
RiSD: A Methodology for Building i* Strategic Dependency Models

Gemma Grau, Xavier Franch, Enric Mayol, Claudia Ayala,
Carlos Cares, Mariela Haya, Fredy Navarrete, Pere Botella, Carme Quer

Universitat Politècnica de Catalunya (UPC), LSI - Campus Nord, Barcelona (Catalunya, Spain)
{ggrau, franch, mayol, cayala, ccares, mhaya, fjnavarrete, botella, cquer}@lsi.upc.edu

Abstract
Goal-oriented models have become a consolidated type of
artefact in various software and knowledge engineering
activities. Several languages exist for representing such type of
models but there is a lack of associated methodologies for
guiding their construction up to the necessary level of detail. In
this paper we present RiSD, a methodology for building
Strategic Dependency (SD) models in the i* notation. RiSD is
defined in a prescriptive way to reduce uncertainness when
constructing the model. RiSD also tackles two fundamental
issues: on the one hand, it tends to reduce the average size of
the resulting models and, on the other hand, it allows including
some traceability relationships in the resulting models. As a
result, we may say that RiSD increases the understandability of
goal-oriented models whilst improving all construction.

1. Introduction
In the last years, the construction of goal-oriented and
agent-oriented models has become an extended practice
in fields such as requirements engineering and
organizational process modeling [1, 2]. One of the most
widespread goal-oriented languages is the i* notation
proposed by Eric Yu in the first half of the 90’s [3, 4]. i*
allows for the clear and simple statement of goals that
system actors have and dependencies among them.

In despite of its utility, the intensive use of i* reveals
some difficulties. In [5] we have tackled one of them,
namely the diversity of i* dialects and variations that may
be disturbing when learning the notation. In this paper we
deal with another two drawbacks that we have
experimented: the absence of detailed methodologies for
building the models and the complexity of the resulting
models.
− Absence of methodology. Currently we can say that
there is a lack of guidance for supporting the prescriptive
construction of i* models. There exists a consolidated
methodology such as Tropos [6] but it is aimed mainly to
the guidance of the whole software development process.
In this sense, it supports the conception of a global
solution for the problem at hand, but gives a high degree
of freedom for the construction of the models themselves
(i.e., which intentional elements exist). One could argue

that this is precisely a property inherent to agent-oriented
methodologies [4], but the flexibility of the i* language
means to have multiples choices when building a model
(i.e. when to include an intentional element or not, which
type of element is the most appropriate for a given
situation, etc).
− Complexity of the models. Models for non-trivial
systems grow very quickly and are plenty of intentional
elements of many types without obvious relationships
among them. There are two main types of hidden
relationships. On the one hand, two intentional elements
may depend one on another (e.g., one may imply the
other). On the other hand, two intentional elements may
be at different levels of detail, being one a refinement of
another. For some types of relationships we may find
constructs in the language but not for all, especially when
referring to one of the two types of models offered by i*,
namely Strategic Dependency (SD) model.

In this paper, we propose RiSD, a methodology for
building Reduced i* SD models for software systems.
RiSD is defined as a set of activities structured in two
phases, one for constructing the social system (without
software) and the other for constructing the socio-
technical system (with software). Both phases may
involve the partial or total construction of the other type
of i* models, namely Strategic Rationale (SR) models.
RiSD includes precise questions and answers that guide
the development process and provide cut criteria for
choosing among different types of intentional elements
when diverse options exist. The size of the resulting
model is reduced due to these criteria. RiSD includes also
some traceability constructs that show the relationships
among intentional elements and enhances therefore
understanding of the model.

2. The i* language
The i* language defined by Eric Yu [3, 4] proposes the
use of two models, each one corresponding to a different
abstraction level: a Strategic Dependency (SD) model
represents the intentional level and the Strategic

Rationale (SR) model represents the rational level. We
present in this section the i* constructs needed in RiSD.

A SD model consists of a set of nodes that represent
actors and a set of dependencies that represent
relationships among them, expressing that an actor
(depender) depends on some other (dependee) in order to
obtain some objective (dependum). The dependum is an
intentional element that can be a resource, task, goal or
softgoal (see section 4 for a detailed description). Actors
may be specialized through the is-a relationship.

