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Rise Time of Pulsed  Parametric  Oscillators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% Absfracf-General relations  are derived that  describe  the rise 
time of the  output power of parametric oscillators  driven by a time- 
dependent pump. Both singly resonant  and doubly resonant oscil- 
lators  are discussed. Results of computer calculations using a 
Gaussian  time envelope for  the pump  pulse are  presented  and, in the 
case of the doubly resonant oscillator, are compared to predictions 
of a steady-state analysis.  Agreement between calculated rise  times 
and  published  values is good. 

I. INTRODUCTION 

PARAMETER of great  practical  importance in 
the design and  operation of a parametric oscil- 
lator  is  the rise time of the  output power of 

such a device. In  CW operation the rise time is. a  measure 
of the  time  the oscillator  requires to reach  steady  state 
in  response to  perturbations. In  pulsed  operation, the 
rise  time  may  limit  the  amount of power transferred  from 
the pump to  the signal  and  idler fields, possibly  even 
,preventing the oscillator  from  turning on. 

Previous  calculations of the rise time of parametric 

oscillators [ 11, [2] have assumed  a constant  pump power 
,and have neglected spatial  variations of the oscillator 
signal  and  idler fields. Such  results are  not  strictly  ap- 
plicable  for pulsed  oscillators and  are  inadequate  to de- 
scribe the rise time of a  singly resonant  oscillator (SRO) 
-where the nonresonant field has a strong  spatial  varia- 
tion.  In  addition) because of the large  pump power re- 
quirements of most  oscillators, the pulsed parametric 

oscillator  driven  by  a  Q-switched  laser  has emerged as 
the most practical  form of this device [3]-[ 141. 

The use of a  pulsed pump, however,  changes the whole 
nat,ure of the oscillator  operation,  affecting  both the ef- 
fective  pump  threshold  and the power conversion ef- 
ficiency  from pump  to signal  and idler. With a  pulsed 
pump  it  is possible for  the  peak power of the  pump pulse 
to exceed the CJV threshold  by a large  factor  and 
yet  result  in a negligible power transfer  to  the  oscillator 
fields. This will happen if the buildup  time  of  the reso- 
nant signal (or idler) power is comparable to  the  time 
the  pump power remains  above  threshold. 

We  undertake  in  this  paper  the  task of calculating 
the rise time of pulsed  singly and  doubly  resonant oscil- 
lators (DRO). The results are  then used to derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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relationships that  must be  obeyed  by  the  various oscilla- 
tor  parameters  to  ensure efficient power  conversion. Nu- 
merical  results  using  a  Gaussian  time  envelope for  the 

pump  pulse  are  presented  and  significant  differences  are 

found  between these  results  and rise-time  values corn- 
puted using  a square  pump  pulse  and a steady-state 
analysis [ 11 , [2]. Finally,  experimental rise-t,ime values 

found  in  the  literature  are compared to computed  values 

and good agreement i s  found, 

11. NONLINEAR INTERACTION EQUATIONS 

In  the  most general case, the fields involved in a para- 
metric  oscillator are functions of both  space  and  time. 
For the rise-time  calculations to  be  considered  here, how- 

ever, the pump field of angular  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#w3 is  assumed 
to  be unaffected by  the  parametric  interaction (nonde- 

pleted  pump) so that only the signal  and  idler ( w ~ )  

fields will be considered. The  pump field is  also  assumed 
to be  monochromatic and t o  have a ‘‘slowly varying” 

time envelope characteristic of a  Q-switched laser pulse. 

Using  these  assumptions in Maxwell’s equations  with 
nonlinear  polarization  terms,  requiring a3 = ‘wl + w2 and 
making  the  usual slowly varying envelope  approxima- 
tions gives 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- - + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,E, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-iK, exp [iA$] exp [ -iAlcz]E,E, 
dE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn aE, 
ax c at 

aE,+n ,aE ,+uE - _  
ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc at 2 2 -  

(1) 

iK2 exp [iA$] exp [-iAkz]E,E, 

(2) 
where Ej = Ei ( z ,  t )  is the real  traveling-wave field am- 
plitude  and 

A$ = +a - 4 2  - $1, Aii = 1 ~ 3  - IC, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC, 

j = 1, 2. 

