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Rise to modern levels of ocean oxygenation
coincided with the Cambrian radiation of animals
Xi Chen1, Hong-Fei Ling1, Derek Vance2, Graham A. Shields-Zhou3,4, Maoyan Zhu4, Simon W. Poulton5,

Lawrence M. Och3, Shao-Yong Jiang1,6, Da Li1, Lorenzo Cremonese3 & Corey Archer2

The early diversification of animals (B630Ma), and their development into both motile

and macroscopic forms (B575–565Ma), has been linked to stepwise increases in the

oxygenation of Earth’s surface environment. However, establishing such a linkage between

oxygen and evolution for the later Cambrian ‘explosion’ (540–520Ma) of new, energy-

sapping body plans and behaviours has proved more elusive. Here we present new

molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom

waters increased in step with the early Cambrian bioradiation of animals and eukaryotic

phytoplankton. Modern-like oxygen levels characterized the ocean at B521Ma for the

first time in Earth history. This marks the first establishment of a key environmental

factor in modern-like ecosystems, where animals benefit from, and also contribute to, the

‘homeostasis’ of marine redox conditions.
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T
he delay between the origin of animals (B800Ma, as
inferred from molecular clocks)1 and their early
diversification in the Ediacaran Period (635–541Ma)2 has

been suggested to be due to sluggish oxygenation of the Earth
surface3,4. After the ‘Great Oxidation Event’ (GOE5) in the early
Proterozoic (B2,400–2,100Ma), atmospheric PO2

stayed within
B0.01 and B10% of the present atmospheric level during the
mid-Proterozoic (B2,100–800Ma (refs 6,7)). It was only after the
termination of the Cryogenian glaciations (B635Ma) that
oxygen levels in Earth’s surface environment began to increase
significantly again8,9. Although the lower estimate of Ediacaran
atmospheric PO2

may surpass the minimum oxygen requirement
of animals (o0.1% present atmospheric level)4, the deeper ocean
likely remained predominantly anoxic10–12. As a consequence, O2

deficiency13, H2S toxicity14 and a scarcity of trace metal
micronutrients (such as Mo, Cu and Zn (ref. 15)) may have
continued to limit the ecological distribution of eukaryotes.

Eukaryotes, especially animals and planktonic algae, only
began to dominate the marine ecosystem during the ‘Cambrian
explosion’ of biological diversity (B520Ma)12,16,17. Many
essential aspects of this biotic event, such as increased animal
body size18, active locomotion, bioturbation19,20, carbonate
biomineralization21, carnivory13,22 and cropping17,23,24, have
been linked to a rise in atmospheric oxygen beyond the
minimum requirement of animals, and/or widespread ocean
oxygenation. However, redox conditions in the early Cambrian
oceans, especially the deep ocean, are still controversial. Some
studies suggest widespread oxygenation13,25,26, while others
propose a ferruginous (Fe2þ -rich) or even euxinic (H2S-rich)
deep marine environment10,27. Moreover, it has been suggested
that oceanic oxygen remained at levels much lower than the
modern until the Devonian28.

Here we use sedimentary molybdenum (Mo) isotope composi-
tions to trace the evolution of global ocean redox state over this
critical period for animal evolution. Global marine redox
conditions can be inferred from the sedimentary Mo record
because of its redox-sensitive deposition and isotope fractionation
mechanisms9,29–32. In the modern oxic open oceans, Mo is present
as the conservative oxyanion molybdate MoO2�

