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Abstract Most accounts of the function of anterior insula

in the human brain refer to concepts that are difficult to

formalize, such as feelings and awareness. The discovery

of signals that reflect risk assessment and risk learning,

however, opens the door to formal analysis. Hitherto,

activations have been correlated with objective versions of

risk and risk prediction error, but subjective versions

(influenced by pessimism/optimism or risk aversion/toler-

ance) exist. Activation in closely related cortical structures

has been found to be both objective (anterior cingulate

cortex) and subjective (inferior frontal gyrus). For this

quantitative analysis of uncertainty-induced neuronal acti-

vation to further understanding of insula’s role in feelings

and awareness, however, formalization and documentation

of the relation between uncertainty and feelings/awareness

will be needed. One obvious starting point is the link with

failure anxiety and error awareness.

Keywords Anterior insula � Risk � Risk prediction error �
Ambiguity � Uncertainty

Introduction

The anterior insula has been implicated in the translation of

bodily state into feelings (Craig 2002) and perhaps even

into awareness (Craig 2009), and therefore, it plays a

crucial role in the James–Lange theory that posits that

emotional feelings are the result of physiological changes

in one’s body. Recent evidence (Preuschoff et al. 2008)

suggests that, at the same time, the anterior insula is

engaged in at least one, purely mathematical task, namely

the tracking of risk. This involvement in rather cool cal-

culation does not necessarily contradict the idea that

anterior insula is also the gateway for subjective experi-

ence. Indeed, the Somatic Marker Hypothesis postulates,

among others, that rational decision theory requires emo-

tional anticipation of the outcomes (Bechara et al. 1997),

and hence, that seemingly cool behavior and emotional

decision making are intertwined.

Emotions, feelings and awareness are illusive concepts,

generally defying formal analysis. Measurements are

qualitative, or, at best, ordinal. This has hampered efforts to

delineate precisely the contribution of anterior insula in the

formation of awareness of one’s (emotional) ‘‘self.’’ The

involvement of anterior insula in the encoding of precise

quantitative features of the environment, namely, risk, may

provide an opportunity to improve inference. Indeed, risk

can be quantified in precise ways (Preuschoff and Bossaerts

2007; Preuschoff et al. 2008); formulae for its subjective

counterpart exist (Christopoulos et al. 2009); and awareness

can be tested using side-bets (Koch and Preuschoff 2007).

The purpose of this essay is (1) to clarify why risk

assessment is important, (2) to introduce the reader to the

measurement of risk and risk prediction error, (3) to elu-

cidate the role of anterior insula in assessment of risk, and

(4) to elaborate on the difference between objective and

subjective risk and whether risk encoding in anterior insula

is subjective. Many questions will remain unanswered,

especially with respect to awareness of risk, for which the

‘‘Discussion’’ section elaborates.
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Why is risk assessment important?

This question may at first seem odd: most humans appear

to be sensitive to risk, somehow they must be assessing

risk. In classical decision theory, however, risk aversion (or

its reference-dependent counterpart, loss aversion) emerges

not as the result of an evaluation of risk, to be traded off

against average expected rewards, but as a mere conse-

quence of nonlinearity in the subjective utility of the

reward. Specifically, risk aversion emerges when the

incremental utility decreases as more reward is given;

likewise, loss aversion is the consequence of higher

incremental utilities for rewards in the loss domain than in

the gain domain.

As a result, the decision maker may behave in a risk or

loss averse way without having to keep track of risk.

Nonlinear encoding of rewards would be sufficient to

generate behavior that looks as if the decision maker is risk

or loss averse (Koenig and Simmons 1994; Mihatsch and

Neuneier 2002; Pratt 1964). The brain does not need to

track risks independently of rewards.

One of the most convincing pieces of evidence in favor

of nonlinear encoding of rewards came up recently in a

human imaging study (Tom et al. 2007), where the usual

striatal activation associated with reward prediction errors

was found to exhibit the very nonlinearity that was con-

sistent with the loss aversion revealed in subjects’ choices.