The effective  nonlinear coefficient [ 151 , [16] is de, the 
index of refraction a t  w j  is nj, and  the  constant M results 
from  integrating  the  equations over the  transverse co- 
ordinates. The  value of M for  Gaussian beams and a 
near-field  approximation  is 

M = 2- w1w2w3/[(w1w2)2 

+ (WIW~)” ( w 2 W ~ ) ~ l .  
Double  refraction effects can also  be  included  in M since 
they influence the threshold of a parametric oscilla- 

to r   [E] .   The  definition  of E j  used  in  (1)  and (2) gives 
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the  time  averaged power as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E0njcEzj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x l t ) / 2 .  For  and 

resonant fields, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaj = c~,/L'~ where aj is the  fractional 
round-trip field loss or one-way power loss and L'j is  the ~ ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 
optical  length of the  cavity  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'wj. For  nonabsorbing high- n2J2L' 1 n2/c 1 z - ( n Z / e )  

2c3011N 

optical-quality  crystals, ai can be set  equal  to zero for 
nonresonant  fields;  the absence of feedback  is  then  ac- .e + y - Z)R, "~(~)  dy dx. (6) 
counted  for by  the  boundary conditions. 

by  writing  it  as 

. _  

The  optical length of the  cavity  is L', assumed equal a t  

power loss a t  ul. 

The Of  the pulnp is for ,wl and 02, 12 n1 n2, and Crl is the  fractional 

E&, t )  = E&) (3) 

where ESP is  t,he  peak  value of the field a t  w3 and f (t) 
has a peak  value of unity.  Note  that  the  pump envelope 
is assumed independent of x. Thc envelope function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t )  
will later be taken to  t8he  Gaussian but  for  the moment 
is  left  arbitrary. Defining t = 0 as  the  time when the 

oscillator  first  reaches  threshold,  a  pumping  ratio AT can 
be defined by 

The threshold1 for  oscillation  is PST and AT is the  factor 

by which the  pump  peak power exceeds threshold.  The 
quantity P3T as defined here is what is usually considered 

to be  the CW threshold  [15]  (gain = loss) and  may 
differ considerably  from the  experimentally observed 
threshold  (minimum  peak  pump power for oscillation 

to  occur).  The  separate cases of singly resonant  and 
doubly  resonant  oscillators will now be considered. 

111. SINGLY RESONANT OSCILLATOR 

I n  this case the  signal field (wl) is  taken  to be resonant 
and its amplitude assumed indcpcndent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx so dEl/& 

z 0. There is no  feedback at  the  idler  frequency so that  

for a lossless crystal a.2 z 0 and E2(0, t )  = 0. Exact 
phase  matching is assumed (Ak = 0) and  the  relative 
phase A+ is assumed to be that which yields  maximum 
conversion of pump energy into  the  signal  and  idler 
fields. For Ak = 0, the condition is A+ = ~ / 2 .  Equation 

(1) is then  integrat'ed  over  the  cavity  length L, noting 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl = 1 and K1 = 0 except  over the  length 1 of the 
nonlinear  crystal  and  the  result combined with ( 2 )  to 

give a single integral  equation  for E l ( t ) .  Using the 
boundary conditions E2 (O., t )  = 0 and El ( t  = nZ/c) 