A SR model allows visualizing the intentional
elements into the boundary of an actor in order to refine
the SD model to add reasoning ability. The dependencies
of the SD model are linked to intentional elements inside
the actor boundary. The elements in the SR model are
decomposed accordingly to the links:
− Means-end links establish that one or more intentional
elements are the means that contribute to the achievement
of an end. When there is more than one means an OR
relation is assumed, indicating the different ways to
obtain the end
− Task-decomposition links state the decomposition of a
task into different intentional elements. There is a relation
AND when a task is decomposed.
 Last, we mention that actors may enclose subactors in
their SR decomposition. Subactors just define frontiers in
a SR model that group closely-related intentional
elements. Links that relate intentional elements belonging
to different subactors are converted into dependencies;
also, new dependencies may be identified.

The graphical notation is shown in figure 1 using an
excerpt of a model for an academic tutoring of students.
On the left-hand side, we show the SR model of a tutor
and the hierarchical relationships among their internal
intentional elements. On the right-hand side, we show the
SD dependencies between a student and a tutor. Neither
specializations nor subactors appear.

Figure 1. Excerpt of i* model for an academic tutoring system.

3. A procedure for building i* SD models
In this section, we present an overview of the RiSD
methodology for building i* SD models for software
systems. RiSD guides the model development process by
means of precise questions to the modeller. It has two
clearly differentiated phases. The first one deals with the
construction of a social system model. This model is
characterized by the fact that it does not include the
software system and therefore it focuses on the
stakeholder needs. Afterwards, in the second phase, the
software system is incorporated to obtain a socio-
technical system, and the SD model is reconfigured
around this new component. This development process is
similar to the early requirements analysis and late
requirement analysis proposed by the TROPOS
methodology [7].

The social system model is constructed iteratively. It
begins with the identification of an initial set of social
actors involved in the addressed problem and their main
goals. Then, strategic dependencies among actors are
identified and classified by considering which is the most
appropriate type of each dependum. To assist in this
decision, RiSD provides a clear cut criteria by means of
short, concise and focused questions. At this point, a first
version of the social system model is obtained. To refine
this model, existing dependencies are analyzed to identify
if new actors or new dependencies should be
incorporated to the model, in which case the process
iterates.

The socio-technical system model construction is also
iterative. It begins with the definition of the software
system as a new actor (with its main goal) and its
inclusion in the social system model. Next, considering
this actor the existing dependencies are reassigned. The
system may be decomposed into subsystems which are
modeled as new actors (subactors) and, therefore, the
existing dependencies are reassigned again. New
subsystems may depend on each other and these
dependencies must also be established. A refinement
process, similar to that performed in the social model,
may also be applied. Both phases can be iterated as it can
be seen in figure 2.

Although RiSD focused on the construction of SD
models, both phases may involve the partial or total
construction of the other type of i* models: SR models.

Throughout the paper we use for discussion an
example about the specification of a software system for
supporting information reliability in an organization.

4. Phase I: social system construction

We describe in this section the construction of the social
system related to our example in several activities. Before

Digital Information
Produced and

Preserved

Digital
Information Kept

Reliable

OrganizationUser

Figure 3. Departing actors for the information reliability case.

beginning this process is advisable to carefully examine
and describe the domain of interest. As one of the most
endangering points when examining a domain is the lack
of a standard terminology, the construction of a glossary
of terms helps to avoid semantic problems when
constructing the model. The use of auxiliary models, such
as UML, can be also useful for understanding the
different concepts involved in the domain. The effort
invested in this preliminary domain study has to be
proportional to the deep of knowledge implied in the
model we want to build (superficial or very precise
representation), as the knowledge might also be acquired
during the process when needed.

Activity I.1. Identify departing actors.
The goal of this activity is to discover the main actors

of the social system and their goals. The actors are
required to have a clear strategic value for the modeled
system; it is useful to use a metaphor to think about the
system.

In our case, we use a client-server metaphor: an actor
(the client) provides and consumes a resource (the
information) that is under the control of an organization
(the server). This and other metaphors could be organized
in the form of a catalogue of i* organizational patterns
[8].

Thus the departing actors and their goals are: User
with the goal Digital Information Kept Reliable, and
Organization, with the goal Digital Information
Produced and Preserved as we illustrate in figure 3.

Activity I.2. Establish goal dependencies among
actors.

This activity aims at identifying dependencies among
actors. By default, we classify them as goal
dependencies, which are the most common type due to
their strategic value. Activity 3 will confirm or change
this classification.

