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ABSTRACT 
 

This paper applies extreme value theory to the Taiwanese rice loss caused by 
typhoons to demonstrate how these new statistical tools can be used to improve 
quantitative risk management. The application of the extreme value theory to statistics 
allowed us to test models with data from the upper tail of a distribution. Using the 
block-max and peak-over-threshold approaches to extreme value modeling, we 
matched generalized extreme value distribution (GEVD) and generalized Pareto 
distribution (GPD) to agricultural losses caused by natural disasters, with Taiwanese 
data from 1971 to 2005. We then evaluated the appropriateness of the upper tail fitting 
to loss data by comparing with standard parametric modeling that is based on 
lognormal and gamma distributions. The extreme value theory outperforms classical 
parametric fits for the largest observed historical losses. Finally, we draw particular 
attention to issues related to agricultural disaster and calculate the 90th, 95th, and 99th 
percentile of VaR and expected shortfall. These results could help the authorities or 
agriculture risk managers to check the applicable loss-compensation regulations. 
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INTRODUCTION 

Natural disasters worldwide have caused great damage to crop production 
(Adams et al., 1998; Rosenzweig et al., 2002; Cheng et al., 2005). Rice production is 
largely concentrated in Asia, where it is considered to be the major source of food 
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(Taylor, 1996; Luo et al., 1998; Oerke and Dehne, 2004). According to Taiwan 
Yearbook 20061, rice was ranked as Taiwan's most valuable crop in 2005. Over a 
30-year period, however, Taiwan was hit by an average of 3.3 typhoons per year. The 
Council of Agriculture (COA) of Taiwan reports that among the natural disasters 
causing total rice loss for the past three decades, 60% were due to typhoons, which 
brought heavy rainfalls and strong winds, leading to severe damage to crops and great 
property losses (Wu and Kuo, 1999; Lin and Jeng, 2000; Chang, 2002; Singleton et al., 
2005; Cheng et al., 2005). Hence, in this empirical study, we only analyze rice loss 
caused by typhoons. Related rice losses caused by typhoons in Japan (Yamagata et al., 
1988; Yamamoto et al., 2000; Ji et al., 2002; Yamamoto and Iwaya, 2006) and the 
Philippines (Lansigan et al., 2000) have also been investigated. Luo et al. (1998) 
attempted to apply the concept of risk assessment to estimate the probability of certain 
levels of rice-yield loss for five Asian countries. Abbaspour et al. (1992) developed a 
computer system incorporating a crop growth model to estimate the 20 year expected 
losses for wheat in the Peace River region of British Columbia, Canada. 

Extreme losses have a direct influence on the assessment of loss distribution of 
rice caused by natural disasters. Thus, assessment of heavy-tailed distribution plays a 
significant role in estimating rice yield and loss. Note that extreme rice loss tends to 
be ignored (Hansen, 2004; Larsson, 2005; Muralidharan and Pasalu, 2006). This 
implies that such an assumption seems to be incompatible. This paper aims to use the 
extreme value theory and the modeling strategy; the latter focuses on the block-max 
and peak-over-threshold approaches to extreme value modeling. Thus, we fit the 
generalized extreme value and generalized Pareto distribution to data on rice loss 
caused by typhoons in Taiwan over the period 1971–2005 (Lai and Wu, 2006). Such 
data were included in the Taiwan Agricultural Yearbook2, Production Cost and 
Income of Farm Products Statistics, and Taiwan Area Agricultural Products 
Wholesale Market Yearbook. The objectives of this study are to examine the 
distribution type of rice losses caused by typhoons under extreme condition, and to 
propose a threshold or threshold value in order to modify the assumption that 
normality imposes a lower threshold value; after the existence of heavy-tail 
distribution from using the original data, and after determining the method for 
estimating the parameters of best fit, the generalized Pareto distribution can be 
employed and compared with previously employed traditional distributions for the 
rice loss. 

                                                 
1 Taiwan Yearbook 2006 is published by Government Information Office, Taiwan. 
2 Taiwan Agriculture Yearbook is published by the Council of Agriculture, Taiwan. 
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This paper is organized as follows: Section 2 summarizes the basic theories 
concerning the estimation of the extreme observations, largely following Gilli and 
Kellezi (2006). Section 3 describes the data and estimates the parameters of the loss 
distributions using maximum likelihood and analyses theoretical model that can fit the 
data. Section 4 interprets the results. We draw conclusions in Section 5. 

 
THE BASIC THEORY 

Estimating an extreme loss severity distribution from historical data is an 
important activity in risk assessment. Extreme value theory (EVT) provides methods 
for quantifying such events and their consequences in a statistical way. Generally, 
there are two related ways of identifying extremes in real data. Extreme value (EV) 
and generalized Pareto (GP) models are introduced that are central for the statistical 
analysis of maxima or minima and of excess over a higher or lower threshold. In the 
following subsections, the fundamental theoretical results underlying the block 
maxima and the threshold method are summarized. Most of the material in this section 
follows Gilli and Kellezi (2006).  

