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ABSTRACT

We conduct an analysis of the risk and return characteristics of a number of widely-
used fixed income arbitrage strategies. We find that the strategies requiring more
“intellectual capital” to implement tend to produce significant alphas after con-
trolling for bond and equity market risk factors. These positive alphas remain
significant even after taking into account typical hedge fund fees. In contrast with
other hedge fund strategies, many of the fixed income arbitrage strategies produce
positively skewed returns. These results suggest that there may be more economic
substance to fixed income arbitrage than simply “picking up nickels in front of a
steamroller.”



1. INTRODUCTION

During the hedge fund crisis of 1998, market participants were given a revealing
glimpse into the proprietary trading strategies used by a number of large hedge funds
such as Long Term Capital Management (LTCM). Among these strategies, few were
as widely used—or as painful—as fixed income arbitrage. Virtually every major in-
vestment banking firm on Wall Street reported losses directly related to their positions
in fixed income arbitrage during the crisis. Despite these losses, however, fixed income
arbitrage has since become one of the most-popular and rapidly-growing sectors within
the hedge fund industry. For example, the Tremont/TASS (2005) Asset Flows Report
indicates that total assets devoted to fixed income arbitrage grew by more than $9.0
billion during 2005 and that the total amount of hedge fund capital devoted to fixed
income arbitrage at the end of 2005 is in excess of $56.6 billion.1

This mixed history raises a number of important issues about the fundamental
nature of fixed income arbitrage. Is fixed income arbitrage truly arbitrage? Or is it
merely a strategy that earns small positive returns most of the time, but occasionally
experiences dramatic losses (a strategy often described as “picking up nickels in front
of a steamroller”)? Were the large fixed income arbitrage losses during the hedge fund
crisis simply due to excessive leverage, or were there deeper reasons arising from the
inherent nature of these strategies? To address these issues, this paper conducts an
extensive analysis of the risk and return characteristics of fixed income arbitrage.

Fixed income arbitrage is actually a broad set of market-neutral investment strate-
gies intended to exploit valuation differences between various fixed income securities
or contracts. In this analysis, we focus on five of the most widely-used fixed income
arbitrage strategies in the market:

• Swap spread arbitrage.

• Yield curve arbitrage.

• Mortgage arbitrage.

• Volatility arbitrage.

• Capital structure arbitrage.

As in Mitchell and Pulvino (2001), our approach consists of following specific trading

1The total amount of capital devoted to fixed income arbitrage is likely much larger
since the Tremont/TASS (2005) report covers less than 50 percent of the total es-
timated amount of capital managed by hedge funds. Also, many Wall Street firms
directly engage in proprietary fixed income arbitrage trading.
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strategies through time and studying the properties of return indexes generated by
these strategies. There are several important advantages to this approach. First, it
allows us to incorporate transaction costs and hold fixed the effects of leverage in the
analysis. Second, it allows us to study returns over a much longer horizon than would
be possible using the limited amount of hedge fund return data available. Finally,
this approach allows us to avoid potentially serious backfill and survivorship biases in
reported hedge fund return indexes.

With these return indexes, we can directly explore the risk and return character-
istics of the individual fixed income arbitrage strategies. To hold fixed the effects of
leverage on the analysis, we adjust the amount of initial capital so that the annualized
volatility of each strategy’s returns is ten percent. We find that all five of the strate-
gies generate positive excess returns on average. Surprisingly, most of the arbitrage
strategies result in excess returns that are positively skewed. Thus, even though these
strategies produce large negative returns from time to time, the strategies tend to
generate even larger offsetting positive returns.

We study the extent to which these positive excess returns represent compensation
for bearing market risk. After risk adjusting for both equity and bond market factors,
we find that the swap spread and volatility arbitrage strategies produce insignificant
alphas. In contrast, the yield curve, mortgage, and capital structure arbitrage strate-
gies generally result in significant positive alphas. Interestingly, the latter strategies
are the ones that require the most “intellectual capital” to implement. Specifically,
the strategies that result in significant alphas are those that require relatively complex
models to identify arbitrage opportunities and/or hedge out systematic market risks.
We find that several of these “market-neutral” arbitrage strategies actually expose the
investor to substantial levels of market risk. We repeat the analysis using actual fixed
income arbitrage hedge fund index return data from industry sources and find similar
results.

In addition to the transaction costs incurred in executing fixed income arbitrage
strategies, many investors must also pay hedge fund fees. We repeat the analysis
assuming that hedge fund fees of 2/20 (a 2 percent management fee and a 20 percent
slope above a Libor high water mark) are subtracted from the returns. While these fees
reduce or eliminate the significance of the alphas of the individual strategies, we find
that equally-weighted portfolios of the more “intellectual capital” intensive strategies
still have significant alphas on a net-of-fees basis. On the other hand, however, our
results indicate that fees in the fixed income arbitrage hedge fund industry are “large”
relative to the alphas that can be generated by these strategies.

Where does this leave us? Is the business of fixed income arbitrage simply a
strategy of “picking up nickels in front of a steamroller,” equivalent to writing deep
out-of-the-money puts? We find little evidence of this. In contrast, we find that most
of the strategies we consider result in excess returns that are positively skewed, even
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though large negative returns can and do occur. After controlling for leverage, these
strategies generate positive excess returns on average. Furthermore, after controlling
for both equity and bond market risk factors, transaction costs, and hedge fund fees,
the fixed income arbitrage strategies that require the highest level of “intellectual
capital” to implement appear to generate significant positive alphas. The fact that a
number of these factors share sensitivity to financial market “event risk” argues that
these positive alphas are not merely compensation for bearing the risk of an as-yet-
unrealized “peso” event. Thus, the risk and return characteristics of fixed income
arbitrage appear different from those of other strategies such as merger arbitrage (see
Mitchell and Pulvino (2001)).

This paper contributes to the rapidly-growing literature on returns to “arbitrage”
strategies. Closest to our paper are the important recent studies of equity arbitrage
strategies by Mitchell and Pulvino (2001) and Mitchell, Pulvino, and Stafford (2002).
Our paper, however, focuses exclusively on fixed income arbitrage. Less related to our
work are a number of important recent papers focusing on the actual returns reported
by hedge funds. These papers include Fung and Hsieh (1997, 2001, 2002), Ackermann,
McEnally, and Ravenscraft (1999), Brown, Goetzmann, and Ibbotson (1999), Brown,
Goetzmann, and Park (2000), Dor and Jagannathan (2002), Brown and Goetzmann
(2003), Getmansky, Lo, and Makarov (2004), Agarwal and Naik (2004), Malkiel and
Saha (2004), and Chan, Getmansky, Haas, and Lo (2005). Our paper differs from these
in that the returns we study are attributable to specific strategies with controlled
leverage, whereas reported hedge fund returns are generally composites of multiple
(and offsetting) strategies with varying degrees of leverage.

The remainder of this paper is organized as follows. Sections 2 through 6 describe
the respective fixed income arbitrage strategies and explain how the return indexes
are constructed. Section 7 conducts an analysis of the risk and return characteristics
of the return indexes along with those for historical fixed income arbitrage hedge fund
returns. Section 8 summarizes the results and makes concluding remarks.

2. SWAP SPREAD ARBITRAGE

Swap spread arbitrage has traditionally been one of the most-popular types of fixed
income arbitrage strategies. The importance of this strategy is evidenced by the fact
that swap spread positions represented the single-largest source of losses for LTCM.2

Furthermore, the hedge fund crisis of 1998 revealed that many other major investors
had similar exposure to swap spreads—Salomon Smith Barney, Goldman Sachs, Mor-
gan Stanley, BankAmerica, Barclays, and D.E. Shaw all experienced major losses in

2Lowenstein (2000) reports that LTCM lost $1.6 billion in its swap spread positions
before its collapse. Also see Perold (1999).
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swap spread strategies.3

The swap spread arbitrage strategy has two legs. First, an arbitrageur enters into
a par swap and receives a fixed coupon rate CMS and pays the floating Libor rate
Lt. Second, the arbitrageur shorts a par Treasury bond with the same maturity as
the swap and invests the proceeds in a margin account earning the repo rate. The
cash flows from the second leg consist of paying the fixed coupon rate of the Treasury
bond CMT and receiving the repo rate from the margin account rt.4 Combining the
cash flows from the two legs shows that the arbitrageur receives a fixed annuity of
SS = CMS − CMT and pays the floating spread St = Lt − rt. The cash flows from
the reverse strategy are just the opposite of these cash flows. There are no initial or
terminal principal cash flows in this strategy.

Swap spread arbitrage is thus a simple bet on whether the fixed annuity of SS
received will be larger than the floating spread St paid. If the swap spread SS is larger
than the average value of St during the life of the strategy, the strategy is profitable
(at least in an accounting sense). What makes the strategy attractive to hedge funds
is that the floating spread St has historically been very stable over time, averaging
26.8 basis points with a standard deviation of only 13.3 basis points during the past
16 years. Thus, the expected average value of the floating spread over, say, a five-year
horizon may have a standard deviation of only a few basis points (and, in fact, is often
viewed as essentially constant by market participants).

Swap spread arbitrage, of course, is not actually an arbitrage in the textbook
sense since the arbitrageur is exposed to indirect default risk. This is because if the
viability of a number of major banks were to become uncertain, market Libor rates
would likely increase significantly. For example, the spread between bank CD rates
and Treasury bill yields spiked to nearly 500 basis points around the time of the Oil
Embargo during 1974. In this situation, a swap spread arbitrageur paying Libor on
a swap would suffer large negative cash flows from the strategy as the Libor rate
responded to increased default risk in the financial sector. Note that there is no direct
default risk from banks entering into financial distress since the cash flows on a swap
are not direct obligations of the banks quoting Libor rates. Thus, even if these banks
default on their debt, the counterparties to a swap continue to exchange fixed for
floating cash flows.5

3See Siconolfi, Raghavan, Pacelle, and Sesit (1998), Beckett and Pacelle (1998), Dun-
bar (2000), and Lowenstein (2000).
4The terms CMS and CMT are widely-used industry abbreviations for constant ma-
turity swap rate and constant maturity Treasury rate.
5In theory, there is the risk of a default by a counterparty. In practice, however,
this risk is negligible since swaps are usually fully collateralized under master swap
agreements between major institutional investors. Furthermore, the actual default
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In studying the returns from fixed income arbitrage, we use an extensive data
set from the swap and Treasury markets covering the period from November 1988
to December 2004. The swap data consist of month-end observations of the three-
month Libor rate and midmarket swap rates for two-, three-, five-, seven-, and ten-
year maturity swaps. The Treasury data consist of month-end observations of the
constant maturity Treasury rates published by the Federal Reserve in the H-15 release
for maturities of two, three, five, seven, and ten years. Finally, we collect data on
three-month general collateral repo rates. The data are described in the Appendix.
Figure 1 plots the time series of swap spreads against the expected average value of the
short term spread over the life of the swap (based on fitting a simple mean reverting
Gaussian process to the data).