4

� �

at relatively
high concentrations (its salinity-normalized concentration is
B107nmol kg� 1)33. The modern open-ocean seawater (OSW)
Mo reservoir is enriched in heavy isotopes (modern
d98/95MoOSW¼ þ 2.34%, relative to NIST-SRM-3134 (ref. 34))
relative to the dominant input from rivers (d98/95MoRivers¼
þ 0.7% (ref. 35)). This arises because a major sink for Mo in the
modern oceans is the slow adsorption on particulate manganese
oxides under widespread oxic conditions, and because this process
is accompanied by a � 3% isotopic fractionation DSediment–OSW,
that is, d98/95MoSediment� d98/95MoOSW¼ � 3% (refs 29,36)).
When bottom-water dissolved oxygen is low or absent, H2S may
be present in pore waters of organic-rich reducing sediments (on
some continental margins) or in the water column (for example,
Black Sea and regions of intense upwelling). Under these
conditions, Mo deposition can be accelerated by one to two
orders of magnitude37,38, leading to smaller isotopic fractionations
DSediment–OSW¼ 0 to � 0.7% (ref. 39)) due to more quantitative
sequestration from the dissolved phase in these settings. An
expansion of such sulphidic conditions will therefore cause
the d98/95Mo value of seawater to decrease towards the riverine
input value. Seawater d

98/95Mo will most likely be recorded in
sediments deposited under euxinic conditions because of
quantitative removal of aqueous Mo. However, importantly,
measured d98/95Mo values of sediments provide a minimum
constraint on contemporaneous seawater isotopic composition
because all known sedimentary Mo sinks record
d
98/95Morseawater28. We determined Mo concentrations and

isotope compositions (see Methods) of well-preserved organic-rich
marine sediments of Cryogenian to early Cambrian age. We also
assess local water column redox conditions using iron speciation
(see Methods) in the same sediments. We find that the tempo of
ocean oxygenation, as reconstructed by the Mo isotope and
concentration profiles, was in step with the early Cambrian
bioradiation.

Results
Geologic setting and samples. Late Neoproterozoic to Cambrian
successions are well developed in South China. They are fossili-
ferous, with several unique biotas in various environments
(Supplementary Note 1) and provide one of the best candidates
for constraining the co-evolution of marine oxygenation and
life9,14,40. We collected black shales and organic-rich cherts from
shallow-to-deep water successions on the south-eastern margin of
the Yangtze platform (Supplementary Figs 1 and 2). The ages of
our samples span the mid-Cryogenian to the early Cambrian
(B660–520Ma). Ediacaran and early Cambrian successions in
the Yangtze Gorges area represent shallow-water facies, while
deeper water facies occur in northwestern Hunan and southern
Anhui provinces (see Supplementary Note 1).

Mo isotopes. Our Mo concentration and isotopic data, together
with published data from the late Archaean to early Cambrian,
are compiled in Supplementary Data 1 and shown in Fig. 1 and
Supplementary Fig. 2. After several moderate peaks (þ 1.5% to
þ 1.7%) without a distinct increase in Mo abundance in the late
Archaean (B2,500–2,750Ma)41–44, presaging the GOE, d98/95Mo
remained at low levels (oþ 1.3%) from the late
Palaeoproterozoic (B2,300Ma) to the mid-Neoproterozoic
(B750Ma)28,30,41,45–48. In the late Neoproterozoic, higher
d
98/95Mo values (up to þ 1.6%) are tied to increased Mo

abundance in the aftermath of the three major glaciations
(Sturtian, Marinoan and Gaskiers), possibly linked to oxygenation
events driven by high nutrient inputs from enhanced terrestrial
weathering6,8. d

98/95Mo values approached 4þ 1.5% around
550Ma, and then reached þ 2% for the first time in Earth
history during the earliest Cambrian (B535Ma, mid-Fortunian
Stage). After that, coinciding with the first occurrence of trilobites
and nearly all animal clades in the major phase of the ‘Cambrian
explosion’, both high d98/95Mo values (near þ 2.3%) and high
Mo concentrations (4100 p.p.m.) are found in samples from
different locations, and cluster around the Cambrian Stage 2/3
boundary (521Ma). There are four sulphidic samples out of eight
samples having high d

98/95Mo values (4þ 1.9%) between B525
and B520Ma. Although the other half of these eight samples
were deposited under Fe-rich conditions (note that these samples
still contain appreciable pyrite, with FePy/FeHR40.3 to B0.5), we
emphasise that the sediments analysed likely record d

98/95Mo
close to that of contemporaneous seawater (for the sulphidic
black shales) or a minimum value for seawater (for the
ferruginous black shales).