= .Elo, the  result is 

t 2 -  (5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G 

where 

Note  that  the  initial condition on El has bcen speci- 

fied a t  t = nl/c rather  than  at t = 0. Wc  have  thus as- 

sumed E,  _N Elo for  the  first  transit  time  through  the 
crystal.  This  procedure ensures that E, is nonzero 
throughout  the  crystal  for  all  times t under consideration 

and allows the  intcgral over Z to be performed.  Because 
of the slow growth rate of the  resonant  signal  near 
threshold,  this definition of the  initial condition on El 
introduccs negligible error  and  eliminates  t'he cumber- 
some mathemat,ical formalism that.  results  from assum- 

ing E2 (0, t )  = 0 and  t'hus E2 ( I ,  t )  = 0 for times less than 

The  time dependence of the  pump field is now assumed 
to be  Gaussian, a form  that closely approximates  the 
output pulse of a.  &-switched laser.  The envelope function 

f ( t )  is thus 

nllc.2 

f(t)  = exp [- ( t  - ~ ~ ) ~ / a ' ]  (7) 

where 

and is defined as  the  full  width a t  half maximum  of 
the  pump pulse intensity.  The  quantity 7-T is  thc  time be- 
tween the  oscillator  threshold levcl ( t  = 0) and  the  peak 
of the pump  pulse and  can be written  as 

with N being defined by (4).  The  relationships between 
t,he  various  quantities  are  illustrated  in  Fig. 1 (a) .  

The rise time of a parametric  oscillator  can be defined 
in a number of ways. A convenient operational  approach 
is  to define the  rise  time rR as  the  time required for the 
signal  output power to reach a predetermined  value  start- 
ing  from  the  moment  the  pump reaches  threshold. De- 
fining P1, as  the  signal  output power and assuming the 
only Ioss is  due to  output coupling, this definition of r E  

can  be  written  as 

Pl,(rZ) = C X ~ P ~ ( T ~ )  = constant. (9) 

Since the  initial  internal signal  power PI ( 0 )  = P I 0  is 
due to spontaneous  parametric fluorescence driven by  the 
threshold  pump power, we have Plo 0~ PST/a1. However, 
for  t,he SR.Q,l PZT cc cy1 so that  Plo is  independent of the 

KIP. ,For the DRO the threshold  condition is E23~ = a2/K1K2P fluorescence a t  wa is always present at the  output of the nonlinear 
1 For the SRO it  is straightforward  to show that* E%T = 2m/ This condition is not  strictly  true because some parametric 

for cy1 = a2. crystal. 
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Fig. 1. (a) Gaussian pump pulse defining the  quantities TT, PST, 
and Pap. Note t = 0 is defined by  the oscillator threshold 
level. (b) Square-pulse approximation  to  the Gaussian  used 
with  steady&ate  equations  for  the DRO. (c)  Qualitative  plot 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARl( t )  = P1(t)/P1, showing the  relationship between and 
TT. Note  that  in  the  undepleted  pump  approximation used here 
the signal power continues  to grow until  the  pump falls below 
threshold ( t  x 2 7 ~ ) .  

coupling loss a1.3 Consequently, the  constant  appearing 
in (9) can be  replaced  by rPlo where r is some  constant. 
The rise  t’ime 712 is now defined by , G ~ P ~ ( T ~ )  = rPlo or 

using R1 ( t )  = P1 ( t )  /Ply, 

R I ( 7 R )  = r/al. (10) 

Once a  value  for r is  chosen, (10) is  used  with ( 5 )  and 

(6) to  find TR. 

Although  in the sense defined here the oscillator is 
not ON until (10) is satisfied, the oscillator  is  always ON 

in the sense of the  pump being  above the CW threshold 
for all  times  in  the  range t = 0 to t = 2rT. The signal 
and  idler fields experience  a net  round-trip  gain  and  thus 
grow in  amplitude  during  this  time period. The value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r chosen for  calculating  rise  time is arbitrary,  but for- 
tunately, because of the “explosive” nature of the signal 
buildup, TR is  not  a  strong  function of the  ratio r/al. A 
change of two  orders of magnitude  in r results  in  a change 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATR by  only about 10 percent. 