To construct a return index, we first determine each month whether the current
swap spread differs from the current value of the short term spread. If the difference
exceeds a trigger value of 10 basis points, we implement the trade for a $100 notional
position (receive fixed on a $100 notional swap, short a $100 notional Treasury bond,
or vice versa if the difference is less than −10 basis points).6 If the difference does
not exceed the trigger, then the strategy invests in cash and earns an excess return of
zero. We keep the trade on until it converges (swap spread converges to the short term
spread) or until the maturity of the swap and bond. It is useful to think of this trade as
a fictional hedge fund that has only a single trade. After the first month of the sample
period, there could be one such hedge fund. After two months, there could be two
hedge funds (if neither converges), etc. Each month, we calculate the return for each of
these funds and then take the equally-weighted average across funds as the index return
for that month. In initiating and terminating positions, realistic transaction costs are
applied (described in the Appendix). As with all strategies considered in this paper,
the initial amount of capital invested in the strategy is adjusted to fix the annualized
volatility of the return index at ten percent (2.887 percent per month). Observe that
this swap spread arbitrage strategy requires nothing in the way of complex modeling
to implement. Furthermore, since we compare current swap spread levels to current
short term spread levels, there is no look-ahead bias in the strategy.

Table 1 provides summary statistics for the excess returns from the swap spread
strategies. As shown, the mean monthly excess returns range from about 0.31 to
0.55 percent. All of these means are significant at the ten-percent level, and two are
significant at the five-percent level. Three of the four skewness coefficients for the

exposure in a swap is far less than for a corporate bond since notional amounts are
not exchanged. Following Duffie and Huang (1996), Duffie and Singleton (1997),
Minton (1997), He (2000), Grinblatt (2001), Liu, Longstaff, and Mandell (2004), and
many others, we abstract from the issue of counterparty credit risk in this analysis.
6We also implement the strategy with trigger values of 5 and 20 basis points and
obtain very similar results.
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returns have positive values. Thus, the returns for the strategies tend to have more
kurtosis than would be the case for a normal distribution.

We also examine the returns from forming an equally-weighted (based on notional
amount) portfolio of the individual hedge fund strategies. Since each individual strat-
egy is capitalized to have an annualized volatility of ten percent, the equally-weighted
portfolio will have smaller volatility if the returns from the individual strategies are
not perfectly correlated. As shown, considerable diversification is obtained with the
equally-weighted portfolio since its volatility is only 82 percent of that of the individual
strategies. The t-statistic for the returns from the equally-weighted strategy is 2.78.
The Bernardo and Ledoit (2000) gain/loss ratio for this equally-weighted strategy is
1.643 and the Sharpe ratio is 0.597.7

Finally, note that the amount of capital per $100 notional amount of the strategy
required to fix the annualized volatility at ten percent varies directly with the horizon
of the strategy. This reflects the fact that the price sensitivity of the swap and Treasury
bond increases directly with the horizon or duration of the swap and Treasury bond.

3. YIELD CURVE ARBITRAGE

Another major type of fixed income arbitrage involves taking long and short positions
at different points along the yield curve. These yield curve arbitrage strategies often
take the form of a “butterfly” trade, where, for example, an investor may go long five-
year bonds, and short two- and ten-year bonds in a way that zeros out the exposure
to the level and slope of the term structure in the portfolio. Perold (1999) reports
that LTCM frequently executed these types of yield curve arbitrage trades.

While there are many different flavors of yield curve arbitrage in the market, most
share a few common elements. First, some type of analysis is applied to identify points
along the yield curve that are either “rich” or “cheap.” Second, the investor enters
into a portfolio that exploits these perceived misvaluations by going long and short
bonds in a way that minimizes the risk of the portfolio. Finally, the portfolio is held
until the trade converges and the relative values of the bonds come back into line.

Our approach in implementing this strategy is very similar to that followed by a
number of large fixed income arbitrage hedge funds. Specifically, we assume that the

7We also investigate whether the inclusion of a stop-loss limit affects the results. The
stop-loss limit is where an individual hedge fund is terminated upon the realization of
a 20 percent drawdown. Since the volatility of returns is normalized to ten percent per
year (2.887 percent per month), however, the stop-loss limit is almost never reached.
Thus, the results when a stop-loss limit is included are virtually identical to those
reported.
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term structure is determined by a two-factor affine model. Using the same monthly
swap market data as in the previous section, we fit the model to match exactly the
one-year and ten-year points along the swap curve each month. Once fitted to these
points, we then identify how far off the fitted curve the other swap rates are. Figure 2
graphs the time series of deviations between market and model for the two-year, three-
year, five-year, and seven-year swap rates. For example, imagine that for a particular
month, the market two-year swap rate is more than ten basis points above the fitted
two-year swap rate. We would enter into a trade by going long (receiving fixed) $100
notional of a two-year swap and going short a portfolio of one-year and ten-year swaps
with the same sensitivity to the two affine factors as the two-year swap. Thus, the
resulting portfolio’s sensitivity to each of the two factors would be zero. Once this
butterfly trade was put on, it would be held for 12 months, or until the market two-year
swap rate converged to the model value. The same process continues for each month,
with either a trade similar to the above, the reverse trade of the above, or no trade at
all being implemented (in which case the strategy invests in cash and earn zero excess
return), and similarly for the other swap maturities. Unlike the swap spread strategy
of the previous section, this strategy involves a high degree of “intellectual capital”
to implement since both the process of identifying arbitrage opportunities and the
associated hedging strategies require the application of a multi-factor term structure
model.

As before, we can think of a butterfly trade put on in a specific month as a
fictional hedge fund with only one trade. Similarly, we can compute the return on this
hedge fund until the trade converges. For a given month, there may be a number of
these hedge funds, each representing a trade that was put on previously but has not
yet converged. The return index for the strategy for a given month is the equally-
weighted average of the returns for all of the individual hedge funds active during that
month. As in the previous section, we include realistic transaction costs in computing
returns and adjust the capital to give an annualized volatility of ten percent for the
index returns. The details of the strategy are described in the Appendix.8

Table 2 reports summary statistics for the excess returns from the yield curve
strategies. We use a trigger value of ten basis points in determining whether to

8At each date, we fit the model to match exactly the current one- and ten-year swaps.
Thus, there is no look-ahead bias in the state variables of the model. While the
parameters of the model are estimated over the entire sample, however, they are used
only in determining the hedge ratios for butterfly trades. Thus, there should be little
or no look-ahead bias in the results. As a diagnostic, we estimated the model using
data for the first part of the sample period and then applied it to strategies for the
latter part of the sample. The results from this exercise are virtually identical to those
we report.
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implement a trade.9 We implement the strategy separately for two-year, three-year,
five-year, and seven-year swaps, and also implement an equally-weighted strategy (in
terms of notional amount) of the individual-horizon strategies. As shown, the aver-
age monthly excess returns from the individual strategies as well as for the equally-
weighted strategy are all statistically significant, and range from about 0.4 to 0.6
percent.

Table 2 also shows that the excess returns are highly positively skewed. The
positive skewness of the returns argues against the view that this strategy is one in
which an arbitrageur earns small profits most of the time, but occasionally suffers
a huge loss. As before, the excess returns display more kurtosis than would be the
case for a normal distribution. Finally, observe that the amount of capital required to
attain a ten-percent level of volatility is typically much less than in the swap spread
strategies. This reflects the fact that the yield curve trade tends to be better hedged
since all of the positions are along the same curve, and the factor risk is neutralized
in the portfolio.

4. MORTGAGE ARBITRAGE

The mortgage-backed security (MBS) strategy consists of buying MBS passthroughs
and hedging their interest rate exposure with swaps. A passthrough is a MBS that
passes all of the interest and principal cash flows of a pool of mortgages (after servicing
and guarantee fees) to the passthrough investors. MBS passthroughs are the most
common type of mortgage-related product and this strategy is commonly implemented
by hedge funds. The Bond Market Association indicates that MBS now forms the
largest fixed income sector in the U.S.

The main risk of a MBS passthrough is prepayment risk. That is, the timing
of the cash flows of a passthrough is uncertain because homeowners have the option
to prepay their mortgages.10 The prepayment option embedded in MBS passthroughs
generates the so-called negative convexity of these securities. For instance, the top
panel of Figure 3 plots the nonparametric estimate of the price of a generic GNMA
passthrough with a seven-percent coupon rate as a function of the five-year swap
rate (see the Appendix for details on the estimation procedure, data, and strategy
implementation). It is clear that the price of this passthrough is a concave function
of the interest rate. This negative convexity arises because homeowners refinance
their mortgages as interest rates drop, and the price of a passthrough consequently

9Using a trigger value of five basis points gives similar results.
10For discussions about the effects of prepayment on MBS prices, see Dunn and Mc-
Connell (1981a, 1981b), Schwartz and Torous (1989, 1992), Stanton (1995), Boudoukh,
Whitelaw, Richardson, and Stanton (1997), and Longstaff (2004).
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converges to some level close to its principal amount.

A MBS portfolio duration-hedged with swaps inherits the negative convexity of
the passthroughs. For example, the bottom panel of Figure 3 plots the value of a
portfolio composed of a $100 notional long position in a generic seven-percent GNMA
passthrough, duration-hedged with the appropriate amount of a five-year swap. This
figure reveals that abrupt changes in interest rates will cause losses in this portfolio.
To compensate for these possible losses, investors require higher yields to hold these
securities. Indeed, Bloomberg’s option-adjusted spread (OAS) for a generic seven-
percent GNMA passthrough during the period from November 1996 to February 2005
was between 48 and 194 basis points with a mean value of 112 basis points.11

Long positions in passthroughs are usually financed with a form of repurchase
agreement called a dollar roll. Dollar rolls are analogous to standard repurchase agree-
ments in the sense that a hedge fund entering into a dollar roll sells a passthrough to a
MBS dealer and agrees to buy back a similar security in the future at a predetermined
price. The main difference between a standard repurchase agreement and a dollar
roll is that with the roll, the dealer does not have to deliver a passthrough backed
by exactly the same pool of mortgages. Unlike traditional repurchase agreements, a
dollar roll does not require any haircut or over-collateralization (see Biby, Modukuri
and Hargrave, (2001)). Dealers extend favorable financing terms because dollar rolls
give them the flexibility to manage their MBS portfolios. Assume, for instance, that
a MBS dealer wishes to cover an existing short position in the MBS market. In order
to do so, the dealer can buy a passthrough from a hedge fund with the dollar roll.
At the end of the roll term, the dealer does not need to return a passthrough backed
by exactly the same pool of mortgages. As a result, dollar rolls can be used as a
mechanism to cover short positions in the passthrough market.

The overall logic of the strategy of buying MBS passthroughs, financing them
with dollar rolls, and hedging their duration with swaps is therefore two-fold: First,
investors require larger yields to carry the negative convexity of MBS passthroughs.
Second, the delivery option of the dollar rolls makes them a cheap source of MBS
financing. To execute the strategy, it is necessary to specify which agency passthroughs
are used (GNMA, FNMA, or FHLMC), the MBS coupons (trading at discount or at
premium), the swap maturities used in the hedge, the model used to calculate the
hedge ratios, the frequency of hedge rebalancing (daily, weekly or monthly), and the

11Option-adjusted spreads are commonly used as a way of analyzing the relative valu-
ations of different mortgage-backed securities. As opposed to static spreads, the OAS
incorporates the information about the timing of the cash flows of a passthrough with
the use of a prepayment model and a term structure model in its calculation. The
OAS therefore adjusts for the optionality of a passthrough. For a discussion of the
role of OAS in the MBS market, see Gabaix, Krishnamurthy, and Vigneron (2004).
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OAS level above which a long position in the passthrough is taken (the OAS trade
trigger).

