
ORIGINAL ARTICLE

RiSeG: a ring based secure group communication protocol
for resource-constrained wireless sensor networks

Omar Cheikhrouhou • Anis Koubâa •

Gianluca Dini • Mohamed Abid

Received: 10 December 2010 / Accepted: 5 March 2011

� Springer-Verlag London Limited 2011

Abstract Securing group communication in wireless

sensor networks has recently been extensively investigated.

Many works have addressed this issue, and they have

considered the grouping concept differently. In this paper,

we consider a group as being a set of nodes sensing the

same data type, and we alternatively propose an efficient

secure group communication scheme guaranteeing secure

group management and secure group key distribution. The

proposed scheme (RiSeG) is based on a logical ring

architecture, which permits to alleviate the group control-

ler’s task in updating the group key. The proposed scheme

also provides backward and forward secrecy, addresses the

node compromise attack, and gives a solution to detect and

eliminate the compromised nodes. The security analysis

and performance evaluation show that the proposed

scheme is secure, highly efficient, and lightweight. A

comparison with the logical key hierarchy is preformed to

prove the rekeying process efficiency of RiSeG. Finally, we

present the implementation details of RiSeG on top of

TelosB sensor nodes to demonstrate its feasibility.

Keywords Secure group communication �
Wireless sensor networks � Security � Key management �
Group management

1 Introduction

Wireless sensor networks (WSNs) have emerged as a

promising technology useful for a wide range of civilian

applications such as environment monitoring, target

tracking, healthcare services, etc. [1–4]. To note, a WSN is

made up of several autonomous and compact devices

called sensor nodes. The latter are densely spread in the

monitored area, and wirelessly communicate in order to

self-organize into a multi-hop network, collaborate in the

sensing activity and forward the acquired information

toward one or more users. WSNs are usually deployed for

monitoring several types of data, and therefore, a sensor

node is, generally, equipped with a diversity of sensors

(temperature, humidity, light, etc.) [5]. In addition, sensor

nodes charged with sensing the same data type may want to

form a logical group, and consequently, data circulated in

one group must not be revealed by nodes alien to that

group. Group communication might be needed when the

group controller wishes to send the same commands or

requests to all group members. Similarly, group controller

may wish to dynamically reprogram or retask group

members, namely reset their trigger thresholds, recalibrate

the sensors, etc. [6]. Moreover, group members may col-

laborate together to produce aggregated information. This

collaboration requires a secure communication among

group members.

O. Cheikhrouhou (&) � M. Abid

CES Research Lab, National School of Engineers of Sfax,

University of Sfax, Sfax, Tunisia

e-mail: omar.cheikhrouhou@isetsf.rnu.tn

M. Abid

e-mail: mohamed.abid@enis.rnu.tn

A. Koubâa

CISTER Research Unit, Polytechnic Institute of Porto

(ISEP/IPP), Portugal, Al-Imam Mohamed Bin Saud University,

College of Computer Science and Information Systems,

Riyadh, Saudi Arabia

e-mail: aska@isep.ipp.pt

G. Dini

Dipartimento di Ingegneria della Informazione,

University of Pisa, Largo Lazzarino 1, 56100 Pisa, Italy

e-mail: g.dini@iet.unipi.it

123

Pers Ubiquit Comput

DOI 10.1007/s00779-011-0365-5

1.1 Motivation

Several research works have addressed the secure group

communication problem in WSNs. However, the proposed

solutions consider a restrictive definition of a group. In

fact, most of the related works have considered a group as

being a set of nodes physically close to each other.

Moreover, they consider the whole network as a single

group managed by the base station. Nevertheless, grouping

appears to be more general and sophisticated than such

particular cases. Hence, this paper proposes to define a

group as a set of nodes that sense the same data type and

that are not necessarily close to each other. Thus, in a

single network, it is possible to have several groups each of

which managed by a sensor node playing the role of a

group controller. As a matter of fact, there are several

potential applications, such as home automation, environ-

ment monitoring in which several nodes are responsible for

controlling diverse parameters, e.g., temperature, light,

humidity, etc. Each set of nodes forms a group in which

they communicate securely. This group formation concept

gives flexibility in defining the security policy inside each

group. As an illustration, one can cite the example of a

WSN deployed to sense weather temperature and pollution

rate produced by factories. Thus, while the temperature

information can be used to deliver a paid service for users,

the pollution rate information can be used to control fac-

tories and take decisions based on the sensed value (e.g.,

put taxes as a function of the pollution rate). The temper-

ature information should then be delivered exclusively to

the subscriber users. Therefore, an attacker may try to

reveal information (in order not to pay subscription fees

and get information for free), but he/she has no interest in

injecting false temperature values. As a result, we have to

apply confidentiality to the temperature group without

having to care about authentication. Thus, messages

exchanged between group members (sensor nodes) must be

encrypted. However, in the case of pollution-related data,

information can be sent clearly as it is not confidential

information; yet the sensed value must be authenticated lest

an attacker would try to decrease the real value of pollution

rate. Therefore, it appears exclusively necessary to apply

authentication in such a case. Thus, messages exchanged

between group members must be authenticated using, for

instance, a message authentication code (MAC). To sum-

marize, dividing the network into multiple groups has some

advantages, namely:

– Flexibility: the security services will be flexible and

adaptive as it is possible to apply a security policy per

group. For example, it will be possible to apply

encryption for some information while apply authen-

tication for the others.

– Security: a node pertaining to one group does not reveal

information circulated in other groups. This increases

the level of security inside the network as if a group is

compromised the other groups remain secure.

– Scalability: dividing the network into groups promotes

the network scalability. In fact, the burden task of

maintaining network parameters (such as security

parameters) at the base station is distributed among

group controllers.

1.2 Contribution

In this paper, we propose a secure group communication

mechanism for wireless sensor networks, whereby a group

is defined as being a set of nodes collaborating to collect

the same sensory information. The proposed scheme allows

protecting data using a group key, which is shared among

group members and maintained by the group controller.

This key is updated whenever the group membership

changes for the sake of providing forward and backward

secrecy. One of the key contributions of this paper is the

proposal of a logical ring topology that permits to alleviate

the group controller task and render the rekeying process

more scalable.

The remainder of this paper is organized as follows. In

Sect. 2, we present works relevant to secure group com-

munication. As for Sect. 3, it describes our network model

and assumptions. Then, in Sect. 4, we present our secure

group communication scheme. In Sect. 6 and Sect. 5, we

expose the security analysis as well as the performance

analysis. Then, in Sect. 7, we present the performance

results of the proposed scheme when implemented in a

real-world platform using TelosB motes. Finally, we end

up by concluding and suggesting some further future

works.

2 Related works

Group communication security in WSNs is a challenging

issue that has been addressed throughout several research

works [6–18]. In [6], the authors have proposed SLIM-

CAST: a secure level key infrastructure for multicast to

protect data confidentiality via hop-by-hop re-encryption

and mitigate the DoS-based flooding attack through an

intrusion detection and deletion mechanism. The SLIM-

CAST protocol divides a group routing tree into levels and

branches in a clustered manner. Communications among

nodes in each level of each branch of the group tree are

protected by a level key such that only the local level key is

updated during a joining or a leaving process. The scheme

presents a low communication overhead and power

Pers Ubiquit Comput

123

consumption and is also scalable. However, the perfor-

mance is degraded (i.e., high power consumption) when

membership changes are massive. In [17], the authors have

proposed SeGCom a secure group communications mech-

anism for cluster-tree wireless sensor networks. The

scheme uses lTESLA [19] to broadcast the group con-

troller identity. However, lTESLA requires synchroniza-

tion of nodes, which is a hard task to achieve in a WSN

[20]. Moreover, the scheme did not explain how the

authentication process is done and it presents an commu-

nication overhead. The authors in [11] have proposed to

form a network with multiple base stations, each of which

is responsible for dynamically forming a group composed

of three types of sensor nodes classified according to their

ability to communicate with the base stations. They have

also proposed a scheme using a key tree to manage group

members as they join or leave the group. However, the

authors did not provide details as regards the group re-

keying process. As the group key management presents the

cornerstone of a secure group communication scheme,

several papers have concentrated on the re-keying process.