For experimental  comparisons a, useful parameter 

idler  in  the case of the DRO) is  small enough so that  the ef- 
3This conclusion is true  only if the feedback at   the signal (and 

mately one photon per mode [171. 
fective  input  to  the  spontaneous fluorescence remains approxi- 

I .c 

.8C 

.6C 

.4c 

.2c 

c 

C m  rp(nsec) SA0 
- -- 100 zoo C Z  L ’ o  

- 20 200 
100 50 
20 50 

!al,(A) 2 2  

(cl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(CI 9.2 
( b l , ( B )  5.2 _ _  

\ 1 

\ i 

Fig. 2. SRO absolute rise time  divided  by  pump pulsewidth 
versus resonant loss for  various  values of cavity  optical  length 

ns-light lines and r = 106. 
and normalized pump  ratio. rp = 200 ns-heavy lines or 50 

is the  quantity P 3 p / ( P s T / ~ l )  = Norl since the  peak  pump 

power is usually fixed and knowledge of the  crystal  param- 
eters allows computation of the  quality PBTJal. Fixing 

the  quantity Nal is  equivalent to fixing the  peak  pump 
power and allows the effect of different cavity losses on 
rise  time t o  be predicted. For all  the  numerical  results 
of this  paper,  therefore,  a normalized  pump ratio No has 

been used instead of N as defined by (4). For  the SRO, 
No is defined as  the pumping  ratio  multiplied  by  the 
resonant loss in  percent: 

No = N(100 a1). (11) 

Equation (5) cannot be solved in closed form for Rl ( t )  
but  can be solved numerically.  Using  digital  computer 
techniques, the rise time for a  singly  resonant  oscillator 

has been computed  using (5). The results  for  two  values 
of T~ are shown in  Figs. 2-4. Figs. 2 and 3 plot  the  ratio 
of the rise time  to  the pump  pulsewidth. The  ordinate 
axis in  Fig. 4 is the  time between the  peak of the pump 
pulse and  the moment the ocsillator  turns ON [see  Fig. 
1 (c) ] divided by T ~ .  This is the most  convenient to  mea- 
sure  experimentally  and so is the most  useful  comparison 
to experiment. A value of r = lo8 has been used in  all 
calculations. For an  initial  internal power Plo = W ,  
this choice of r corresponds to  an external  power of 
W and  for a1 = 1 percent an  internal power of 1 W. 

IV. DOUBLY RESONANT OSCILLATOR 

The simplest  case to consider for  the DRO is the one 
for  equal losses a t  ‘ ~ 1  and ~ 2 .  This is the  usual case ex- 
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Fig. 3. SRO absolute rise time  divided  by  pump pulsewidth as Fig. 4. SRO rise time  relative  to  the  peak of the Gaussian pump 
a function of cavity  optical  length  for  various normalized pulse dmded  by rP plotted as a function of cavity opticaI 
pump ratios. rp 200 ns-solid  lines  or 50 ns-broken lines; length. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ = 200 n e s o l i d  lines or 50 ns-broken lines; a1 = 
a1 = 1 percent, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 108. 1 percent, T = 108. 

perimentally  and will be the only one treated here.  Set- oscillator  operation  level,  only the  rapidly growing part 

ting a/& = 0 in (1) and  (2),  integrating  each over the of (12) will contribute to  the field a t  #wl. Neglecting the 

cavity  length,  and solving the resulting  time-dependent second term of (12),  the power  output' a t  'wl can  be  writ- 

equations  with  initial conditions E ,  (0) = Elo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE2 (0) ten  as 

= E20 gives El ( t )  as 
P,(t) = $(I -t Y)~P,(O) exp [2ts(t)] = P I ,  exp [2ts(t)]  (15) 

E,(O = +II(E,~ + V'(K'~/K'~~E~~) exp [ t s + ( ~  where  from (12j  and [ 171, 

+ ( E , ~  - - V ' ( K ' ~ / K ' ~ ) E ~ ~ )  exp L~S-(OII  (12) 

ts* ( t )  = p[N""(t) - t ] .  (13) 

where /3 = CO~JL', K'j = Kjsin(Akl/2)/(Ak1/2)  and 

The  relative  phase  has been chosen as &#I = Ak1/2 + 
( ~ / 2 )  to  maximize  the  interaction  and  the  function g ( t )  
is defined by 

(14) 
The  integral  in (14) has been evaluated  for f ( t )  as de- 
fined by (7) and (8) and 

and 

P I 0  = + d 2  P,(O). 4 

Plo is the  initial  input  to  the  signal oscillator mode. 