The crucial point of this activity is to identify just
those dependencies that are really needed. This criteria is
obviously fuzzy and therefore the number of
dependencies that will arise in this step is inevitably
subjective, which in fact is a characteristic of goal-
oriented modeling [4]. However, when using a catalogue
of i* organizational patterns such as [8], the
dependencies already proposed in the patterns can be
adapted to the social system we are modeling. Thus,
haziness is reduced because the first set of dependencies
among the actors is the one provided by the pattern. In
our example, as we are considering a client-server
metaphor, we try to reduce the uncertainness of the
activity by means of the following 2-stage procedure:
− First, we shall respond to the question: which services
does the user require to the organization for the social
system providing some added value? For each service,
we include a dependency from the user to the
organization.
− Then, we shall respond to another question: which
behavior does the organization require to the user for
supporting (at least partially) the requested services?

If answers to these questions are not clear, we may
build a first level of SR decomposition of some actor,
which will show more explicitly which means can be
undertaken by the actor itself and which others need the
support of some other actor and therefore a dependency.

Figure 4 shows the result of the activity in our case.
We identify two main services requested by the user, and
one behavior that partially supports them. Dependencies
shall be generic enough in order not to exclude important
aspects. For instance, if we were directly talking about
viruses or spam in our example, other aspects such as
cryptography could be left out of the system.

Identificate Actors Add the Software System to the Model

Refine Software System Dependencies

Identify Subsistems
in the Software System

Identify Dependencies
among Subsystems

Classify Dependencies

Analyse Depedencies

PHASE I PHASE II

Classify Dependencies

Analyse Depedencies

Establish Goal
Dependencies

Figure 2. Diagram of the two phases of the RiSD methodology

OrganizationUser

D2: Undesired
Information
Removed

D1: Own
Digital Information

Preserved

D4: Hazardous
Information not

Received

Figure 4. Main dependencies in the information reliability

Activity I.3. Classify the added dependencies
The goal of this activity is to define more precisely

the dependencies identified in activity 2. In this activity,
we definitively classify the dependums as a task,
resource, softgoal or goal. Moreover, after identifying the
type of dependum, we propose some syntactic patterns to
name these dependencies more precisely.

To classify each dependency into a valid type of i*
we propose a set of questions to be answered following a
predefined ordering as shown in the graph of figure 5. In
nodes 1 to 4 a question must be answered; in nodes 5 to 8
a specific type of dependency has been identified; in
nodes 9 to 11 some additional softgoal dependencies may
be added to the model. In the graph, each type of
dependum is identified by a capital letter: Resource,
Task, Goal and SoftGoal.

Figure 5. Graph to classify i* dependencies

Starting at node 1, questions to answer at each node

to classify the dependency D, from A to B, identified in
activity I.2 are:
1. Does the depender depend on the dependee to achieve

an entity or to attain a certain state? If entity, go to 3;
else, go to 2.

2. Is the depender interested in attaining the state
following a particular process? If so, classify D as
task dependency and go to 5; else, go to 4.

3. Is the depender interested in obtaining the entity
following a particular process? If so, classify D as
task dependency and go to 5; else, classify D as
resource dependency and go to 6.

4. Is there a clear cut criteria to determine the
achievement of the state? If so, confirm the
dependency D as goal dependency and go to 7; else,
classify D as softgoal dependency.

5. Is there some additional restrictions on how to
execute the task? If so, for each restriction, establish a
new softgoal dependency from A to B.

6. Is there some additional properties that the resource
must met to be acceptable? If so, for each property,
establish a new softgoal dependency from A to B.

7. Is there some extra conditions that the achievement of
the goal must satisfy? If so, for each condition,
establish a new softgoal dependency from A to B.
In our example, the three departing dependencies are

left as goal dependencies, since all of them correspond to
states and their achievement (removed, received and
preserved) can only be or not. Furthermore, there are not
additional conditions for the achievement of the goal.
Thus, figure 4 becomes also the result of activity I.3.

To improve the understandability of the new
classified dependencies, the names assigned to their
dependums shall be kept short and precise and be
consistent throughout the model. There are some
conventions issued by different authors and we adhere to
that of Yu [4], summarized in Table 1 (parenthesis stand
for optionality). Longer descriptions can be added to the
documentation, especially if using tool support such as
OME [9] or REDEPEND [10]. We remark the case of
softgoal dependencies, in which we distinguish among
dependencies that stand alone (node 8 in the graph of
figure 5), whose pattern is Goal-Syntax + Complement;
and dependencies that qualify another dependum of the
model (nodes 9, 10 and 11), in which the qualifier is a
Complement and (optionally) the dependum between
brackets (as done in [4]). Note that using these syntactical
patterns we will use short names that are specific to the
semantics of the dependum, increasing in this way the
comprehensibility of the model.