Discussion
Our data provide an estimate for the lower limit of coeval
seawater Mo isotopic composition and document the fact that
d98/95MoOSW rose to a level higher than ever before during the
early Cambrian, peaking at modern levels (Bþ 2.3%) at
B520Ma. The rarity of black shales deposited under fully
euxinic conditions makes a continuous record of the precise
d98/95Mo of seawater difficult to obtain. However, where
sulphidic black shale data (or phosphatic data, which have been
suggested also to record seawater values25) are available, their
d98/95Mo data are lower than those at 520Ma—that is, þ 1.2%
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for 750Ma (ref. 49), þ 0.2% for B551Ma (ref. 50 and our data),
and þ 2% for phosphorites at B535Ma (ref. 25). The early
Cambrian marine oxygenation event delineated by maximal
d
98/95Mo values in black shales is consistent with other

geochemical records, such as iron speciation and uranium
concentrations (Supplementary Fig. 3). Canfield et al.10

established an iron speciation database and found that anoxic
ferruginous deep oceans were widespread and persistent during
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Figure 1 | Compilation of Mo data together with biodiversity and degree of bioturbation during the Ediacaran–Cambrian transition. (a) Bioturbation

indices and diversities of animals, skeletal taxa and eukaryotic phytoplankton1,20,59. MP: mesozooplankton appeared17; CJ: the Chengjiang Lagerstätte. (b)

Mo data from the mid-Cryogenian to the early Cambrian. In the timescale, three major glaciations are marked as snowflakes, S1 to S4 denote the first four

Cambrian stages. The colour of the data points denotes local redox: sulphidic (FePy/FeHR40.7, red), ferruginous (FePy/FeHRo0.7, orange), anoxic (blue,

when Fe speciation data are not available, Fe/Al40.5, trace metal enrichments and other sedimentary characteristics are used to discriminate anoxic

conditions) and unknown (grey, no above mentioned data are available, also included are typical carbonates and phosphates, to which Fe-S-C systematics

redox proxies cannot easily be applied). The dashed lines mark the average d98/95Mo value of modern seawater (þ 2.34%) and the riverine input

(þ0.7%). Data sources, filled circles: this study; open triangles: published data. Mo concentrations of samples from the early Cambrian Ni–Mo ore layer

are not shown because of their exceptional enrichment in Mo (in the percent range). The green arrow marks the rising maximal d98/95Mo values. The

graded green shading in a,b denotes postulated oxygenation of the ocean from the late Ediacaran to the early Cambrian. (c) Mo data from the

Palaeoarchaean to present (Supplementary Data 1). Symbols as in b, and green colour stands for oxic condition (FeHR/FeTo0.38 and/or Fe/Alo0.5).
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later Neoproterozoic times. Li et al.14 analysed the iron speciation
systematics of samples obtained from a shore-to-basin transect
and proposed that sulphidic zones were sandwiched between
ferruginous waters on continental margins through the Ediacaran
Period. Owing to geochemical similarities with Mo, U
concentrations in sediments can also reflect the redox state of
the global ocean26, although the onset of U enrichment in
sediments requires less reducing conditions than that of Mo51.
Hence, U concentrations in sediments deposited under both
sulphidic and anoxic non-sulphidic conditions can indicate the
size of the ocean uranium reservoir, which is proportional to the
level of ocean oxygenation. Available data show that U
concentrations in anoxic sediments are generally higher for the
early Cambrian than for the Ediacaran, and also peaked at
B520Ma (see Supplementary Fig. 3).

Peak d98/95Mo values indicate that oxygenation of the ocean
reached modern-like levels for the first time in Earth history at
B520Ma. The d98/95MoOSW value of the ocean can attain such
high values under two alternative scenarios: either oxic waters
overwhelmingly dominated the global seafloor in a steady-state
Mo cycle, or widespread mildly euxinic waters suddenly
consumed the ocean Mo reservoir in a catastrophic hydrogen
sulphide-release event27. The latter scenario is inconsistent with
the high d98/95Mo values found in this study for black shales both
below and above the peak Mo concentration layer (that is, the
Ni–Mo-enriched layer, see Supplementary Note 1), while the peak
itself has only intermediate d