As a result, subjects’ aversion to (downside) risk could

have merely been attributed to (subjective) nonlinearity in

the encoding of reward prediction errors. To generate the

behavior, no separate encoding of risk was needed.

To be more precise (Tom et al. 2007) probed subjects’

preferences for gambles in the gain and loss domain sep-

arately, and found that marginal utility for reducing losses

was greater than marginal utility for increasing gains. As

such, subjects exhibited loss aversion. This differential in

marginal utility was reflected in striatal activation: deacti-

vation for losses was higher per dollar than activation for

gains.

While risk encoding, therefore, is not needed to explain

risk-sensitive choices, it may be crucial for learning of

rewards in a stochastic (i.e., uncertain) environment.

Indeed, learning can be enhanced dramatically by modu-

lating the learning rate depending on the risk. While this is

explicit in Bayesian learning (e.g., the Kalman filter), the

intuition is quite simple. When risk is high, one’s predic-

tion errors are likely to be high, so outcomes (rewards) are

very noisy and one should not read much in one’s pre-

diction errors. As a result, the learning rate should be low.

Conversely, if risk is low, prediction errors are significant,

and the learning rate high.

Interestingly, reward-error-related firing of dopaminer-

gic neurons in the non-human primate brain appears to

reflect this: neuronal activation is higher when prediction

risk is lower (Tobler et al. 2005). One should consider that

to be evidence that risk is encoded in the brain, albeit

indirectly. This finding of risk-adapted encoding of reward

prediction errors has recently been confirmed in human

imaging analysis (Bunzeck et al. 2010). Traces of direct

risk encoding in dopaminergic neurons has been found in

the nonhuman primate brain (Fiorillo et al. 2003) and in

sub-cortical dopaminoceptive regions of the human brain

(Preuschoff et al. 2006).

However, the relation between risk and learning rate is

complex. When risk increases because the environment has

changed, learning rates should increase, so that recent

prediction errors are weighted more heavily, while pre-

diction errors from the past (and before the change in the

environment) are weighted less. Overall, when the envi-

ronment changes regularly (is unstable), the learning rate

should be higher. Plenty of behavioral support for this type

of adaptation of the learning rate with the stability of the

environment has emerged in recent years (Behrens et al.

2007; Nassar et al. 2009; Nursimulu et al. 2009). fMRI

analysis points to a crucial role of the anterior cingulate

cortex (ACC) in adaptation of learning rates (Behrens et al.

2007).

How to measure risk?

Risk has multiple facets. There is the typical size of one’s

prediction error (the variance, i.e., the expected squared

deviation of the outcome from one’s prediction). In addi-

tion, one may weigh differently negative prediction errors

(skewness, i.e., the expected third-order power of the pre-

diction error; or the expected shortfall, i.e., the expected

prediction error provided it is negative). In addition, one

may weigh outliers more heavily (kurtosis, i.e., the

expected fourth-order power of the prediction error), etc.

Decision theory prescribes, however, that risk is to be

measured foremost by variance. This is made explicit in

mean–variance choice theory (Kroll et al. 1984) or

Bayesian updating in a Gaussian world (Berger 1985), and

implicit in standard central limit theorems (where the

asymptotic distribution of predictions depends only on the

variance; Schervisch 1997). Not that skewness and kurtosis

are unimportant; their relevance is, however, only of sec-

ond order.

One interesting aspect of variance as a metric of risk is

its symmetry: positive prediction errors are weighted

equally heavily as negative prediction errors. This is

counter-intuitive in a choice context: one would expect

negative prediction errors (losses) to be weighted more

heavily. For learning, however, positive prediction errors

are equally important as negative prediction errors when
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setting one’s learning rate. Indeed, to ignore positive pre-

diction errors would be to throw away crucial information

about the risk in the environment needed to set one’s

learning rate optimally.