Re-keying occurs whenever a node joins or leaves the

group. In LEAP (Localized Encryption and Authentication

Protocol) [9], the authors have proposed a key management

protocol for sensor networks that are designed to support

in-network processing, while at the same time restricting

the security impact of a node compromise to the immediate

network neighborhood of the compromised node. LEAP

supports the establishment of four types of keys for each

sensor node—an individual key shared with the base sta-

tion, a pairwise key shared with another sensor node, a

cluster key shared with multiple neighboring nodes, and a

global key shared by all the nodes in the network. For the

update of the global key, LEAP assumes the use of a

routing protocol in which the nodes are organized into a

spanning tree. However, this assumption limits the

deployment of the scheme. Moreover, the scheme rests on

the lTesla scheme [19], which requires synchronization

between nodes. In [8, 10], the authors have proposed an

algorithm to compute a group key in a collaborative

manner. The algorithm is based on the multi-party Diffie-

Hellman protocol [21]. However, the proposed algorithm

requires many exponentially complex operations, which

turn it out to be unpractical for sensor networks. In [12–15,

18, 22], the authors have proposed a centralized group re-

keying scheme based on a logical key-tree hierarchy for

WSNs. The basic scheme is the logical key hierarchy

(LKH) [12] proposed to reduce the rekeying messages’

number from O(n) to Olog(n), using a tree structure for

storing keys. The root of the tree serves as the key distri-

bution center (KDC), while each leaf represents a node.

Each leaf stores the set of keys belonging to its direct

ancestors up to the KDC. The reason behind applying a tree

structure is to increase the re-keying efficiency. However,

the energy required for re-keying is approximately loga-

rithmic in the group size. The main contribution of [13]

consists of extending the LKH scheme in the context of

directed diffusion [23], where the number of rekeying

messages is still logarithmic in the group size. Dini et al.

[14] have, in turn, improved key authentication by means

of key chains, a mechanism derived from Lamport’s one-

time key and based on hash functions. Furthermore, Dini

et al. [15, 22] have later extended the logical key-tree

hierarchy into a key graph in order to efficiently support

backward and forward security in systems comprising

several, possibly overlapping, groups. However, the stor-

age cost required by their scheme exceeds the available

resources of a sensor node and, therefore, the scheme

cannot be applied to groups with a resource-constrained

group controller. The topological key hierarchy (TKH)

scheme [18] allows to reduce the communication cost of

the LKH rekeying messages delivery by mapping the

logical key tree to the physical topology. The idea is to

construct a key tree that reflects the physical topology of

the network. However, TKH does not face with key

authentication. In this paper, however, we propose a new

secure group communication mechanism based on a logical

ring topology, which allows for a scalable re-keying pro-

cess. The scheme distributes the group management task

among group members, thus, eliminating the need for a

plentiful group controller. Moreover, the node compromise

attack has been addressed, with a proposed solution to

detect and discard the compromised nodes.

3 Network model, assumptions, and requirements

This section is devoted to the presentation of the network

model to which the proposed secure group communication

scheme is applied as along with the considered assump-

tions and requirements.

3.1 Network model

It is worth noting that a wireless sensor network maintained

by a base station is considered in this study. As for the

information within the network, is routed using a routing

protocol such as Ad hoc On Demand Distance Vector

routing algorithm (AODV) [24] or Dynamic Source

Routing algorithm (DSR) [25]. In addition, the following

types of nodes have also been considered:

• The base station (BS): is responsible for securing the

whole network. It maintains a table containing the

group controller addresses corresponding to each

group. The BS also supervises the group controller

Pers Ubiquit Comput

123

activity and maintains a blacklist containing the

identity of compromised nodes. These nodes will not

be allowed to join any group in the future and are,

therefore, excluded from the network.

• The Group Controller (GC): is a node responsible for

maintaining the security inside its group. It also stores a

table containing the list of group members classified

according to their joining time. The GC controls the

group members’ activity, and in the case of a compro-

mised node, it sends a notification message to the BS.

The latter adds the node to the blacklist. To note, no

security property has been assumed for the GC.

• The End Device (ED): is a node which belongs to one

or multiple groups. For each group, it maintains the

next and previous hop (in the logical ring) addresses.

3.2 Assumptions

In the present work, the following assumptions have been

formulated:

• The base station is secure and able to detect all

compromised GC nodes. Detection of compromised

GC nodes can be actually achieved by means of an

intrusion detection system (IDS) such as [26–29].

• The GC can detect all compromised members as it has

control over the members attached to its group. The GC

may actually use the same IDS tools as the BS.

• Each node is identified by a unique address and can

belong to more than one group.

• Each group has a unique group identifier, which

represents the sensory information corresponding to

this group. These group identifiers are known to all

nodes. This can be done by loading the group identifiers

to nodes at the deployment phase.

• The base station maintains a blacklist containing a list

of compromised nodes together with their addresses.

These nodes are prevented from joining any group and,

therefore, excluded from the network.

• Each node periodically sends to its corresponding

group controller a HELLO message confirming its

presence. This enables to detect compromised nodes.

Indeed, in case of a compromise attack, an attacker

seizes a node from the sensor network, connects this

node to his laptop, extracts the stored data, puts new

data/behavior, and takes control over that node [30, 31].

This means that a compromise attack necessitates a

certain period of time to be executed and, therefore, one

might well assume that a node is compromised

whenever it does not prove its presence, by sending

some HELLO messages, during a threshold time

period. This assumption seems logical, as an inactive

node for a threshold time means that either the node is

compromised or that it has failed. In both cases, the

node is evicted from the group and, therefore, must be

added to the blacklist.

3.3 Security requirements

In what follows, the requirements to be achieved by a

secure group communication scheme have been presented:

• Nodes belonging to the same group must communicate

securely and their exchanged information must not be

revealed to non-member nodes even if they belong to

the same network.

• A node may belong to more than one group. However,

it must store a per-group profile containing the GC

address, the group key, the next and previous node in

the logical ring, etc.

• Compromised nodes must be ejected from the group as

soon as they are detected.

• Nodes non-member of the group collaborate to route

data. Yet, data must be confidential to each group

(intermediate nodes forward data without being able to

reveal their value).

• Both backward and forward secrecy must be achieved.

Backward secrecy means that a node joining the group

must not reveal previous exchanged information.

Forward secrecy means that a node leaving the group

must not reveal future exchanged information.

• Security parameters’ maintenance such as the re-keying

process must be lightweight and effective.

4 RiSeG: the logical ring based secure group

communication scheme

In this section, we present our proposed secure group

communication scheme. It is composed of two parts: (1)

the logical ring management and (2) the group membership

management.

