS.

Therefore, it is necessary to consider the impact of circuit

power consumption of the RIS on system performance.

V. CONCLUSIONS

In this paper, we studied the EE-based maximization prob-

lem in a multiuser RIS-assisted WPCN with the EH and mini-

mum throughput constraints of WDs, where the RIS was used

to help the WET. We employed a HTT protocol for battery-less

WDs to harvest energy in the WET phase and then achieved

information transmission in the WIT phase. The EE-based

RA problem was formulated by jointly optimizing the energy

beamforming of the PS, the passive beamforming of the RIS,

the energy-harvesting time, and the transmit power of WDs.

According to the problem structure, we converted the original

problem into a subtractive form via Dinkelabch’s method, and

then decomposed the problem into two subproblems that could

be solved individually. The simulation results demonstrated the

effectiveness of the proposed algorithm compared to the base-

line algorithm and the existing algorithm (i.e., the throughput-

based maximization algorithm).

APPENDIX A

THE PROOF OF THEOREM 1

Since Ḡ =
K
∑

k=1

(η + ϕk)χG
H
k Gk − (η + µ) IM and G =

K
∑

k=1

(η + ϕk)χG
H
k Gk, we have Ḡ = G− (η + µ) IM . Based

on (22) i.e.,

L(W̄, t0, t, p̄,ϕ,β, κ, µ)= L̄(t0, t, p̄,ϕ,β, κ, µ)+Tr(ḠW̄),
(37)

According to KKT conditions [45], the optimal W̄∗ satisfies

ḠW̄
∗ = 0,W̄∗ � 0, (38)

ϕk

{

η
(

GkW̄
∗
G

H
k

)

−
(

p̄k + PC
k (t0 + tk)

)}

= 0, (39)

µ
{

t0P
max − Tr

(

W̄
∗
)}

= 0. (40)

Since W̄ � 0, we have Tr
(

ḠW̄
)

≤ 0. There is

Tr
(

ḠW̄
∗
)

= 0 ⇔ ḠW̄
∗ = 0. (41)

Since η ≥ 0, ϕk ≥ 0, and G � 0, G can be de-

composed as G = U
∑∑∑

U
H, where U ∈ C

M×M and
∑∑∑

= diag (σ1, σ2, · · · , σM) are the corresponding eigenvector

matrix and eigenvalue matrix, respectively. Thus, we have

Ḡ = U (
∑∑∑− (η + µ) IM )UH, where

∑∑∑ − (η + µ) IM =
diag (σ1 − (η + µ) , σ2 − (η + µ) , · · · , σM − (η + µ)) is an

eigenvalue matrix of Ḡ. U ∈ C
M×M is the eigenvector matrix

of Ḡ. Just to make sure that Ḡ is a negative semidefinite

matrix, η+µ∗ = σ1 > 0 holds under any η and µ∗. Based on

Ḡu1 = 0 and ḠW̄
∗ = 0, the optimal W̄∗ is

W̄
∗ = ρu1u

H
1 , (42)

where ρ ≥ 0. Based on Tr
(

W̄
∗
)

= t0P
max and Tr

(

W̄
∗
)

=
ρ, we have ρ = t0P

max and W̄
∗ = t0P

max
u1u

H
1 .

The proof is complete.
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(Paris, France), under the supervision of Prof. Chau

YUEN and Prof. Mérouane DEBBAH. From Oct. 2019 to Sep. 2020, He is
a Postdoc in his mother University SUTD. Since Sep. 2020, he joined into
Zhejiang University as a tenure-track young professor.

Dr. Huang is a recipient of IEEE Marconi Prize Paper Award in Wireless
Communications in 2021. He was also a recipient of Singapore Government
Ph.D. scholarship, and received PHC Merlion Ph.D. Grant 2016-2019 for
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