98/95Mo values (oþ 1.4%
(refs 52,53)). As increases in d98/95Mo and U concentrations
both exhibit a long-term trend through the early Cambrian, we
apply an improved steady-state mass balance model (see Methods
and below), which demonstrates that d

98/95Mo values of ca.
þ 2.3% indicate an unprecedentedly high level of marine
oxygenation. We divide the Mo sinks into three types with
increasing Mo accumulation rates and decreasing Mo isotope
fractionation37,38: a sink under strongly oxic water (denoted sOx,
where O2 penetrates 41 cm below the sediment–water interface,
average Mo isotope fractionation DsOx–OSW¼ � 2.95% (ref. 29));
a sink under weakly oxic water (wOx, low O2 in bottom waters
and H2S exists in organic-rich shallow sediments, average Mo

isotope fractionation DwOx–OSW¼ � 0.7% (ref. 39)); and a sink
under euxinic water (H2S is present in bottom waters, average Mo
isotope fractionation DEux–OSW¼ � 0.5% (ref. 28)). We also note
that in the modern oceans there are large areas of moderately oxic
seafloor (mOx, B14% (ref. 38)), where the sulphidic zone is deep
in the sediment column and the bottom-water O2 concentration
is higher than or comparable to the weakly oxic condition. In
these settings Mn oxide-related Mo is quantitatively remobilized
from shallow sediments and released back to seawater37,38,54.
Such areas are important but not relevant to the mass balance
model since they are neither a sink nor a source for Mo. Our
modelling results (Fig. 2) suggest that Mo removal under
oxygenated bottom waters (including both strongly and weakly
oxic conditions) must account for more than 94% of the total
Mo sink when d

98/95MoOSW reaches modern-like levels
(þ 2.3%), but can be as low as 33% when d98/95MoOSW is
þ 1.6%, which is the highest observed value for the Proterozoic.
The modern-like d98/95MoOSW value also requires that the
strongly oxic sink accounts for more than 42% of the total
oxic sink, while a d98/95MoOSW value of þ 1.6% would
allow weakly oxic sink to account for up to 91% of the total
oxic sink.

The areal proportions of the three redox conditions are further
explored through incorporating Mo accumulation rates (see
Methods). There is a wide range in estimated Mo accumulation
rates for modern euxinic settings (F’Eux), from 12,000 mgm� 2

yr� 1 (ref. 32) to 4,800 mgm� 2 yr� 1 (ref. 38), and we here
choose the lower rate to avoid overestimating both the difference
between euxinic and oxic sinks, and the oxic area fraction. To
maintain not only mass but also isotope balance of the modern
oceanic Mo cycle, a F’sOx value of 40 mgm� 2 yr� 1, which is
higher than previous estimate of 27.5 mgm� 2 yr� 1 (ref. 38), is
required. Our modelling results (Fig. 2) indicate that a
d98/95MoOSW value of þ 2.3% requires a limited extent of both
euxinic (o1%) and weakly oxic (o2%) areas. Therefore, strongly
and moderately oxic areas, with relatively high O2 concentrations
in bottom waters, must have covered 497% of the seafloor at
B521Ma, at least episodically, in comparison with a coverage of
80% to satisfy a d98/95MoOSW value of þ 1.6%. This oxygenation
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event was broadly contemporaneous with the Cambrian bior-
adiation (Fig. 1).

The early Cambrian bioradiation is characterized by the
emergence of nearly all major bilaterian body plans1. This
developmental/morphological complexity is a long-term
consequence of eukaryotic multicellularity, which had
originated by the late Mesoproterozoic (B1,200Ma) and which
diversified during the Ediacaran12,17,55. However, the Ediacara-
type biota (B575–541Ma) was dominated by soft-bodied sessile
epibenthic osmotrophs, and there is no unambiguous evidence
for motile bilaterians56,57, except towards the very end of the
Ediacaran58. From the terminal Ediacaran to the earliest
Cambrian (B580–529Ma), shallow bioturbation20 and
phosphatic or aragonitic small shelly fossils characterize the
initial phase of the ‘Cambrian explosion’59. During Cambrian
Stage 2 (B529–521Ma), diverse deeper burrows and complex
trace fossils record active bioturbation of sediments and mark the
so-called ‘substrate/agronomic revolution’20, while small shelly
fossils further diversified and calcitic taxa began to appear59,60.
Nearly all bilaterian body plans had appeared by early Cambrian
Stage 3 (ref. 1), the major phase of the ‘Cambrian explosion’.

