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Abstract. The concept of risk is essential to many problems
in economics and business. Usually, risk is treated in the tra-
ditional expected utility framework where it is defined only
indirectly through the shape of the utility function. The pur-
pose of utility functions, however, is to model preferences.
In this paper, we review those approaches which directly
model risk judgements. After a short review of naive risk
measures used in earlier economic literature, we present re-
cent theoretical and empirical developments.

Zusammenfassung. Risiko ist ein Konzept, das bei der
Behandlung vieler volks- oder betriebswirtschaftlicher Pro-
bleme eine wesentliche Rolle spielt. Ublicherweise wird Ri-
siko im Rahmen des traditionelien Erwartungsnutzenmodells
behandelt, bei dem es nur indirekt iiber die Form der Nutzen-
funktion erfalit wird. Der Zweck von Nutzenfunktionen
besteht aber darin, Priferenzen zu modellieren. In diesem
Aufsatz wird ein Uberblick iiber solche Ansitze gegeben,
die Risikowahrnehmungen direkt modellieren. Nach einer
kurzen Darstellung naiver Risikomalle, die aus der fritheren
okonomischen Literatur bekannt sind, werden neuere theo-
retische und empirische Konzepte prisentiert.

Key words: Risk judgement, perceived risk, axiomatic mea-
sures of risk

Schliisselworter: Risikobeurteilung, wahrgenommenes Ri-
siko, axiomatische Risikomafe

1 Introduction

The term risk obviously plays a pervasive role in much of the
current writings on economic, political, social, and techno-
logical issues. In all of these fields, risk is a kind of negative
feature characterizing a decision alternative. Risk is meant
to be a chance of injury or loss connected with a given ac-
tion. However, risk is not an objective feature of a decision
alternative. It is an inherently subjective construct because
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what is considered a loss and what its significance and its
chance of occurring is, is peculiar to the person concerned.

In the economic as well as in the psychological litera-
ture on decision making, there are various attempts to define
or to characterize risk for purpose of descriptive as well as
of prescriptive theory. There is a growing interest in what
constitutes the risk of an alternative and how to measure it.
Thereby, the main emphasis lies on the risk itself of an al-
ternative, independently of the problem of risk preference.
Risk refers to the riskiness of an alternative. It is a mat-
ter of perception or estimation. Risk preference refers to the
preferability of an alternative under conditions of risk and
is a matter of preferences. In such situations, risk is only
one significant aspect of the available options. The deci-
sion maker’s preference for a certain action, generally, also
depends on other positive or perhaps additional negative fea-
tures.

In this paper, we start from the assumption that there
exists a meaningful risk ordering which can be obtained di-
rectly by asking an individual to judge which of a given pair
of comparable alternatives is riskier. The key concept will
therefore be a binary relation =, with A >~ B meaning that
an alternative A is at least as risky as another alternative B.
In general, this relation is assumed to be a weak order, i.c.
strictly complete and transitive. Only in Sect. 11 complete-
ness is resigned. Throughout the paper the relation A > B
states that alternative A is riskier than alternative B while
A ~ B means that A and B are equally risky. Thereby, ~
and > denote the symmetric and the asymmetric parts of =,
respectively. The risk ordering - derived from judgements
about perceived risk - need not be related to the individual’s
preference ordering in any simple way.

According to the conception of standard measurement
theory, we are looking for functions R which numerically
represent the risk ordering -, i.e. functions R with the prop-
erty )

A-B <+ RA)>RDB). (1)

Every such function R will be called risk measurement func-
tion or simply risk measure. Note that we take a subject’s
risk judgement as a primitive. As we are interested in mea-
sures of perceived risk, we cannot and we should not give
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an abstract definition of risk. It is peoples’ perception which
ultimately determines the definition of risk.

