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Risk and Volatility: Econometric Models and Financial practicei  

The advantage of knowing about risks is that 
we can change our behavior to avoid them. Of 
course, it is easily observed that to avoid all 
risks would be impossible; it might entail no 
flying, no driving, no walking, eating and drink- 
ing only healthy foods, and never being touched 
by sunshine. Even a bath could be dangerous. I 
could not receive this prize if I sought to avoid 
all risks. There are some risks we choose to take 
because the benefits from taking them exceed 
the possible costs. Optimal behavior takes risks 
that are worthwhile. This is the central para- 
digm of finance; we must take risks to achieve 
rewards but not all risks are equally rewarded. 
Both the risks and the rewards are in the future, 
so it is the expectation of loss that is balanced 
against the expectation of reward. Thus we op- 
timize our behavior, and in particular our port- 
folio, to maximize rewards and minimize risks. 

This simple concept has a long history in 
economics and in Nobel citations. Harry M. 
Markowitz (1952) and James Tobin (1958) as- 
sociated risk with the variance in the value of a 
portfolio. From the avoidance of risk they de- 
rived optimizing portfolio and banking behav- 
ior. William Sharpe (1964) developed the 
implications when all investors follow the same 
objectives with the same information. This the- 
ory is called the Capital Asset Pricing Model or 
CAPM, and shows that there is a natural rela- 
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tion between expected returns and variance. 
These contributions were recognized by Nobel 
prizes in 198 1 and 1990. 

Fisher Black and Myron Scholes (1972) and 
Robert C. Merton (1973) developed a model to 
evaluate the pricing of options. While the theory 
is based on option replication arguments 
through dynamic trading strategies, it is also 
consistent with the CAPM. Put options give the 
owner the right to sell an asset at a particular 
price at a time in the future. Thus these options 
can be thought of as insurance. By purchasing 
such put options, the risk of the portfolio can be 
completely eliminated. But what does this in- 
surance cost? The price of protection depends 
upon the risks and these risks are measured by 
the variance of the asset returns. This contribu- 
tion was recognized by a 1997 Nobel prize. 

When practitioners implemented these finan- 
cial strategies, they required estimates of the 
variances. Typically the square root of the vari- 
ance, called the volatility, was reported. They 
immediately recognized that the volatilities 
were changing over time. They found different 
answers for different time periods. A simple 
approach, sometimes called historical volatil i~,  
was, and remains, widely used. In this method, 
the volatility is estimated by the sample stan- 
dard deviation of returns over a short period. 
But, what is the right period to use? If it is too 
long, then it will not be so relevant for today 
and if it is too short, it will be very noisy. 
Furthermore, it is really the volatility over a 
future period that should be considered the risk, 
hence a forecast of volatilitv is needed as well 
as a measure for today. This raises the possibil- 
ity that the forecast of the average volatility 
over the next week might be different from the 
forecast over a year or a decade, ~ i ~ ~ ~ r i ~ ~ l  

had no for these problems' 
On a more fundamental level, it is logically 

inconsistent to assume, for example, that the 
variance is constant for a period such as one 
year ending today and also that it is constant for 
the year ending on the previous but with a 
different value. A theory of dynamic volatilities 
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is needed; this is the role that is filled by the 
ARCH models and their many extensions that 
we discuss today. 

In the next section, I will describe the genesis 
of the ARCH model, and then discuss some of 
its many generalizations and widespread empir- 
ical support. In subsequent sections, I will show 
how this dynamic model can be used to forecast 
volatility and risk over a long horizon and how 
it can be used to value options. 

I. The Birth of the ARCH Model 

The ARCH model was invented while I was 
on sabbatical at the London School of Econom- 
ics in 1979. Lunch in the Senior Common 
Room with David Hendry, Dennis Sargan, Jim 
Durbin, and many leading econometricians pro- 
vided a stimulating environment. I was looking 
for a model that could assess the validity of a 
conjecture of Milton Friedman (1977) that the 
unpredictability of inflation was a primary 
cause of business cycles. He hypothesized that 
the level of inflation was not a problem; it was 
the uncertainty about future costs and prices that 
would prevent entrepreneurs from investing and 
lead to a recession. This could only be plausible 
if the uncertainty were changing over time so 
this was my goal. Econometricians call this 
heteroskedasticity. I had recently worked exten- 
sively with the Kalman Filter and knew that a 
likelihood function could be decomposed into 
the sum of its predictive or conditional densi- 
ties. Finally, my colleague, Clive Granger, with 
whom I share this prize, had recently developed 
a test for bilinear time series models based on 
the dependence over time of squared residuals. 
That is, squared residuals often were autocorre- 
lated even though the residuals themselves were 
not. This test was frequently significant in eco- 
nomic data; I suspected that it was detecting 
something besides bilinearity but I did not know 
what. 

The solution was autoregressive conditional 
heteroskedasticity or ARCH, a name invented 
by David Hendry. The ARCH model described 
the forecast variance in terms of current observ- 
ab le~ .  Instead of using short or long sample 
standard deviations, the ARCH model proposed 
taking weighted averages of past squared fore- 
cast errors, a type of weighted variance. These 
weights could give more influence to recent 

information and less to the distant past. Clearly 
the ARCH model was a simple generalization of 
the sample variance. 

The big advance was that the weights could 
be estimated from historical data even though 
the true volatilitv was never observed. Here is 
how this works. Forecasts can be calculated 
every day or every period. By examining these 
forecasts for different weights, the set of 
weights can be found that make the forecasts 
closest to the variance of the next return. This 
procedure, based on Maximum Likelihood, 
gives a systematic approach to the estimation of 
the optimal weights. Once the weights are de- 
termined, this dynamic model of time-varying 
volatility can be used to measure the volatility at 
any time and to forecast it into the near and 
distant future. Granger's test for bilinearity 
turned out to be the optimal, or Lagrange Mul- 
tiplier test for ARCH, and is widely used today. 