We use GNMA passthroughs because they are fully guaranteed by the U.S. Gov-
ernment and are consequently free of default risk.12 The passthroughs we study are
those with coupons closest to the current coupon since they are the most liquid. The
passthroughs are hedged with five-year swaps. There is a large diversity of models
that can be used to calculate hedge ratios. Indeed, every major MBS dealer has a
proprietary prepayment model. Typically, these proprietary models require a high
level of “intellectual capital” to develop, maintain, and use. We expect that some of
these models used in practice deliver better hedge ratios than others. However, we
do not want to base our results on a specific parametric model. Rather, we wish to
have hedge ratios that work well on average. To this end, we adopt a nonparamet-
ric approach to estimate the hedge ratios. Specifically, we use the method developed
by Äıt-Sahalia and Duarte (2003) to estimate the first derivative of the passthrough
price with respect to the five-year swap rate, with the constraint that passthrough
prices are a nonincreasing function of the five-year swap rate. We use all the available
sample of passthrough prices for this estimation.13 The hedging rebalancing frequency
is monthly. We expect that most hedge funds following this strategy estimate the
duration of their portfolios at least daily and rebalance when the duration deviates
substantially from zero. For reasons of simplicity, we assume that all the trading
in this strategy is done on the last trading day of the month. Trade triggers based
on OAS may be used to improve the returns of mortgage strategies (see for instance
Hayre (1990)). We, however, take a long position on MBS passthroughs indepen-
dently of their OAS since we want to avoid any dependence of our results on a specific
prepayment model.

The strategy is implemented between December 1996 and December 2004 with
a total of 97 monthly observations. The results of this strategy are displayed in
Table 3. The first row of Table 3 displays the results of the strategy implemented with
passthroughs trading at a discount. The second row displays the results of holding the
passthrough with coupon closest to the current coupon, which can be trading at either

12All the mortgage loans securitized by GNMA are Federally insured. Among the
guarantors are the FHA and VA.
13Even though the model is estimated over the entire sample, the current five-year
swap rate is used to specify the hedging ratio. Thus, there is no look-ahead bias
in the state variable of the model. To check whether look-ahead bias is induced by
the parameter estimation procedure, we also estimated the model for the 6.5 and 7.0
percent coupons using only data available prior to the first day that the strategy is
implemented. The returns obtained using the hedge ratios implied by this estimation
procedure are virtually identical to those obtained when the entire sample period is
used in the estimation.
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a premium or a discount. The results using the premium passthroughs with coupons
closest to the current coupons are in the third row. We again report results for an
equally-weighted portfolio (in terms of notional amount) of the individual strategies.

The excess returns of the MBS strategies can be either positively skewed (discount
strategy) or negatively skewed (the premium strategy). The excess returns of the
strategies are not significantly autocorrelated. The mean excess returns of the discount
and par strategies are 0.691 and 0.466 percent. The mean returns of the discount
and par strategies are statistically significant at roughly the ten-percent level. The
performance of the premium passthrough strategy is considerably worse than that
of the other strategies. The mean monthly return of the premium strategy is not
different from zero at usual significance levels. The relatively poor performance of the
premium passthrough strategy is partially caused by the strong negative convexity of
the premium passthroughs. Indeed, the passthroughs in the premium strategy have
an average convexity of −1.53 compared to −1.44 for the passthroughs in the par
strategy and −1.11 for the passthroughs in the discount strategy.

5. FIXED INCOME VOLATILITY ARBITRAGE

In this section, we examine the returns from following a fixed income volatility ar-
bitrage strategy. Volatility arbitrage has a long tradition as a popular and widely-
used strategy among Wall Street firms and other major financial market participants.
Volatility arbitrage also plays a major role among fixed income hedge funds. For ex-
ample, Lowenstein (2000) reports that LTCM lost more than $1.3 billion in volatility
arbitrage positions prior to the fund’s demise in 1998.

In its simplest form, volatility arbitrage is often implemented by selling options
and then delta-hedging the exposure to the underlying asset. In doing this, investors
hope to profit from the well-known tendency of implied volatilities to exceed subse-
quent realized volatilities. If the implied volatility is higher than the realized volatility,
then selling options produces an excess return proportional to the gamma of the op-
tion times the difference between the implied variance and the realized variance of the
underlying asset.14

In implementing a fixed income volatility arbitrage strategy, we focus on interest
rate caps. Interest rate caps are among the most important and liquid fixed income
options in the market. Interest rate caps consist of portfolios of individual European
options on the Libor rate (for example, see Longstaff, Santa-Clara, and Schwartz
(2001)). Strategy returns, however, would be similar if we focused on cap/floor strad-
dles instead. At-the-money caps are struck at the swap rate for the corresponding

14For discussions of the relation between implied and realized volatilities, see Day and
Lewis (1988), Lamoureux and Lastrape (1993), and Canina and Figlewski (1993).
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maturity. The strategy can be thought of as selling a $100 notional amount of at-
the-money interest rate caps and delta-hedging the position using Eurodollar futures.
In actuality, however, the strategy is implemented in a slightly different way that in-
volves a series of short-term volatility swaps. This alternative approach is essentially
the equivalent of shorting caps, but allows us to avoid a number of technicalities. The
details of how the strategy is implemented are described in the Appendix.

The data used in constructing an index of cap volatility arbitrage returns consist
of the swap market data described in Section 2, daily Eurodollar futures closing prices
obtained from the Chicago Mercantile Exchange, and interest rate cap volatilities
provided by Citigroup and the Bloomberg system. To incorporate transaction costs,
we assume that the implied volatility at which we sell caps is one percent less than the
market midpoint of the bid-ask spread (for example, at a volatility of 17 percent rather
than at the midmarket volatility of 18 percent). Since the bid-ask spread for caps is
typically less than one percent (or one vega), this gives us conservative estimates of the
returns from the strategy. The excess return for a given month can be computed from
the difference between the implied variance of a caplet at the beginning of the month,
and the realized variance for the corresponding Eurodollar futures contracts over the
month. The deltas and gammas for the individual caplets can be calculated using
the standard Black (1976) model used to quote cap prices in this market. Although
the Black model is used to compute hedge ratios, the strategy actually requires little
in the way of modeling sophistication. To see this, recall that in the Black model,
the delta of an at-the-money straddle is essentially zero. Thus, this strategy could be
implemented almost entirely without the use of a model by simply selling cap/floor
straddles over time. Note that there is no look-ahead bias in this implementation of
the strategy.

Table 4 reports summary statistics for the volatility arbitrage return indexes based
on the strategies for the highly-liquid two-, three-, four-, and five-year cap maturities
as well as for the equally-weighted (based on notional amount) strategy. As shown,
the volatility arbitrage strategy tends to produce positive excess returns. The average
excess returns range from about 0.40 to nearly 0.70 percent per month. The average
excess return for the three-year cap strategy is significant at the ten-percent level,
and the average excess return for the four-year cap strategy is significant at the five-
percent level. The average excess return for the equally-weighted strategy is also
significant at the ten percent level. As an illustration of why this strategy produces
positive excess returns, Figure 4 graphs the implied volatility of a four-year cap against
the average (over the corresponding 15 Eurodollar futures contracts used to hedge the
cap) realized Eurodollar futures volatility (both expressed in terms of annualized basis
point volatility). In this figure, the implied volatility clearly tends to be higher than
the realized volatility. Unlike the previous strategies considered, volatility arbitrage
produces excess returns that are highly negatively skewed. In particular, the skewness
coefficients for all of the strategies are negative. Thus, these excess returns appear
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more consistent with the notion of “picking up nickels in front of a steamroller.” The
excess returns again display more kurtosis than would normally distributed random
variables. These strategies require far less capital for a $100 notional trade than the
previous strategies.

6. CAPITAL STRUCTURE ARBITRAGE

Capital structure arbitrage (or alternatively, credit arbitrage) refers to a class of fixed
income trading strategies that exploit mispricing between a company’s debt and its
other securities (such as equity). With the exponential growth in the credit default
swap (CDS) market in the last decade, this strategy has become increasingly popular
with proprietary trading desks at investment banks.15 In fact, Euromoney reports
that some traders describe this strategy as the “most significant development since
the invention of the credit default swap itself nearly ten years ago” (Currie and Morris
(2002)). Furthermore, the Financial Times reports that “hedge funds, faced with weak
returns or losses on some of their strategies, have been flocking to a new one called
capital structure arbitrage, which exploits mispricings between a company’s equity
and debt” (Skorecki (2004)).

This section implements a simple version of capital structure arbitrage for a large
cross-section of obligors. The purpose is to analyze the risk and return of the strategy
as commonly implemented in the industry. Using the information on the equity price
and the capital structure of an obligor, we compute its theoretical CDS spread and the
size of an equity position needed to hedge changes in the value of the CDS, or what
is commonly referred to as the equity delta. We then compare the theoretical CDS
spread with the level quoted in the market. If the market spread is higher (lower)
than the theoretical spread, we short (long) the CDS contract, while simultaneously
maintaining the equity hedge. The strategy would be profitable if, subsequent to
initiating a trade, the market spread and the theoretical spread converge to each
other.

More specifically, we generate the predicted CDS spreads using the CreditGrades
model, which was jointly devised by several investment banks as a market standard for

15Credit default swaps are essentially insurance contracts against the default of an
obligor. Specifically, the buyer of the CDS contract pays a premium each quarter,
denoted as a percentage of the underlying bond’s notional value in basis points. The
seller agrees to pay the notional value for the bond should the obligor default before
the maturity of the contract. Credit default swaps can be used by commercial banks
to protect the value of their loan portfolios. For a more detailed description of the
CDS contract, see Longstaff, Mithal, and Neis (2004).
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evaluating the credit risk of an obligor.16 It is loosely based on Black and Cox (1976),
with default defined as the first passage of a diffusive firm value to an unobserved
“default threshold.” For CDS data we use the comprehensive coverage provided by
the Markit Group, which consists of daily spreads of five-year CDS contracts on North
American industrial obligors from 2001 to 2004. To facilitate the trading analysis,
we require that an obligor have at least 252 daily CDS spreads no more than two
weeks apart from each other.17 After merging firm balance sheet data from Compustat
and equity prices from CRSP, the final sample contains 135,759 daily spreads on 261
obligors. Details on the calibration of the model and the trading strategy are provided
in the Appendix. This strategy clearly requires a high level of financial knowledge to
implement.

To illustrate the intuition behind the trading strategy, we present the market
spread, the theoretical spread, and the equity price for General Motors in Figure 5.
First, we observe that there is a negative correlation between the CDS spread and
the equity price. Indeed, the correlation between changes in the equity price and the
market spread for GM is −0.32. Moreover, the market spread appears to be more
volatile, reverting to the model spread over the long run. For example, the market
spread widened to over 440 basis points during October 2002, while the model spread
stayed below 300 basis points. This gap diminished shortly thereafter, and completely
disappeared by February 2003. The arbitrageur would have profited handsomely if he
were to short CDS and short equity as a hedge during this period. Note, however, that
if the arbitrageur placed the same trades two months earlier in August 2002, he would
have experienced losses as the CDS spread continued to diverge. The short equity
hedge would have helped to some extent in this case, but its effectiveness remains
doubtful due to the low correlation between the CDS spread and the equity price.