There are three main reasons which necessitate a means
for the direct comparison of alternatives as to their risk.
First, the understanding of riskiness judgements might help
to understand preference. Taking risk and value as primi-
tives, one might explain preference by a risk-value model,
i.e. by a function of these two components. Many theories
in management and finance rely on such a separate con-
sideration of risk and value. Possibly the best known ex-
ample is modern portfolio selection theory as developed by
Markowitz [48] and others. Within this context, the decision
problem is viewed as choosing among possible risk-return
combinations and formulated as either maximizing return for
a given level of risk or minimizing risk for a given level of
return. With such an approach, obviously, the decision will
generally depend on the risk measure used. Second, there is
growing empirical evidence that, under conditions of uncer-
tainty, people base their decisions on qualitative aspects of
choice alternatives such as risk. For a study from the prac-
tice of investment decision making see, e.g., Brachinger and
Schubert [15]. Finally, judgements of perceived risk may be
required as such, independent of the necessity of choice, e.g.,
for intervention before the decision stage in a public policy
setting. People talk all the time about the riskiness of things
like nuclear energy or how risky it might be not taking an
afternoon nap. ‘

Despite the importance of risk, there is little consensus
on its definition. In empirical studies, typically, two dimen-
sions which appear to determine perceived risk have been
identified: amount of potential loss and probability of oc-
currence of loss. The risk of an alternative increases if the
probability of loss increases or if the amount of potential
loss increases. Unfortunately, up to now no agreement has
been reached on the relative importance of the uncertainty
of outcomes versus their undesirability for determining per-
ceived risk. Furthermore, there is empirical evidence that
possible gains reduce the perceived risk of an alternative.
But it is by no means clear how and to what extent risk
perception depends on potential gains. Other empirical stud-
ies have shown that risk is not simply equal to something
like negative preference, it is an own important concept.
E.U. Weber, Anderson and Birnbaum [67], e.g., suggest that
people, when judging the riskiness of an alternative, encode
and combine probability and outcome information in quali-
tatively different ways than when judging its attractiveness.

Having accepted that risk is something different from
risk preference, it would be interesting to know what the re-
lation between risk and risk preference is. There are various
theories of decision making under risk. Some of these theo-
ries like risk-value models make explicit use of a risk mea-
sure, others do not. Within the framework of the Expected
Utility Model, e.g., a single alternative’s risk is not quanti-
fied, only an individual’s general attitude towards risk is re-
flected by the shape of his or her utility function and, given
the utility function, quantified by the well-known Arrow-
Pratt measure. Nevertheless, we will neither review the lit-
erature on risk-value models nor discuss the relation of risk
measures to utility based theories of decision making under
risk. For an overview on risk-value models and their rela-
tion to utility based theories of decision making under risk
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see Sarin and Weber [54]. We want to concentrate on one
important component of risk-value models, the factor risk,
independently of any risk preferences. The literature on risk
and its measurement is relatively new, scattered in different
fields and covering theoretical as well as empirical work.

We also do not want to review the vast amount of liter-
ature dealing with the psychology of risk judgements. See
Slovic [58] and Bayerische Riick [6] for an overview or
Burgemeister and Weber [16] for an application. It is defi-
nitely interesting to know that people in Hungary are more
afraid of collecting and eating mushrooms than US-citizens
and even more important how these judgements can be ex-
plained. In our overview, we want to concentrate on how
people evaluate the riskiness of lotteries, the fruit flies of
modern economics. Risk measurement as it will be presented
in our paper seeks to get behind specific contextual referents
of risky alternatives to consider characteristics of risk that
apply to many different situations.

It is the objective of our paper, first, to review the more
naive risk measures which have been used in the earlier eco-
nomic literature and for which no strict theoretical founda-
tions have been given. Then an overview is given on recently
developed economic or psychological theories of perceived
risk which rely on the axiomatic approach of modern mea-
surement theory. (see also Brachinger [10], Weber [68], as
well as E.U. Weber and Bottom [65]). In addition to a the-
oretical discussion of risk measurement, we will review the
empirical work investigating jugdements of perceived riski-
ness.

2 Naive risk measures

In the economic, especially the finance literature, tradition-
ally, the risk of an option has primarily been associated with
the dispersion of the corresponding random variable. There-
fore, not later than since Markowitz’s [47, 48] and Tobin’s
[61] pioneering work on portfolio selection, it is common to
measure the riskiness of an alternative by the variance o® or
the standard deviation ¢ of its outcomes. Let an alternative’s
future wealth be characterized by a random variable & with
distribution function F%; and probability density function f;.
Then, with the mathematical expectation

+00

b= E@) = / 2 dFs(@), @

— o

these risk measures are defined by

o° = var(®) = / (z — p)?dFz(z) (3)
and
o= / (& — pPdFs@)] 2. @

In addition, sometimes similar naive risk measures are
discussed (cf. Markowitz [48, pp. 286~297]). Within these
are the expected absolute deviation around p
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Besides, it has been conventional wisdom in economics
and other fields of research that risk is the chance of some-
thing bad happening. In this vein, risk is associated with
an outcome that is worse than some specific target outcome
and its probability. Within the risk measures tailored to this
notion of risk are the lower semivariance

n
/ (@ — dFs(@), ™

the expected value of loss
0
- [ wdrso), ®
—o0
and the probability of loss or probability of ruin
r
P <) = [ b, ©)

Thereby, r is a certain target level outcomes lower of which
are a loss or disastrous to the decision maker.