There are many benefits to formulating an 
explicit dynamic model of volatility. As men- 
tioned above, the optimal parameters can be 
estimated bv Maximum Likelihood. Tests of the 
adequacy and accuracy of a volatility model can 
be used to verify the procedure. One-step and 
multi-step forecasts can be constructed using 
these ~arameters. The unconditional distribu- 
tions cBn be established mathematically and are 
generally realistic. Inserting the relevant vari- 
ables into the model can test economic models 
that seek to determine the causes of volatilitv. 
Incorporating additional endogenous variables 
and equations can similarly test economic mod- 
els about the consequences of volatility. Several 
applications will be mentioned below. 

David Hendry's associate, Frank Srba, wrote 
the first ARCH program. The application that 
appeared in Engle (1982) was to inflation in the 
United Kingdom since this was Friedman's 
conjecture. While there was plenty of evidence 
that the uncertainty in inflation forecasts was 
time varying, it did not correspond to the U.K. 
business cycle. Similar tests for U.S. inflation 
data, reported in Engle (1983), confirmed the 
finding of ARCH but found no business-cycle 
effect. While the trade-off between risk and 
return is an important part of macroeconomic 
theory, the empirical implications are often dif- 
ficult to detect as they are disguised by other 
dominating effects, and obscured by the reli- 
ance on relatively low-frequency data. In fi- 
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nance, the risWreturn effects are of primary 
importance and data on daily or even intradaily 
frequencies are readily available to form accu- 
rate volatility forecasts. Thus finance is the field 
in which the great richness and variety of 
ARCH models developed. 

11. Generalizing the ARCH Model 

Generalizations to different weighting 
schemes can be estimated and tested. The very 
important development by my outstanding stu- 
dent Tim Bollerslev (1986), called Generalized 
Autoregressive Conditional Heteroskedasticity, 
or GARCH, is today the most widely used 
model. This essentially generalizes the purely 
autoregressive ARCH model to an autoregres- 
sive moving average model. The weights on 
past squared residuals are assumed to decline 
geometrically at a rate to be estimated from the 
data. An intuitively appealing interpretation of 
the GARCH(1,l) model is easy to understand. 
The GARCH forecast variance is a weighted 
average of three different variance forecasts. 
One is a constant variance that corresponds to 
the long-run average. The second is the forecast 
that was made in the previous period. The third 
is the new information that was not available 
when the previous forecast was made. This 
could be viewed as a variance forecast based on 
one period of information. The weights on these 
three forecasts determine how fast the variance 
changes with new information and how fast it 
reverts to its long-run mean. 

A second enormously important generaliza- 
tion was the Exponential GARCH or EGARCH 
model of Daniel B. Nelson (199 l), who prema- 
turely passed away in 1995 to the great loss of 
our profession as eulogized by Bollerslev and 
Peter E. Rossi (1995). In his short academic 
career, his contributions were extremely influ- 
ential. He recognized that volatility could re-
spond asymmetrically to past forecast errors. In 
a financial context, negative returns seemed to 
be more important predictors of volatility than 
positive returns. Large price declines forecast 
greater volatility than similarly large price in- 
creases. This is an economically interesting ef- 
fect that has wide-ranging implications to be 
discussed below. 

Further generalizations have been proposed 
by many researchers. There is now an alphabet 

soup of ARCH models that include: AARCH, 
APARCH, FIGARCH, FIEGARCH, STARCH, 
SWARCH, GJR-GARCH, TARCH, MARCH, 
NARCH, SNPARCH, SPARCH, SQGARCH, 
CESGARCH, Component ARCH, Asymmetric 
Component ARCH, Taylor-Schwert, Student-t- 
ARCH, GED-ARCH, and many others that I 
have regrettably overlooked. Many of these 
models were surveyed in Bollerslev et al. 
(1992), Bollerslev et al. (1994), Engle (2002b), 
and Engle and Isao Ishida (2002). These models 
recognize that there may be important nonlin- 
earity, asymmetry, and long memory properties 
of volatility and that returns can be nonnormal 
with a variety of parametric and nonparametric 
distributions. 

A closely related but econometrically distinct 
class of volatility models called Stochastic Vol- 
atility, or SV models, have also seen dramatic 
development. See, for example, Peter K. Clark 
(1973), Stephen Taylor (1986), Andrew C. Har- 
vey et al. (1994), and Taylor (1994). These 
models have a different data-generating process 
which makes them more convenient for some 
purposes but more difficult to estimate. In a 
linear framework, these models would simply 
be different representations of the same process; 
but in this nonlinear setting, the alternative 
specifications are not equivalent, although they 
are close approximations. 

111. Modeling Financial Returns 

The success of the ARCH family of models is 
attributable in large measure to the applications 
in finance. While the models have applicability 
for many statistical problems with time series 
data, they find particular value for financial time 
series. This is partly because of the importance 
of the previously discussed trade-off between 
risk and return for financial markets, and partly 
because of three ubiquitous characteristics of 
financial returns from holding a risky asset. 
Returns are almost unpredictable, they have sur- 
prisingly large numbers of extreme values, and 
both the extremes and quiet periods are clus- 
tered in time. These features are often described 
as unpredictability, fat tails, and volatility clus- 
tering. These are precisely the characteristics 
for which an ARCH model is designed. When 
volatility is high, it is likely to remain high, and 
when it is low, it is likely to remain low. However, 
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these veriods are time limited so that the fore- 
cast is sure to eventually revert to less extreme 
volatilities. An ARCH process produces dy- 
namic, mean-reverting patterns in volatility that 
can be forecast. It also produces a greater num- 
ber of extremes than would be expected from a 
standard normal distribution, since the extreme 
values during the high volatility period are 
greater than could be anticipated from a con- 
stant volatility process. 