Proper assessment of risk pre-supposes that one has

learned the risk. As with reward learning, the crucial

ingredient to risk learning is the risk prediction error. This

equals the outcome (realized risk) minus anticipation

(expected risk). When measuring the anticipation as vari-

ance, it is the difference between the size (measured as the

square) of the prediction error minus the expectation of this

size (the expected squared prediction error, and hence, the

variance). Proper updating of the risk requires encoding of

this risk prediction error.

As we shall document later, activation in the anterior insula

reflects both (anticipated) risk and a risk prediction error,

where risk is measured as variance (of the reward prediction

error), and the risk prediction error is simply the squared

prediction error minus its expectation. As such, anterior insula

is known to play a crucial role in tracking of risk.

Encoding of risk and risk prediction errors

in anterior insula

Some early studies implicated anterior insula in risk

tracking (Huettel et al. 2005; Kuhnen and Knutson 2005;

Paulus et al. 2003), but risk was dealt with informally, even

if quantitatively. In Huettel et al. (2005), the risk was

measured in terms of probability of an odd event, with

probability ranging from 0.20 to 0.50. When measured as

variance, risk does increase with this probability, but

nonlinearly. In addition, task performance decreased with

probability of the odd event, so that insula activation could

be attributed to frustration rather than risk. Kuhnen and

Knutson (2005) used the same metric of risk, and showed

that anterior insula activation predicted risk avoiding

choices even after accounting for their risk measure. In

Paulus et al. (2003), risk ‘‘built’’ over time (risk-taking

increased as subjects deliberately waited to respond), so

insula activation may have reflected general attention, as in

Brass and Haggard (2007).

In Preuschoff et al. (2006, 2008), risk was dissociated

from expected reward to avoid confounding factors. The

task was simple. Each trial, a randomly shuffled deck of 10

cards numbered 1–10 was presented. Two cards were going

to be pulled out, consecutively. The subject first had to

predict whether the second card was going to be higher or

not. If she was right, she won $1; otherwise she lost $1.

Once the bet was submitted, the first card was pulled out,

and after a delay, the second card.

In this task, after seeing the first card, expected reward

increases linearly with the chance of winning (conditional

on the number on the card); risk (variance), however, first

increases and then decreases, to produce an inverted-U

pattern with minimum at the end points (zero and unit

probability of winning) and maximum in the middle (50%

chance of winning) (see Fig. 1a).

Using fMRI, two types of activations were localized in

the human brain, each with different timing duration.

Specifically, in the delay period between presentation of

the first card, phasic activations (those with a duration of

\1 s, modulo the hemodynamic response delay) were

searched for, as well as delayed activations (those that

started 1 s or more after card presentation, and lasted until

the end of the delay period, modulo the hemodynamic

response) (see Fig. 1b). Within the set of phasic activa-

tions, those that changed linearly with (mean-adjusted)

probability of reward were dissociated from those that

changed nonlinearly with probability of reward. The latter

were identified when the activation changed significantly

as a function of the square of the mean-adjusted reward

probability. Thus, four groups of activations were obtained.

Here, we are most interested in activations detected in

anterior insula. Significant activations were found both

phasic and delayed. The former increased with the square

of the mean-adjusted reward probability, suggesting a U-

shaped pattern as a function of reward probability, whereas

the latter decreased, indicating that activation is an inver-

ted-U function of reward probability (see Fig. 1c). Later-

ality is more pronounced for the delayed activation, with a

much larger cluster size (and significance) in left anterior

insula, but all patterns discussed below are the same in the

right anterior insula. Importantly, there were no regions

within anterior insula where activation changed linearly

with the reward probability, neither phasic nor delayed. As

such, all activations in anterior insula appear to roughly

conform to the pattern in Fig. 1a, although the phasic

activation has the opposite sign, that is, it is U-shaped as a

function of reward probability, not inverted-U-shaped.

The voxel with peak activation was then retained and

average activation across subjects was plotted against

probability of reward, to verify that the pattern of activa-

tion is indeed quadratic, with extrema at 50% probability

and at 0 and 100% probability. This was indeed the case for

the delayed activation (see Fig. 2a). The activation exhibits

the inverted-U-shaped pattern that is required for it to

reflect encoding of risk (variance). The signal is delayed,

which may be attributed to the fact that risk is forward-

looking: it concerns the uncertainty that is anticipated to be

resolved when card 2 is shown. Because of its anticipatory

nature, one can reasonably conjecture that the signal is

time-locked to the outcome (when card 2 is displayed).