Stone [59, 60] has shown that all of these risk measures
are special cases of one of two related three-parameter fami-
lies of risk measures. The first three-parameter risk measure
is defined as

qa(Fz)
/ | 2 — p(Fz) |F dFs(x) (k> 0), (10)

— 00

Rs1(@) =

where p(F%) denotes a reference level of wealth from which
deviations are measured. The positive number & specifies a
power to which deviations in wealth from the reference level
are raised and thus £ is a measure of the relative impact of
large and small deviations. The parameter g(Fj;) is a range
parameter that specifies what deviations are to be included in
the risk measure. The second three-parameter risk measure
is defined to be the k** root of Rg1(%), i.e.,

q(F)

Rea(®) = [ /

— 0o

| 2 — p(Fp) |F dFz@1'* (k> 0). A1)

Through appropriate choices of the parameters p(Fj),
q(F%), and k it is easy to see that the above listed risk mea-
sures are special cases of one of Stone’s families. Equa-
tion (10), e.g., gives the semivariance when k£ = 2 and
p(Fz) = g(F3) = p. A further interesting special case of
Stone’s family (10) of risk measures is the generalized risk
measure
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t
Rei(@) = / (t - 2)*dFs(@) (a>0), (12)

proposed by Fishburn [28] where ¢ is a fixed upper tar-
get. This measure results from (10) if one chooses p(F};) =
q(Fz) =t. The parameter o of Fishburn’s risk measure Rp;
may as well as the parameter & in Stone’s families be inter-
preted as risk-parameter characterizing the decision-maker’s
risk attitude. Values @ > 1 describe a kind of risk-sensitive,
values a € (0,1) a kind of risk-insensitive behavior (see
also Albrecht [1]).

Other naive risk measures scattered in the literature are
the Shannon entropy

- / fe@in(fz(x))dx (13)

which is well-known from communication theory (cf. Ma-
china and Rothschild [46, p. 203]), the interquartile range
F{1(0.75) — F{I(O.ZS), and the minimum outcome —x,,;n
of # (cf. Schneeweiss [55, p. 60]). For cases where values
x < 0, i.e. losses are possible, the minimum outcome is
usually called maximum loss (cf. Markowitz [48, p. 287]).

3 Coombs’ psychophysics of risk

Among the first to approach the problem of risk itself, inde-
pendently of the problem of risk preference, were Coombs
and Huang [23]. They discuss two-outcome gambles of the
form g = (y,p, 2), where two amounts y and z of money,
Yy > z, can be won with probability p and ¢ = 1 — p, respec-
tively. Let 2, denote the space of all such two-outcome
gambles with fixed winning probability p. Then, Coombs
and Huang consider the transformed gambles

alg) = (y+a,p,z—ap/q), a€A (14)
b(g) == (y+b,p,z+b), beB (15)
and

o«9) =@,p 2, ceC, (16)

where A, B are sets of real numbers and C is a set of natural
numbers. (y, p, 2)'© designates that the gamble g is played
¢ times independently. It is easy to show that the transfor-
mation a(-) is expectation-preserving, and that a gamble’s
variance increases with a. Defining a gamble’s g expected
regret by (1 — p)(y — z), the amount a specifies the increase
in expected regret caused by the transformation a(-). The
transformation b(-) is variance-preserving, but increases a
gamble’s expectation by the amount b. Furthermore, multi-
ple play leads to multiplying expectation correspondingly.
Coombs and Huang show that any gamble g € {2, can be
converted by the transformations a(-) and b(-) into any other
gamble ¢’ € {2,. Using the riskless gamble go = (0,p,0) as
origin, by means of the transformations a(-), b(-), and c(-)
applied to gy one gets a new risky gamble characterized by
the triple (a, b, ¢). Thereby, a specifies gamble’s (a+b, p, b—
ap/q) expected regret, b gives this gamble’s expectation, and
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¢ states the number of independent repetitions of the gamble.
Repetition multipies both expectation and expected regret.