The GARCH(1,l) specification is the work- 
horse of financial applications. It is remarkable 
that one model can be used to describe the vola- 
tility dynamics of almost any financial return se- 
ries. This applies not only to U.S. stocks but also 
to stocks traded in most developed markets, to 
most stocks traded in emerging markets, and to 
most indices of equity returns. It applies to ex- 
change rates, bond returns, and commodity re-
turns. In many cases, a slightly better model can 
be found in the list of models above, but GARCH 
is generally a very good starting point. 

The widespread success of GARCH(1,l) 
begs to be understood. What theory can explain 
why volatility dynamics are similar in so many 
different financial markets? In developing such 
a theory, we must first understand why asset 
prices change. Financial assets are purchased 
and owned because of the future payments that 
can be expected. Because these hayments are 
uncertain and depend upon unknowable future 
developments, the fair price of the asset will 
require forecasts of the distribution of these 
payments based on our best information today. 
As time goes by, we get more information on 
these future events and revalue the asset. So at 
a basic level, financial price volatility is due to 
the arrival of new information. Volatility clus- 
tering is simply clustering of information arriv- 
als. The fact that this is common to so many 
assets is simply a statement that news is typi- 
cally clustered in time. 

To see why it is natural for news to be clus- 
tered in time, we must be more specific about 
the information flow. Consider an event such as 
an invention that will increase the value of a 
firm because it will improve future earnings and 
dividends. The effect on stock prices of this 
event will depend on economic conditions in 
the economy and in the firm. If the firm is near 
bankruptcy, the effect can be very large and if it 
is already operating at full capacity, it may be 

small. If the economy has low interest rates and 
surplus labor, it may be easy to develop this 
new product. With everything else equal, the 
response will be greater in a recession than in a 
boom period. Hence we are not surprised to find 
higher volatility in economic downturns even if 
the arrival rate of new inventions is constant. 
This is a slow moving type of volatility cluster- 
ing that can give cycles of several years or 
longer. 

The same invention will also give rise to a 
high-frequency volatility clustering. When the 
invention is announced, the market will not 
immediately be able to estimate its value on the 
stock price. Agents may disagree but be suffi- 
ciently unsure of their valuations that they pay 
attention to how others value the firm. If an 
investor buys until the price reaches his estimate 
of the new value, he may revise his estimate 
after he sees others continue to buy at succes- 
sively higher prices. He may suspect they have 
better information or models and consequently 
raise his valuation. Of course, if the others are 
selling, then he may revise his price downward. 
This process is generally called price discovery 
and has been modeled theoretically and empir- 
ically in market microstructure. It leads to vol- 
atility clustering at a much higher frequency 
than we have seen before. This process could 
last a few days or a few minutes. 

But to understand volatility we must think of 
more than one invention. While the arrival rate of 
inventions may not have clear patterns, other types 
of news surely do. The news intensity is generally 
high during wars and economic distress. During 
important global summits, congressional or regu- 
latory hearings, elections, or central bank board 
meetings, there are likely to be many news events. 
These episodes are likely to be of medium dura- 
tion, lasting weeks or months. 

The empirical volatility patterns we observe 
are composed of all three of these types of 
events. Thus we expect to see rather elaborate 
volatility dynamics and often rely on long time 
series to give accurate models of the different 
time constants. 

IV. Modeling the Causes and Consequences of 

Financial Volatility 

Once a model has been developed to measure 
volatility, it is natural to attempt to explain the 
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causes of volatility and the effects of volatility 
on the economy. There is now a large literature 
examining aspects of these questions. I will 
only give a discussion of some of the more 
limited findings for financial markets. 

In financial markets, the consequences of vol- 
atility are easy to describe although perhaps 
difficult to measure. In an economy with one 
risky asset, a rise in volatility should lead in- 
vestors to sell some of the asset. If there is a 
fixed supply, the price must fall sufficiently so 
that buyers take the other side. At this new 
lower price, the expected return is higher by just 
enough to compensate investors for the in-
creased risk. In equilibrium, high volatility 
should correspond to high expected returns. 
Merton (1980) formulated this theoretical 
model in continuous time, and Engle et al. 
(1987) proposed a discrete time model. If the 
price of risk were constant over time, then rising 
conditional variances would translate linearly 
into rising expected returns. Thus the mean of 
the return equation would no longer be esti- 
mated as zero, it would depend upon the past 
squared returns exactly in the same way that the 
conditional variance depends on past squared 
returns. This very strong coefficient restriction 
can be tested and used to estimate the price of 
risk. It can also be used to measure the coeffi- 
cient of relative risk aversion of the representa- 
tive agent under the same assumptions. 

Empirical evidence on this measurement has 
been mixed. While Engle et al. (1987) find a 
positive and significant effect, Ray-Yeutien 
Chou et al. (1992) and Lawrence R. Glosten et 
al. (1993) find a relationship that varies over 
time and may be negative because of omitted 
variables. Kenneth R. French et al. (1987) 
showed that a positive volatility surprise should 
and does have a negative effect on asset prices. 
There is not simply one risky asset in the econ- 
omy and the price of risk is not likely to be 
constant; hence the instability is not surprising 
and does not disprove the existence of the risk 
return trade-off, but it is a challenge to better 
modeling of this trade-off. 

The causes of volatility are more directly 
modeled. Since the basic ARCH model and its 
many variants describe the conditional variance 
as a function of lagged squared returns, these 
are perhaps the proximate causes of volatility. It 
is best to interpret these as observables that help 

in forecasting volatility rather than as causes. If 
the true causes were included in the specifica- 
tion, then the lags would not be needed. 