Contrary t o  the case of the SRO, Plo is  not indepen- 
dent of the loss of the DRO because now PZT rn a2. As a 
result, Plo/, is  a  const'ant.  Defining the rise time  in  the 

same  way  as  for  the SRO, the constant  in (9) can  be re- 
placed  by rPlo/, for the DRO. The rise  time rR is thus 
defined by  the following equation: 

For the DRO as well as  the SRO, the  initial  values Using ( I 6 ) ,  (I3) and (15) give 
of the  resonant fields are  found  from  the  parametric 
fluorescence power inside the resonator a t  threshold  and 
within  t'he  bandwidth of the oscillator [2], 1171. Since 
these  values are  many  orders of magnitude below the  Note  that  the  ratio r J 2  enters as  the  argument of a 

Cff 
7RS(T,) = 7 (N"2g(r,) - 7B) = 2 In (r/a2) 

L 
-. (17) 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. DRO absolute rise time  divided by  pump pulsewidth 
versus  resonant loss for various  values of cavity  optical  length 

ns-light lines; r = 108. 
and  normalized  pumping  ratio. T~ = 200 ns-heavy lines or 50 

logarithm, so that  as in  the case of the SRO, the rise time 
is  not  strongly  dependent on the  value chosen for r.  

As noted  in  the  Introduction,  earlier  calculations [ 11, 
[Z] of the  doubly  resonant  parametric  oscillator rise 
time  have  assumed  a  constant  pump  power.  This  result 
can be found  by  setting f ( t )  = 1 so g ( t )  '= t ;  (17) then 
gives 

rS8/ct2 is the  ratio of the  external  cavity  steady-state 
power to  the  initial  internal power and rgS is the  time 
required to  reach  steady  state.  This  result  has  previously 
been derived  by  Kreuzer [l] and  by  Byer [2] using  a 
slightly different  definition of rise time.  One possible 
way of using (18) to  predict  the rise time of a  pulsed 
oscillator is to assume  the  pump pulse is a  square pulse of 
width T~ as shown in  Fig. 1 (b).  The  magnitude of the 
square  pulse is taken  to  be  the  same  as  the  peak of the 
Gaussian  pulse defining 3. For the  sake of comparison, 
the  predictions obt,ained  using this  quasi-steady-state 
approach  are also  shown as  light  curves  in Figs. 6 and 7. 

Results  for  the DRO for two  values of rp are  shown 
in Figs. 5-7. Fig. 5 shows the effect of losses on DRO 
rise time  and  Fig. 6 gives the  ratio T ~ / T ~  (or T J T ~ )  as a 
function of cavity length for different pump  ratios.  Fig. 
7 plots  the  quantity ( T ~  - T T ) / T ~  or (T$* - T p / 2 ) / T p .  The 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = lo8 has been used throughout. As in the case 
of the SRO, a normalized  pumping  parameter No, which 

1.2 
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kZ 
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C I > O l / I I l I  
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Fig. 6. DRO absolute  rise  time  divided by  pump  pulsewidth as 
st function of cavity  optical  length for various  normalized  pump 
ratios. T~ = 200 ns-solid lines or 50  ns-broken lines; LY = 1 

formula (18). 
percent, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 108. Light lines are  results  using  the  steady-state 

is  independent of a, is used  in  the figures. For  the case 
of the DRO, No is  given  by 

No = N(100a)2. (19) 