4.1 Logical ring management

One of the most important challenges encountered when

designing a secure group communication scheme is scala-

bility. In fact, the re-keying process needed in the case of

membership change represents an overhead as it requires,

when using unicast, O(n) messages to be sent by the GC,

where n denotes the number of group members. In our

work, this problem has been solved by constructing a

logical ring topology. This logical ring permits to distribute

and divide the task of sending a message to all members.

Indeed, with the help of this logical ring topology,

Pers Ubiquit Comput

123

information is circulated from node to node until it reaches

the information source. Therefore, the GC just needs to

send O(1) messages instead of O(n) messages. The logical

ring is constructed as follows. The ring initially contains

the GC that plays the role of the ring head (Fig. 1a). Then,

each new node is added to the ring queue (tail), upon

request to join the group (Fig. 1b). The logical ring

topology is maintained by the GC. Note that the GC

maintains all the group members’ addresses. Each node

only maintains its next and previous hop addresses. For

instance, in Fig. 1c, node N2 maintains the address of node

N1 as its previous hop and the address of node N3 as its

next hop. In the case of a joining process, the GC informs

the newly joining node by its previous hop, which is the

latest joined node, and informs the latter to update its next

node address to this newly joining node. Taking the

example of Fig. 1c, d, after the join of node N4, the GC

sends to N4 the address of node N3 as its previous hop.

Note the next node of N4 is the GC. Moreover, the GC

sends a message to node N3 in order to update its next node

to node N4.

In the case of a leaving process, the leaving node must

also be removed from the logical ring. This means that the

GC informs the leaving node’s next node (respectively the

leaving node’s previous node) to change its previous

(respectively next) hop address. For instance, if node N2 of

Fig. 1c is leaving the group, the group controller informs

N3 to change its previous hop to N1 and informs N1 to

change its next node to N3.

4.2 Group membership management

In this section, we describe the necessary operations nee-

ded to maintain the group membership such as: the group

creation, the group join, the group leave, the group con-

troller switching, and the group controller leaving. Firstly,

we begin by presenting the necessary parameters loaded in

nodes at the pre-deployment phase.

4.2.1 Pre-deployment phase

As in [17], we propose to apply the key pre-distribution

scheme proposed by Blundo et al. [32] in order to share a

symmetric key between each pair of nodes. The network

administrator chooses a t degree bi-variate polynomial over

a finite field Fq: f(x, y) =
P

i=0
i=t P

j=0
j=t ai,jx

iyj. The value of

q is a prime number that is large enough to accommodate a

cryptographic key. Then, the administrator loads in each

node Ni the polynomial f(x, Ni). The function f is sym-

metric. This means that, when two nodes Ni and Nj wish

to share a pairwise key, each of them computes KNi,Nj =

f(Ni, Nj) = f(Nj, Ni).

Moreover, for the signature purpose, we use the elliptic

curve cryptography [33, 34], so that each node is preloaded

with the domain parameters needed to compute and

verify the (elliptic curve digital signature algorithm)

ECDSA [33]. The domain parameters are the six-tuple

T = (p, a, b, G, n, h), where p is a prime number, a and b

are two points from the primary field Fpða; b 2 FpÞ

(a) (b)

(c) (d)

Fig. 1 Logical ring update in

the case of a joining/leaving

process

Pers Ubiquit Comput

123

defining the curve, G a base point on the curve with order

n and cofactor h.

4.2.2 Group creation

The group creation process is executed when a node wishes

to join a non-existent group. In fact, when a node with

identity Ni wishes to join a group identified by Gid, it sends

a join-request message to the base station (Fig. 2). The

join-request message contains the node identity (Ni), the

group identifier (Gid) to which the node wishes to join, a

fresh random number (nonce), and a message authentica-

tion code (MAC). The nonce allows to avoid replay

attacks, while the MAC allows to avoid identity usurpation

attacks (Sect. 5).

Upon receiving this message, the base station verifies

the sender node’s validity and the message authenticity.

The validity of the sender node means that the node does

not belong to the blacklist and is, therefore, considered as

not compromised. The message authenticity is verified

based on the MAC field. In fact, the received MAC is

compared to the locally computed one using the pairwise

key (KBS,Ni), and the message is considered authentic if

both MACs are equal. Otherwise, the base station ignores

the request. After successfully verifying the message, the

base station replies to the node Ni by sending a grp-crea-

tion-invite message. This message contains the node nonce

(nonceNi), a new nonce generated by the BS (nonceBS) and

is also protected by a MAC. Therefore, the node is invited

to become the GC of this new group. Once the node

accepts to be a GC, it replies by sending a grp-creation-

accept message. A node might refuse to become a GC, for

instance, if it has not enough resources to achieve the GC

task. In this case, it replies by sending a grp-creation-

refuse message. Both messages contain the BS nonce in

order to avoid any replay attack and are also protected by a

MAC. Figure 2 illustrates the group creation process,

where MAC(m, KBS,Ni) is a message authentication code

computed over the current message and using the pairwise

key KBS,Ni.

Following the new group creation, the GC and the BS

agree on a sequence number seqNbr. This sequence num-

ber is incremented on each sent message enabling to avoid

any replay attack, as will be explained later. Moreover, in

order to sign subsequent key-update messages, the group

controller needs a public/private key. For this purpose, the

GC selects a random integer d in the interval [1, n - 1] and

then computes Q = d 9 G. The tuple (d, Q), respectively,

represents the GC’s private and public keys.

4.2.3 Group join

The group join process is executed when a node wishes to

join an existing group. Upon receiving a join-request

message to a group that already exists, the base station

verifies the sender node’s validity along with the request

authenticity. Hence, if the node is proved to be valid and its

join-request message passes the authenticity test (the MAC

is valid), the base station sends a join-inform message to

the GC, informing it that a new node has joined the group

(Fig. 3). The join-inform message contains the node iden-

tity (Ni) and is protected by a sequence number (seqNbr) to

avoid any replay attacks, and by a MAC to avoid usurpa-

tion of the base station identity attacks (Sect. 5) After

testing the validity of the message, the GC computes a new

group key GK0 and sends it out encrypted to Ni using the

pairwise key (KGC,Ni) in a join-key message. The join-key

message contains also the GC public key Q, which will

Fig. 2 Message exchanges in a group creation process Fig. 3 Message exchanges in a group join process

Pers Ubiquit Comput

123

serve for signature verification in subsequent key-update

messages.

Moreover, the group controller updates the logical ring

topology by sending ring-update messages. In fact, the GC

sends to Ni a ring-update message containing the previous

hop (we suppose Nj) as well as the next hop (the GC), and

sends to Nj a ring-update message in order to update its

next node to Ni. Then, the group controller launches the

key-update process. Figure 3 summarizes the group join

process.

4.2.4 Group leave

The leaving process occurs when a node wishes to leave

the group, breaks down, or is compromised. In the first

case, the GC is informed through a leave-request message

(Fig. 4). In the both remaining cases, the GC is informed

through the inactivity of the leaving node, and the node is

then considered as compromised. Consequently, the GC

sends to the BS a notification to add this inactive node to

the blacklist. For the sake of achieving forward secrecy, the

GC must update the group key and the logical ring topo-

logy. For this reason, the group controller sends a ring-

update message to both the nextNode and the prevNode of

the leaving node, in order to, respectively, update their

previous and next hops. To illustrate the leaving process,

let us consider, for instance, the leave of node N2 in Fig. 1.

On receiving a leave-request message, the GC checks the

message validity. If the message is valid, the GC sends two

ring-update messages: one ring-update message to node

N3 to update its previous hop and one ring-update message

to N1 to update its next hop. Then, the group controller

computes a new group key and sends it to its next and

previous hops (N1 and N4) in the logical ring. This key is

sent encrypted using the pairwise key. Moreover, it is

protected by a signature to verify its authenticity by the

group members and to avoid that a node injects a false key-

update message.