The apparently abrupt appearance of large, motile and diverse
animal forms, following a prolonged and obscure history of
phylogenetic evolution, has frequently been explained by changes
in the physical environment, especially redox conditions1,13,
although this conclusion is not without controversy4. Our data
clearly indicate a spatial waning of anoxia (including euxinic and
non-sulphidic conditions) in the early Cambrian ocean, which may
have been a pre-condition for the transition to a modern marine
ecosystem supporting diversified animals. If anoxia were
widespread, even though early animals may have inhabited
patchy oxic environments, intrusion/upwelling of anoxic water
would have stifled their success14,61. Diminished euxinia may also
have relieved the Proterozoic trace metal micronutrient crisis15.

Our data also indicate unprecedentedly widespread oxygena-
tion in the early Cambrian ocean. The expansion of strongly and
moderately oxic seafloor from o80% during the Precambrian to
497% during the early Cambrian may have provided a
significant increase in the size of habitable space for animals.
Animals favour continental marginal areas that have abundant
nutrients but are also prone to anoxia because of high primary
productivity and the consequent high O2 demand. When 497%
of the seafloor was well oxygenated, there must have been vast
space (460% of the continental margins) for animals to flourish,
given that modern continental margins occupy B7% of the
world’s seafloor. This expansion of oxygenated seafloor took place
against the backdrop of the rising sea level in the early
Cambrian62, creating numerous new oxygenated ocean margin
settings and liberating animals that possibly suffered from
fluctuating redox conditions on the continental shelf during
Ediacaran time14,61. Moreover, importantly, the expansion of oxic
seafloor to a modern extent may imply near-modern average
marine oxygen concentrations. Although animals, especially those
of sponge-grade and meiofauna, could survive at modest oxygen
levels4,63, the large size and ecological dominance of the
characteristic Cambrian fauna could not have developed
without abundant oxygen. Metabolically expensive behaviours,
such as active locomotion, bioturbation and muscular carnivory,
require a high oxygen consumption rate for efficient aerobic
respiration13,20. Moreover, oxygenation would have favoured
aerobic over anaerobic respiration in the deep ocean, resulting in
a decrease in alkalinity and thus suppressing carbonate
deposition on/in the seafloor21. This, consequently, would have
increased surface ocean carbonate supersaturation, which may
have reduced the physiological cost of carbonate skeleton
construction and facilitated the evolutionary arms race13.

Animal ecosystem engineers may also have contributed to
ocean oxygenation12,17. The early originating suspension-feeding
sponges had low O2 requirements63, and may have helped
consume the large dissolved organic carbon reservoir that acted
as a major redox buffer in the Proterozoic ocean12. Planktonic
animals and algae64 diversified nearly simultaneously in the early
Cambrian, and likely enhanced the efficiency of the biological
pump12,17,65, lowering oxygen demand in the water column.
Once benthic motile animals became widespread, they deepened
O2 penetration depth through bioturbation, which helped
P-retention and in turn limited primary production and
stabilized marine oxygenation12.

In sum, a pervasively well-oxygenated ocean would have played
a critical role in the ‘Cambrian explosion’, during which newly
evolved animals and ecosystems affected both carbon and
nutrient cycling, first facilitating and then stabilizing more
widespread oxygenation in the world’s oceans12,17. Through a
combination of high-resolution palaeoenvironmental and
palaeobiological studies, we are reaching a more comprehensive
understanding of the complex, dynamic interactions and
feedbacks that helped to bring modern-like ecosystems into being.