Coombs and Huang presume that the perceived risk of a
gamble g € {2, characterized by (a, b, c) is completely de-
termined by these variables. As measure of risk of a gamble
g = (a, b, ¢) they propose the distributive model

R(g) = [ada) + B(D)I(0), amn

where of-), [(-), and (-) denote real-valued functions.
Heuristically «, /3, and 7 correspond to three psychophysi-
cal functions for the subjective effects on perceived risk of
the corresponding transformations a(-), b(-), and ¢(-), respec-
tively, on gambles. Empirical studies of Coombs and Huang
[23, 24] showed that the function «(-) may reasonably as-
sumed to be strictly increasing, and J(-) stricty decreasing.
The function ~(-) simultaneously intensifies the effect of c(-)
and 3(-).

Coombs and Huang’s measure of risk obviously is of low
practical importance. It is tailored to a very special range of
definition and Coombs and Huang do not say anything on
how to specify the functions a(-), 3(-), and ~(-). However,
Coombs and Huang were mainly interested in whether per-
ceived risk has the structure of the simple distributive model
and, if so, what might be said further about the functions in-
volved. As an empirical result of their study it can be noted
that the risk of a gamble g = (a, b, ¢) is perceived the higher
the greater its variance and the lower the greater is its expec-
tation. This follows from the above monotonicity properties.

4 Pollatsek and Tversky’s theory of risk

Pollatsek and Tversky [52] were the first to investigate the
perception of risk from the rigorous standpoint of measure-
ment theory. Their theory is formulated in terms of a set
S of real-valued random variables, interpreted as gambles
with (arbitray numbers of) monetary outcomes. This set S
is assumed to be closed with respect to the sum operation o
of random variables. The key concept of Pollatsek and Tver-
sky's theory of risk is a binary relation on .S denoted by =
which is assumed to be strictly complete and transitive. For
Z,9 €5, ¥ - § states that £ is at least as risky as §.
Pollatsek and Tversky require their risk ordering 7
to satisfy three different axioms, an independence axiom
(“Cancellation™) and two more technical axioms ( “Solvabil-
ity” and “Archimedian”). In a first representation theorem,
they show that, if these axioms hold, there exists a real-
valued function, R, defined on S, such that for any Z, § € S

Irj <= R@>R®©. (18)
This risk measure is additive in the sense that for all Z,
jges

R(E o ) = R(@Z) + R, (19)

and it is unique up to positive linear-homogeneous transfor-
mations. Introducing three additional assumptions about the
risk ordering, two transformation axioms and a continuity
axiom, Pollatsek and Tversky succeed in proving that there
exists a unique real number 4, 0 < 8 < 1, such that for any
Z € S with expectation E(Z) and variance var(Z) its risk
R(%) is given with
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R(Z) = Bvar(@) — (1 - OHE®X) 20)

(Pollatsek and Tversky [52, Theorem 2, pp. 546-547]).

Thus, according to Pollatsek and Tversky’s theory of
risk, the risk ordering is generated by a linear combination
of expectation and variance. The risk of any gamble with
known expectation and variance can be readily computed,
once a single parameter, 6, is determined. Its value specifies
the relative contribution of the expectation and the variance
to the riskiness of that lottery. This value can be easily calcu-
lated from a single judgement of risk-equality between two
different distributions. It should be noted that the risk mea-
sure of Pollatsek and Tversky can take on negative values
and that degenerate distributions, i.e., distributions where a
single value is obtained with probability one, may well have
non-zero risk.

Subsequent empirical research has shown that the risk
measure of Pollatsek and Tversky is not adequate. Coombs
and Bowen [22] clearly have demonstrated that, despite the
fact that perceived risk is indeed affected by both expecta-
tion and variance of a gamble, they alone are insufficient to
determine risk. They found, by using transformations that
let expectation and variance unchanged, that subjects de-
tect differences in risk between gambles that have the same
mean and variance. Actually, risk varied systematically with
the skewness of a gamble. See Sect. 10 for this and other
stylized facts derived from a number of empirical studies.

5 Luce’s measures of risk

Ensuing approaches to the problem of risk measurement,
consistently, concentrated on the problem how certain trans-
formations of choice alternatives affected people’s percep-
tions of their riskiness. These transformations included re-
scaling, i.e., multiplying all outcomes by a positive con-
stant, as well as translation, i.e., adding a (positive or nega-
tive) amount to all outcomes (cf. Coombs and Bowen [22],
Coombs and Huang [23, 24], and Coombs and Lehner [25]).
Luce [41, 42] took up this approach by deriving risk mea-
sures from functional equations characterizing the effect of
rescaling on perceived risk.