A small collection of papers has followed this 
route. Torben G. Andersen and Bollerslev 
(1998b) examined the effects of announcements 
on exchange rate volatility. The difficulty in 
finding important explanatory power is clear 
even if these announcements are responsible in 
important ways. Another approach is to use the 
volatility measured in other markets. Engle et 
al. (1990b) find evidence that stock volatility 
causes bond volatility in the future. Engle et al. 
(1990a) model the influence of volatility in mar- 
kets with earlier closing on markets with later 
closing. For example, they examine the influ- 
ence of currency volatilities in European, Asian 
markets, and the prior day U.S. market on to- 
day's U.S. currency volatility. Yasushi Hamao 
et al. (1990), Pat Bums et al. (1998), and others 
have applied similar techniques to global equity 
markets. 

V. An Example 

To illustrate the use of ARCH models for 
financial applications, I will give a rather ex- 
tended analysis of the Standard & Poors 500 
Composite index. This index represents the bulk 
of the value in the U.S. equity market. I will 
look at daily levels of this index from 1963 
through late November 2003. This gives a 
sweep of U.S. financial history that provides an 
ideal setting to discuss how ARCH models are 
used for risk management and option pricing. 
All the statistics and graphs are computed in 
EViewsTM 4.1. 

The raw data are presented in Figure 1 where 
prices are shown on the left axis. The rather 
smooth lower curve shows what has happened 
to this index over the last 40 years. It is easy to 
see the great growth of equity prices over the 
period and the subsequent decline after the new 
millennium. At the beginning of 1963 the index 
was priced at $63 and at the end it was $1,035. 
That means that one dollar invested in 1963 
would have become $16 by November 2 1,2003 
(plus the stream of dividends that would have 
been received, as this index does not take ac- 
count of dividends on a daily basis). If this 
investor were clever enough to sell his position 
on March 24, 2000, it would have been worth 
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FIGURE 1. S&p 500 DAILY PRICES AND RETURNS FROM 

JANUARY 1963 TO NOVEMBER 2003 

/ - SP500 SPRETURNS I 

$24. Hopefully he was not so unlucky as to have 
purchased on that day. Although we often see 
pictures of the level of these indices, it is obvi- 
ously the relative price from the purchase point 
to the sale point that matters. Thus economists 
focus attention on returns as shown at the top of 
the figure. This shows the daily price change on 
the right axis (computed as the logarithm of the 
price today divided by the price yesterday). This 
return series is centered around zero throughout 
the sample period even though prices are some- 
times increasing and sometimes decreasing. 
Now the most dramatic event is the crash of 
October 1987 which dwarfs all other returns in 
the size of the decline and subsequent partial 
recovery. 

Other important features of this data series 
can be seen best by looking at portions of the 
whole history. For example, Figure 2 shows the 
same graph before 1987. It is very apparent that 
the amplitude of the returns is changing. The 
magnitude of the changes is sometimes large 
and sometimes small. This is the effect that 
ARCH is designed to measure and that we have 
called volatility clustering. There is, however, 
another interesting feature in this graph. It is 
clear that the volatility is higher when prices are 
falling. Volatility tends to be higher in bear 
markets. This is the asymmetric volatility effect 
that Nelson described with his EGARCH 
model. 

Looking at the next subperiod after the 1987 
crash in Figure 3, we see the record low vola- 

- SP500 SPRENRNS 

I - SP500 SPRETURNS I 

tility period of the middle 1990's. This was 
accompanied by a slow and steady growth of 
equity prices. It was frequently discussed 
whether we had moved permanently to a new 
era of low volatility. History shows that we did 
not. The volatility began to rise as stock prices 
got higher and higher, reaching very high levels 
from 1998 on. Clearly, the stock market was 
risky from this perspective but investors were 
willing to take this risk because the returns were 
so good. Looking at the last period since 1998 
in Figure 4, we see the high volatility continue 
as the market turned down. Only at the end of 
the sample, since the official conclusion of the 
Iraq war, do we see substantial declines in vol- 
atility. This has apparently encouraged inves- 
tors to come back into the market which has 
experienced substantial price increases. 
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TABLE 1-S&P 500 RETURNS 

Sample Full Since 1990 

Mean 0.0003 0.0003 
Standard deviation 0.0094 0.0104 
Skewness - 1.44 -0.10 
Kurtosis 41.45 6.78 

We now show some statistics that illustrate 
the three stylized facts mentioned above: almost 
unpredictable returns, fat tails, and volatility 
clustering. Some features of returns are shown 
in Table 1. The mean is close to zero relative to 
the standard deviation for both periods. It is 
0.03 percent per trading day or about 7.8 per- 
cent per year. The standard deviation is slightly 
higher in the 1990's. These standard deviations 
correspond to annualized volatilities of 15 per- 
cent and 17 percent. The skewness is small 
throughout. 

The most interesting feature is the kurtosis 
which measures the magnitude of the extremes. 
If returns are normally distributed, then the kur- 
tosis should be three. The kurtosis of the nine- 
ties is substantial at 6.8, while for the full 
sample it is a dramatic 41. This is strong evi- 
dence that extremes are more substantial than 
would be expected from a normal random vari- 
able. Similar evidence is seen graphically in 
Figure 5, which is a quantile plot for the post- 
1990 data. This is designed to be a straight line 
if returns are normally distributed and will have 
an s-shape if there are more extremes. 

The unpredictability of returns and the clus- 

SPRETURNS 

tering of volatility can be concisely shown by 
looking at autocorrelations. Autocorrelations 
are correlations calculated between the value of 
a random variable today and its value some days 
in the past. Predictability may show up as sig- 
nificant autocorrelations in returns, and volatil- 
ity clustering will show up as significant 
autocorrelations in squared or absolute returns. 
Figure 6 shows both of these plots for the post- 
1990 data. Under conventional criteria,' auto- 
correlations bigger than 0.033 in absolute value 
would be significant at a 5-percent level. 
Clearly, the return autocorrelations are almost 
all insignificant while the square returns have all 
autocorrelations significant. Furthermore, the 
squared return autocorrelations are all positive, 
which is highly unlikely to occur by chance. 
This figure gives powerful evidence for both the 
unpredictability of returns and the clustering of 
volatility. 