Future studies could confirm this, by changing the delay to

display of card 2 and verifying that peak activation moves

accordingly.
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Identification of the nonlinear phasic activation in

anterior insula turned out to be more tricky. It indicates

correlation with the risk prediction error, that is, it

reflected the difference between the actual size of the

prediction error when card 1 was shown and the anticipated

size. The prediction error we are referring to here is the

difference between the actual reward forecast based on the

number on card 1 and its expectation before display of card

1. Figure 2b plots (in red) the average delayed activation,

across subjects, stratified by level of risk prediction error.

The relationship is linear and increasing.

The risk prediction error is backward-looking: it refers

to the difference between an outcome (the size of the

prediction error) and its anticipation before revelation (the

prediction risk). Notice that there is also a risk prediction

error upon display of card 2. It equals the difference

between the actual magnitude of the reward-error before

seeing card 2 and its expectation after seeing card 1.

Average activation in anterior insula across subjects is

plotted in Fig. 2b in blue, for each of the various values

that the risk prediction error could take on across trials.

There is one outlier, namely, when the risk prediction error

is zero. This happens only in trials where, after seeing the

first card, there is no risk left anymore (the first card is

either a 1 or a 10), so there is no risk prediction error either.

To contrast the timing of the activation related to

anticipation and to error, Fig. 3a displays the time courses

for trials that are stratified by level of risk and risk pre-

diction error (left anterior insula). Differentiation of the

anticipatory risk time courses builds only slowly, and peaks

when risk is realized (display of card 2). In contrast, dif-

ferentiation of the risk prediction error time courses fol-

lows immediately upon display of card 1, and peaks at the

usual hemodynamic response delay (*4 s). Figure 3b

localizes the risk and risk prediction error activations.

Activation in anterior insula correlating with risk pre-

diction error has been independently verified in an fMRI

analysis of the Iowa Gambling Task (d’Acremont et al.

2009b); there, risk prediction errors emerged after each

draw from a deck. Risk prediction errors were measured as

in Preuschoff et al. (2008).

Objective and subjective risk

In the aforementioned studies, risk (and risk prediction

error) is objective. Magnitudes are computed from the

actual chance numbers and outcomes, without any attempt

to impute subjectivity, through risk aversion. Perceived

risk could be magnified in risk averse agents, while dif-

ferences in objective risks may become insignificant for

risk-neutral agents. Evidence has recently emerged that risk

encoding in ACC is objective, while activation in inferior

frontal gyrus (IFG) correlating with risk strongly increases

with risk aversion as revealed through subjects’ choices

(Christopoulos et al. 2009).

Timing 
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2 15
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3 21

Mean 
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-2 

-3 

8 

8 
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41 

46 

82 

25 
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7.3 

7.3 

-8 

-5 

A

B

C

Fig. 1 a Expected reward (dashed line) increases linearly in the

reward probability; risk (red solid line), measured as reward variance,

increases for reward probabilities below 0.5, then decreases; the

relationships is quadratic, with equal minima at zero and unit

probability; from Preuschoff et al. (2006). b Phasic activation refers

to neuronal signals during the first second after display of the first

card; delayed activation refers to neuronal signals during the

remainder of the delay period between display of the first and second

cards; from Preuschoff et al. (2006). c Table of location of BOLD

signals in insula that change nonlinearly (quadratic relation) with

reward probability. Sign of t statistic indicates whether relationship is

U-shaped (positive) or inverted-U (negative); from supplementary

online material of Preuschoff et al. (2008), with signs added to

indicate directionality. Only nonlinear changes of insula activation

with reward probability emerged; the lack of linear correlation would

suggest that insula does not encode expected reward
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It is not known whether risk activation in anterior insula

reflects subjective risk. The finding that risk activation in

the closely connected IFG is subjective may carry over to

the anterior insula, but the delay period between display of

stimulus and outcome in (Christopoulos et al. 2009)

included a choice epoch, which could have interfered with

the delicate timing of risk and risk prediction error signal.