Incidentally, a similar scenario played out again in May 2005 when GM’s debt was
on the verge of being downgraded. Seeing GM’s CDS becoming ever more expensive,
many hedge funds shorted CDS on GM and hedged their exposure by shorting GM
equity. GM’s debt was indeed downgraded shortly afterwards, but not before Kirk
Kerkorian announced a $31-per-share offer to increase his stake in GM, causing the
share price to soar. According to The Wall Street Journal, this “dealt the hedge funds
a painful one-two punch: their debt bets lost money, and the loss was compounded
when their hedge lost out as the stock price rose” (Zuckerman (2005)). Overall, the
GM experience suggests that the risk for individual trades is typically a combination
of rapidly rising market spreads and imperfect hedging from the offsetting equity
positions.

16For details about the model, see the CreditGrades Technical Document (2002).
17This criterion is consistent with capital structure arbitrageurs trading in the most
liquid segment of the CDS market. On the practical side, it also yields a reasonably
broad sample.
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We implement the trading strategy for all obligors as follows. For each day t in
the sample period of an obligor, we check whether ct > (1 + α) c′t, where ct and c′t are
the market and model spreads, respectively, and α is called the trigger level for the
strategy. If this criterion is satisfied, we short a CDS contract with a notional amount
of $100 and short an equity position as given by the CG model.18 The positions are
liquidated when the market spread and the model spread become equal, or after 180
days, whichever occurs first. We assume a five-percent bid-ask spread for trading CDS.
This is a realistic estimate of CDS market transaction costs in recent periods.

Since there are 261 obligors in the final sample, we typically have thousands of
open trades throughout the sample period. We create the monthly index return as
follows. First, since the CDS position has an initial value of zero, we assume that
each trade is endowed with an initial level of capital, from which the equity hedge is
financed. All subsequent cash flows, such as CDS premiums and cash dividends on the
stock position, are credited to or deducted from this initial capital. We also compute
the value of the outstanding CDS position using the CG model, and obtain daily excess
returns for each trade. Then, we calculate an equally-weighted average daily return
across all open trades for each day in the sample, and compound them into a monthly
frequency. This yields 48 numbers that represent monthly excess returns obtained
by holding an equally-weighted portfolio of all available capital structure arbitrage
trades. Since all information used in implementing the strategy is contemporaneous,
there is no look-ahead bias in strategy returns.

Table 5 summarizes the monthly excess returns for six strategies implemented
for three trading trigger levels and for investment-grade or speculative-grade obligors.
Also reported are the results for an equally-weighted portfolio (based on notional
amounts). First, we notice that the amount of initial capital required to generate
a ten-percent annualized standard deviation is several times larger than for any of
the previous strategies. This is an indication of the risk involved in capital structure
arbitrage. In fact, results not presented here show that convergence occurs for only
a small fraction of the individual trades. Furthermore, although Table 5 does not
show any significant change in the risk and return of the strategies when the trade
trigger level is increased from 1 to 2, the mean return can in fact become zero or
negative at lower values of α, say 0.5. This suggests that the information content
of a small deviation between the market spread and the predicted spread is low,
and capital structure arbitrage becomes profitable only when implemented at higher
threshold levels. Three of the six strategies have average monthly excess returns that
are statistically significant at the five-percent level. The equally-weighted strategy
has significantly lower volatility than the individual strategies, indicating that the
individual strategies are not perfectly correlated with each other. Finally, these excess

18We also consider the strategy of buying CDS contracts and putting on a long equity
hedge when c′t > (1 + α) ct. This strategy yields slightly lower excess returns.
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returns all display positive skewness, and have more kurtosis than would a normally
distributed random variable.

7. FIXED INCOME ARBITRAGE RISK AND RETURN

In this section, we study the risk and return characteristics of the fixed income ar-
bitrage strategies. In particular, we explore whether the excess returns generated by
the strategies represent compensation for exposure to systematic market factors.

7.1 Risk-Adjusted Returns

The five fixed income arbitrage strategies we study are often described in hedge fund
marketing materials as “market-neutral” strategies. For example, since the swap
spread strategy consists of a long position in a swap and an offsetting short position
in a Treasury bond with the same maturity (or vice versa), this trade is often viewed
as having no directional market risk. In actuality, however, this strategy is subject to
the risk of a major widening in the Treasury-repo spread. Similar arguments can be
directed at each of the other arbitrage strategies we consider. If the residual risks of
these strategies are correlated with market factors, then the excess returns reported
in previous tables may in fact represent compensation for the underlying market risk
of these strategies.

To examine this issue, our approach will be to regress the excess returns for the
various strategies on the excess returns of a number of equity and bond portfolios.
For perspective, Figures 6 and 7 plot the time series of excess returns for the equally-
weighted SS, YC, MA, VA, and CS strategies. To control for equity-market risk, we use
the excess returns for the Fama-French (1993) market (RM ), small-minus-big (SMB),
high-minus-low (HML), and up-minus-down (momentum or UMD) portfolios (excess
returns are provided courtesy of Ken French). Also, we include the excess returns on
the S&P bank stock index (from the Bloomberg system). To control for bond market
risk, we use the excess returns on the CRSP Fama two-year, five-year, and ten-year
Treasury bond portfolios. As controls for default risk, we also use the excess returns
for a portfolio of A/BBB-rated industrial bonds, and for a portfolio of A/BBB-rated
bank sector bonds (provided by Merrill Lynch and reported in the Bloomberg system).
Table 6 reports the regression results for each of the strategies, including the value
of the alpha (the intercept of the regression), along with the t-statistics for the alpha
and the coefficients of the excess returns on the equity and fixed income portfolios.
Also reported are the R2 values for the regressions.19

19We also explored specifications in which these explanatory variables appeared non-
linearly in the regression. The basic inferences about risk adjusted excess returns were
robust to these alternative specifications.
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It is important to observe that a number of these factors are likely to be sensitive
to major financial market “events” such as a sudden flight to quality or to liquidity
(similar to that which occurred after the Russian Sovereign default in 1998 that led to
the LTCM hedge fund crisis; see Dunbar (2000) and Duffie, Pedersen, and Singleton
(2003)). For example, Longstaff (2003) shows that the yield spread between Treasury
and agency bonds is sensitive to macroeconomic factors such as consumer sentiment
that portend the risk of such a flight. By including measures such as the excess
returns on Treasury, banking, and general industrial bonds, or on banking stocks, we
can control for the component of the fixed income arbitrage returns that is simply
compensation for bearing the risk of major (but perhaps not-yet-realized) financial
events. This is because the same risk would be present, and presumably compensated,
in the excess returns from these equity and bond portfolios.

The excess returns from the various strategies presented in the previous sections
include realistic estimates of the transactions costs involved with implementing the
strategies. Thus, these returns are relevant from the perspective of an investor directly
implementing these strategies or, equivalently, investing their own money in his or her
own hedge fund. In general, however, many investors may not have direct access to
these strategies and would instead invest capital in a fixed income arbitrage hedge
fund. Thus, hedge fund fees would need to be subtracted from the strategy returns to
represent the actual returns these investors would achieve.

To address the implications of hedge fund fees in the analysis, we will also estimate
the regression using an estimate of the net-of-fees excess returns from the various
strategies as the dependent variable. Specifically, we assume that the investor must
pay a standard 2/20 hedge fund fee (in addition to the transaction costs that are
already incorporated into the strategy returns). This 2/20 fee structure means that
the investor must pay an annual 2 percent fund management fee plus a 20 percent
slope bonus for any excess returns (above a Libor-based high-water mark). This
2/20 fee structure is very typical in the hedge fund industry (although many funds are
beginning to offer smaller fees in light of the increased competition and smaller returns
in recent years). We note that since most of the strategies are above their high water
marks throughout the sample period, this results in net-of-fees excess returns for the
strategies that are nearly linear functions of the original excess returns (subtract two
percent and multiply excess returns by 0.8). Thus, when the net-of-fees excess returns
are regressed on the ten explanatory variables, the t-statistics for these explanatory
variables are virtually the same as when the original excess returns are regressed on
these explanatory variables. Accordingly, to simply the exposition, Table 6 reports
the results for both the alpha based on the excess returns and the alpha based on the
net-of-fees excess returns, and the t-statistics for the explanatory variables from the
excess return regressions.

We turn first to the results for the swap spread arbitrage strategies. Recall that
each of these strategies generates significant (at the ten percent level) mean excess
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returns. Surprisingly, Table 6 shows that after controlling for their residual market
risk, none of the excess returns for the strategies results in a significant alpha. In
fact, two of the individual swap spread strategies have negative alphas. When hedge
fund fees are subtracted, the alphas are even smaller and even the equally-weighted
strategy results in a negative alpha.

Intuitively, the reason for these results is that the swap spread arbitrage strategy
actually has a significant amount of market risk, and the excess returns generated
by the strategy are simply compensation for that risk. Thus, there is very little
“arbitrage” in this fixed income arbitrage strategy. This interpretation is strengthened
by the fact that the R2 values for the swap spread strategies range from about 10 to 25
percent. Thus, a substantial portion of the variation in the excess returns for the swap
spread strategies is explained by the excess returns on the equity and bond portfolios.
In particular, Table 6 shows that a number of the strategies have significant positive
loadings on the market factor, significant negative loadings on the SMB and bank
equity factors, significant loadings on the Treasury factors, and significant positive
loadings on both the corporate bond factors.

The fact that these strategies have equity market risk may seem counterintu-
itive given that we are studying pure fixed income strategies. Previous research by
Campbell (1987), Fama and French (1993), Campbell and Taksler (2002) and others,
however, documents that there are common factors driving returns in both bond and
stock markets. Our results show that the same is also true for these fixed income ar-
bitrage strategies. These results are consistent with the view that the financial sector
plays a central role in asset pricing. In particular, the swap spread strategy has direct
exposure to the risk of a financial sector event or crisis. The commonality in returns,
however, suggests that both the stock, Treasury, and corporate bond markets have
exposure to the same risk. Thus, “financial-event” risk may be an important source
of the commonality in returns across different types of securities.

Turning next to the yield curve arbitrage strategies, Table 6 shows that the results
are almost the opposite of those for the swap spread arbitrage strategies. In particular,
the excess returns for all four of the yield curve strategies, along with the excess returns
for the equally-weighted strategy, have significant alphas. These alphas are all in the
range of 0.50 to 0.65 percent per month. In some cases, these alphas are even larger
than the average value of the excess returns.

Turning to the net-of-fees excess returns for the yield curve strategies, Table 6
shows that at least two of the four individual strategies have alphas that are significant
at the ten-percent level. Furthermore, the alpha for the equally-weighted strategy is
0.341 percent and is significant at the five-percent level. Thus, these strategies appear
to produce significant risk-adjusted excess returns even after incorporating realistic
hedge fund fees into the analysis.

In general, the R2 values for the yield curve arbitrage strategies are small, ranging
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from about 4 to 12 percent. Interestingly, the only significant source of market risk
in this strategy comes from a negative relation with the excess returns on general
industrial corporate bonds (not from the bank sector bonds). One interpretation of
this result may be that while the hedging approach used in the strategy is effective at
eliminating the exposure to two major term structure factors, more than two factors
drive the swap term structure. This interpretation is consistent with recent empirical
evidence about the determinants of swap rates such as Duffie and Singleton (1997),
and Liu, Longstaff, and Mandell (2004).