Now we turn to the problem of estimating 
volatility. The estimates called historical vola- 
tility are based on rolling standard deviations of 
returns. In Figure 7 these are constructed for 
five-day, one-year, and five-year windows. While 
each of these approaches may seem reasonable, 

' The actual critical values will be somewhat greater as 
the series clearly are heteroskedastic. This makes the case 
for unpredictability in returns even stronger. 
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RGURE 7. HISTORICAL VOLATILITIES WITH VARIOUS 
w m w s  

the answers are clearly very different. The five- 
day estimate is extremely variable while the 
other two are much smoother. The five-year 
estimate smooths over peaks and troughs that 
the other two see. It is particularly slow to 
recover after the 1987 crash and particularly 
slow to reveal the rise in volatility in 1998- 
2000. In just the same way, the annual estimate 
fails to show all the details revealed by the 
five-day volatility. However, some of these de- 
tails may be just noise. Without any true mea- 
sure of volatility, it is difficult to pick from 
these candidates. 

The ARCH model provides a solution to this 
dilemma. From estimating the unknown param- 

eters based on the historical data, we have fore- 
casts for each day in the sample period and for 
any period after the sample. The natural first 
model to estimate is the GARCH(1,l). This 
model gives weights to the unconditional vari- 
ance, the previous forecast, and the news mea- 
sured as the square of yesterday's return. The 
weights are estimated to be (0.004, 0.941, 
0.055), respectively.2 Clearly the bulk of the 
information comes from the previous day fore- 
cast. The new information changes this a little 
and the long-run average variance has a very 
small effect. It appears that the long-run vari- 
ance effect is so tiny that it might not be im- 
portant. This is incorrect. When forecasting 
many steps ahead, the long-run variance even- 
tually dominates as the importance of news and 
other recent information fades away. It is natu- 
rally small because of the use of daily data. 

In this example, we will use an asymmetric 
volatility model that is sometimes called GJR- 
GARCH for Glosten et al. (1993) or TARCH 
for Threshold ARCH (Jean Michael Zakoian, 
1994). The statistical results are given in Table 
2. In this case there are two types of news. 
There is a squared return and there is a variable 
that is the squared return when returns are neg- 
ative, and zero otherwise. On average, this is 

For a conventional GARCH model defined as h,, , = 

o + a< + ph,, the weights are ((1 - a - P), P ,  a). 
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Dependent variable: NEWRET-SP 
Method: ML-ARCH (Marquardt) 
Date: 11/24/03 Time: 09:27 
Sample (adjusted): 1/03/1963-11/21/2003 
Included observations: 10,667 after adjusting endpoints 
Convergence achieved after 22 iterations 
Variance backcast: ON 

Coefficient Standard error z-statistic Probability 

0.000301 6.67E-05 4.512504 0.0000 

C 
ARCH(1) 
(RESID < O)*ARCH(l) 
GARCH(1) 

Variance equation 

4.55E-07 5.06E-08 8.980473 0.0000 
0.028575 0.003322 8.602582 0.0000 

0.076169 0.003821 19.93374 0.0000 

0.930752 0.002246 414.4693 0.0000 

1890 1992 1994 1996 1998 2WO 2M)2 

I-BGARCHSm - SPRETURNS -- S'GARCHSTD 1 

half as big as the variance, so it must be doubled 
implying that the weights are half as big. The 
weights are now computed on the long-run av- 
erage, the previous forecast, the symmetric 
news, and the negative news. These weights are 
estimated to be (0.002, 0.931, 0.029, 0.038) 
respectively.3 Clearly the asymmetry is impor- 
tant since the last term would be zero otherwise. 
In fact, negative returns in this model have more 
than three times the effect of positive returns on 
future variances. From a statistical point of 
view, the asymmetry term has a t-statistic of 
almost 20 and is very significant. 

The volatility series generated by this model 
is given in Figure 8. The series is more jagged 

- GARCHVOL 

If the model is defined as h, = o + ph,- ,  + a<-:_, + 
-ye- ,I,- ,,,, then the weights are (1 - a - p - yI2, P, a, 

~ 1 2 ) .  

FIGURE 9. GARCH CONFIDENCE INTERVALS: THREE 

than the annual or five-year historical volatili- 
ties, but is less variable than the five-day vola- 
tilities. Since it is designed to measure the 
volatility of returns on the next day, it is natural 
to form confidence intervals for returns. In Fig- 
ure 9 returns are plotted against plus and minus 
three TARCH standard deviations. Clearly the 
confidence intervals are changing in a very be- 
lievable fashion. A constant band would be too 
wide in some periods and too narrow in others. 
The TARCH intervals should have 99.7-percent 
probability of including the next observation if 
the data are really normally distributed. The 
expected number of times that the next return is 
outside the interval should then be only 29 out 
of the more than 10,000 days. In fact, there are 
75 indicating that there are more outliers than 
would be expected from normality. 

Additional information about volatility is 
available from the options market. The value of 

STANDARD DEVIATIONS 
FIGURE 8. GARCH VOLATILITIES 
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05- two widely used applications. In the presenta- 
tion, some novel implications of asymmetric 

04- volatility will be illustrated. 