Luce [41] supresses the random variable notation and
associates risk with densities. The set of all densities obvi-
ously is closed with respect to rescaling. If f = f; denotes
the density function of a random variable # then for the
density f,; of the transformed random variable o holds

foz(@) = (1/a) fa(z/a) @1

where a2 denotes the random variable gained from Z through
rescaling by a scale factor o > 0, i.e., through multiplying
Z by a positive real constant c.

Luce presumes that the risk R(f,z) of a density f,z is
some function of the risk R(f;) of the density f; and of . In
his paper, he explores the two simplest possibilities, namely,
that their effects are additive and that they are multiplicative.
In a first assumption, Luce assumes that there is a strictly
increasing function S with S(1) = 0 such that for all density
functions f; and all real & > 0

R(faz) = R(fz)+5(). (22)
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In his second assumption concerning the structure of risk,
Luce assumes that there is an increasing function S with
S(1) = 1 such that for all density functions fz and all real
a>0

R(faz) = S(@)R(fs)- (23)

A second class of assumptions concerns the nature of the
aggregation of a density into a single number characterizing
its risk. In a first assumption, Luce assumes that the density
undergoes a pointwise transformation and then is integrated.
More specifically, he assumes that there is a non-negative
function 7", with T(0) = 0, such that for all density functions

f

+o0

R(f) = / T(f(x))de. @4

—00

In a second assumption, Luce supposes that there is some
transformation of the random variable itself and R is the
expectation of the resulting variable. More specifically, he
assumes that there is a function 7" such that for all densities

f

+o0

R(f) = / T(@)f )z = ET@)). 25)

Combining each structural assumption with each aggre-
gational, Luce gets four different functional forms of risk
measures. The parameters of these functional forms depend
on the subject’s risk perception and are to be determined
such that they fit this perception best. Combining the first
aggregation rule (24) with the additivity assumption (22)
leads to

Ri(f) = —A / f@logf(@)dz + B, 26)

with A > 0 and B > 0. Combining it with the multiplica-
tivity assumption (23) leads to

Ry(f) = A / @) de, @7)

with A > 0 and 8 > 0. With both measures, £y and R;, the
risk of a random variable ¥ is expressed by an integral of a
certain non-linear transform of its density. The risk measure
Ry, obviously, is an affine transformation of the Shannon
entropy (see Sect. 2). In both measures, no difference is made
between potential losses and potential gains of Z.

Combining the second aggregation rule (25) with the
additivity assumption yields

o0 0
Ry(f) = By / f@)dz + B / f(@)dz
0 —00

+AE(log| 2], (28)

where B;, B;, and A are real numbers, A > 0. With this
measure, the risk of a random variable Z is quantified by a
linear combination of the expectation of the [og-transform of
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Z, the probability of positive outcomes, and the probability
of negative outcomes.

Combining the second aggregation rule (25) with the
multiplicativity assumption yields

%) 0
Ri(f)=A / 2% f(z)dx + Ay / |z % f(x)dz, (29)
0 —o0

where @ is a real number, 8 > 0, and

I
A =@+ 1)/T(x)d:c (30)
0
and
0
Ay = @+ 1)/T(a:)dx. 31
1

With the measure Ry, the risk of a random variable Z is rep-
resented by a linear combination of the conditional expecta-
tion of positive outcomes and the conditional expectation of
negative outcomes, where all outcomes are raised to some
power 6. An important feature of the risk measures Rs; and
Ry is that gains and losses are treated separately and in a dif-
ferent manner. In the measure R4, the “chance component”
of Z, i.e. the possible gains, and its pure “risk component”,
i.e. the possible losses, combine clear-cut additively.

Luce leaves the question of the reasonableness of these
forms to empirical investigation. Nevertheless, he remarks
that many psychologists believe that the risk of a gamble
that is repeated n times is less than n times the risk of the
gamble played once. This is known to hold only for the
risk measure R; and fails for the others. However, the risk
measure Rz suffers, as well as the risk measure R;, from
another drawback. It increases with a for positive uniformly
distributed random variables with constant range b — a. For
some people, this property is highly counter-intuitive. In fact,
there is empirical evidence that risk decreases if a positive
constant is added to all outcomes of a gamble (see Sect. 10).