Activity I.4. Analyze the consequences of the
dependencies.

For every dependency added in activity I.2 and
classified in activity I.3, we must check if either the
dependee is able to satisfy by itself the required
dependum or if it needs some help from other actor, that
may already exist, or not yet (in the last case, its goal
must be declared first, as done in activity I.1). For
deciding this, a question is raised whose concrete form

Depen-
dum Syntax Example

Task Verb + (Object) +
(Complement)

Answer doubts by
e-mail

Resource (Adjective) + Object Virus List
Goal Object +Passive_Verb Information kept

preserved

Softgoal
− Goal syntax +

Complement
− (Object) + Complement

([Dependum])

− Information checked
in a transparent
manner

− Timely[Virus List]

Table 1. Syntactic conventions for i* dependums.

depends on the type of dependum: does the depender
need some support to attain the goal, or produce the
resource, or execute the task, or accomplish the
behavior? If the answer to this question is not obvious, it
may be necessary to develop one or two levels of
decomposition of the SR diagram of the dependee actor
taking as root an intentional element equivalent to the
involved dependum.

An important decision we have taken that applies to
this activity: we have added a traceability construct to
keep the path from actors and dependencies that have
come into existence to support; we call this construct
“supports”. We can also use this construct to make even
more explicit the binding among softgoals identified in
activity I.3 as qualifiers of other dependums.

Figure 6 shows the SD model obtained after
considering the dependencies appearing in figure 4. We
have added a goal dependency supporting the
dependency from the organization to the user. More
remarkably, the organization needs a supporting actor to
identify the hazards that endanger the managed
information. This new actor, a data integrity expert, has a
concise and clear goal in the context of the system.

Iteration. Refining the social system.
To end this first stage of RiSD, we iterate activities

I.3 and I.4 as required. Again the answers to the
identified questions are crucial to progress towards the
objective.

The termination condition is as usual somehow
subjective. However, a useful rule that applies is the
following: if the last iteration has identified just resource
and task dependencies, then we can stop the process.
Refinement of task and resource dependencies is usually
too prescriptive at the SD level, just identifying steps of
the tasks, or components of the resource.

Figure 7 shows the final result in our case. We have
done just 2 more iterations. The final model consists of 3
actors (User, Organization and DIE) and 8 dependencies
(D1 to D8), with 4 supporting relationships among them.
We can check that the last dependencies added are
resources. We also observe that the model just introduces
a softgoal dependency, incorporating a fundamental

behavior that shall be observed in the system. This model
provides a highly strategic view of the social system,
ready to be reconsidered once the software system is
incorporated.

5. Phase II: socio-technical system
construction

Phase II consists mainly of putting the software system at
the heart of the social system model, reassigning the
existing dependencies, and relating them to operational
concepts coming mainly from the software marketplace.

Activity II.1. Putting the software system in the
social system model.

The first activity defines a new actor for the software
system, states its high-level goal and reassigns the
existing dependencies as needed. The goal can be stated
simply as providing assistance to the general pursued
objective. Since in our example the main beneficiary is
the user, the simplest way to state the goal is “Provide
assistance for reliable information”.

Dependency reassignment can be decided by
answering the question “May the software system
provides any assistance on attaining the goal / producing
the resource / executing the task / achieving the property
of the dependency?” It is very likely that more than one
answer is possible, meaning that there is more than one
way to assign responsibilities, in which case we have
different alternatives to be analyzed.

Figure 8 shows the result in our example. We have
taken the strategic decision of giving the software system
as much responsibility as possible. With this rationale
behind, we have been able to reassign all the
dependencies to stem from, or point to, the software
system. The new actor acts then as a mediator among all
the involved parties.