4.2.5 Key update

The key-update process is to be launched after each join or

leave process or when the GC wishes to update the group

key for security purposes. The key-update message con-

tains the group identity (Gid), the encrypted new group key

(GK0) and is protected by a sequence number along with a

signature. The sequence number ensures the freshness, and

the signature ensures the authentication of the key-update

message.

To protect the group key from eavesdropping, the GC

protects it by means of encryption. In the case of a join

operation, the GC can use the current group key to encrypt

the new one, and then broadcasts the key-update message

to all members. However, in a leave operation, the leaving

node knows the current group key and, therefore, this key

cannot be used for encryption as this would break the

requirement of forward secrecy. Therefore, there is no

choice but to use pairwise keys for encryption.

To alleviate the group key distribution task, the GC will

use the ring topology. Actually, as the group controller

maintains a double-direction ring topology, it sends the

message in both directions. On receiving a key-update

message, a node first, verifies the sequence number and the

signature fields. The sequence number must be greater than

the current one, otherwise the message will be considered

as old and already processed and must consequently be

ignored. In the case of a valid sequence number and a valid

signature, the node processes the message in the following

way. If the key-update message was received from the

previous node (respectively, next node), the node decrypts

the group key using the pairwise key shared with the pre-

vious node (respectively, next node), and then re-encrypts

the group key using the pairwise key shared with the next

node (respectively, previous node), and, finally, transmits

the message to the node.

4.2.6 Group controller switching

When the group controller wishes to leave the group con-

troller responsibilities, it sends the group management

information to the upstream node. If the latter accepts to be

a GC, it sends a GC-confirm message to the base station

indicating that it is the new GC in order to update its table.

Noteworthy, the base station maintains a table indicating

the GC address of each group. All messages are sent

Fig. 4 Message exchanges in a group leave process

Pers Ubiquit Comput

123

securely using the pairwise keys. If the GC’s upstream

node refuses to be the new group controller, it forwards the

group management information to the next hop in the

logical ring. This process of forwarding the group man-

agement information message will be repeated until a node

accepts to be the new GC, otherwise the message reaches

its origin (the current group controller), in which case, the

group will be destroyed.

4.2.7 Group controller leaving

The normal operation performed by the GC consists in

switching its functionality to another node before leaving

the group, hence, its leaving is similar to that of any normal

node. However, the actual problem is what occurs when the

GC is compromised or crashed. To overcome this problem,

two solutions are conceivable: either to make a backup GC

or store the group management information in the base

station. In the former solution, a normal group member

maintains a copy of the group management information,

and in the case of GC compromise, this node takes the role

of the GC. As for the latter solution, the base station elects

a group member to which it sends the group management

information.

5 Security analysis and discussion

This section is allotted to discuss the merits of the different

cryptographic tools used in the proposed scheme and

analyze its security. In the design of our scheme, a nonce

has been applied for the purpose of preventing replay

attacks, along with a message authentication code (MAC)

intended to avoid impersonation attacks, as well as a sig-

nature aiming at providing authentication of the rekeying

messages.

The proposed secure group communication scheme

provides the following security services:

• Replay attack robustness: in the proposed scheme,

intercepted messages cannot be replayed by an attacker

as all sent messages are proved to be fresh through a

nonce. In addition, attackers cannot modify the value of

the nonce as the message is protected by a MAC.

• Impersonation attack robustness: all sent messages are

protected by a MAC computed over the identity of the

sender node. This prevents attackers from gaining

access to a group during the group creation and group

join processes.

• Authentication of the rekeying messages: key-update

messages carry a signature computed by the GC. This

signature proves that the key is sent by the GC and,

therefore, precludes an attacker from injecting a fake

group key.

• Backward and forward secrecy: when a new node joins

the group, the group controller generates a new key and

delivers it to the group members. Therefore, the new

node has no means to decrypt the previously exchanged

messages. Moreover, when a node leaves the group, the

group controller generates a new key. This key will be

sent by unicast and, therefore, the leaving node will be

unable to decrypt the future sent messages.

• Mutual authentication: our scheme achieves mutual

authentication since not only the base station authen-

ticates the requesting node, but also the node authen-

ticates the base station. The authentication of messages

sent by the base station is critical. In fact, if we do not

authenticate the grp-creation-invite message, an

attacker can impersonate the base station by sending

this message even when the group exists. This scenario

will disturb the network operation as there will be a

creation of multiples copies of the same group, each of

which is composed of a single node.

• Node compromise robustness: based on monitoring the

activity of nodes, our scheme can detect compromised

nodes and is, therefore, able to discard them from the

network.

6 Performance analysis

This section is allotted to present the analytical perfor-

mance evaluation of the proposed scheme. The perfor-

mance evaluation does not consider the base station as it is

powerful and does not present constrained resources. The

performance evaluation criteria are the storage cost, the

computation cost and the communication cost. It is worth

starting by presenting the different notations used

throughout this section in Tables 1 and 2

6.1 Storage cost

The storage cost is computed as the number of bytes that

the sensor node (group controller or group member) have

to store. Generally, this storage cost is introduced by the

storage of different parameters and keys necessary to the

function of the RiSeG scheme. The proposed secure group

communication scheme does not require much memory

overhead. In fact, due to Blundo et al.’s key distribution

technique, each sensor node has to store a polynomial

function which occupies (t ? 1)logq storage space, where t

stands for the degree of the polynomial and log(q) repre-

sents the size of the keys [35]. Moreover, each member has

Pers Ubiquit Comput

123

to store the ECC domain parameters T = (p, a, b, G, n, h)

[33, 36].

In addition, a group member has to store the group key,

the address of the nextNode and prevNode, as well as the

GC address and public key Q for each group it belongs to.

The GC also stores the members’ addresses that belong to

its group and the pair of public/private key (Q, d). As for

the base station, it has to store the GC address corre-

sponding to each group as well as the black list containing

the list of compromised nodes. The following equations

summarize the storage cost at each entity, for a group of n

nodes:

1. Group controller stores:

(a) The ring topology = n * sizeof(ID)

(b) The Blundo polynomial share = (t ? 1) * log(q)

(c) The ECC domain parameters T = (p, a, b,

G, n, h), and the pair of public/private key (Q, d)

2. End device stores:

(a) The next hop and previous hop (in the ring)

addresses = 2 * sizeof(ID)

(b) The Blundo polynomial share = (t ? 1) * log(q)

(c) The ECC domain parameters T = (p, a, b, G,

n, h), and the GC public key Q

6.2 Computation cost

The computation cost can be measured in terms of time,

use of CPU or energy dissipation. In fact, these parameters

are related and each one can be deduced from the other. For

instance, the energy dissipation can be deduced from the

time as follows: Energy = Power 9 Time, where Power

represents the CPU power when it is in its active state and

Time represents the computing time. In the present anal-

ysis, the term cost is used in its general form and we have

not specified the unit (which can be second, Joule or

number of CPU cycles).

The computation cost of the RiSeG scheme during each

phase can be computed as the sum of the computation cost

of the main operations executed during this phase. The

main operations required in the RiSeG scheme are pre-

sented in Table 1 and they are namely: the encryption/

decryption operation, the signature generation/verification

operation, the generation of a key, and the MAC operation.