VI. Financial Practice-Value at Risk 

Every morning in thousands of banks and 
financial services institutions around the world, 
the Chief Executive Officer is presented with a 

0. J risk profile by his Risk ~ a n a ~ e m e n t  Officer. He 
1990 1992 1994' 1996 1998 2000 ZlX? is given an estimate of the risk of the entire 

- VIX - WCHM portfolio and the risk of many of its compo- 
nents. He would typically learn the risk faced by 

FIGURE 10. IMPLIED VOLATILITIES AND GARCH 
VOLATILITIES 

the firm's European Equity Division, its U.S. 
Treasury Bond Division, its Currency Trading 

traded options depends directly on the volatility 
of the underlying asset. A carefully constructed 
portfolio of options with different strikes will 
have a value that measures the option market 
estimate of future volatility under rather weak 
assumptions. This calculation is now performed 
by the CBOE for S&P 500 options and is re- 
ported as the VIX. Two assumptions that un- 
derlie this index are worth mentioning. The 
price process should be continuous and there 
should be no risk premia on volatility shocks. If 
these assumptions are good approximations, 
then implied volatilities can be compared with 
ARCH volatilities. Because the VIX represents 
the volatility of one-month options, the TARCH 
volatilities must be forecast out to one month. 

The results are plotted in Figure 10. The 
general pattern is quite similar, although the 
TARCH is a little lower than the VIX. These 
differences can be attributed to two sources. 
First, the option pricing relation is not quite 
correct for this situation and does not allow for 
volatility risk premia or nonnormal returns. 
These adjustments would lead to higher options 
prices and consequently implied volatilities that 
were too high. Second, the basic ARCH models 
have very limited information sets. They do not 
use information on earnings, wars, elections, 
etc. Hence the volatility forecasts by traders 
should be generally superior; differences could 
be due to long-lasting information events. 

This extended example illustrates many of 
the features of ARCWGARCH models and how 
they can be used to study volatility processes. 
We turn now to financial practice and describe 

Unit, its Equity Derivative Unit, and so forth. 
These risks may even be detailed for particular 
trading desks or traders. An overall figure is 
then reported to a regulatory body although it 
may not be the same number used for internal 
purposes. The risk of the company as a whole is 
less than the sum of its parts since different 
portions of the risk will not be perfectly 
correlated. 

The typical measure of each of these risks is 
Value at Risk, often abbreviated as VaR. The 
VaR is a way of measuring the probability of 
losses that could occur to the portfolio. The 
99-percent one-day VaR is a number of dollars 
that the manager is 99 percent certain will be 
worse than whatever loss occurs on the next 
day. If the one-day VaR for the currency desk is 
$50,000, then the risk officer asserts that only 
on one day out of 100 will losses on this port- 
folio be greater than $50,000. Of course this 
means that on about 2.5 days a year, the losses 
will exceed the VaR. The VaR is a measure of 
risk that is easy to understand without knowing 
any statistics. It is, however, just one quantile 
of the predictive distribution and therefore it 
has limited information on the probabilities of 
loss. 

Sometimes the VaR is defined on a multi-day 
basis. A 99-percent ten-day VaR is a number of 
dollars that is greater than the realized loss over 
ten days on the portfolio with probability 0.99. 
This is a more common regulatory standard but 
is typically computed by simply adjusting the 
one-day VaR as will be discussed below. The 
loss figures assume that the portfolio is un- 
changed over the ten-day period which may be 
counterfactual. 
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To calculate the VaR of a trading unit or a 
firm as a whole, it is necessary to have variances 
and covariances, or equivalently volatilities and 
correlations, among all assets held in the port- 
folio. Typically, the assets are viewed as re- 
sponding primarily to one or more risk factors 
that are modeled directly. RiskmetricsTM, for 
example, uses about 400 global risk factors. 
BARRA uses industry risk factors as well as 
risk factors based on firm characteristics and 
other factors. A diversified U.S. equity portfolio 
would have risks determined primarily by the 
aggregate market index such as the S&P 500. 
We will carry forward the example of the pre- 
vious section to calculate the VaR of a portfolio 
that mimics the S&P. 

The one-day 99-percent VaR of the S&P can 
be estimated using ARCH. From historical data, 
the best model is estimated, and then the stan- 
dard deviation is calculated for the following 
day. In the case of S&P on November 24, this 
forecast standard deviation is 0.0076. To con- 
vert this into VaR we must make an assumption 
about the distribution of returns. If normality is 
assumed, the 1 percent point is -2.33 standard 
deviations from zero. Thus the value at risk is 
2.33 times the standard deviation or in the case 
of November 24, it is 1.77 percent. We can be 
99 percent sure that we will not lose more than 
1.77 percent of portfolio value on November 24. 
In fact the market went up on the 24th so there 
were no losses. 

The assumption of normality is highly ques- 
tionable. We observed that financial returns 
have a surprising number of large returns. If we 
divide the returns by the TARCH standard de- 
viations, the result will have a constant volatil- 
ity of one but will have a nonnormal 
distribution. The kurtosis of these "devolatized 
returns," or "standardized residuals," is 6.5, 
which is much less than the unconditional kur- 
tosis, but is still well above normal. From these 
devolatized returns, we can find the 1-percent 
quantile and use this to give a better idea of the 
VaR. It turns out to be 2.65 standard deviations 
below the mean. Thus our portfolio is riskier 
than we thought using the normal approxima- 
tion. The one-day 99-percent VaR is now esti- 
mated to be 2 percent. 

A ten-day value at risk is often required by 
regulatory agencies and is frequently used 
internally as well. Of course, the amount a 

portfolio can lose in ten days is a lot greater 
than it can lose in one day. But how much 
greater is it? If volatilities were constant, then 
the answer would be simple; it would be the 
square root of ten times as great. Since the 
ten-day variance is ten times the one-day vari- 
ance, the ten-day volatility multiplier would 
be the square root of ten. We would take the 
one-day standard deviation and multiply it by 
3.16 and then with normality we would mul- 
tiply this by 2.33, giving 7.36 times the stan- 
dard deviation. This is the conventional 
solution in industry practice. For November 
24, the ten-day 99-percent VaR is 5.6 percent 
of portfolio value. 