D

Organization

Data
Integrity

Expert (DIE)

User D

D
D2: Undesired

Information Removed D

D1: Own Digital
Information Preserved

D1: Own Digital
Information Preserved

D : D3 Warning Received when
Undesired Information

Identified

D3 Warning Received when
Undesired Information

Identified

3 Warning Received when
Undesired Information

Identified

D4: Hazardous Information
not Received

D4: Hazardous Information
not Received

D4: Hazardous Information
not Received

D6: Information
Hazards Identified

supports

supports

D

D

D
D

Integrity of data
assessed

D

Figure 6. First refinement in the information security case

D

Organization

Data
Integrity

Expert (DIE)

User

D

D

D

D
D

D8: Digital
Information
Checked

D2: Undesired
Information Removed D

D1: Own Digital
Information Preserved

D1: Own Digital
Information Preserved

D
D : D3 Warning Received when

Undesired Information
Identified

D3 Warning Received when
Undesired Information

Identified

3 Warning Received when
Undesired Information

Identified

D4: Hazardous Information
not Received

D4: Hazardous Information
not Received

D4: Hazardous Information
not Received

D

D5: Information
Checked in a

Transparent Manner

D5: Information
Checked in a

Transparent Manner

D6: Information
Hazards Identified

supports

D7: Digital
Information
Processed

D

D

D7: Digital
Information
Processedsupports

supports

supports

supports

supports

D

D

D

D

Figure 7. Final social system in the information security case

Activity II.2. Identify subsystems in the software
system and use them to drive a first level of SR

Usual software systems are large enough to prevent
the definition of a single, monolithic actor to cover their
goal. We can use i* actor decomposition facilities to split
the single software actor into several subsystems, each of
them with a well-defined goal. The combination of all the
resulting goals must cover the main one.

This activity may be conducted through the
combination of two strategies:
− Dependency-driven: the existing dependencies
identify subsystems of interest. For each dependency, we
can raise the question “is it identifying one or more goals
in the software system?”.
− Market-driven: knowledge of the marketplace makes
some subsystems evident. The key question here is
“which type of available software packages apply to the
problem at hand?”.

In our example, since there is a great deal of software
packages dealing with information reliability, the second
strategy predominates and therefore some widespread
subsystems are identified: anti-virus, anti-spam, filters,
and others; we show just the first two of them in figure 9.
A goal is introduced for each one, which is defined as a
means to attain system’s goal in the corresponding SR
diagram. Furthermore, It means that social actors are
introduced accordingly in the SR (e.g, user in figure 9).

Activity II.3. Refine software system dependencies
into subsystem dependencies.

Once the subsystems are identified, the main
dependencies can be reassigned. For each dependency
and subsystem, we use the following two questions:
− Does the dependency involve the subsystem? The
answer is straightforward if activity II.2 has followed the
dependency-driven strategy.
− If the answer is yes, then: how does the subsystem
interpret the concepts involved by the dependency?

This activity raises the second type of traceability
construct we introduce in our framework: the “refines”
relationship. The dependencies stemming from/pointing
to the subsystems refine (and substitute) the original ones
that involved the software system.

We focus here in the anti-virus related part. In this
case, the key correspondences among the abstract social
system and concrete subsystem concepts are: the hazard
is the virus, the information that flows among actors is a
file, and reliable interchange means detecting and
removing (whenever possible) viruses from the file. With
these guidelines, we can obtain the model presented in
figure 10.

For simplicity of the drawing, dependency refinement
relationships are shown through the identifiers enclosed
in parenthesis, which refer to dependencies that appear in
figure 9. We remark that the refinement is many-to-
many. We remark also that since we have a first level of
decomposition in the social actor SR diagrams, we can
reallocate the dependencies also in their side. Last,
perhaps surprisingly, we have observed that dependers
and dependees do not need to be kept strictly during the
mapping. For instance, this is the case of dependency E3
that is declared as a refinement of dependency D4
(among others).

Activity II.4. Identify subsystems dependencies.
If subsystems coexist as part of the software system, it

is very likely that they are related somehow. In particular,

Figure 8

D

Assistanc fo
realiable

provide

D

Reliability
System

Manager

Data
Integrity

Expert (DIE)

User

D

D

D

D

D

D

D

D 8: Digita
Informatio
Checke

D 2: Undesire
Information

D

D D1: Own
Information

DD3: Warning Received
Undesired Information

D 4: Hazardous
not

D D5: Information Checked
a Transparent

D6: Informatio
Hazards

support

D7: Digita
Informatio
Processe

D
D

D 7: Digital
Processe

support

support

support

support

support

Organization

. Putting the software system into the social

Virus-free
Information
Maintained

- Spam Information
Eliminated

Anti -Virus
Software
Package

Anti -Spam
Software
Package

Reliable
Information
Maintained

Reliability
System

Manager

Information kept
free of Viruses

Spam not
Received

Digital
Information Kept

Reliable

User

Figure 9. Splitting the software system into subsystems

D

Anti -Virus
Software
Package

User

D

D

D

DD

D
E3: Warning Received

when Submitting Infected
Files (D1, D3, D4)