The number of required operations regarding each group

membership process are as follows. In the group creation

process, the joining node computes the pairwise key shared

with the BS, a MAC to send the join-request message, a

MAC to verify the received grp-creation-invite message,

and a MAC to send a grp-creation-accept message. In total,

the joining node consumes Ckc ? 3Cmac.

In the group join process, the joined node computes

2Ckc ? 3Cmac ? Cdec, as it computes two pairwise keys

(KBS,Ni and KGC,Ni), three MAC, and one decryption

operation for the decryption of the group key. The group

controller computes four MACs, three key computations,

one key generation to generate the group key and one

encryption. In total, the group controller computes

4Cmac ? 3Ckc ? Ckg ? Cenc.

As for the group leave process, the leaving node com-

putes Ckc ? Cmac and the group controller 3Ckc ? 3Cmac.

For the key-update process, in case of a join, the

GC performs Cenc ? Csign and other group members

Cverif ? Cdec, and in case of a leave, the GC performs

Ckg ? 2Ckc ? 2Cenc ? Csign and other members perform

2Ckc ? Cenc ? Cdec ? Cverif.

So, we can conclude that the RiSeG scheme is light-

weight in terms of computation cost.

Table 1 Computation cost parameters

Parameter Signification

Cenc The computation cost needed to compute the encryption

of the group key

Cdec The computation cost needed to compute a decryption

operation on the group key

Csign The computation cost needed to generate a signature

Cverif The computation cost needed to verify a signature

Ckg The computation cost needed to generate a group key

Ckc The computation cost needed to compute the pairwise key

Cmac The computation cost needed to compute a MAC

Table 2 Communication cost parameters

Parameter Signification

|m| The size in bits of the message m

mjr Join-request message

mjk Join-key message

mji Join-inform message

mci Group-creation-invite message

mcd Group creation decision message i.e. Grp-creation-accept

or Grp-creation-refuse message

mku Key-update message

mru Ring-update message

mlr Leave-request message

etx The energy dissipated for the transmission of 1 bit

erx The energy dissipated for the reception of 1 bit

Ttx Time needed for the transmission of 1 bit

hop Average number of hop between two group members

Pers Ubiquit Comput

123

6.3 Communication cost

The main factor of the communication cost is the energy

dissipation. The communication cost is computed using the

same approach as TKH [18]. Actually, the communication

cost in terms of energy dissipation is computed as the size

of sent/received messages multiplied by the energy dissi-

pated for the sent/receive of one bit. The different mes-

sages used in the RiSeG scheme are presented in Table 2.

In the group creation process, the group controller

consumes |mjr| 9 etx ? |mci| 9 erx ? |mcd| 9 etx as it

sends a join-request message, receives a grp-creation-

invite message and finally sends a grp-creation-accept

message.

In the group join process, the joining node Ni consumes

|mjr| 9 etx ? |mjk| 9 erx ? |mru| 9 erx while the GC

consumes |mji| 9 erx ? |mjk| 9 etx ? 2|mru| 9 etx.

As for the leaving process, the leaving node Ni con-

sumes |mlr| 9 etx if the node sends a leave-request message

or 0 in the case of a silent leaving, while the GC consumes

|mlr| 9 erx ? 2|mru| 9 etx.

Regarding the key-update process in a join case the GC

consumes |mku| 9 etx while the joining node Ni consumes

|mku| 9 erx, and in a leave case, the GC consumes

2|mku| 9 etx and the group members consume |mku| 9

erx ? |mku| 9 etx.

Table 3 summarizes the computation and communica-

tion costs of the RiSeG scheme.

6.4 Comparison with LKH

In order to highlight the RiSeG advantages in the WSN

context, a comparison with the LKH scheme appears worth

establishing. The choice of the LKH scheme is justified as

follows. The LKH is a well-known scheme and several

schemes such as LKHW [13], S2RP [14], LARK [22],

TKH [18], etc. derive from it. So, we made the comparison

with the basic scheme. Moreover, in other systems [8–11],

Table 3 Performance

evaluation of RiSeG
Communication cost Computation cost

Group creation Ni: |mjr| 9 etx ? |mci| 9 erx ? |mcd| 9 etx Ni: Ckc ? 3Cmac

Group join Ni: |mjr| 9 etx ? |mjk| 9 erx ? |mru| 9 erx GC:

|mji| 9 erx ? |mjk| 9 etx ? 2|mru| 9 etx

Ni: 2Ckc ? 3Cmac ? Cdec GC:

4Cmac ? 3Ckc ? Ckg ? Cenc

Group leave Ni: |mlr| 9 etx GC: |mlr| 9 erx ? 2|mru| 9 etx Ni: Ckc ? Cmac GC: 3Ckc ? 3Cmac

Key update Case of join: Case of join:

GC: |mku| 9 etx GC: Cenc ? Csign

Ni: |mku| 9 erx Ni: Cverif ? Cdec

Case of leave: Case of leave:

GC:2|mku| 9 etx GC: Ckg ? 2Ckc ? 2Cenc ? Csign

Ni: |mku| 9 erx ? |mku| 9 etx Ni: 2Ckc ? Cenc ? Cdec ? Cverif

(a) (b)

Fig. 5 LKH tree. a Partial view

of LKH tree. b LKH tree

update after the leaving of node

N1114

Pers Ubiquit Comput

123

grouping is instead a network topology management tool,

e.g., nodes are grouped according to their physical/network

proximity. However, RiSeG consider an application-

defined grouping. This means that sensor grouping is

defined according application needs, e.g., nodes belonging

to the same type or concurring to the same task or service.

It follows that in RiSeG nodes in the same group may be

not neighboring from a network point of view. In contrast,

in [8–11] neighboring nodes belong to the same group (also

called cluster) even though this topology has no meaning

from the application point of view. For these reasons, we

believe that RiSeG is not comparable to [8–11].

As the LKH scheme exclusively presents the rekeying

process, the comparison is made with regards to the fol-

lowing parameters: the storage cost, communication cost,

computation cost, and latency of the key-update process.

However, a brief overview of the LKH scheme seems

plausible to start with in the first place. Actually, the idea

of the LKH [12] scheme is to construct a logical key

hierarchy tree maintained by the group controller. The

LKH tree is composed of key encryption keys (KEKs)

shared between the group controller and sub-groups of the

network, pairwise keys (called Individual Key IK) shared

between the group controller and each group member, and

group key (called Encryption Key EK) shared between all

nodes in the network. The KEKs role is to deliver the group

key, in a secure manner (using encryption), to these sub-

groups. Consequently, the LKH scheme replaces several

unicast rekeying messages by a single multicast message,

which permits to reduce the number of rekeying messages

from O(n) to O(log(n)). However, the LKH introduces

additional computation and storage costs, especially at the

GC level. Hence, the LKH appears to be inappropriate for a

homogeneous WSN where the GC is a sensor node with

constrained resources.

We consider in Fig. 5, a logical key hierarchy tree with

height h = 4 and degree d = 4 (number of nodes is

dh = 44 = 512). In LKH, the GC has to store
ðdðhþ1Þ�1Þ
ðd�1Þ keys

� ð d
d�1
Þ � n keys, in addition to the node identity (n.|ID|).

Group members have to store the keys on the path to the

root, so h keys. In case of a leaving, the group controller

must renew all the keys on the path of the leaving node to

the root and then deliver them to the appropriate nodes. So,

the GC needs to change h keys, including the group key.

To deliver these h keys, the GC needs to send (h - 1) 9

d ? (d - 1) messages, where (h - 1) 9 d messages are

sent by multicast and (d - 1) messages are sent by unicast.