There are two fundamental problems with Luce’s struc-
tural and aggregational assumptions. A first problem con-
cerns the additivity assumption (22). This assumption obvi-
ously implies that a gamble having zero risk is transformed
by any change of scale into one with non-zero risk. Rescal-
ing by any positive factor o« < 1 leads to negative risk,
whereas risk is increased by rescaling with any « > 1. This
argument favours the multiplicativity assumption (23) and
thus the risk measures E, and Rj.

A second fundamental problem concerns the first aggre-
gation rule (24). This aggregation rule leads to risk measures
which are tfranslation invariant ot location free. Thereby, a
risk measure R is called translation invariant or location free
if and only if

R(fz+p) = R(fz) (32)

where fz.s denotes the density of the transformed random
variable Z + 3 gained from & through translation by g, i.e.,
by adding a real constant 3. Translation invariance of risk
measures of type (24) is immediately shown by
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R(fass) = / T(fsrp(@))der = / T(fs(e — Bde

- / T(fa(@)ide = R(fs). (33)

Translation invariance of risk measures of type (24) im-
plies that the risk measures R; and R, for any shift family
of distributions, depend only on the range and are indepen-
dent of the location of a random variable. It follows, e.g.,
that gambles with a uniform distribution of the same range
b— a are, in the sense of R, and R,, equally risky irrespec-
tively of their location. Again, this property can be regarded
as highly counter-intuitive. In fact, it can be deduced from
the empirical evidence mentioned above that risk depends
on the location of a gamble (see Sect. 10).

It should be noted that also most of the naive risk mea-
sures reviewed in Sect. 2 are translation invariant. This holds
in particular for the most important risk measures used in fi-
nance, namely variance (3), standard deviation (4), and lower
semivariance (7). Risk of a random variable is measured in-
dependent of its location. In contrast to this, Coombs’ dis-
tributive risk model (17) as well as Pollatsek and Tversky’s
risk measure (20), are not location free. Both risk measures
decrease if a positive constant is added to all outcomes of
a gamble. For a short discussion of the issue of translation
invariance of risk measures, again, see Sect. 10.

E.U. Weber [62, 63] investigated Luce’s four assump-
tions (22) through (25) and the properties of the risk mea-
sures implied. Empirical evidence against translation invari-
ance of perceived risk (see E.U. Weber [62]), first, led her
to reject assumption (24) and therefore the risk measures
(26) and (27). Then she pointed out (see E.U. Weber [63])
that the risk measure (28) can be ruled out because of its
unreasonable behavior in the neighborhood of zero. Obvi-
ously, this measure approaches negative infinity if, e.g., any
positive gamble with uniform distribution is rescaled by a
factor o > 0 converging to zero.

Revising and extending Luce’s model (29), Luce and
E.U. Weber [44] presented a new axiomaticly based risk
model, called conjoint expected risk (CER). Like Pollatsek
and Tversky [52], Luce and E.U. Weber start from an arbi-
trary set & of real-valued random variables, interpreted as
gambles with (arbitray numbers of) monetary outcomes, and
assume that the decision maker involved has a binary risk
ordering, =, on % Then the CER model is derived from a
certain system of axioms or assumptions on .

First, two axioms are presented which are purely tech-
nical and could be omitted if the authors assumed that the
domain of the risk measure consists of all possible random
variables. Another axiom simply postulates that the risk mea-
sure is well behaved near 0. A further axiom requires that
the risk ordering fulfills certain assumptions implying the
expectation principle, i.e., transitivity, continuity, and inde-
pendence, well known from expected utility literature. These
four axioms do not offer any special insight into what is spe-
cial about the CER measure. It is a final fifth axiom which
shapes the risk ordering.

This axiom consists of four requirements on . Let  and
7 be two random variables in & which, both, can take on
only positive outcomes or, both, can take on only negative
outcomes and let a, b, &', and b” be positive real numbers.
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Then, the first requirement of this axiom is the independence
condition

Ix-§ <= afraf, (34)
and

af = bf <= afr bj. (35)
Condition (34) states that a change in scale does not change
the risk ordering between random variables which, both, can
take on only positive outcomes or, both, can take on only
negative outcomes. The second part (35) of the independence
condition says that if, for any random variable which can
take on only positive or only negative values, one scale is
perceived as at least as risky than onother scale, then the
same ordering holds for any other random variable which can
take on only positive or only negative values, respectively.