However, this result misses two important 
features of dynamic volatility models. First, it 
makes a difference whether the current volatil- 
ities are low or high relative to the long-run 
average. so that they are forecast to increase or 
decrease over the next ten days. Since the vol- 
atility is relatively low in November, the 
TARCH model will forecast an increase over 
the next ten days. In this case, this effect is not 
very big as the standard deviation is forecast to 
increase to 0.0077 from 0.0076 over the ten-day 
period. 

More interesting is the effect of asymmetry in 
variance for multi-period returns. Even though 
each period has a symmetric distribution, the 
multi-period return distribution will be asym- 
metric. This effect is simple to understand but 
has not been widely recognized. It is easily 
illustrated with a two-step binomial tree, Figure 
1 1, as used in elementary option pricing models. 
In the first period, the asset price can either 
increase or decrease and each outcome is 
equally likely. In the second period, the vari- 
ance will depend upon whether the price went 
up or down. If it went up, then the variance will 
be lower so that the binomial branches will be 
relatively close together. If the price went down, 
the variance will be higher so that the outcomes 
will be further apart. After two periods, there 
are four outcomes that are equally likely. The 
distribution is quite skewed, since the bad out- 
come is far worse than if the variance had been 
constant. 

To calculate the VaR in this setting, a simu- 
lation is needed. The TARCH model is simu- 
lated for ten days using normal random 
variables and starting from the values of 
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Low 

variance 

FIGURE11. TWO-PERIOD TREEWITHBINOMIAL 
ASYMMETRICVOLATILITY 

November 2 1 . ~  This was done 10,000 times and 
then the worst outcomes were sorted to find the 
Value at Risk corresponding to the 1-percent 
quantile. The answer was 7.89 times the stan- 
dard deviation. This VaR is substantially larger 
than the value assuming constant volatility. 

To avoid the normality assumption, the simu- 
lation can also be done using the empirical dis- 
tribution of the standardized residuals. This 
simulation is often called a bootstrap; each draw 
of the random variables is equally likely to be any 
observation of the standardized residuals. The Oc- 
tober 1987 crash observation could be drawn once 
or even twice in some simulations but not in 
others. The result is a standard deviation multiplier 
of 8.52 that should be used to calculate VaR. For 
our case, the November 24 ten-day 99-percent 
VaR is 6.5 percent of portfolio value. 

VII. Financial Practice-Valuing Options 

Another important area of financial practice 
is valuation and management of derivatives 

In the example here, the simulation was started at the 
unconditional variance so that the time aggregation effect 
could be examined alone. In addition, the mean was taken to be 
zero but this makes little difference over such short horizons. 

such as options. These are typically valued the- 
oretically assuming some particular process for 
the underlying asset and then market prices of 
the derivatives are used to infer the parameters 
of the underlying process. This strategy is often 
called "arbitrage free pricing." It is inadequate 
for some of the tasks of financial analysis. It 
cannot determine the risk of a derivative posi- 
tion since each new market price may corre-
spond to a different set of parameters and it is 
the size and frequency of these parameter changes 
that signify risk. For the same reason, it is 
difficult to find optimal hedging strategies. Fi- 
nally, there is no way to determine the price of 
a new issue or to determine whether some de- 
rivatives are trading at discounts or premiums. 

A companion analysis that is frequently car- 
ried out by derivatives traders is to develop 
fundamental pricing models that determine the 
appropriate price for a derivative based on the 
observed characteristics of the underlying asset. 
These models could include measures of trading 
cost, hedging cost, and risk in managing the 
options portfolio. 

In this section, a simple simulation-based op- 
tion pricing model will be employed to illustrate 
the use of ARCH models in this type of funda- 
mental analysis. The example will be the pric- 
ing of put options on the S&P 500 that have ten 
trading days left to maturity. 

A put option gives the owner the right to sell 
an asset at a particular price, called the strike 
price, at maturity. Thus if the asset price is 
below the strike, he can make money by selling 
at the strike and buying at the market price. The 
profit is the difference between these prices. If, 
however, the market price is above the strike, 
then there is no value in the option. If the 
investor holds the underlying asset in a portfolio 
and buys a put option, he is guaranteed to have 
at least the strike price at the maturity date. This 
is why these options can be thought of as insur- 
ance contracts. 

The simulation works just as in the previous 
section. The TARCH model is simulated from 
the end of the sample period, 10,000 times. The 
bootstrap approach is taken so that nonnormal- 
ity is already incorporated in the simulation. 
This simulation should be of the "risk-neutral" 
distribution, i.e., the distribution in which assets 
are priced at their discounted expected values. 
The risk-neutral distribution differs from the 
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empirical distribution in subtle ways so that 
there is an explicit risk premium in the empiri- 
cal distribution which is not needed in the risk 
neutral. In some models such as the Black- 
Scholes, it is sufficient to adjust the mean to be 
the risk-free rate. In the example, we take this 
route. The distribution is simulated with a mean 
of zero, which is taken to be the risk-free rate. 
As will be discussed below, this may not be a 
sufficient adjustment to risk-neutralize the 
distribution. 

From the simulation, we have 10,000 equally 
likely outcomes for ten days in the future. For 
each of these outcomes we can compute the 
value of a particular put option. Since these are 
equally likely and since the riskless rate is taken 
to be zero, the fair value of the put option is the 
average of these values. This can be done for 
put options with different strikes. The result is 
plotted in Figure 12. The S&P is assumed to 
begin at 1,000 so a put option with a strike of 
990 protects this value for ten days. This put 
option should sell for $1 1. To protect the port- 
folio at its current value would cost $15 and to 
be certain that it was at least worth 1,010 would 
cost $21. The VaR calculated in the previous 
section was $65 for the ten-day horizon. To 
protect the portfolio at this point would cost 
around $2. These put prices have the expected 
shape; they are monotonically increasing and 
convex. 