D

E1: Viruses in Infected
Files Detected

(D1, D2, D3, D4)

E2: Viruses Removed
from Infected Files

(D1, D2)

E4: File Scanned
(D7, D8)

E5: Activate itself
Automatically

(D5)

OrganizationE6: Infected Files
Rejected (D4) D

Anti -Virus
Provider

(AVP)

D

E7: Virus List
Updated Timely

(D6)

E8: Virus List
(D6)

supports

D

D

D

D

D

Figure 10. From software system to subsystem dependencies

we will usually find that one subsystem may provide
services needed by others. From the strategic point of
view, some goals of one subsystem may depend on other
subsystems and therefore we use again i* dependencies
to state them. In our example, one of the types of spam
are messages containing viruses, thus we establish a goal
dependency stating this (see figure 11).

Activities II.5 and II.6. Classify and Analyze
dependencies.
 These activities are analogous to activities I.3 and I.4
(therefore they have the same name) which are also
iterated. To sum up, in our example, focusing on the anti-
virus part, we obtain, at the end, the actors and
dependencies shown in figure 12. Remarkably, we have
two new actors, an anti-virus administrator and the
general concept of software package that may also acts as
anti-virus user, therefore it is defined as a specialization
of user. Then this part of the system is composed by 6
actors and 14 dependencies, which is a reasonable size
for a concrete facet of information management as
reliability is.

6. Related Work

Even though there exist some goal-oriented
methodologies based on the i* language, as far as we
know, most of them are not as precise as RiSD. This is
mostly due to the purpose of the model: in our context, i*
SD models are later used for assessing different
architectural solutions [11] and therefore it is important
to have concrete guidelines about how the model is built.
As a remarkable exception, we may find some
approaches like [12] in which the intention is to generate
UML models from a departing goal-oriented model, and
therefore some precise model construction rules are also
needed.

As mentioned in section 1, the most relevant work in
this area is the Tropos methodology [6, 7]. Its main
purpose is to define an i*-based agent-oriented software
development methodology. Tropos supports the whole
software development cycle from requirements analysis
to implementation proposing an i* model at each
development stage. Furthermore, in [13] some
transformations are proposed to refine an early
requirements i* model into an implementation i* model.
However, these transformations do not really guide the
SD model construction process itself. We can conclude
that Tropos and RiSD are two complementary
approaches, one focusing in the large-scale software
development process and the other in the small-scale
model development process.

Another related line of research is that of generation
of i* diagrams from other kind of models, in particular
UML models. For example, in [11] it is shown how to
create them from use cases. This approach requires
therefore these departing UML models to exist, which is
not our case.

7. Conclusions

The most relevant contributions of the RiSD
methodology presented in this paper are in relation with
the two drawbacks that we have identified in section 1:
− Absence of methodology. RiSD provides
prescriptive guidance to the modeller reducing then the
subjectivity that is inherent in goal-oriented modeling. It
consists of two phases, which are decomposed into
several activities. Each activity is supported by some
rules, criteria, questions and patterns to be considered.
Remarkably, we have given accurate hints for identifying
and classifying dependencies. On the other hand,
iteration and intertwining are recognized in the
methodology providing then some necessary flexibility
degree.

Anti-Virus
Software
Package

Anti-Spam
Software
Package

Reliability
System
Manager

E14: Infected Files
Rejected

DD

DD
Digital

Information to
be Checked

Figure 11. Establishing subsystem dependencies

The AVSP is
Made Ready to

Work

D

Anti-Virus
Software
Package
(AVSP)

Anti-Virus
Administrator

User

D

D

D

D

D D

D

D

D

E3: Warning received
when Submitting Infected

Files

D

E1: Viruses in
Infected Files

Detected

E2: Infected Files
made Inocuous

E4: File to be
Scanned

E5: Activate itself
Automatically

Organization

E6: Infected
Files Rejected

D Anti-Virus
Provider

D

E7: Virus List
Updated Timely

E8: Virus List

DE9: System
Configured Easily

E10: System
Services Exploited

Adequately

D
D D

E12: System kept
Updated

E13:
Customers List

Updated

D

supports

supports

supports

E11: To Manage
Virus-Related Tasks

Other
Software
Package

Human User

is-a

D

D

E14:
Communication

Means be Available

is-a

D

D

D

D

Figure 12. Part of the resulting socio-technical system.