While a (subjective) risk signal emerged (unpublished

material), it did not survive whole brain correction. The

conjecture is, however, that risk encoding in anterior insula

is subjective, as anterior insula is thought to be crucial in

the formation of subjective feelings (Craig 2009). The

origin of all these risk-induced signals is not known.

Common innervation and mutual connectivity would sug-

gest that activations in insula, anterior cingulate and IFG

are related.

Subjectivity can be measured in different ways than just

risk aversion. Pessimism (overweighting of loss probabil-

ities) is one of them. Pessimism features prominently in

prospect theory, and recent imaging evidence shows that

expected reward signals in striatal regions correlate with

subjects’ pessimism (Berns et al. 2008; Hsu et al. 2009).

Further work is needed to elucidate the nature of subjec-

tivism in stochastic reward environments.

Discussion

From its role in emotions, the involvement of insula in risk

tracking should not come as a surprise. The lack of pre-

dictability of an event requires the body to be ready to take

the right action in case the event materializes. Imagine, for

instance, that a predator may be hiding somewhere with

some probability. At a minimum, the heartbeat should

increase, to be ready to react (fight/flight) in case the

predator does appear. Preparedness should increase with

uncertainty, and so should the heartbeat. The research on

such cardiac defense response is vast (Ramirez et al. 2005),

Fig. 2 Axial cross-section (left
panel) of the human brain with

localization of delayed

activation that decreased in the

squared deviation of reward

probability from 0.5. Left and

right anterior insula (ins)

emerge, and, in the same (axial)

plane, midbrain (thalamus)

activation (md). Pattern of mean

activation (right panel) (with

standard errors) as a function of

reward probability across 19

subjects in peak voxels of left

and right anterior insula.

Coronal cross-section (left
panel) of the human brain with

localization of phasic activation

after card 1 that increased in the

squared deviation of reward

probability from 0.5. Pattern of

mean activation (right panel)
(with standard errors) as a

function of risk prediction error

across 19 subjects in peak voxel

of right anterior insula. Shown

are mean activations after

display of card 1 (red) as well as

mean activations in the same

voxel after display of card 2

(blue)
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but association with uncertainty has yet to be fully

explored.

The anterior insula has not only been implicated in

awareness of one’s own emotions, but in empathizing with

those of others as well (Singer and Lamm 2009). To the

extent that other people’s emotions convey risk measure-

ment, are one’s own subjective risk assessments affected?

If so, one can easily envisage social contagion of risk

assessment [while the economics literature on contagion

actually focuses on transmission of reward shocks rather

than risk assessment (Bekaert et al. 2005)] [see Singer et al.

(2009) for further discussion of the link between risk

assessment and empathy].

Some of the evidence regarding the functionality of

anterior insula can be re-interpreted in terms of risk

assessment. For instance, the increase in activation fol-

lowing a low return in the trust game (Delgado et al. 2005)

or a low offer in the ultimatum game (Sanfey et al. 2003)

could be a risk prediction error—one did expect some

variation in the opponent’s actions, but the repayment or

the offer is way beyond one’s beliefs. The absence of insula

activation in borderline personality disorder patients (King-

Casas et al. 2008) can be seen as a lack of updating of

prediction risk, which could explain their inability to re-

calibrate beliefs about opponents’ strategies. Increases in

insula activation upon mis-timing of otherwise well-known

rhythms (Platel et al. 1997) likewise can be re-interpreted

in terms of risk tracking: subjects should feel that they can

predict familiar rhythms well, i.e., they anticipate small

prediction errors, but a mis-timing reveals that prediction

errors are larger than expected; in other words, a positive

risk prediction error occurs, and insula signals this

accordingly.