However, these put prices are clearly differ- 

FIGURE13. IMPLIED FROM GARCHVOLATILITIES 
SIMULATION 

ent from those generated by the Black-Scholes 
model. This is easily seen by calculating the 
implied volatility for each of these put options. 
The result is shown in Figure 13. The implied 
volatilities are higher for the out-of-the-money 
puts than they are for the at-the-money puts, and 
the in-the-money put volatilities are even lower. 
If the put prices were generated by the Black- 
Scholes model, these implied volatilities would 
all be the same. This plot of implied volatilities 
against strike is a familiar feature for options 
traders. The downward slope is called a "vola- 
tility skew" and corresponds to a skewed distri- 
bution of the underlying assets. This feature is 
very pronounced for index options, less so for 
individual equity options, and virtually nonex- 
istent for currencies, where it is called a 
"smile." It is apparent that this is a consequence 
of the asymmetric volatility model and corre- 
spondingly, the asymmetry is not found for cur- 
rencies and is weaker for individual equity 
options than for indices. 

This feature of options prices is strong con- 
firmation of asymmetric volatility models. Un- 
fortunately, the story is more complicated than 
this. The actual options skew is generally some- 
what steeper than that generated by asymmetric 
ARCH models. This calls into question the risk 
neutralization adopted in the simulation. There 
is now increasing evidence that investors are 
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particularly worried about big losses and are 
willing to pay extra premiums to avoid them. 
This makes the skew even steeper. The required 
risk neutralization has been studied by several 
authors such as Jens C. Jackwerth (2000), 
Joshua V. Rosenberg and Engle (2002), and 
David S. Bates (2003). 

VIII. New Frontiers 

It has now been more than 20 years since the 
ARCH paper appeared. The developments and 
applications have been fantastic and well be- 
yond anyone's most optimistic forecasts. But 
what can we exvect in the future? What are the 
next frontiers? 

There appear to be two important frontiers of 
research that are receiving a great deal of atten- 
tion and have important promise for applica- 
tions. These are high-frequency volatility 
models and high-dimension multivariate mod- 
els. I will give a short description of some of the 
promising developments in these areas. 

Merton was perhaps the first to point out the 
benefits of high-frequency data for volatility 
measurement. By examining the behavior of 
stock prices on a finer and finer time scale, 
better and better measures of volatility can be 
achieved. This is particularly convenient if vol- 
atility is only slowly changing so that dynamic 
considerations can be ignored. Andersen and 
Bollerslev (1998a) pointed out that intra-daily 
data could be used to measure the performance 
of daily volatility models. Andersen et al. 
(2003) and Engle (2002b) suggest how intra- 
daily data can be used to form better daily 
volatility forecasts. 

However, the most interesting question is 
how to use high-frequency data to form high- 
frequency volatility forecasts. As higher and 
higher frequency observations are used, there is 
apparently a limit where every transaction is 
observed and used. Engle (2000) calls such data 
ultra high frequency data. These transactions 
occur at irregular intervals rather than equally 
spaced times. In principle, one can design a 
volatility estimator that would update the vola- 
tility every time a trade was recorded. However, 
even the absence of a trade could be information 
useful for updating the volatility so even more 
frequent updating could be done. Since the time 

at which trades arrive is random, the formula- 
tion of ultra high frequency volatility models 
requires a model of the-arrival process of trades. 
Engle and Jeffrey R. Russell (1998) propose the 
Autoregressive Conditional Duration or ACD 
model for this task. It is a close relative of 
ARCH models designed to detect clustering of 
trades or other economic events; it uses this 
information to forecast the arrival probability of 
the next event. 

Many investigators in empirical market mi- 
crostructure are now studying aspects of finan- 
cial markets that are relevant to this problem. It 
turns out that when trades are clustered, the 
volatility is higher. Trades themselves cany in- 
formation that will move prices. A large or 
medium-size buyer will raise prices, at least 
partly because market participants believe he 
could have important information that the stock 
is undervalued. This effect is called price im- 
pact and is a central component of liquidity risk, 
and a key feature of volatility for ultra high 
frequency data. It is also a central concern for 
traders who do not want to trade when they will 
have a big impact on prices, particularly if this 
is just a temporary impact. As financial markets 
become ever more computer driven, the speed 
and frequency of trading will increase. Methods 
to use this information t o  better understand the 
volatility and stability of these markets will be 
ever more important. 

The other frontier that I believe will see sub- 
stantial development and application is high-
dimension systems. In this presentation, I have 
focused on the volatility of a single asset. For 
most financial applications, there are thousands 
of assets. Not only do we need models of their 
volatilities but also of their correlations. Ever 
since the original ARCH model was published 
there have been many approaches proposed for 
multivariate systems. However, the best method 
to do this has not yet been discovered. As the 
number of assets increase, the models become 
extremely difficult to accurately specify and 
estimate. Essentially there are too many possi- 
bilities. There are few published examples of 
models with more than five assets. The most 
successful model for these cases is the constant 
conditional correlation model, CCC, of Boller- 
slev (1990). This estimator achieves its perfor- 
mance by assuming that the conditional 
correlations are constant. This allows the vari- 
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ances and covariances to change but not the 
correlations. 

A generalization of this approach is the Dy- 
namic Conditional Correlation, DCC, model of 
Engle (2002a). This model introduces a small 
number of parameters to model the correlations, 
regardless of the number of assets. The volatil- 
ities are modeled with univariate specifications. 
In this way, large covariance matrices can be 
forecast. The investigator first estimates the vol- 
atilities one at a time, and then estimates the 
correlations jointly with a small number of ad- 
ditional parameters. Preliminary research on 
this class of models is promising. Systems of up 
to 100 assets have been modeled with good 
results. Applications to risk management and 
asset allocation follow immediately. Many re- 
searchers are already developing related models 
that could have even better performance. It is 
safe to predict that in the next several years, we 
will have a set of useful methods for modeling 
the volatilities and correlations of large systems 
of assets. 
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