− Complexity of the models. As a result, we have
obtained models that are more easily analyzed since there
is a well-defined and consistent rationale behind. We
have also incorporated traceability with two new
constructs, “supports” and “refines”. In addition, we have
recognized the need of having clear syntactic conventions
to be used consistently. Due to the nature of RiSD, the
resulting models are kept as small as possible, trying to
cope with one of the most important problems in the use
of i*, namely scalability of the models.

With respect to our immediate future work, we aim at
defining a similar methodology to guide the construction
of SR models, to be integrated with RiSD.

Acknowledgements

This work has been done in the framework of the

research project UPIC, ref. TIN2004-07461-C02-01,
supported by the Spanish Ministerio de Ciencia y
Tecnología. Some authors have grants that partially
support their work: C. Ayala, by the Catalan government
Generalitat de Catalunya; C. Cares, by the MECE-SUP
FRO0105 Project of the of Chilean government; and G.
Grau, by a UPC research scholarship.

8. References

[1] E. Yu, J. Mylopoulos. “Understanding "Why" in Software
Process Modelling, Analysis, and Design”. Proceedings of the
16th International Conference on Software Engineering, 16th
International Conference on Software Engineering (ICSE’94)
Sorrento, Italy, 1994. pp. 159-168.
[2] A. van Lamsweerde. “Goal-Oriented Requirements
Engineering: A Guided Tour”. Proceedings of the 5th IEEE
International Symposium on Requirements Engineering,
(RE´01), Toronto, Canada, 2001. pp. 249.
[3] E. Yu. “Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering”. Proceedings of the
3rd IEEE Int. Symposium on Requirements Engineering,
(RE'97), 1997, Washington, USA. pp. 226-235.
[4] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD. thesis, University of Toronto, 1995.
[5] C. Ayala, C. Cares, J.P. Carvallo, G. Grau, M. Haya, G.
Salazar, X. Franch, E. Mayol, C. Quer. “A Comparative

Analysis of i*-Based Goal-Oriented Modeling Languages”. In
Procs. International Workshop on Agent-Oriented Software
Development Methodology (AOSDM’2005) at the 7th
International Conference on Software Engineering and
Knowledge Engineering, 2005.
 [6] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
P. Traverso. “Specifying and analizing early requirements in
Tropos”. Requirements Engineering Journal, 9 (2), 2004, pp.
132-150.
[7] Castro, J.; Kolp, M.; Mylopoulos, J. “A Requirements-
Driven Development Methodology”. Proceedings of the 13th
International Conference on Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, 2001, pp.
108-123.
[8] M. Kolp, P. Giorgini, J. Mylopoulos. « Organizational
Patterns for Early Requirements Analysis”. Proceedings of the
15th International Conference on Advanced Information
Systems Engineering (CAiSE’03), Klagenfurt/Velden, Austria,
pp. 617-632.
[9] OME3 page, http://www.cs.toronto.edu/km/ome, last
accessed April 2005.
[10] N. Maiden, P. Pavan, A. Gizikis, O. Clause, H. Kim, X.
Zhu. “Integrating Decision-Making Techniques into
Requirements Engineering”. Proceedings of the 8th
International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ’02), Essen,
Germany.
[11] V. Santander, J. Castro. “Deriving Use Cases from
Organizational Modeling”. In Proceedings of the 10th
International Conference on Requirements Engineering
(RE’02), Essen, Germany, 2002. pp. 32-42.
[12] H. Estrada, A. Martínez, O. Pastor. “Goal-based business
modeling oriented towards late requirements generation”.
Proceedings of the 22nd International Conference on
Conceptual Modelling (ER), Chicago (USA), 2003. pp. 277-
290.
[13] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J.
Mylopoulos. “Modelling early requirements in Tropos: a
transformation based approach”. Proceedings of the Agent-
Oriented Software Engineering (AOSE’01). LNCS 2222.
Springer-Verlag, Montreal, Canada, May 2002, pp. 151–168.