Anterior insula is by no means the only brain structure

where risk and risk prediction errors are encoded. We

already mentioned ACC and IFG before, which, while

interconnected with anterior insula, play distinct roles

[ACC encodes objective risk, while IFG risk signals cor-

relate with risk aversion; (Christopoulos et al. 2009)].

Together with amygdala, anterior insula, ACC and IFG are

thought to form a network of emotional salience (Seeley

et al. 2007), so activation of risk in any of these structures

should not come as a surprise.

The role of amygdala needs further elaboration, how-

ever. In pure risk tasks, where outcome probabilities are

known or have been learned, like in the card game we

discussed earlier, amygdala is rarely if ever activated.

Amygdala emerges as a crucial brain region in contexts

where outcome probabilities are not known (yet) (Hsu et al.

2005). Economists would refer to such situations as

‘‘ambiguous,’’ or using language from statistics, the

uncertainty involved could be called ‘‘estimation uncer-

tainty.’’ One can also observe this in single-unit recordings

of neuronal firing in the amygdala–hippocampus complex

Fig. 3 Time courses of phasic

(right) and delayed (left) BOLD

signal in left anterior insula,

stratified by level of prediction

risk error (right) or level of risk

(left); from Preuschoff et al.

(2008). Sagittal cross-section of

the human brain with

localization of clusters of

significant delayed activation

that decreases in the squared

probability of reward (reflecting

risk; blue) and significant phasic

activation that increases in the

squared probability of reward

(reflecting risk prediction error;

yellow). Time courses in a are

for peak voxels in these clusters
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(Rutishauser et al. 2006). Therefore, while insula is

engaged in tracking of pure risk, amygdala seems to be

functionally specialized in tracking estimation uncertainty.

To elaborate, ‘‘risk’’ is what remains after learning is

finished; it is unavoidable, irreducible uncertainty (e.g.,

even the best weather forecasts are imperfect), and risk is

encoded in anterior insula. In contrast, estimation uncer-

tainty is the amount of uncertainty that can be reduced over

time through learning (the novice weatherman can improve

forecasts with experience). Amygdala signals the latter. To

confirm this, future studies should attempt to correlate

changes in estimation uncertainty (as measured, e.g., by

Bayesian posterior variance) and activation in amygdala.

The old distinction of the functions of amygdala and

insula as reflecting ‘‘fear’’ and ‘‘disgust,’’ respectively,

capture well the difference between ambiguity and pure

risk. Most people fear the former [they are ambiguity

averse, to the point that they make irrational decisions

(Ellsberg 1961)], but they are not afraid of risk; they just

wish it were not there.

While risk assessment and risk learning can be quan-

tified precisely, and therefore, provide an opportunity to

study the wider role of anterior insula in humans’ ability

to build subjective feelings from their bodily state and

to become aware of them, the mathematics involved is

more complicated than for, say, reward assessment and

learning.

For instance, in reward prediction, the best forecast of

one’s intermediate forecast of a final outcome is the same

as the best forecast of the final outcome. This is the con-

sequence of a mathematical property of expectations,

called the law of iterated expectations. Unfortunately, the

law does not apply to risk when risk is measured as vari-

ance. As such, what one expects to be the typical mistake in

predicting the final outcome is not the same as the antici-

pated magnitude of the change in one’s intermediate

forecasts. The mathematical complexity raises the question

of how the human brain manages to cope with it [see

d’Acremont et al. (2009a) for details].

We discussed the relevance of risk assessment for

reward learning. In particular, optimal learning requires

one to change the learning rate depending on the envi-

ronment. How exactly the learning rate is to be changed is

complicated (Preuschoff and Bossaerts 2007), which again

makes one wonder how the brain may go about optimizing

the learning rate. One suggestion was made recently

(Bossaerts and Preuschoff 2009).

Most accounts of anterior insula focus on its role in

translating emotions into feelings and awareness. These are

intangible, elusive concepts. Yet at the same time, signals

in anterior insula point to involvement in a very concrete

and readily quantifiable task, namely, risk assessment. It is

to be hoped that further exploration of this involvement

would at the same time enhance our understanding of

anterior insula’s more difficult functionality.