Methods
Samples. Fresh rock samples were powdered using an agate mill. Trace metal and
Mo isotope analyses were carried out with an Element II ICP-MS and a Neptune
MC-ICP-MS, respectively, at the University of Bristol. Samples were digested by
standard HF-HNO3-HCl methods at 180 �C for 472 h.

Mo isotope composition. Mass spectrometry and mass bias correction of Mo
isotope data by the double spike technique were carried out as previously descri-
bed35. Mo isotope data are reported using the d notation, relative to the Mo
standard NIST-SRM-3134 (with its d98/95Mo value of þ 0.25% (refs 34,66)) where

d
98=95Mo ¼ 1; 000�

ð98Mo=95MoÞSample

ð98Mo=95MoÞNIST� SRM� 3134�0:99975
� 1

 !

ð1Þ

The internal precision of Mo isotopic measurements ranges between 0.02% and
0.05% (2SE of 30 integrations) for all our samples. The external reproducibility of a
series of replicates (entire procedure from digestion of powder onwards) of a black
shale sample is 0.02% (2SD, six replicates).

In this study only samples with Mo-enrichment factor (MoEF, which is defined
as the ratio of ([Mo]/[Al])Sample to ([Mo]/[Al])Crust) more than two are plotted, to
ensure that only the isotopic composition of authigenic Mo is considered. We did
calculations to correct the d98/95Mo values for detrital Mo contribution39, assuming
that the total Mo is a mixture of the detrital (d98/95Mo¼ 0%) and authigenic Mo.
Samples having a difference 40.2% in d

98/95Mo between the measured and the
corrected values were removed. All Mo isotope data are presented without detrital
Mo correction.

Iron speciation. We further filtered our samples to include only those deposited
under anoxic conditions. We accessed the local redox conditions by iron specia-
tion. Iron in carbonate (FeCarb), oxides (FeOx) and magnetite (FeMag) was
sequentially extracted at the Newcastle University using the method described in
ref. 67. Iron in pyrite (FePy) is calculated from pyrite sulphur measured by the
chromium reduction method, given a stoichiometry for pyrite of FeS2. Total
organic carbon (TOC) contents were measured at the University College London
using a Leco C/S analyser after acidification with 6N HCl.

In general, under an anoxic (O2-free, with or without H2S) water column,
highly reactive Fe (FeHR) usually constitutes more than 38% of total Fe (FeT)
because of syngenetic formation of either iron sulphides in sulphidic waters or non-
sulphidized minerals (Fe carbonate, FeIII oxides or magnetite) in ferruginous
waters. A FePy/FeHR ratio of 0.7 (ref. 11) is used to discriminate between
ferruginous (o0.7) and sulphidic (40.7) anoxia in the water column.

Mass balance model of Mo cycle. The parameters used in the model are listed in
the Supplementary Table 1. We divide the Mo sinks into a strongly oxic sink
(FsOx, bottom-water dissolved oxygen 410 mM, where O2 penetrates 41 cm below
the sediment–water interface), a weakly oxic sink (FwOx, bottom-water dissolved
oxygen o10mM, with a shallow sulphidic zone in the reducing sediments)
and a euxinic sink (FEux, H2S is present in bottom water)37,38. The moderately
oxic seafloor, with a deep sulphidic zone in the sediment column, is not
relevant to the global Mo budget because Mn oxide-related Mo is quantitatively
released back into the water column during reduction. Because DEux–OSW

(¼ d98/95MoEux� d98/95MoOSW) approaches 0 only if bottom-water [H2S]aq is
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greater than 11mM, an average fractionation of � 0.5% (DEux�OSW) is used for the
euxinic sink28. The Mo isotope composition of open ocean seawater (d98/95MoOSW)
is determined by the fractions of the fluxes to sediments in the three redox settings
(fEux, fwOx and fsOx) with the assumption of steady-state, and setting the input to the
ocean at the modern value of the riverine flux:

fEux þ fsOx þ fwOx ¼ fRivers ¼ 1 ð2Þ

Isotope mass balance is described by:

dRivers ¼ dEux�fEux þ dwOx�fwOx þ dsOx�fsOx ð3Þ

where each dOutput equals (d
98/95MoOSWþDOutput).