 
The Generalized Extreme Value Distribution (GEVD) 

The generalized extreme value (GEV) family describes the distribution of the 
maximum of the sets of observations. Suppose {Xn} is a sequence of independent and 
identically distributed (i.i.d.) random variables and Mn is the max{X1,…, Xn}. Then 
if there exist constants cn > 0 and dn ∈R (a real number), (Mn - dn)/ cn is a centered 
and normalized maximum. If (Mn - dn)/ cn d⎯⎯→H (that is, converges in distribution 
to H), for some non-degenerate distribution function H, then H belongs to one of the 
three families of extreme value distribution functions (Lai and Wu, 2007): 

Gumbel:   

 

Fréchet:  ,  

 

Weibull:   
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By taking αξ /1= , Jenkinson (1955) and von Mises (1936) suggested the 
following one-parameter representation 

 

 

 
of these three standard distributions, with x such that 1 + ξx > 0. This 

generalization, known as the generalized extreme value (GEV) distribution, is 
obtained by setting 1−= αξ for Fréchet distribution, 1−−= αξ for the Weibull 
distribution and by interpreting the Gumbel distribution as limit case for 0=ξ , and ξ  
is shape parameter. If we introduce location and scale parameters μ and σ > 0 
respectively, we can extend the family of distributions. We define the GEV 

, , ( )H xξ μ σ to be (( ) / )H xξ μ σ− and we say that , ,Hξ μ σ is of the type Hξ . 
 

The Generalized Pareto Distribution (GPD)  
Another distribution that plays an important role in modeling extremely events is 

the generalized Pareto distribution (GPD). If we consider an unknown distribution 
function F of a random variable X, we are interested in estimating the distribution 
function Fu of variable of x above a certain threshold u. The distribution function Fu 
is so called the conditional excess distribution function and is defined as 

( ) ( | ),    0u FF y P X u y X u y x u= − ≤ > ≤ ≤ −  

where X is random variable, u is a given threshold, y = x – u are the excesses and 
xF is the right endpoint of F. We verify that Fu can be written in 
 

 
 

Pickands (1975), Balkema and de Haan (1974) posed that for a large class of 
underlying distribution function F the conditional excess distribution function ( )uF y , 
for u large, is well approximated by 
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for [0, ( )]Fy x u∈ −  if ξ ≥ 0 and [0, ]y σ
ξ

∈ −  if ξ < 0. ,Gξ σ is the so-called 

generalized Pareto distribution. By putting x = u+ y, the GPD can also be expressed as 
a function of x, i.e. 1/

, ( ) 1 (1 ( ) / ) .G x x u ξ
ξ σ ξ σ −= − + −  

 
 

DATA AND ESTIMATION 
 

Data Descriptions 
The data used in this study are observations on 117 rice losses caused by 

typhoons in Taiwan in the years 1971–2005. By adjusting for inflation, the rice loss 
data were made comparable through the years; all monetary magnitudes reported in 
this paper are in 2001 New Taiwan Dollar (NT$). The overall summary statistics for 
rice losses are shown in Table 1. From 1971 to 2005, the average loss amount caused 
by each typhoon was nearly NT$20 million. The data are considerably skewed to the 
right; the skewness coefficient is equal to 5.4. The box-plot of losses is shown in 
Figure 1 (Lai and Wu, 2007). The upper whisker and several outliers indicate the 
long-tailed behavior of the underlying data. The Jarque-Bera test applied to rice loss 
data leads to a clear rejection of null hypothesis of normality with a p-value of zero. 
Therefore, we are interested in these severe losses and try to capture the behavior of 
the loss tail by using the extreme value theory. 
 

Table 1  Rice Losses Summary Statistics    NT$1,000 

Min Max Mean Median Standard Deviation Skewness Kurtosis
21 3,863,707 197,732 24,849 482,417 5.4 35.3 

  Source: Taiwan Agricultural Yearbook 
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Figure 1 Box-Plot of losses 

 
 

GEVD Model of Rice Loss 
The cdf )(xF  corresponding to the GEVD is defined as 

))(1(exp()( /1 ξ

σ
μξ −−+−= xxF   0≠ξ      (1) 

where X (annual maximum loss) is random variable. μ, σ, and ξ are the location, 
scale, and shape parameters, respectively. 