For group members, the number of rekeying messages

received depends on its position on the LKH tree. For

example, according to Fig. 5, after the leave of node

N1114, node N1111 will receive h rekeying messages and

node N4111 will receive a single rekeying message (onlyT
a

b
le

4
P

er
fo

rm
an

ce
co

m
p

ar
is

o
n

b
et

w
ee

n
R

iS
eG

an
d

L
K

H
sc

h
em

es

S
ch

em
e

S
to

ra
g

e
co

st
K

ey
u

p
d

at
e

co
m

p
u

ta
ti

o
n

co
st

K
ey

u
p

d
at

e

co
m

m
u

n
ic

at
io

n
co

st

K
ey

-u
p

d
at

e
la

te
n

cy

L
K

H
•

G
C

:
n
�
jID
jþ

ðd
ðh
þ

1
Þ �

1
Þ

ðd
�

1
Þ

k
ey

s

•
G

C
:

h
9

C
k
g

?
d

9
h

9
C

e
n
c

•
G

C
:

[(
h

-
1

)
9

d
?

(d
-

1
)]

9
|m

ku
|

9
e t

x
&

h
9

d
9

|m
ku

|
9

e t
x

=
d

9
lo

g
d
(n

)

9
|m

ku
|

9
e t

x

•
W

it
h

o
u

t
m

u
lt

ic
as

t
su

p
p

o
rt

:
L

at
en

cy
=

½ðd
�

1
Þþ

d
2
þ
��
�þ

d
h
�

1
�

�
jm

ku
j�

T
tx
þ

h
o

p
�
jm

ku
j�

T
tx
¼
½ðd
ðh
þ

1
Þ
�

1
Þ=

ðd
�

1
Þ�

3
��
jm

ku
j�

T
tx
þ

h
o

p
�
jm

ku
j�

T
tx
�
ðd
=
ðd
�

1
ÞÞ
�

n
�
jm

ku
j�

T
tx

•
E

D
:

h
k

ey
s

•
E

D
:
ðh
þ

1
Þ

2
�

C
d
ec

•
E

D
:
ðh
þ

1
Þ

2
�
jm

ku
j�

e r
x

•
W

it
h

m
u

lt
ic

as
t

su
p

p
o

rt
:

L
at

en
cy

=
½ðd
�

1
Þþ

d
þ

d
þ
��
�þ

d
�

1
��
jm

ku
j

�
T

tx
þ

h
o

p
�
jm

ku
j�

T
tx
�

h
�

d
�
jm

ku
j�

T
tx

R
iS

eG
•

G
C

:
n

9
|I

D
|

?
(t

?
1

)

9
lo

g
(q

)
?

T
?

(d
,

Q
)

•
G

C
:

C
k
g

?
2
C

k
c

?
2

C
e
n
c

?
C

si
g
n

•
G

C
:

2
|m

ku
|

9
e t

x
•

In
it

ia
te

d
w

it
h

2
m

es
sa

g
es

:
L

at
en

cy
=

n 2
�

h
o

p
�
jm

ku
j�

T
tx

•
E

D
:

2
|I

D
|

?
(t

?
1

)

9
lo

g
(q

)
?

T
?

(d
,

Q
)

•
E

D
:

2
C

k
c

?
C

e
n
c

?
C

d
e
c

?
C

v
e
ri

f

•
E

D
:

|m
ku

|
9

e r
x

?
|m

ku
|

9
e t

x
•

In
it

ia
te

d
w

it
h

3
m

es
sa

g
es

:
L

at
en

cy
=

n 4
�

h
o

p
�
jm

ku
j�

T
tx

Pers Ubiquit Comput

123

Kg0 is updated). So, the average of the communication cost

of a group member is
ðhþ1Þ

2
� jmkuj � erx: There is also an

additional communication cost related to the forwarding of

the rekeying messages destined to other nodes. This cost

depends on the position of the group member in the

physical topology of the network.

Table 4 gives a performance comparison between

RiSeG and LKH schemes.

Moreover, Fig. 6 depicts the storage cost needed for

each scheme (RiSeG Vs LKH) on varying the number of

group members. The key size is set to 128 bits and the

identity of nodes is set to 16 bits. For the LKH scheme,

the ariety of the tree is set to 4. For the RiSeG scheme, the

degree of the Blundo polynomial t is set to 8 and log(q) is

equal to the key size (128 bits), and for the ECC parame-

ters, we use the specification secp160r1 defined in [36]. So

that, p, a, b, G, n, d, Q are of size 160 bits. Note that, the

number of keys that must be stored at the GC is O(n) in the

LKH scheme and O(1) in the RiSeG scheme. However, as

in both schemes the GC must store the identity of group

members, the storage cost is linear to the number of group

members.

According to Fig. 6, for n=1024, the LKH requires

about 23.3 Kbytes and the RiSeG requires 2.2 Kbytes

memory. If, we suppose that keys are stored on ROM

memory, for TelosB motes, which have 48 Kbytes of

ROM, the LKH consumes more than 50% of the available

ROM, while the RiSeG consumes only 4.5% of the ROM.

Concerning the communication cost, the unit commu-

nication costs are set to etx = 0.209 and erx = 0.226 lJ from

the characteristics of the CC2420 transceiver used in the

Xbow’s MICA-Z and TelosB sensor nodes [37]. As shown

in Fig. 7, the communication cost to be consumed by the

group controller during the key-update process in the

RiSeG scheme is independent on the number of group

members. However, the LKH communication cost at the

GC is logarithmic to the number of group members and

reaches 535 lJ when n = 1,024.

Figure 8 shows the variation of the key-update latency

when varying the number of nodes. From the telosb data-

sheet [38], the transmit data rate is 250 kbps, so, Ttx is

equal to 4 ls (1/250). The key-update message length is set

to the size of keys (128 bits). Using unicast, LKH and

RiSeG key update duration is proportional to the number of

nodes in the group. However, in LKH with multicast

routing support, several unicast rekeying messages are

replaced by a single multicast message, and the key update

duration is O(log(n)). Yet, the multicast routing support

Fig. 6 Storage cost comparison
Fig. 7 Communication cost comparison

Fig. 8 Key update duration comparison

Pers Ubiquit Comput

123

would add additional overhead for the construction and

maintenance of the routing table.

Note that RiSeG outperforms the LKH in the following

aspects:

• It requires less storage cost.

• It reduces computation and communication cost at the

GC.

• It does not require multicast routing support.

• It alleviates the GC task of maintaining the group and

the rekeying process.

7 Implementation

In this section, a prototype of the RiSeG scheme is pre-

sented to show the feasibility of the proposed scheme and

to give performance of the scheme under real WSN

platform.

RiSeG has been implemented in the TinyOS [39]

operating system using the nesC [40] language. For

encryption, we used the AES algorithm [41] with key size

of 128 bits (16 bytes). For MAC computing, we used

MMH interface that is provided in TinyOS-contrib/crypto

modules [42]. This interface is an implementation of the

Multilinear-Modular-Hashing function [43] that provides

a 32 bits MAC. For the signature, we chose to use the

elliptic curve cryptography (ECC) [34], as it is adapted

for resource-constrained sensor nodes (fast computation,

small key size, compact signature, etc.) [44]. We have

used an existing implementation of ECC [44]. However,

as the implementation is done in TinyOS-1.x, we ported

the code to TinyOS-2.x to operate with our code. The

message exchanged have the structure presented in Fig. 9.