The second condition states that the ordering induced
by independence on the positive reals R* is the ordinary
ordering >, i.e.

af = bi <= aZ>b. (36)
Assuming independence, this condition says that the riski-
ness of gambles which can take on only positive or only neg-
ative outcomes is an increasing function of the scale value.
Thus, e.g., the gamble # = ($15,.5;$1) is perceived to be
less risky than the gamble 4% = ($60, .5; $4).

As a third requirement a condition of restricted solv-
ability is introduced which states that for any two random
variables Z and § which, both, can take on only positive val-
ues or, both, can take on only negative values there exists a
positive real number b such that

ViraZ - b'g = bj~ak. (37

This solvability condition says that perceived risk is a con-
tinuous function of scale changes. Note, that this solvability
condition is different but related to the standard continuity
assumption which is part of the axioms which imply the
expectation principle.

As the fourth requirement of this axiom an Archimedean
condition is introduced which states that for any two random
variables & and § which, both, can take on only positive
outcomes or, both, can take on only negative outcomes there
exists a positive real number a such that

-7 = ajrI. (38)
This condition says that given two gambles Z and § where &
is riskier than j, then, by means of a sufficiently large scale
transformation, ¢ can be transformed into a gamble that is
at least as risky as Z.

Based on these axioms on the risk ordering b Luce and
E.U. Weber [44] prove that >~ can numerically be represented
through the CER-model Roggr(#) which, for any (discrete
or continuous) random variable # € &, is given by

0 oo
Repr(® = B, / dFs(@) + B, / dFs(2)
—00 0
0 0
+B3 / dFs(x) + A / | % dFz(2)
0 —o0

+A, / 2 dFy(2), (39)
0
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where B;, A;, and 8; are scaling constants, §; > 0, and F;
denotes the distribution function corresponding to Z.

As a result, according to the CER-model, perceived risk
of a “gamble”  can be quantified by a linear combination
of the probability of negative outcomes, the probability of
positive outcomes, and the probability of the zero outcome
as well as the conditional expectation of negative outcomes
raised to some power #; and the conditional expectation of
positive outcomes raised to some power #,. As Luce’s mea-
sure R4, the measure Rc g evaluates gains differently from
losses and the “chance component” of a “gamble” and its
pure “risk component” combine additively. But, contrary to
R4, the probabilities to win, to lose and to break even are
additionally part of this risk measure. For gambles with only
positive or only negative outcomes the CER-model is equiv-
alent to R4. Therefore, it suffers from the same behavioral
problems as pointed out above for 4. The high number of
scaling constants poses an additional challenge for a reliable
assessment of the risk measure Rogg.

It should be noted that, in general, the scaling constants
A; and B; of the CER-model (39) can take on negative or
positive values, depending on the decision maker’s risk or-
dering. For a particular individual, these scaling constants
can be easily estimated from a sample of observed judge-
ments of perceived risk. Based on their perceived risk judge-
ments, E.U. Weber [64] estimated the parameters of the
CER-model for several individuals. For all of these individ-
uals she found A; and Bj to be positive as well as A, and
B, to be negative. In such cases, the probability of positive
outcomes of a gamble as well as their conditional expecta-
tion reduce the gamble’s perceived risk and the risk measure
(39) can take on negative values when the positive outcome
contributions outweigh the negative outcome contributions.

It is interesting to think about the system of axioms on
which the CER-model is founded. All axioms make intutive
sense, and, in addition, do not appear to be so strong. Nev-
ertheless, these axioms imply a pretty restrictive set of risk
measures, quite different from what we will come to know
in the next sections.

6 Sarin’s measures of risk

The purpose of Sarin’s paper [53] is to extend Luce’s risk
measures to obtain risk measures that are empirically more
reasonable. Therefore, Sarin starts from the overwhelming
empirical observation that the risk of a gamble appears to
decrease when all possible outcomes are improved by a con-
stant, i.e., when a positive constant is added to all outcomes
of a gamble.

Sarin’s first assumption concerns the risk of the density
fz+5 belonging to the transformed random variable # + 3. He
assumes that R(fz.5) is a multiplicative function of R(fz)
and (3. More specifically, it is assumed that there is a strictly
monotonic function S with S(0) = 1 such that for all density
functions f;z and all real 8 > 0

R(fz+p) = S(BYR(f3) - (40)

Thereby, without being explicitly stated, it is assumed that
R(fz+p) decreases as 3 increases. For non-negative risk mea-
sures this implies that S(-) is strictly decreasing.
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As indicated in the last section, Luce’s first aggregational
assumption (24) implies risk measures which are translation
invariant. Holding such risk measures to be empirically not
reasonable, Sarin therefore, in his second assumption, re-
quires that the expectation principle (25) be used to aggre-
gate densities into single numbers.