We define:

ksOx ¼
fsOx

fsOx þ fwOx
ð4Þ

and solve the above three equations to get the d98/95MoOSW as a function of ksOx
and fEux, and then plot the contours of d98/95MoOSW in Fig. 2.

The Mo output rates (F’Output, gm
� 2 yr� 1) in various redox settings are

assumed to be controlled by first-order kinetics with respect to the coeval Mo
reservoir in the open ocean (R), that is, each F’Output¼ F’Output0�R/R0 (subscript 0
denotes the modern value). Replacing each fOutput (¼ FOutput/FRivers) in the isotope
mass balance equation (3) with:

ðF0
Output0�R=R0Þ�ðATotal�f AOutputÞ

FRivers
ð5Þ

together with the mass balance equation (2), we can get the d98/95MoOSW as a
function of areal fractions of the three redox settings f AEux , f

A
wOx and f AsOx .

In our sensitivity analyses (see Supplementary Fig. 4) we first investigated the
impact of setting both DEux�OSW and dRivers to zero. This results in even smaller
areas of euxinia and greater predominance of oxic bottom waters for modern-like
d98/95MoOSW, including a major contribution of strongly oxic conditions.

In modern weakly oxic settings, although the uppermost few centimetres of
sediments show heterogeneous DSediment–OSW ranging from � 1.2% to � 0.2%,
the DSediment–OSW of deep sediments converge on a common value of � 0.7%,
which more likely represents the true average DwOx–OSW over long timescales39.
However, we further investigated the impact of uncertainty in DwOx–OSW. A smaller
fractionation, such as DwOx–OSW of � 0.2%, results in a similar situation to the
previous sensitivity analyses, that is, even greater contributions are required from
oxic sinks for modern-like d98/95MoOSW. Although DwOx–OSW of � 1.2% would
allow smaller contributions from oxic sinks, modern-like d98/95MoOSW still
requires/reflects a predominance of oxic sinks.
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Mo isotope systematics in Archean and early Proterozoic sedimentary systems
as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta
69, 1787–1801 (2005).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8142

6 NATURE COMMUNICATIONS | 6:7142 | DOI: 10.1038/ncomms8142 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


46. Kendall, B., Creaser, R. A., Gordon, G. W. & Anbar, A. D. Re-Os and Mo
isotope systematics of black shales from the Middle Proterozoic Velkerri and
Wollogorang Formations, McArthur Basin, northern Australia. Geochim.
Cosmochim. Acta 73, 2534–2558 (2009).

47. Kendall, B., Gordon, G. W., Poulton, S. W. & Anbar, A. D. Molybdenum
isotope constraints on the extent of late Paleoproterozoic ocean euxinia. Earth
Planet Sci. Lett. 307, 450–460 (2011).

48. Asael, D. et al. Coupled molybdenum, iron and uranium stable isotopes as
oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem.
Geol. 362, 193–210 (2013).

49. Dahl, T. W. et al. Molybdenum evidence for expansive sulfidic water masses in
B750Ma oceans. Earth Planet Sci. Lett. 311, 264–274 (2011).

50. Kendall, B., Anbar, A. D., Gordon, G., Arnold, G. L. & Creaser, R. A.
Constraining the redox state of the Proterozoic deep oceans using the Mo
isotope systematics of euxinic black shales. In Geological Society of America
Abstracts with Programs vol. 38, 56 (2006).

51. Algeo, T. J. & Tribovillard, N. Environmental analysis of paleoceanographic
systems based on Molybdenum-Uranium covariation. Chem. Geol. 268,
211–225 (2009).

52. Lehmann, B. et al. Highly metalliferous carbonaceous shale and Early
Cambrian seawater. Geology 35, 403–406 (2007).

53. Xu, L., Lehmann, B. & Mao, J. Seawater contribution to polymetallic Ni-Mo-
PGE-Au mineralization in Early Cambrian black shales of South China:
evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore
Geol. Rev. 52, 66–84 (2013).

54. Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals
in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

55. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in
Proterozoic oceans. Philos. Trans. R Soc. B 361, 1023–1038 (2006).
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