This structure is defined in TinyOS-2.x as message_t. We

have also defined a structure for RiSeG messages in

Fig. 9. The field type (8 bits) indicates the type of the

message riseg, and the field data (variable length) con-

tains the specific RiSeG message. The different RiSeG

messages are presented in Table 5 with their respective

size.

RiSeG was tested on a real-world plateform using

the Telosb motes [38]. Telosb mote has a 8 MHz

microcontroller, 10 Kbytes of RAM memory, and 48

Kbytes of ROM memory. The testbed is formed by 20

nodes that are geographically closed to each other as shown

in Fig. 10. The group controller is the node attached to the

laptop in order to collect data, other nodes are end devices.

The following results are obtained.

7.1 Memory consumption

• For the base station, the compiled RiSeG code con-

sumes 24,390 bytes in ROM and 5,744 bytes in RAM.

These values represents respectively, 50% of ROM and

57% of RAM.

• For the end device, the compiled RiSeG code consumes

35,694 bytes in ROM and 6,448 bytes in RAM. Note

that the code supports also the code of the group

controller. These values represents, respectively, 72%

of ROM and 64% of RAM.Fig. 9 TinyOS and RiSeG message structure

Table 5 RiSeG messages size

Message Size (bytes)

mjr 12

mjk 41

mji 12

mci 14

mcd 12

mku 62

mru 10

Fig. 10 Test-bed topology

Pers Ubiquit Comput

123

7.2 Execution time

The execution time of the major RiSeG components RiSeG

has also been measured and reported in Table 6. This

measurement has been achieved thanks to the Local-

Time\TMilli[interface provided by TinyOS. Besides the

printf library has also been used to print performance

parameters through the serial port of the laptop. The exe-

cution time of the group creation process has been mea-

sured as the time elapsed between the sending of the join-

request message at the joining node level and the receiving

of the grp-creation-accept message at the base station level.

Concerning the group join execution time, it has been

measured as the time elapsed between the sending of the

join-request message and the receiving of the join-key

message. As regards, the key-update process, the value

cited in Table 6 represents the average time taken by a

group member to forward a message in the ring. This time

include the following operation: the reception of the mes-

sage, the computation of the pairwise key shared with

message sender, the decryption of the key-update message,

the computation of the pairwise key shared with the next

receiver, the message encryption, and finally message

sending.

7.3 Energy consumption

This subsection presents the energy consumption of the

main operations of the RiSeG scheme. The energy con-

sumption is deduced by multiplying the CPU power by the

computation time that is measured according to our

implementation in TelosB motes. According to the TelosB

datasheet [38], the CPU power consumption in its active

state is 12 mW with a 3 V voltage (12 mW = 4 mA 9

3 V).

The execution times of different security operations

presented in Table 7 corresponds to data length of 128 bits,

which represents the key size length. As already men-

tioned, we applied the AES algorithm for the encryption/

decryption operation, and we applied the ECDSA algo-

rithm for the signature generation and verification. The

Blundo scheme has also been used for pairwise key com-

putation. Other operations like key generation, random

number generation are of the order of micro-second and,

hence, energy consumption is negligible.

8 Conclusion

In this paper, RiSeG: a logical Ring based Secure Group

Communication Protocol for wireless sensor networks has

been proposed. A group has been considered as being a set

of nodes cooperating to sense the same information. The

proposed scheme is lightweight and effective thanks to

the application of a logical ring topology. In addition, the

scheme protects against node compromise attacks and

provides both forward and backward secrecies. Moreover,

the real-world implementation first proved that RiSeG is

applicable to WSNs and also showed that the performance

results in terms of execution time, energy consumption and

memory consumption are satisfactory. RiSeG scheme may

behave less well in large scale networks as it may introduce

longer latencies when the number of nodes grows and

when neighbor nodes in the logical ring are physically far

from each other. We are planning to tackle this issue to

improve the scalability of RiSeG. However, we argue that

RiSeG is efficient for small to medium scales networks, as

shown in Fig. 8. Besides, we intend to integrate the pro-

posed scheme in IEEE 802.15.4/ZigBee and 6LowPAN

networks, as these protocols do not support group security.

References

1. Hanson M, Powell H, Barth A, Ringgenberg K, Calhoun B, Aylor

J, Lach J (2009) Body area sensor networks: challenges and

opportunities. Computer 42(1):58–65

2. Zhou Y, Fang Y, Zhang Y (2008) Securing wireless sensor net-

works: a survey. IEEE Commun Surv Tutorials 10(3):6–28

3. Vassis D, Belsis P, Skourlas C, Pantziou G (2010) Providing

advanced remote medical treatment services through pervasive

environments. Personal Ubiquitous Comput 14:563–573, doi:

10.1007/s00779-009-0273-0

4. Steed A, Milton R (2008) Using tracked mobile sensors to make

maps of environmental effects. Personal Ubiquitous Comput

12:331–342, doi:10.1007/s00779-006-0104-5

5. Li N, Yan B, Chen G, Govindaswamy P, Wang J (2010) Design

and implementation of a sensor-based wireless camera system for

continuous monitoring in assistive environments. Personal

Ubiquitous Comput 14:499–510, doi:10.1007/s00779-009-0271-2

Table 6 Execution time on Telosb motes

Time (ms)

Group creation 180

Group join 700

Key update per node *400

Table 7 Energy consumption on TelosB motes

Time (ms) Energy (mJ)

Encryption/decryption 230 2.76

MAC computation 0.8 9.6 9 10-3

Blundo key computation 1 12 9 10-3

Signature generation 3170 38.04

Signature verification 4040 48.48

Pers Ubiquit Comput

123

http://dx.doi.org/10.1007/s00779-009-0273-0
http://dx.doi.org/10.1007/s00779-006-0104-5
http://dx.doi.org/10.1007/s00779-009-0271-2

6. Huang J-H, Buckingham J, Han R (2005) A level key infra-

structure for secure and efficient group communication in wire-

less sensor network. In: Proceedings of the first international

conference on security and privacy for emerging areas in com-

munications networks. IEEE Computer Society, Washington,

DC, USA, pp 249–260. Available: http://www.portal.acm.org/

citation.cfm?id=1128018.1128494

7. Liu D, Ning P, Du W (2008) Group-based key predistribution for

wireless sensor networks. ACM Trans Sen Netw 4(2):1–30

8. Boujelben M, Cheikhrouhou O, Abid M, Youssef H (2009)

A pairing identity based key management protocol for hetero-

geneous wireless sensor networks. In: International conference on

network and service security, N2S ’09

9. Zhu S, Setia S, Jajodia S (2003) Leap: efficient security mecha-

nisms for large-scale distributed sensor networks. In: 10th ACM

conference on computer and communications security. ACM

Press, New York, pp 62–72

10. Tubaishat M, Yin J, Panja B, Madria S (2004) A secure hierar-

chical model for sensor network. SIGMOD Rec 33(1):7–13

11. Thepvilojanapong N, Tobe Y, Sezaki K (2003) A proposal of

secure group communication for wireless sensor networks. In:

The 23th computer security (CSEC) group meeting, IPSJ, Tokyo,

Japan, pp 47–52

12. Wong CK, Gouda M, Lam SS (2000) Secure group communi-

cations using key graphs. IEEE/ACM Trans Netw 8(1):16–30

13. Pietro RD, Mancini LV, Law SEYW, Havinga PJM (2003)

Lkhw: a directed diffusion-based secure multicast scheme for

wireless sensor networks. In: ICPPW ’03: proceedings of the

32nd international conference on parallel processing workshops.