The excess returns from the mortgage arbitrage strategies shown in Table 6 also
appear to produce large alphas. The alpha for the discount mortgage strategy is 0.725
percent per month and is significant at the five-percent level. Similarly, the alpha
for the par strategy is 0.555 percent per month and is significant at the ten-percent
level. The alpha for the premium strategy is not significant. When hedge fund fees are
subtracted from the returns from these strategies, none of the alphas are significant
(the alpha for the discount strategy, however, comes close with a t-statistic of 1.56).

Note that these mortgage strategies also have a substantial amount of market risk.
In particular, the R2 values for the regressions range from about 14 to 19 percent. For
example, the strategies tend to have negative betas with respect to the market, but
have positive loadings on the general industrial corporate bond factor.

The excess returns from the volatility arbitrage strategies appear to be substan-
tially different from those of the other strategies. In particular, only the alpha from
the four-year cap strategy is significant at the ten-percent level. Also, the strategies
do not appear to have much in the way of market risk since the R2 values are generally
quite small. After subtracting out hedge fund fees, none of the alphas for the volatility
arbitrage strategies is significant.

Finally, recall that we have only 48 months of excess returns for the capital
structure arbitrage strategies since data on CDS contracts prior to 2001 are not read-
ily available because of the illiquidity of the market. Thus, one might expect that
there would be little chance of detecting a significant alpha in this strategy. Despite
this, Table 6 provides evidence that capital structure arbitrage does provide excess
returns even after risk adjustment. Specifically, four of the six capital structure ar-
bitrage strategies have excess returns that result in alphas that are significant at the
ten-percent level. In addition, the t-statistic for the alpha for the equally-weighted
strategy’s excess return is 2.11. In some cases, the alpha estimates are in excess of
one percent per month. Thus, these alpha estimates are the largest of all of the fixed
income arbitrage strategies we consider.

Not surprisingly, the alphas for the capital structure arbitrage strategies are lower
when we use the net-of-fees excess returns in the regression. Although all of the alpha
estimates are positive, only the CS6 strategy results in an alpha that is significant at
about the ten-percent level. The alpha for the equally-weighted strategy, however, is
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0.680 percent which is significant at the ten-percent level.

Despite the large point estimates of the alphas for these capital structure arbitrage
strategies, the R2 values show that the strategies also have a large amount of market
risk. These R2 values are generally in the range of 15 to 35 percent. Interestingly,
these strategies have significant positive loadings on the industrial bond factor and
significant negative loadings on the SMB factor. Since both the industrial bond and
SMB factors are correlated with corporate defaults, this suggests that there is an
important business-cycle component to the returns on capital structure arbitrage.20

The results in this section so far have been either for individual strategies within
the five broad classes of fixed income arbitrage strategies, or for equally-weighted port-
folios of the individual strategies. To extend the analysis, it is also useful to examine
the returns to strategies that allocate capital over different types of fixed income arbi-
trage.21 To this end, we report results for the strategy that takes an equally-weighted
(based on notional) position in each of the 21 substrategies across all five broad classes
of fixed income arbitrage. As shown, this strategy benefits from being diversified over
many different substrategies. Without including hedge fund fees, the alpha from this
strategy is 0.375 percent with a t-statistic of 3.38. When hedge fund fees are included,
however, the alpha is only 0.147 percent with a t-statistic of 1.62 (not quite significant
at the ten-percent level).

Since the previous results suggest that there may be economic returns to the
strategies that require a higher level of “intellectual capital,” we also consider a strat-
egy that takes an equally-weighted position in the 13 substrategies in the yield curve,
mortgage, and capital structure arbitrage categories. As shown in Table 6, the alpha
from this strategy when returns do not include hedge fund fees is 0.525 percent with
a t-statistic of 3.56. When returns are taken net of hedge fund fees, the alpha for
the strategy declines to 0.275 percent, but the t-statistic for the alpha of 2.28 is still
significant at the five-percent level.

To summarize, these results indicate that some, but not all, of the fixed income
arbitrage strategies generate significant risk adjusted excess returns even after incor-
porating both transaction costs and hedge fund fees into the analysis. The strategies
that appear to do the best are those that tend to require a higher level of “intellectual
capital” in terms of the modeling requirements associated with the implementation of
the strategies.

7.2 Historical Fixed Income Hedge Fund Returns

We have focused on return indexes generated by following specific fixed income arbi-

20For evidence about the relation between the SMB factor and default risk, see Vas-
salou and Xing (2004).
21We are grateful to the referee for suggesting this direction.
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trage strategies over time rather than on the actual returns reported by hedge funds.
As discussed earlier, there are a variety of important reasons for adopting this ap-
proach, including avoiding survivorship and backfill biases (see Malkiel and Saha
(2004)), holding leverage fixed in the analysis, etc. To provide additional perspec-
tive, however, we repeat the analysis using actual fixed income arbitrage hedge fund
return data from several widely-cited industry sources.

In particular, we obtain monthly return data from Credit Suisse First Boston
(CSFB)/Tremont Index LLC for the HEDG Fixed Income Arbitrage Index. The
underlying data for this index is based on the TASS database. The sample period for
these data is January 1994 to December 2004. To be included in the index, funds must
have a track record in the TASS database of at least one year, have an audited financial
statement, and have at least $10 million in assets.22 This index is value weighted. The
TASS database includes data on more than 4,500 hedge funds.

We also obtain monthly return data for the Hedge Fund Research Institute
(HFRI) Fixed Income Arbitrage Index. Although returns dating back to 1990 are
provided, we only use returns for the same period as for the CSFB/Tremont Index
to insure comparability. This index is fund or equally weighted and has no mini-
mum fund size or age requirement for inclusion in the index. This data source tracks
approximately 1,500 hedge funds.

The properties of the fixed income arbitrage hedge fund returns implied by these
industry sources are similar in many ways to those for the return indexes described in
the previous section. In particular, the annualized average return and standard devi-
ation of the CSFB/Tremont Fixed Income Arbitrage Index returns are 6.46 and 3.82
percent, respectively (excess return 2.60 percent). These values imply a Sharpe ratio
of about 0.68 (which is close to the Sharpe ratio of 0.72 reported by Tremont/TASS
(2004)). The annualized average return and standard deviation for the HFRI Fixed
Income Arbitrage Index are 5.90 and 4.02 percent, respectively (excess return 2.05 per-
cent). These values imply a Sharpe ratio of 0.51. On the other hand, there are some
important differences between the CSFB/Tremont and HFRI indexes and our return
indexes. In particular, the CSFB/Tremont and HFRI display a high level of nega-
tive skewness. The skewness parameters for the CSFB/Tremont and HFRI indexes
are −3.23 and −3.07, respectively. Recall that with the exception of the volatility
arbitrage strategies, most of our return indexes display positive (or only slight neg-
ative) skewness. Similarly, the CSFB/Tremont and HFRI indexes display significant
kurtosis, with coefficients of 17.03 and 16.40, respectively.23

22See Credit Suisse First Boston (2002) for a discussion of the index construction rules.
23The effects of various types of biases and index construction on the properties of
fund return indexes are discussed in Brown, Goetzmann, Ibbotson, and Ross (1992),
Brooks and Kat (2002), Amin and Kat (2003), and Brulhart and Klein (2005).
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Although the correlations between the CSFB/Tremont and HFRI indexes and
our return indexes vary across strategies, these correlations are typically in the range
of about −0.10 to 0.30. In particular, the average correlations between the swap
spread arbitrage returns and the CSFB/Tremont and HFRI indexes are 0.12 and 0.18,
respectively. The average correlations between the yield curve arbitrage returns and
the two indexes are 0.02 and −0.02, respectively. The average correlations between
the mortgage arbitrage returns and the two indexes are 0.22 and 0.30, respectively.
The average correlations between the volatility arbitrage returns and the two indexes
are 0.15 and 0.29, respectively. The average correlations between the capital structure
arbitrage returns and the two indexes are −0.05 and 0.26, respectively. The reason
for the slightly negative correlation between the indexes and the capital structure
arbitrage returns is possibly due to the fact that this strategy is relatively new and
may not yet represent a significant portion of the industry fixed income arbitrage
index. In summary, while the correlations are far from perfect, there is a significant
degree of correlation between our return indexes and those based on reported hedge
fund return data. Furthermore, these correlations are similar to the correlation of
0.36 reported by Mitchell and Pulvino (2001) between their return index and merger
arbitrage returns reported by industry sources.

Table 6 also reports the results from the regression of the excess returns from
the two indexes on the vector of excess returns described in the previous subsection.
Since these hedge fund return indexes are net of hedge fund fees, we interpret these
results as being most compatible with the results in Table 6 based on net-of-fees
excess returns. As shown, both the CSFB/Tremont and HFRI indexes appear to have
significant alphas after controlling for equity and fixed income market factors. The
alpha for the CSFB/Tremont index is 0.412 percent per month; the alpha for the
HFRI index is 0.479 percent per month. Both of these alphas are significant at the
five-percent level. It is worth reiterating the caution, however, that these indexes may
actually overstate the returns of hedge funds. This is because of the potentially serious
survivorship and backfill biases in these indexes identified by Malkiel and Saha (2004)
and others. Thus, care should be used in interpreting these results. Furthermore,
these biases (along with the heterogeneity of leverage across hedge funds and over
time) may also be contributing factors in explaining the difference in the skewness
between the CSFB/Tremont and HFRI indexes and the return indexes for our fixed
income arbitrage strategies. The CSFB/Tremont index appears to have significant
exposure to the returns on five-year Treasuries and on the portfolio of bank bonds.
This is consistent with Fung and Hsieh (2003) who find that fixed income arbitrage
strategy returns are highly correlated with changes in credit spreads. The HFRI index
has significant exposure to the returns on ten-year Treasuries. The R2 values for the
regressions are similar to those for the individual fixed income arbitrage strategy
regressions.
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8. CONCLUSION

This paper conducts the most comprehensive study to date of the risk and return
characteristics of fixed income arbitrage. Specifically, we construct monthly return
indexes for swap spread, yield curve, mortgage, volatility, and capital structure (or
credit) arbitrage over extended sample periods.

While these are all widely-used fixed income arbitrage strategies, there are sub-
stantial differences among them as well. For example, very little modeling is required
to implement the swap spread and volatility arbitrage strategies, while complex mod-
els and hedge ratios must be estimated for the other strategies. While attempting
to be market neutral, some of the strategies have residual exposure to market-wide
risk factors. For example, swap spread arbitrage is sensitive to a crisis in the banking
sector, and mortgage arbitrage is sensitive to a large drop in interest rates trigger-
ing prepayments. These considerations motivate us to examine the risk and return
characteristics of fixed income arbitrage, both before and after adjusting for market
risks.

We find a host of interesting results. To neutralize the effect of leverage, we
choose a level of initial capital to normalize the volatility of the returns to ten percent
per annum across all strategies. We find that all five strategies yield positive excess
returns. The required initial capital ranges from a few dollars per $100 notional for
volatility and yield curve arbitrage to $50 or more for capital structure arbitrage. With
the exception of volatility arbitrage, the returns have a positive skewness, contrary to
the common wisdom that risk arbitrage generates small positive returns most of the
time, but experiences infrequent heavy losses.