V. DISCUSSION 

A number of interesting  results  are  apparent  from  the 
figures.  Figs. 2 and 5 show that increasing cavity loss 
may  actually  decrease  the rise time  even  though  larger 
loss means  larger  oscillator  threshold. This curious 
behavior  results  from the' use of a Gaussian  pump pulse. 
The  Gaussian  function e-=' has  the  property  that for 
x2 > 4 its slope  increases in  magnitude  as z2 decreases. 
Since the  rate of growth of the  resonant fields is pro- 
portional to  the  amount  by which the  pump exceeds 
threshold,  the oscillator fields will grow  most  rapidly 
when the  pump  ratio P3(t ) /P3T grows  most rapidly. 
Lower losses imply a lower  oscillator threshold  and  thus 
the  threshold  pump level  occurs  further  out  on the ('tail" 
of the Gaussian,  where the  pump  ratio  changes  more 
slowly  per  unit time.  Consequently the rise time  can  be 
longer  for  smaller losses. However, the  time ( T ~  - T ~ )  

increases  monotonically  with  increasing loss reflecting 
the  fact  t.hat for larger losses, the  pump is above  threshold 
for a shorter  total  time. 

As mentioned  previously, the  curves  shown  above  were 
computed  using the value r = lo8. Rise-time  values  have 
also been computed  using  values of T = lo6, lolo, and 

A change of two  orders of magnitude  in r changes 
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rR by  roughly 10 percent. The only  time  the  value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 
makes  a significant difference in  the  calculated  values of 
7 ' ~  is when the  parameters rP, L', OL, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo are such that 

&sed a(%> - 

the ON condition can  barely be  achieved. c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (d) 53 I 

It is  apparent  from  the figures that  the rise  time  can 

be longer than  the pump  pulsewidth 3 .  The  important 
quantity, however,  is TR compared to TT [see Fig. 1 (c) 1. 
If rR > ~ T T ,  the oscillator will not  turn ON in  the  prac- 
tical sense that  the  output power will never  reach the 
preselected level. Inspection of (17) shows that  the maxi- 
mum  value of TRs(TB) occurs for T~ = 2rT a t  which  point 
the  pump power  again crosses the threshold level [see 

Fig. 1 (a ) ] .  Use of this  value  for rR in (17) vi11 define 
a  minimum  allowable  pump  ratio Nmin given 01 and L' I 2 4 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 40 100 203 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400 loo0 

or, conversely,  a  maximum cavity  optical  length L',,, N , = N ( I O O ~  

400- (01 200 I Dashed llnes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) 200 2 uslng Sleody-stole 
( d  200 4 formalism 

(e) 50 2 
.- ' loo- (f) 50 4 
u s  

. .  .~ 

given N and ,OL. These  extrema  are given by the solu- 
tions to  the following equations: 

e'' erf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) - ~ x = 
2 L' In (r/a2) 

4; 2caa v'G (20) 

where 

x2 = In (Xmin)/2 

and 

with y = In ( N ) / 2 .  
The corresponding quantities using the  steady-state 

Fig. 9. Maximum  cavity  optical  length  for  a DRO to reach the 
condition r = 108. Various cases of 01 and rl, are shown versus 

formula (23). 
cavity optical  length.  Dashed  lines  are  results of a steady-state 

approximation of a  square pulse and (18) are 

Predictions of (20)-(23) are shown in  Figs. 8 and 9 for 
two  values of rP. Note  that  the normalized  pump ratio 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
RELATIVE  RISE-TIME VALUES FOUND IN THE LITERATURE COMPARED TO CALCULATED T‘ALUES 

N a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAab 
(approximate) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(%) T P  (ns) n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (cm) L (cm) Measured (ns) Calculated (ns)  References 

TR - TT TR - TT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 15(SRO) 