This analysis is based on the series of maximum annual typhoon damage on rice 
recorded in Taiwan, over the period 1971–2005; the data summary is shown in Table 
2. The maximum likelihood estimates are summarized in Table 3. Since there were no 
typhoon damages on rice in 1983 and 1993, we dropped the data for these years. 
Hence, the source data is a set of 33 records of maximum annual rice loss caused by 
typhoons. 
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   Table 2  Data Summary Statistics for GEVD Model  NT$1,000 

Min Max Mean Median
Standard
Deviation

Skewness Kurtosis 

11,359 3,863,707 544,636 311,254 789,978 3.2 11.1 
Source: Taiwan Agricultural Yearbook 

 
 

Table 3  MLE for GEVD Model Fitted 
location μ̂  scale σ̂  shape ξ̂  K-S statistic p-value 

1.85 510×  
(4.53 410× )* 

2.09 510×  
(4.77 410× )* 

0.6837 
(0.25 410× )* 0.07086 0.992 

* denotes s.e. of MLE 
 
GPD Model of Rice Loss 

In this section, we focuses on the statistical behavior of exceeds over a higher 
threshold. The practical problem is how to determine a “high enough threshold” or, 
likewise, the number k of upper extremes. To determine the optimal threshold value, 
we present the GPD estimate plot graphical tool. The choice of the number k of upper 
extremes can be supported visually by a diagram. Thereby, estimates are plotted 
against the number k of upper ordered values. If k is appropriate for the data, the 
values of the estimates stabilize around the true extremes and a plateau becomes 
visible. Figure 2 is a plot of the GP estimate versus k. It shows a plateau with right 
endpoint around k equal to 55. This evidence suggests processing the estimation on 
this number of upper extremes. Hence, by now, our analysis is based on 55 largest rice 
loss amounts over NT$ 30,502 caused by typhoons in Taiwan, over the period 
1971–2005. The data summary is shown in Table 4. In practice, we often use the 
following formula:  

1/
, ( ) 1 (1 / )G y y ξ

ξ σ ξ σ −= − +            (2) 

where Y (loss excess) is a random variable, σ and ξ are the scale and shape 
parameters, respectively. With excess number k set to 55, the maximum likelihood 
estimates are summarized in Table 5 (Lai and Wu, 2008). The results show that rice 
loss data are appropriate when using GPD model fitting, if enough data are available 
above a high enough threshold. 
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Figure 2 MLE estimates plotted against k 
 

     Table 4  Data Summary Statistics for GPD Model     NT$1,000 

Min Max Mean Median
Standard
Deviation

Skewness Kurtosis 

33,813 3,863,707 409,942.93 196,272 642,883 3.97 18.17 
Source: Taiwan Agricultural Yearbook 
 
 

Table 5 MLE for GPD Model Fitted 

u k σ̂  ξ̂  K-S statistic p-value 

30,502 55 
2.15 510×  

(4.98 410× )*

0.4526 
(0.1988 410× )* 0.04748 0.999 

denotes s.e. of MLE 
 

Models Checking 
We can visually assess how good the fit is by comparing probability density 

graphs with the histogram of sample data on a single chart and examining the 
probability-probability (P-P) plot of each fitted model separately. The P-P plot is a 
graph of the empirical cumulative distribution function (CDF) values plotted against 
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the theoretical CDF values. It is used to determine how well a specific distribution fits 
to the observed data. This plot will be approximately linear if the specified theoretical 
distribution is the correct model. For GEVD model fitting, Figure 3 illustrates the 
probability density function of the fitted model that follows the shape of the data, 
especially at the tail. Moreover, the absence of a marked deviation of the P-P plot 
from the main diagonal in the unit square indicates that the fitted model is a good 
choice. We therefore conducted the testing of the generalized extreme models. The 
Kolmogorov-Smirnov test has been performed to check the compliance of the data 
with GEVD. The corresponding p-value shown in Table 3 suggests that GEVD is 
appropriate. Similarly, Figure 4 shows the same results of goodness-of-fit of the GPD 
model. Therefore, we are confident of the results as shown in Table 5. 

 
Comparison with Different Distributions 

Using block-max and excess data, we further tried to check the improvements 
achieved by using the GEVD and GPD instead of classical loss models, such as 
lognormal and gamma distributions. We provide a probability difference graph, Figure 
5, which is a plot of the difference between the empirical CDF and the theoretical 
CDF. This graph can be used to determine how well the theoretical distribution fits to 
the observed data and compare the goodness of fit of several fitted distributions. We 
can see that the GEVD and GPD fit the observed data better than the lognormal and 
gamma distributions. We are confident that our model selection offers the best 
approximation of the loss data; therefore, we can apply these probabilistic models to 
obtain the needed inferences. 