For this to happen, however, the relationship between

uncertainty and feelings/awareness will have to be studied

more formally. Not much is known about the emotional

impact of volatility. Lo and Repin (2002) provides

emerging evidence: the heartbeat of professional traders in

financial markets changes only with volatility, and not

with, e.g., price drift, let alone its effect on awareness.

Potentially fruitful starting points include failure anxiety

and error awareness, which may be associated more read-

ily. Recent findings point to a link between mis-assessment

of signal-to-noise ratio and anxiety (see the article by

Ullsperger et al. in this issue), and studies of error aware-

ness have much in common with those of uncertainty, such

as the dissociation between error anticipation and error

encoding (see the article by M. Paulus and M. Stein in this

issue). In the latter context, it is interesting to note that the

sub-regional specialization between expectation of poten-

tial error (superior anterior insula) and post-response error

recording (inferior anterior insula) bears resemblance with

of the same specialization found in risk anticipation

(superior) and risk prediction error (inferior) (see Fig. 3b).

Likewise, the study of awareness of rare errors and the role

of locus coeruleus parallels the development of neurobio-

logical models of unexpected uncertainty (Yu and Dayan

2003).

It is plausible to expect that uncertainty assessment is a

crucial modulator of awareness. Organisms, whose envi-

ronment changes too often for their innate reactions to

always be well adapted require an alertness system that is

triggered by uncertainty and that captures their bodily state

(emotions) and mental state (feelings) sufficiently strongly

so that learning ensues. Uncertainty carries a strong moti-

vational component, inducing organisms to explore when

gains are expected, and provoking defensive actions in

harmful situations. The resulting actions can be expected to

be more effective if they involve careful thought and

planning, which requires awareness.

A theory that integrates feelings and uncertainty, in

which anterior insula plays a crucial role has recently been

advanced (Singer et al. 2009). In it, predictions and real-

izations of bodily states are combined with predictions and

realizations of uncertainty, to generate an integrated feeling

state that is shaped by individual (subjective) risk prefer-

ences. Here, we propose to add awareness into the picture.

Recently, financial decision making has been linked to

awareness. Persaud et al. (2007) showed that betting suc-

cess is an effective tool to measure awareness. The dif-

ference between performance in a physical exercise and

success when betting on this performance appears to reflect

subliminal processing. This finding not only constitutes a

first step towards formalization of the link between
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awareness and risk assessment, but also shows that finan-

cial decision making requires awareness. As such, financial

decision making may become a crucial gauge with which

to measure awareness.

The link between uncertainty and bodily states and the

role of insula is easier to grasp. For instance, equally

intense pain is perceived as more painful if it is less pre-

dictable, and the encoding of pain anticipation in anterior

insula reflects the uncertainty of the pain stimulus rather

than the expectation (Carlsson et al. 2006). Similarly,

anxiety (neuroticism) is correlated with uncertainty-

induced insula brain activation (Paulus et al. 2003). Still,

there is a dearth of studies that simultaneously manipulate

uncertainty and bodily signals. Does heartbeat really

increase with variance as (Lo and Repin 2002) suggests?

What about skin conductance and other psychophysiolog-

ical indicators? Do frontal lesion patients in the Iowa

Gambling Task make disadvantageous decisions because

they have no emotional anticipation of risk, and therefore,

are not aware of the risks involved? etc.

Finally, because of the ubiquitous nature of uncertainty

in the environment, it would be interesting to explore

whether mal-adaptive behavior such as compulsive gam-

bling or addiction, as well as mental illnesses such as

anxiety disorder or schizophrenia are associated with

problems in risk learning, and to what extent anterior insula

is implicated. With respect to borderline personality dis-

order, evidence has recently emerged of abnormally low

insula activation following rejection in the well-known

trust game that can be interpreted as a lack of awareness

that forecasts of trustee behavior were wrong. The absence

of subsequent behavioral adjustment is consistent with this

lack of error encoding, as we discussed before (King-Casas

et al. 2008).
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