We also find that most of the strategies are sensitive to various equity and bond
market factors. Besides confirming the role of market factors in explaining swap spread
arbitrage and mortgage arbitrage returns, we find that yield curve arbitrage returns
are related to a combination of Treasury returns that mimic a “curvature factor,”
and capital structure arbitrage returns are related to factors that proxy for economy-
wide financial distress. Interestingly, we find that the three strategies that require the
most “intellectual capital” to implement command positive excess returns even after
adjusting for market risks and accounting for transaction costs and hedge fund fees.
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APPENDIX

A. Swap Spread Arbitrage.

The swap data for the study consist of month-end observations of the three-month Li-
bor rate and midmarket swap rates for two-, three-, five-, seven-, and ten-year maturity
swaps. These maturities represent the most-liquid and actively-traded maturities for
swap contracts. All of these rates are based on end-of-trading-day quotes available in
New York to insure comparability of the data. In estimating the parameters, we are
careful to take into account daycount differences among the rates since Libor rates
are quoted on an actual/360 basis while swap rates are semiannual bond equivalent
yields. There are two sources for the swap data. The primary source is the Bloomberg
system which uses quotations from a number of swap brokers. The data for Libor
rates and for swap rates from the pre-1990 period are provided by Citigroup. As an
independent check on the data, we also compare the rates with quotes obtained from
Datastream and find the two sources of data to be very similar.

The Treasury data consist of month-end observations of the constant maturity
Treasury (CMT) rates published by the Federal Reserve in the H-15 release for ma-
turities of two, three, five, seven, and ten years. These rates are based on the yields
of currently traded bonds of various maturities and reflect the Federal Reserve’s es-
timate of what the par or coupon rate would be for these maturities if the Treasury
were to issue these securities. CMT rates are widely used in financial markets as in-
dicators of Treasury rates for the most-actively-traded bond maturities. Since CMT
rates are based heavily on the most-recently-auctioned bonds for each maturity, they
provide an accurate estimate of yields for the most-liquid on-the-run Treasury bonds.
As such, these rates are more likely to reflect actual market prices than quotations for
less-liquid off-the-run Treasury bonds. Finally, data on three-month general collateral
repo rates are obtained from Bloomberg as well as Citigroup.

We initiate the swap spread strategy whenever the current swap spread is more
than ten basis points greater than (or less than) the current short-term Libor-general
collateral repo spread. Once executed, the strategy is held until either the horizon
date of the swap and bond, or until the strategy converges. Convergence occurs when
the swap spread for the remaining horizon of the strategy is less than or equal to
(greater than or equal to) the short-term spread.

To calculate the returns from the strategy, we need to specify transaction costs and
the valuation methodology. For transaction costs, we assume values that are relatively
large in comparison to those paid by large institutional investors such as major fixed
income arbitrage hedge funds. In a recent paper, Fleming (2003) estimates that the
bid-ask spread for actively-traded Treasuries is 0.20 32nds for two-year maturities,
0.39 32nds for five-year maturities, and 0.78 32nds for ten-year maturities. To be
conservative, we assume that the bid-ask spread for Treasuries is one 32nd. Similarly,
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typical bid-ask spreads for actively-traded swap maturities are on the order of 0.50
basis points. We assume that the bid-ask spread for swaps is one basis point. Finally,
we assume that the repo bid-ask spread is ten basis points. Thus, the repo rate earned
on the proceeds from shorting a Treasury bond are ten basis points less than the cost
of financing a Treasury bond. This value is based on a number of discussions with
bond traders at various Wall Street firms who typically must pay a spread of up to
ten basis points to short a specific Treasury bond. In some situations, a Treasury
bond can trade special in the sense that the cost of shorting the bond can increase to
50 or 100 basis points or more temporarily (see Duffie (1996), Duffie, Gârleanu, and
Pedersen (2002), and Krishnamurthy (2002)). The effect of special repo rates on the
analysis would be to reduce the total excess return from the strategy slightly.

Turning to the valuation methodology, our approach is as follows. For each month
of the sample period, we first construct discount curves from both Treasury and swap
market data. For the Treasury discount curve, we use the data for the constant
maturity six-month, one-year, two-year, three-year, five-year, seven-year, and ten-
year CMT rates from the Federal Reserve. We then use a standard cubic spline
algorithm to interpolate these par rates at semiannual intervals. These par rates are
then bootstrapped to provide a discount function at semiannual intervals. To obtain
the value of the discount function at other maturities, we use a straightforward linear
interpolation of the corresponding forward rates. In addition, we constrain the three-
month point of the discount function to match the three-month Treasury rate. We
follow the identical procedure in solving for the swap discount function. Treasury
and swap positions can then be valued by discounting their fixed cash flows using the
respective bootstrapped discount function.

B. Yield Curve Arbitrage.

To implement this strategy, we assume that the riskless rate is given by rt = Xt + Yt,
where Xt and Yt follow the dynamics

dX = (α − βX) dt + σ dZ1, (A1)
dY = (µ − γY ) dt + η dZ2, (A2)

under the risk-neutral measure, where Z1 and Z2 are standard uncorrelated Brownian
motions. With this formulation, zero-coupon bond prices are easily shown to be given
by the two-dimensional version of the Vasicek (1977) term structure model.

To estimate the six parameters, we do the following. We pick a trial value of the
six parameters. Then, for each month during the sample period, we solve for the values
of Xt and Yt that fit exactly the one-year and ten-year points along the swap curve.
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We then compute the sum of the squared differences between the model and market
values for the two-, three-, five-, and seven-year swaps for that month. We repeat
the process over all months, summing the squared differences over the entire sample
period. We then iterate over parameter values until the global minimum of the sum
of squared errors is obtained. The resulting parameter estimates are α = 0.0009503,
β = 0.0113727, σ = 0.0548290, µ = 0.0240306, γ = 0.4628664, and η = 0.0257381.

With these parameter values, we again solve for the values of Xt and Yt that
fit exactly the one-year and ten-year points along the swap curve. From this fitted
model, we determine the difference between the model and market values of the two-,
three-, five-, and seven-year swaps. If the difference exceeds the trigger level of ten
basis points, we go long (or short) the swap and hedge it with offsetting positions in
one-year and ten-year swaps. The hedge ratios are given analytically by the derivatives
of the swap values with respect to the state variables Xt and Yt. Once implemented,
the trade is held for 12 months, or until the market swap rate converges to its model
value. The swap transaction costs used in computing returns are the same as those
described above for the swap spread arbitrage strategy.

C. Mortgage Arbitrage.

The MBS data used in the strategy are from the Bloomberg system. The mort-
gage data are for the period between November 1996 and December 2004. The data
are composed of the current mortgage coupon, price, OAS, actual prepayment speed
(CPR), and weighted-average time to maturity of generic GNMA passthroughs with
coupons of 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 percent. The mortgage repo
rates are the end-of-month one-month values. The mortgages in the pools are assumed
to have initial terms of 30 years. Daily five-year swap rates are used to estimate hedge
ratios. The assumed bid-ask spread for passthroughs is 1.28 32nds. This is the average
bid-ask spread obtained from the Bloomberg system of generic GNMA passthroughs
with coupons of six and seven percent. As before, the repo bid-ask spread is ten basis
points and the swap bid-ask spread is one basis point. Most of the MBS passthrough
trading is on a to-be-announced (TBA) basis. This means that at the time a trade
is made, neither party to the trade knows exactly which pool of passthroughs will
be exchanged. The TBA trades are settled once a month. The settlement dates are
generally around the 21st of the month for GNMA passthroughs and are specified by
the Bond Market Association. Settlement dates for trades from November 1996 and
December 1999 are from the Bond Market Association newsletter. Settlement dates
for trades from January 2000 to December 2004 are from the Bloomberg system.

The hedge ratios are estimated by a nonparametric regression of the prices of each
passthrough on the five-year swap rate. The constrained nonparametric estimation fol-
lows the method developed by Äıt-Sahalia and Duarte (2003), which is composed of an
isotonic regression followed by a linear-kernel regression. In this method, passthrough
prices are assumed to be a decreasing function of the level of the five-year swap rate.
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One regression is performed for each passthrough coupon. The kernel used is normal
and the bandwidths are chosen by cross-validation over a grid of possible bandwidths.
Because swap rates are very persistent, we follow a procedure similar to the one in
Boudoukh, Whitelaw, Richardson, and Stanton (1997) and perform the cross valida-
tion omitting all the data points in an interval. The bandwidth values are 0.001045
for the 4.5 percent passthrough, 0.0007821 for the 5.0 percent passthrough, 0.001384
for the 5.0 percent passthrough, 0.002926 for the 6.0 and 6.5 percent passthroughs,
0.002922 for the 7.0, 7.5, and 8.0 percent passthroughs, and 0.002473 for the 8.5 per-
cent passthrough. The isotonic regression assumes that for each rate level there is only
one observed price. In the sample, however, we observe various prices at the same rate
level. To circumvent this problem, we take the average of the observed prices for each
rate level before we run the isotonic regression. We note that the method developed
by Äıt-Sahalia and Duarte also allows for restrictions on the second derivative of the
estimated function. In this application, however, we are only imposing restrictions on
the first derivative because the price of passthroughs can be either a convex or concave
function of the interest rate.

We implement the strategy in the following way. At the end of each month in
the sample, a decision is made with respect to holding, buying, or selling a MBS
passthrough. The decision is based on the current mortgage coupon and on the previ-
ous month’s portfolio. Assume for instance that on the last trading day of the month,
a hedge fund commits a certain amount of capital Ct to implement the MBS discount
strategy. As part of this strategy the hedge fund buys a $100 notional amount of the
MBS passthrough trading at a discount with coupon closest to the current mortgage
coupon. At the same time, the hedge fund enters in a dollar roll and pays fixed in an
interest rate swap. At the end of the next month, the hedge fund checks whether the
passthrough purchased the previous month still satisfies the requirement of being at a
discount with coupon closest to the current coupon. If so, the hedge fund continues to
hold it, rebalances the hedge with a new five-year swap, and enters into a new dollar
roll. If the passthrough does not satisfy this requirement, then the hedge fund sells
it, closes the margin account, and restarts the strategy with a new MBS passthrough.
The premium and the par passthrough strategies work in the same way.

The return calculation of the trading strategy is better clarified by means of
an example. Assume that the hedge fund buys a $100 notional amount of a MBS
passthrough at PAsk

t for settlement on the date S1, and, to hedge its interest rate
exposure, pays fixed on a five-year interest rate swap. To finance its long MBS position,
the hedge fund uses a dollar roll in which the hedge fund agrees to deliver a $100
notional amount of a MBS passthrough at S1 in exchange for the dollar amount PBid

t

and to receive a $100 notional amount of a passthrough at the settlement date S2 in
exchange for the dollar amount PRoll

t . At the end of the following month t + 1 the
hedge fund decides to sell the $100 MBS position at price PBid

t+1 for settlement at S2

and unwind the five-year swap hedge. The net cash flows of the MBS transactions
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are −(PAsk
t − PBid

t ) at time S1, and (PBid
t+1 − PRoll

t ) at time S2. The profit (or loss)
of the MBS part of this trade is therefore PVt+1(PBid

t+1 − PRoll
t ) − PVt(PAsk

t − PBid
t ),

where PVt is the time-t value of the cash flows. In addition to the profits related to
the MBS, the hedge fund also has profit from the swaps and from the capital invested
in the margin account. The monthly return of this strategy is therefore the sum of
the profits of all the parts of the strategy divided by Ct. Capital is allocated when a
passthrough is purchased and is updated afterwards by the profits (or losses) of the
strategy.