 
INTERPRETING THE RESULTS 

 
Using GEVD Model to Measuring Extreme Risks 

For a wide range of application fields, the return level is a fundamental quantity 
to describe the behavior of the upper tail of a distribution. In extreme value analysis, it 
is often desirable to compute the size and the probability of T-year events, such as a 
hundred-year flood event. The T-year level u(T) is a threshold such that the mean 
number of excess over u(T) within the time span of length T is equal to 1 (Reiss and 
Thomas, 1997). After developing the GEVD model for rice loss, which is the annual 
maximum, we have applied this distribution to predict u(T). By using the following 
formula, T-year return level and excess times can be computed. 
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          )/11()( 1 TFTu == −                         (3) 

which is the (1-1/T)-quantile of F. Then we have 

T
TuFTuXP 1))((1))(( 1 =−=>      (4) 

where the T-year level u(T) is exceeded by the observation in the given year with 
probability 1/T (Reiss and Thomas, 1997). Table 6 shows the 10-year, 20-year, and 
50-year return level. These results could help the authorities or agriculture risk 
managers to build warning systems against typhoons that lead to rice damage and to 
check applicable compensation regulations. 

 
Table 6 T-year Return Level Based on GEVD Model   NT$ 1,000 

10-year return level 20-year return level 50-year return level 

1.30347 610×  2.20884 610×  4.28395 610×  

 
Using GPD Model to Measuring Extreme Risks 

Next, we have applied this distribution to predict possible mean loss for each 
coming disaster. In this section, we will concentrate on two useful risk measures, 
which attempt to describe the tail of a loss distribution – VaR and expected shortfall. 
Value-at-Risk (VaR) is the qth quantile of the distribution F (Jorion, 2007; Lai and 
Wu, 2007) 

)(1 qFVaRq
−=             (5) 

where F-1 is the inverse of F, and expected shortfall is the expected loss size, 
given that VaR is exceeded 

]|[ qq VaRXXEES >=                   (6) 

Our goal in risk management is to estimate qVaR
∧

and 
∧

qES of rice loss measures. 
For a given probability q > F(u), the VaR estimate is calculated in terms of GPD 
estimators, sample size n, and excess numbers Nu. The estimating formula is 

             
)1))1(((ˆ

ˆ ˆ −−+= −
∧

ξ

ξ
σ q

N
nuVaR

u

q               (7)
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Figure 3 Probability density graphs with the histogram of sample data and P-P plot of 

fitted model of GEVD model 



 
 
Contemporary Management Research  152 
 
 

 

 

 

 
Figure 4 Probability density graphs with the histogram of sample data and P-P plot of 

fitted model of GPD model 
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Figure 5 Probability different for various distributions fits 
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Furthermore, we could get expected shortfall estimate using the following 
formula: 

ξ
ξσ

ξ ˆ1

ˆˆ
ˆ1 −

−+
−

=
∧

∧ uVaRES q
q         (8) 

In agriculture risk management, we are concerned with each natural disaster 
determination of the VaR for the damage and expected loss amounts over a cash relief 
threshold. Therefore, the 90th, 95th, and 99th percentile of VaR and ES are calculated, 
as shown in Table 7 (Lai and Wu, 2007). These results could help the authorities and 
agriculture risk managers to check the applicable loss-compensation regulations. 

 
Table 7 Point Estimates of VaRq and ESq for GPD Model     NT$1,000 

VaR0.90 ES0.90 VaR0.95 ES0.95 VaR0.99 ES0.99 
377,383 941,144 630,113 1,399,486 1,631,147 3,214,928 

 

CONCLUSIONS 
The application of the extreme value theory to statistics allows us to fit models to 

data from the upper tail of a distribution. We have fit generalized extreme value and 
generalized Pareto data distribution to rice loss caused by typhoons in Taiwan by 
using the block-max and peak-over-threshold approaches to extreme value modeling. 
The appropriateness of the upper tail fitting to loss data is evaluated by comparing 
with standard parametric modeling based on lognormal and gamma distributions. The 
extreme value theory outperforms classical parametric fits. Furthermore, one of the 
main advantages of the Extreme Values model is that it gives a theoretical motivation 
for the procedures and satisfactory ways to find distributions for maxima, and to test 
the model. The results show that the loss distribution process is heavy-tailed, which 
implies that it is also non-normal, and the assumption of normality imposes a smaller 
threshold value even with the presence of fat-tails. From the risk management’s point 
of view, separate margins should be imposed for these estimators, reflecting the risk 
that is inherent in the respective losses. These results could help the authorities and 
agriculture risk managers to check the applicable loss-compensation regulations. It is 
expected that, with favorable developments in policies on agricultural natural disaster 
aid projects, the authorities generally can be assured that operation of farmers in an 
agricultural economy will be in harmony with the stabilization program. It is also 
expected that the risk financing shocks caused by natural disasters will be reduced for 
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both farmers and government, and should serve as guides for making further 
improvements. However, several problems remain along with this line for future 
research, one of which is the data dependent. We need to check the independency 
between frequency and severity of loss over time. 
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