20 
16 

15(DRO) 22 
2.2  0.94 1 . 7  
2.2  0.94 1.7 

16 17(DRO) 15 2.2  0.94 1 . 7  
4 14(SRO) 12 2.2  0.94 

20-40 6(SRO) 22 1 .4  12 
1 . 7  

2.2 
10-20 1.25(DR0) 180 2.2  0.35 

-4  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-8 -6 to -11 r71 

1 . 5  16(SRO)  25 1.8 0.8 
5 

1 . 5  
0 to -25  -21 to -64 [101 

-5 to 0 - 15 [91 

0 
- 12 

0 

-1 [el 
-15 [GI 

-2 11 81 
-6 -9 I1 81 

possible in selecting the  value of N used here. 
Care  must  be  taken  in defining measured  threshold for pulsed  oscillators (see [18]). The results discussed in [I81 have been  used  where 

I n  cases of the DRO where al # (YZ, a value of a = 6 is  assumed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No defined by  (19) is used in  Fig. 9. From  the curves 
in  Figs. 6-9 i t  can  be seen that  the results of the  steady- 
state approximation  are  generally  unreliable  but  might 
be used for  a  rough  estimate. 

The  quantity N m i n  as  defined by (20) and  plotted  in 
Fig. 8 is the  factor  by which the pulsed  threshold  is  in- 
creased  due to  the finite  oscillator  rise  time. Once the 
CW threshold  has been calculated  (using  the  results of 
[ 151, for example)  and  a  cavity  length chosen, the  actual 
pulsed  threshold  is  found  by  multiplying the CW result 
by Nmin to  obtain  the  threshold  peak  pump power. The 
pulsed  oscillator  threshold is thus defined by  the mini- 
mum  peak  pump power for which the oscillator will turn 
on rather  than  the pump  power that gives a  net  gain a t  
the signal  and  idler frequencies. Note  that if rise time 
were not  an  important  consideration (Le., CW case), 
Nmin = 1. If the  peak  pump power  is fixed (No is  given), 
the maximum  allowable  cavity  length  can be found  from 
Fig. 9. Note  that for L’ = L’,,, or N ’= Nmin the oscil- 
lator is driven at   the  “pulsed  threshold” level. 

From Figs. 2, 5,  and 8 it is  apparent  that  the effect 
of a  finite  oscillator  rise  time  is  often  reduced  for  larger 
losses. It might  appear  advantageous to increase the 
losses in a given experimental  situation. One should be 
careful  in  applying  such logic, however,  because the 
larger CW threshold  resulting  from  increased loss could 
also  prevent  the  oscillator  from working. There  is  a defi- 
nite tradeoff  between  increased  threshold and reduced 
rise time  and  the  optimum  combination will have  to be 
determined  for  each  experimental  situation. 

Although the results  shown  in  Figs. 8 and  9  are  strictly 
applicable  only to doubly  resonant oscillators, they  can 
also  be  used to give an  estimate of the effect of rise  time 
on ‘SRO operation. For  the  SRO  the abscissa of Fig. 9 
should be No = N(100  CY^). It should  be  noted that  the 
minimum  pump  values  shown  in  Fig. 8 would apply  for  a 
perfectly  adjusted  oscillator  pumped  by  a single-fre- 
quency  pump. In  a practical  situation,  a  safety  margin 
of about  an order of magnitude  in  the  pumping  ratio 
would ensure  ease of cavity  alignment  and  stable  repro- 
ducible  operation,  as well as  ensuring  significant energy 
conversion from the  pump  to  the signal  and  idler fields. 

VI. COMPARISON TO EXPERIMENT AND CONCLUSIONS 

Several  experimental  parametric  oscillator  results  have 

been published and  have included oscilloscope traces of 
the pump  and  signal  output pulses. From  these  data, 
values of (Q - T ~ )  can be found  and  compared to  theo- 
retical predictions. From  the experimental  photographs, 
the  time ( T ~  - TT) is defined by the onset of pump de- 
pletion  or  by  the  leading edge of the oscillator  pulse if 
no  depletion  is  evident. Table I sumarizes the  result of a 
number of authors. The  value of T = lo8 has been used 
for the predicted  values. 