IEEE Computer Society Press, pp 397– 406

14. Dini G, Savino I (2006) S2RP: a secure and scalable rekeying

protocol for wireless sensor network. In: Proceedings of the IEEE

international conference on mobile adhoc and sensor systems

(MASS 06), Vancouver, Canada, pp 457–466

15. Dini G, Giurlanda F (2010) Scalable rekeying in dynamic multi-

groups. In: Proceedings of the IEEE symposium on computers

and communications, Riccione, Italy, pp 22–25 (to appear)

16. Cheikhrouhou O, Koubaa A, Gaddour O, Dini G, Abid M (2010)

Riseg a Logical Ring based Secure Group Communication Pro-

tocol for wireless sensor networks. In: The International confer-

ence on wireless and ubiquitous systems (ICWUS 2010), Sousse,

Tunisia

17. Gaddour O, Koubaa A, Abid M (2009) Segcom: a secure group

communication mechanism in cluster-tree wireless sensor net-

works. In: First international conference on communications and

networking, ComNet 2009, pp 1–7

18. Son J-H, Lee J-S, Seo S-W (2010) Topological key hierarchy for

energy-efficient group key management in wireless sensor

networks. Wirel Pers Commun 52(2):359–382

19. Perrig A, Canetti R, Tygar JD, Song D (2002) The tesla broadcast

authentication protocol. RSA CryptoBytes 5:2–3

20. Lasassmeh S, Conrad J (2010) Time synchronization in wireless

sensor networks: a survey, pp 242–245

21. Diffie W, Hellman M (1979) Privacy and authentication:

an introduction to cryptography. In: Proceedings of the IEEE,

pp 397–427

22. Gianluca D, Maria SI (2010) Lark: a lightweight authenticated

rekeying scheme for clustered wireless sensor networks. ACM

Trans Embedded Comput Syst (to appear)

23. Intanagonwiwat C, Govindan R, Estrin D (2000) Directed dif-

fusion: a scalable and robust communication paradigm for sensor

networks. In: Proceedings of the 6th annual international con-

ference on Mobile computing and networking, MobiCom ’00,

pp 56–67

24. Perkins C, Royer E (1997) Ad-hoc on-demand distance vector

routing. In: Proceedings of the 2nd IEEE workshop on mobile

computing systems and applications, pp 90–100

25. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc

wireless networks. In: Mobile computing. Kluwer, Dordrecht,

pp 153–181

26. Farooqi AH, Khan FA (2009) Intrusion detection systems for

wireless sensor networks: a survey. In: Communication and

networking, pp 234–241, doi:10.1007/978-3-642-10844-0-29

27. Sun B, Osborne L, Xiao Y, Guizani S (2007) Intrusion detection

techniques in mobile ad hoc and wireless sensor networks. IEEE

Wirel Commun (5):56–63

28. Mostarda L, Navarra A (2008) Distributed intrusion detection

systems for enhancing security in mobile wireless sensor net-

works. Int J Distrib Sen Netw 4(2):83–109

29. Li G, He J, Fu Y (2008) Group-based intrusion detection system

in wireless sensor networks. Comput Commun 31(18):4324–4332

30. Abraham J, Ramanatha KS (2008) Energy efficient key man-

agement protocols to securely confirm intrusion detection in

wireless sensor networks. Wirel Sensor Actor Netw II:149–160,

doi:10.1007/978-0-387-09441-0-13

31. Song H, Xie L, Zhu S, Cao G (2007) Sensor node compromise

detection: the location perspective. In: IWCMC ’07: proceedings

of the 2007 international conference on Wireless communications

and mobile computing. ACM, New York, pp 242–247

32. Blundo C, De Santis A, Vaccaro U, Herzberg A, Kutten S, Yong

M (1998) Perfectly secure key distribution for dynamic confer-

ences. Inf Comput 146(1):1–23

33. Certicom Research (2009) Standards for efficient cryptography-

SEC 1: elliptic curve cryptography, http://www.secg.org/

download/aid-780/sec1-v2.pdf

34. Hankerson D, Vanstone S, Menezes A (2004) Guide to elliptic

curve cryptography, ser. Springer Professional Computing.

Springer, Berlin

35. Liu D, Ning P, Li R (2005) Establishing pairwise keys in dis-

tributed sensor networks. ACM Trans Inf Syst Security (TIS-

SEC), pp 41–77

36. Certicom Research (2010) Standards for efficient cryptography-

SEC 2: recommended elliptic curve domain parameters, http://

www.secg.org/download/aid-780/sec2-v2.pdf

37. Texas Instruments Inc. (May, 2007) Single-Chip 2.4GHz IEEE

802.15.4 Compliant and ZigBee(TM) Ready RF Transceiver.

Available at: http://www-s.ti.com/sc/ds/cc2420.pdf

38. Telosb datasheet: http://www.ece.osu.edu/bibyk/ee582/telosMote.

pdf

39. TinyOS (2010) http://www.tinyos.net

40. Nes C (2010) A programming language for deeply networked

systems, http://www.nescc.sourceforge.net

41. National Institute of Standards and Technology (2001) NIST

FIPS PUB 197 Specification for the Advanced Encryption stan-

dard (AES). National Institute of Standards and technology

42. tinyos-2.x-contrib: http://www.tinyos.cvs.sourceforge.net/viewvc/

tinyos/tinyos-2.x-contrib/contrib.html

43. Halevi S., Krawczyk H (1997) Mmh: software message authen-

tication in the gbit/second rates. In: FSE ’97: proceedings of the

4th international workshop on fast software encryption. Springer,

London, pp 172–189

44. Liu A, Ning P (2008) Tinyecc: a configurable library for elliptic

curve cryptography in wireless sensor networks. In: Proceedings

of the 7th international conference on Information processing in

sensor networks, ser. IPSN ’08. IEEE Computer Society, Wash-

ington, DC, pp 245–256 [Online]. Available: http://www.dx.

doi.org/10.1109/IPSN.2008.47

Pers Ubiquit Comput

123

http://www.portal.acm.org/citation.cfm?id=1128018.1128494
http://www.portal.acm.org/citation.cfm?id=1128018.1128494
http://dx.doi.org/10.1007/978-3-642-10844-0-29
http://dx.doi.org/10.1007/978-0-387-09441-0-13
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec2-v2.pdf
http://www.secg.org/download/aid-780/sec2-v2.pdf
http://www-s.ti.com/sc/ds/cc2420.pdf
http://www.ece.osu.edu/bibyk/ee582/telosMote.pdf
http://www.ece.osu.edu/bibyk/ee582/telosMote.pdf
http://www.tinyos.net
http://www.nescc.sourceforge.net
http://www.tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/contrib.html
http://www.tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/contrib.html
http://www.dx.doi.org/10.1109/IPSN.2008.47
http://www.dx.doi.org/10.1109/IPSN.2008.47

	RiSeG: a ring based secure group communication protocol for resource-constrained wireless sensor networks
	Abstract
	Introduction
	Motivation
	Contribution

	Related works
	Network model, assumptions, and requirements
	Network model
	Assumptions
	Security requirements

	RiSeG: the logical ring based secure group communication scheme
	Logical ring management
	Group membership management
	Pre-deployment phase
	Group creation
	Group join
	Group leave
	Key update
	Group controller switching
	Group controller leaving

	Security analysis and discussion
	Performance analysis
	Storage cost
	Computation cost
	Communication cost
	Comparison with LKH

	Implementation
	Memory consumption
	Execution time
	Energy consumption

	Conclusion
	References