Note that the MBS return in the expression PVt+1(PBid
t+1 − PRoll

t )− PVt(PAsk
t −

PBid
t ) does not depend directly on the actual MBS passthrough prepayment because

the counterparty of the hedge fund in the dollar roll keeps all of the cash flows of
the passthrough that occur between S1 and S2. As a consequence, the value of PRoll

t

depends on the dealer forecast at time t of the prepayment cash flows between S1

and S2. The value of PRoll
t is calculated as in the Bloomberg roll analysis (see Biby,

Modukuri, and Hargrave (2001) for details about this calculation). We assume that the
implied cost of financing for the roll is the mortgage repo rate plus the bid-ask spread.
In addition, as in Dynkin, Hyman, Konstantinovsky, and Roth (2001), we assume that
the forecast prepayment level is equal to the prepayment level of the month when the
roll is initiated. In reality, the level of prepayments during the month when the roll is
initiated is only disclosed to investors at the beginning of the subsequent month.

D. Volatility Arbitrage.

Our approach for computing the returns from volatility arbitrage is based on entering
into a sequence of one-month volatility swaps that pay the arbitrageur the difference
between the initial implied variance of an interest rate caplet and the realized variance
for the corresponding Eurodollar futures contract each month. This strategy benefits
directly whenever the realized volatility is less than the implied volatility of interest
rate caps and floors. This strategy is scaled to allow it to mimic the returns that
would be obtained by shorting caps (and/or floors) in a way that keeps the portfolio
continuously delta and vega hedged.

To illustrate the equivalence, imagine that the market values interest rate caplets
using the Black (1976) model and that the implied volatility is constant (or that vega
risk is zero). From Black, it can be shown that the price C of a caplet would satisfy
the following partial differential equation,

σ2F 2

2
CFF − rC + Ct = 0, (A3)

where F is the corresponding forward rate and σ2 is the implied volatility. Now assume
that the actual dynamics of the forward rate under the physical measure are given by
dF = µF dt + σ̂FdZ. Form a portfolio (Π) with a short position in a caplet hedged
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with a futures contract. Applying Itô’s Lemma to the hedged portfolio gives

dΠ =
(

Πt +
σ̂2F 2

2
ΠFF

)
dt. (A4)

Since the initial value of the futures contract is zero, its derivative with respect to
time is zero, and its second derivative with respect to F is zero (we abstract from the
slight convexity differences between forwards and futures), we obtain

dΠ =
(
−Ct − σ̂2F 2

2
CFF

)
dt. (A5)

Substituting Ct from Equation (A3) in Equation (A5) gives

dΠ =
(

(σ2 − σ̂2)F 2

2
CFF + rΠ

)
dt. (A6)

The value of this portfolio today is equal to the capital amount invested in this strategy.
The excess profit of this strategy over a small period of time is approximately

(σ2 − σ̂2)F 2

2
CFF dt. (A7)

Thus, the instantaneous excess return on the strategy would be proportional to the
gamma of the caplet times the difference between the implied and realized variance
of the forward rate process. Note that this quantity is identical to the profit on a
volatility swap where the notional amount is scaled by F 2CFF /2. This means that
we can think of the trading strategy as either a volatility swap strategy or a short
delta-hedged position in a caplet (holding implied volatility constant over the month).

We calculate the excess returns from the volatility arbitrage strategy by calculat-
ing the quantity in Equation (A7) for each individual caplet. As the implied volatility
for the individual caplets within a cap, we use the market-quoted volatility for the
cap. A one-percent bid/ask spread represents a realistic value for interest rate caps
and floors. Alternatively, a one-percent transaction cost would also be realistic for
a volatility swap (which can be approximated by an at-the-money-forward cap/floor
straddle). As the realized volatility for each individual caplet, we use the volatility
of the Eurodollar futures contract with maturity corresponding to the caplet. Using
a one-month horizon for the strategy minimizes the effects of changes in the “money-
ness” of the caps on the time series of returns.
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E. Capital Structure Arbitrage.

We provide a brief summary of the CreditGrades (CG) model, the selection of its pa-
rameters, and the use of the model in our capital structure arbitrage trading analysis.
For details about the model and the associated pricing formulas, the reader is referred
to the CreditGrades Technical Document (2002, CGTD).

CreditGrades is a structural model in the tradition of Merton (1974), Black and
Cox (1976), and Longstaff and Schwartz (1995). It assumes that the firm value is a
diffusion, and default occurs when the firm value reaches a lower threshold called the
“default barrier.” Deviating slightly from the traditional structural models, however,
CG assumes that the default barrier is an unknown constant that is drawn from a
known distribution. This assumption helps to boost short-term credit spreads in a
way similar to Duffie and Lando (2001).

To generate a predicted CDS spread, CG requires a set of seven inputs: the
equity price S, the debt per share D, the mean default barrier as a percentage of debt
per share L, its standard deviation λ, the bond recovery rate R, the equity volatility
σS , and the risk-free interest rate r. Consistent with the empirical analysis in the
CGTD, we define D as total liabilities (taken from Compustat) divided by common
shares outstanding, σS as the 1,000-day historical equity volatility, r as the five-year
constant maturity Treasury yield, and let λ be equal to 0.3. However, rather than
setting L to be 0.5 and taking the bond recovery rate from a proprietary database as
in the CGTD, we set R to be 0.5 and estimate the mean default barrier L by fitting the
first ten daily market spreads of an obligor to the CG model. This is consistent with
the historical recovery rates on senior unsecured debt and the literature on endogenous
bankruptcy. For example, in Leland (1994) and Leland and Toft (1996), the default
barrier is chosen by the manager with consideration for the fundamental characteristics
of the company, such as the asset volatility and the payout rate.

The CG model is used in the trading analysis in three ways. Properly estimated
with the above procedure, we first use it to calculate a time series of predicted CDS
spreads for the entire sample period for each obligor. The comparison between the
predicted spreads and the market spreads forms the basis of the trading strategy as
explained in Section 6. Second, to calculate the daily returns on an open trade, we
must keep track of the total value of the positions, notably the value of a CDS position
that has been held for up to 180 days. The Markit CDS database used in this study,
however, provides only the spreads on newly issued five-year contracts. We note that
the value of an existing contract can be approximated by the change in five-year CDS
spreads multiplied by the value of a five-year annuity, whose cash flows are contingent
on the survival of the obligor. We use the term structure of survival probabilities
from the CG model to mark to market the CDS position. Third, we numerically
differentiate the value of the CDS position with respect to the equity price to identify
the size of the equity hedge.
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The trading analysis performed in Section 6 assumes a maximum holding period
of 180 days, a CDS bid-ask spread of five percent, and a static equity hedge that
is held fixed throughout a trade. It ignores the cost of trading equity because CDS
market bid-ask spreads are likely to be the dominant source of transaction costs. We
have experimented with setting different holding periods (30 to 360 days), updating
the equity hedge daily, and computing the CDS market value using a reduced-form
approach (such as Duffie and Singleton (1999)), all with results similar to those in
Table 5. In addition, the average monthly excess returns remain positive even when
the CDS bid-ask spread increases to ten percent.
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Table 1

Summary Statistics for the Swap Spread Arbitrage Strategies. This table reports the indicated summary statistics for the monthly percentage
excess returns from the swap spread arbitrage strategies. Swap denotes the swap maturity used in the strategy. The EW SS strategy consists of taking
an equally-weighted (based on notional amount) position each month in the individual-maturity swap spread strategies. N denotes the number of
monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized
standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the
proportion of negative excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. The sample period for the
strategies is December 1988 to December 2004.

Std. Ratio Serial Gain/ Sharpe
Strategy Swap N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

SS1 2 yr 193 3.671 0.546 2.94 2.887 −9.801 11.552 0.449 2.454 0.326 −0.113 1.758 0.655
SS2 3 yr 193 5.278 0.476 3.01 2.887 −8.482 11.209 0.178 2.002 0.326 −0.269 1.629 0.571
SS3 5 yr 193 9.047 0.305 1.68 2.887 −10.663 10.163 −0.456 2.269 0.332 −0.135 1.372 0.366
SS4 10 yr 193 15.795 0.313 1.69 2.887 −10.761 10.004 0.069 2.711 0.425 −0.114 1.381 0.376

EW SS 193 8.448 0.410 2.78 2.378 −8.569 8.439 −0.111 2.505 0.394 −0.148 1.643 0.597



Table 2

Summary Statistics for the Yield Curve Arbitrage Strategies. This table reports the indicated summary statistics for the monthly percentage
excess returns from the yield curve arbitrage strategies. Swap denotes the swap maturity used in the strategy. The EW YC strategy consists of taking
an equally-weighted (based on notional amount) position each month in the individual-maturity yield curve strategies. N denotes the number of
monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized
standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the
proportion of negative excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. The sample period for the
strategies is December 1988 to December 2004.

Std. Ratio Serial Gain/ Sharpe
Strategy Swap N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

YC1 2 yr 193 4.847 0.540 2.76 2.887 −6.878 10.056 0.569 0.902 0.301 −0.059 1.770 0.648
YC2 3 yr 193 7.891 0.486 2.31 2.887 −6.365 11.558 0.591 1.172 0.337 0.014 1.643 0.583
YC3 5 yr 193 7.794 0.615 3.29 2.887 −8.307 11.464 0.592 2.366 0.212 −0.108 2.102 0.738
YC4 7 yr 193 4.546 0.437 2.46 2.887 −10.306 20.032 2.156 14.953 0.088 −0.158 2.355 0.524

EW YC 193 6.270 0.519 3.42 2.293 −5.241 11.329 0.995 3.269 0.347 −0.084 1.980 0.785



Table 3

Summary Statistics for the Mortgage Arbitrage Strategies. This table reports the indicated summary statistics for the monthly percentage
excess returns from the mortgage arbitrage strategies. Mortgage denotes the type of mortgage backed securities used in the strategy—discount, par,
or premium. The EW MA strategy consists of taking an equally-weighted (based on notional amount) position each month in the individual discount,
par, and premium mortgage arbitrage strategies. N denotes the number of monthly excess returns. Capital is the initial amount of capital required
per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are
corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. Gain/Loss is the Bernardo and Ledoit
(2000) gain/loss ratio for the strategy. The sample period for the strategies is December 1996 to December 2004.

Std. Ratio Serial Gain/ Sharpe
Strategy Mortgage N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

MA1 Discount 97 21.724 0.691 2.08 2.887 −6.794 11.683 0.882 2.929 0.383 0.128 1.999 0.830
MA2 Par 97 19.779 0.466 1.50 2.887 −7.600 11.676 0.330 2.263 0.402 0.059 1.565 0.560
MA3 Premium 97 16.910 0.065 0.23 2.887 −8.274 9.844 −0.274 1.452 0.402 −0.052 1.063 0.078

EW MA 97 19.471 0.408 1.39 2.750 −7.556 8.539 6.369 1.027 0.392 0.053 1.489 0.514



Table 4

Summary Statistics for the Fixed Income Volatility Arbitrage Strategies. This table reports the indicated summary statistics for the
monthly percentage excess returns from the fixed income volatility arbitrage strategy of shorting at-the-money interest rate caps of the indicated
maturity. The EW VA strategy consists of taking an equally-weighted (based on notional amount) position each month in the individual-maturity
volatility arbitrage strategies. N denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of
the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are corrected for the serial
correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for
the strategy. The sample period for the strategies is October 1989 to December 2004 (but is shorter for some strategies because cap volatility data
for earlier periods are unavailable).