The values of N shown in  Table I are  quite  approxi- 

mate.  Where enough  information  was  supplied, the 

measured  peak  pump power and  the theoretical  CW 
threshold  were  used to  find N.  Otherwise N was com- 
puted using the measured  threshold power. Considering 
the  approximate  nature of the experimental data,  the 
agreement  with  theory  is considered  reasonable. 

The results  presented  here  can  be used to determine 
whether  in  a  given  experimental  situation the signal 
power will approach the  steady-state level  correspond- 
ing to  the  peak pump  power. The importance of this 
consideration is  that  as a  result of the ,“explosive” nature 
of the signal  buildup  under  pulsed  excitation,  failure to  

reach the  quasi-steady-state level  also  implies  a  negligible 
conversion of pump power to signal  power  even  though 
the  peak  pump power may exceed the  CW threshold 
(gain = loss) by  a  large  factor.  The  parameters Nmin 
and L’,,, can be used to set  practical design  limits  on 
pulsed parametric  oscillator  systems. 
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Influence of the Lifetime an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4111,2 Level on Nd-Glass 

PETER C. MAGNANTE 

Abstract-Gain saturation of an Nd-glass amplifier by 1.06-pm 
light pulses is determined  by  the  lifetimes  and  degeneracies of the 
two laser  states  as well a s  by thermalization rates among the com- 
ponents of the two  multiplets to which the  laser  levels belong. 
Reported  are  measurements showing that  although  small signal 
gain was  the  same  for amplified microsecond and picosecond pulses, 
comparable energy gain saturation occurred  when the  energy  density 
of the mode-locked pulses  was 1.9 times  smaller  than  the amount 
for  the microsecond pulses  indicating  terminal  level filling with 
the shorter pulses. Our  measurements  indicate  the  terminal  laser 
level, which is one of two  unresolved  groups in the 4 1 1 1 , 2  multiplet, 
has a lifetime greater  than 50 ns and a degeneracy likely to  be  one  or 
two. Pulse  train distortion due  to  saturating amplification was 
measured  to k d  whether  the thermalization rates among the levels 
of the  laser multiplets were fast or slow compared to  the 10-1*-s 
pulses, but  experimental  uncertainties prohibit a determination. 

I. INTRODUCTION 

HE ONSET of gain  saturation  in  an Nd-glass 
amplifier  occurs when an optical  pulse  traveling 
in  the  inverted medium becomes strong enough to 

change  appreciably the population of the laser levels [ 11. 
The  rate of increase  and  extent of saturation depend 
not  only on the optical  pulse power density  and  duration, 
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but  also on the lifetimes and degeneracies of the levels  in 
the 1.06-pm transition. 

The upper  laser level shown in Fig. 1 is the lower 
lying  component of the 4F3/2 pair  with  a  several-hundred 
microsecond spontaneous emission lifetime. Not counting 

the sublevels that would be split  by  a  magnetic field, the 
degeneracy of either member of the 4F3/2 multiplet  is 
one. The  terminal laser  level is the lower lying of two 
groups in  the six-fold degenerate 4111/2 multiplet. Spec- 
troscopically the components of either group  in this 
manifold  have been unresolved  leaving the degeneracy 
of the  terminal  laser level  for us to guess. The 4111/2 
group  empties  spontaneously  by  a  radiationless  phonon 
transition  [a]  to  the 419/2 ground state  about 2000 cm-1 

below. Measurements  with Nd-glass a t  room temperature 
show the lifetime of the 4111/2--419,2 transition  likely  to be 
of the order of or greater than 100 ns [3]. This lifetime 
and also  assumed  degeneracies for the  terminal laser level 
have been used as  parameters  in  evaluating  measurements 

of  gain  saturation for  &-switched  pulses  in Nd-glass am- 
plifiers [ 41 . 

Our own measurements  have been made  with  pulses of 
different durations.  When  the pulses for amplification 
were generated  by  a  laser  oscillator  operating  in the  ran- 
dom spiking  mode  with  individual  spikes longer than a 
microsecond, our  results were in accord  with  those of 