Std. Ratio Serial Gain/ Sharpe
Strategy Cap N Capital Mean t-Stat Dev Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

VA1 2 yr 183 0.734 0.389 1.11 2.887 −9.720 6.550 −0.962 1.579 0.383 0.465 1.423 0.467
VA2 3 yr 183 0.863 0.609 1.77 2.887 −9.675 6.851 −0.909 1.332 0.355 0.445 1.722 0.731
VA3 4 yr 183 0.953 0.682 2.08 2.887 −10.295 7.087 −0.989 1.644 0.311 0.409 1.823 0.819
VA4 5 yr 150 1.082 0.488 1.32 2.887 −9.997 6.654 −0.988 1.772 0.347 0.423 1.543 0.586

EW VA 183 0.908 0.584 1.79 2.280 −9.592 6.674 −0.925 1.392 0.344 0.425 1.709 0.720



Table 5

Summary Statistics for the Capital Structure Arbitrage Strategies. This table reports the indicated summary statistics for the monthly
percentage excess returns from the capital structure arbitrage strategies. Rating denotes whether the strategy is applied to investment-grade or
speculative-grade CDS obligors. Trigger denotes the ratio of the difference between the market spread and the model spread divided by the model
spread, above which the strategy is implemented. The EW CS strategy consists of taking an equally-weighted (based on notional amount) position
each month in the individual capital structure arbitrage strategies. N denotes the number of monthly excess returns. Capital is the initial amount of
capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for
the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. Gain/Loss is the Bernardo
and Ledoit gain/loss ratio for the strategy. The sample period for the strategies is January 2001 to December 2004.

Std. Ratio Serial Gain/ Sharpe
Strategy Rating Trigger N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

CS1 Invst. 1.00 48 47.000 0.768 1.95 2.887 −8.160 10.570 0.223 5.337 0.271 −0.055 2.621 0.922
CS2 1.50 48 52.300 0.613 1.25 2.887 −8.020 12.770 0.266 8.682 0.375 0.162 2.435 0.735
CS3 2.00 48 44.900 0.731 1.30 2.887 −4.640 13.790 0.342 10.075 0.417 0.296 3.341 0.877

CS4 Spec. 1.00 48 86.900 0.709 2.30 2.887 −8.680 7.680 0.331 2.646 0.167 −0.298 2.513 0.851
CS5 1.50 48 90.500 0.669 2.17 2.887 −7.250 10.920 0.358 4.661 0.146 −0.306 2.921 0.802
CS6 2.00 48 75.900 0.740 1.03 2.887 −1.730 15.210 0.448 15.889 0.104 0.505 12.738 0.887

EW CS 48 66.250 0.705 1.70 2.029 −1.955 9.650 2.556 8.607 0.333 0.343 4.117 1.203



Table 6

Regression Results. This table reports the indicated summary statistics for the regression of monthly percentage excess returns on the excess returns
of the indicated equity and bond portfolios. Results for the CSFP and HFRI fixed income arbitrage hedge fund return indexes are also reported.
RM is the excess returns on the CRSP value-weighted portfolio. SMB, HML, and UMD are the Fama-French small-minus-big, high-minus-low, and
up-minus-down market factors, respectively. RS is the excess return on an S&P index of bank stocks. R2, R5, and R10 are the excess returns on the
CRSP Fama portfolios of two-year, five-year, and ten-year Treasury bonds, respectively. RI and RB are the excess returns on Merrill Lynch indexes
of A/BAA-rated industrial bonds and A/BAA-rated bank bonds, respectively. The sample periods for the indicated strategies are as reported in the
earlier tables.

Rit = α + β1RMt + β2SMBt + β3HMLt + β4UMDt + β5RSt + β6R2t + β7R5t + β8R10t + β9RIt + β10RBt + εt

t Statistics
Without Fees With Fees

Strategy α t-Stat α t-Stat RM SMB HML UMD RS R2 R5 R10 RI RB R2

SS1 0.350 1.44 0.115 0.59 1.57 0.25 0.41 0.90 −1.52 0.18 0.12 −0.97 −0.85 2.82 0.0981
SS2 0.204 0.85 0.019 0.10 2.17 −0.14 1.19 1.04 −2.65 0.52 −0.03 −1.55 −0.02 0.42 0.105
SS3 −0.080 −0.36 −0.194 −1.04 2.56 −1.82 1.37 1.34 −2.64 1.94 −0.36 −3.53 1.84 2.95 0.212
SS4 −0.136 −0.62 −0.286 −1.45 2.71 −1.47 1.42 1.60 −1.81 2.48 1.44 −5.73 2.11 2.21 0.254
EW SS 0.084 0.45 −0.087 −0.55 2.78 −0.94 1.35 1.50 −2.67 1.53 0.34 −3.56 0.89 3.37 0.196

YC1 0.582 2.36 0.322 1.61 −0.81 1.25 −0.25 −0.16 1.03 1.44 0.10 0.23 −1.86 0.27 0.057
YC2 0.521 2.14 0.283 1.38 −1.04 0.93 −0.22 −0.14 0.88 1.98 −0.09 −0.00 −2.02 0.76 0.075
YC3 0.638 2.64 0.373 1.86 −0.85 1.78 0.33 0.86 0.62 0.84 −1.57 2.28 −3.10 2.31 0.094
YC4 0.653 2.74 0.387 1.95 −0.48 −0.56 −0.07 0.21 −0.27 1.27 −1.33 1.11 −2.30 1.44 0.117
EW YC 0.598 3.14 0.341 2.17 −1.01 1.09 −0.05 0.25 0.72 1.76 −0.91 1.14 −2.94 1.51 0.097

MA1 0.725 2.12 0.478 1.56 −1.42 −1.46 −1.33 −0.87 1.05 −0.74 −0.24 −0.39 2.52 −0.61 0.160
MA2 0.555 1.61 0.322 0.99 −1.64 −1.20 −1.68 −1.23 0.72 −0.23 −1.74 1.07 1.82 0.02 0.142
MA3 0.157 0.47 0.016 0.05 −2.08 −1.45 −1.61 −0.91 1.00 0.51 −2.68 1.18 2.41 −0.15 0.191
EW MA 0.479 1.47 0.272 0.89 −1.79 −1.43 −1.61 −1.05 0.96 −0.16 −1.62 0.64 2.35 −0.26 0.157



Table 6 Continued

t Statistics
Without Fees With Fees

Strategy α t-Stat α t-Stat RM SMB HML UMD RS R2 R5 R10 RI RB R2

VA1 0.074 0.29 −0.098 −0.48 0.60 −0.71 0.39 0.92 −1.27 1.44 −0.78 −0.85 1.42 0.56 0.056
VA2 0.305 1.21 0.078 0.38 0.67 −1.29 0.22 0.93 −1.43 1.06 −1.01 −0.41 1.21 0.57 0.064
VA3 0.415 1.65 0.166 0.82 0.53 −1.56 0.03 0.95 −1.34 0.71 −0.93 −0.23 1.65 0.53 0.066
VA4 0.228 0.83 0.005 0.03 0.37 −1.59 0.06 1.09 −1.11 0.80 −0.97 −0.24 0.83 0.55 0.081
EW VA 0.308 1.26 0.084 0.42 0.56 −1.35 0.15 0.95 −1.38 0.92 −0.91 −0.41 1.50 0.58 0.063

CS1 1.073 1.66 0.734 1.35 0.58 −1.94 0.55 −0.59 0.59 0.52 −1.04 1.05 −0.30 −0.12 0.252
CS2 0.803 1.34 0.619 1.06 1.55 −2.06 0.85 −0.32 −0.73 0.32 −1.01 0.96 0.66 −0.68 0.352
CS3 1.076 1.70 0.787 1.41 1.45 −1.78 0.50 −0.38 −1.64 0.11 −0.48 0.44 0.98 −0.91 0.280
CS4 0.432 0.69 0.228 0.42 −0.61 −0.71 −1.23 −0.53 0.38 −0.35 −0.40 −0.70 1.80 0.43 0.303
CS5 1.150 1.67 0.817 1.30 −1.47 −0.38 −1.64 −1.46 0.48 −1.08 −0.35 0.11 0.96 −0.11 0.149
CS6 1.235 1.95 0.893 1.64 −0.72 −0.40 −0.50 −0.96 −1.36 −2.14 1.61 −1.03 2.50 −2.03 0.282
EW CS 0.961 2.11 0.680 1.69 0.14 −1.68 −0.38 −1.01 −0.51 −0.63 −0.38 0.19 1.53 −0.79 0.248

EW All 0.375 3.38 0.147 1.62 1.18 −1.41 0.49 0.95 −1.68 1.27 −1.29 −1.22 0.79 2.83 0.109
EW YC,MA,CS 0.525 3.56 0.275 2.28 −1.22 0.52 −0.58 −0.67 1.69 −0.13 −0.63 0.36 −0.16 0.38 0.054

CSFB − − 0.412 3.87 −0.80 0.79 −0.09 0.71 0.32 1.06 −2.30 0.17 −0.06 2.69 0.159
HFRI − − 0.479 4.22 −1.70 0.73 −0.59 −0.44 0.81 0.20 0.84 −2.76 1.52 0.40 0.139



Figure 1. Swap Spreads and Expected Average Libor-Repo Spreads. These graphs plot the expected average
value of the Libor-repo spread and the corresponding swap spread for the indicated horizons. All spreads are in
basis points.
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Figure 2. Deviations Between Market and Model Swap Rates. These graphs plot the difference between the
market swap rates for the indicated horizons and the corresponding values implied by the two-factor affine model 
fitted to match exactly the one-year and ten-year swap rates. All deviations are in basis points.
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Figure 3. Passthrough Price as a Function of Swap Rates. The top panel of this figure displays
the nonparametric estimate of the price of the seven-percent GNMA passthrough as a function of
the five-year swap rate. Each point in this figure represents 25 daily observations. The bottom
panel displays the value of a portfolio with $100 notional amount of this passthrough duration-
hedged with a five-year swap. The hedge is initiated when the swap rate is 6.06 percent.
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Figure 4. Implied and Realized Basis Point Volatility of Four-Year Interest Rate Caps. This 
graph plots the implied annualized basis point volatility for a four-year interest rate cap along with
the average annualized realized basis point volatility over the subsequent month of the Eurodollar
futures contracts corresponding to the individual caplets of the cap.
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Figure 5. General Motors CDS Spreads and Equity Price. This figure displays the market CDS
spread, the model CDS spread, and the equity price for General Motors. The CDS spreads are in basis
points.
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Figure 6. Monthly Time Series of Excess Returns. The top panel of this figure displays
the monthly time series of excess returns for the equally-weighted swap spread strategy. The
middle panel displays the time series of excess returns for the equally-weighted yield curve
arbitrage strategy. The bottom panel displays the excess returns for the equally-weighted
mortgage strategy.
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Figure 7. Monthly Time Series of Excess Returns. The top panel of this figure displays the
monthly time series of the excess returns for the equally-weighted volatility strategy. The
bottom panel displays the excess returns for the equally-weighted capital structure arbitrage
strategy.
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