From these two assumptions Sarin derives the risk mea-
sure

R(f) = / Ke™ f(x)dr = KE(e%), 1)

with real constants K > 0, ¢ < 0, or K < 0, ¢ > 0.
Through this measure, risk of a random variable #, essen-
tially, is represented by the expectation of its exponential
transform.

As, for example, implicitly stated in Luce’s assumption
(24), it seems sensible to assume risk measures to be non-
negative. This implies for Sarin’s risk measure ¢ < 0 and
K > 0. Evidently, this risk measure gives higher weight
to a gamble’s potential losses than to its potential gains.
Because of assumption (40), Sarin’s risk measure does not
suffer the last critizism of Luce’s risk measures, it is not
location free and, in particular, decreases under translations
with increasing 3. Furthermore, it can be easily shown that
it increases. with the scale factor ¢ under rescaling.

Weber [68], contrary to Sarin advocating translation in-
variance of risk judgements, presents an extension of Sarin’s
risk measure (41). To make this measure location free he
suggests, first, to “normalize” gambles by substracting their
respective expected values, i.e., to transform all random vari-
ables Z to the “normalized” variables

¥ =3 E®). 42)

The “normalized” random variables all have zero mean and
reflect the risk of the original distributions with reference to
their expectation. Thereby, the expectation serves as a tar-
get outcome such that every outcome whose value is smaller
than the expectation is viewed as undesirable or risky, while
outcomes with values as large as the expectation are desir-
able or nonrisky.

Weber’s location free variant of Sarin’s risk measure (41)
is then given with

R'(f) = / Ke®@= P r(1)dg = KE(@E), (43)

with real constants K > 0, ¢ < 0 . Through this measure,
risk of a random variable Z, essentially, is represented by the
expectation of the exponential transform of its normalized
version #’. Weber points out that for normally distributed
random variables the measure (43) and the variance (3) yield
the same risk ordering of lotteries. In Sect.9 will be shown
that (43) can also be derived using a quite different way of
arguing.

Sarin’s risk measure (41) as well as Luce’s risk mea-
sures K3 and R4 use the expectation principle for aggregat-
ing densities into single numbers. This principle implies that
resulting risk measures are linear in probabilities. Le., if, for
0 < @ < 1, the gamble with § chance of obtaining density
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f and (1 - 8) chance of obtaining density f, is denoted by
0f+(1 —8)f,, we have

ROf+(1 = 0)fo) =0R()+ (1 —OOR(fo). (44)

Thus, if f and g are judged to be equally risky, then all the
gambles 6 f+(1—6) f, and Bg+(1 —0) f, will also be judged
equally risky. In other words, if the expectation principle is
used for aggregating densities into risk numbers, then, for
any given distribution f,, the risk function is, between f,
and any other distribution f, independent of f as long as f
belongs to a set of distributions with some given risk level.

It is well-known that linearity in probabilities is a pretty
strong requirement when preferences are modelled. In deci-
sion theory under risk quite a number of new theories has
been developed to overcome this strong requirement implied
by the expectation principle (for an overview see Weber and
Camerer [69]). In the spirit of the generalization of expected
utility theory by Machina [45], Sarin generalizes Luce’s ex-
pectation assumption (25) to

oo [o o}

1
R(f) = / T(o) f(o)dar+ 5 / S(z pf@dal.  (45)

—

Thereby, T'(*) is a real function and S(-) is that strictly mono-
tonic function the existence of which is postulated in Luce’s
assumptions (22) and (23), as well as in Sarin’s assumption
(40). In this generalized expectation form of a risk measure
the “local” risk function depends on the gamble. As a con-
sequence, even if two densities f and g are equally risky,
0f +(1—6)f, and 8g + (1 — 8)f, may not have equal risk.
Sarin points out that the generalized expectation assump-
tion (45) can, just as Luce’s expectation assumption, be com-
bined with different structural assumptions to derive alterna-
tive measures of risk. Combining the generalized expectation
assumption, in turn, with Luce’s structural assumptions Sarin
gets two new families of risk measures. Combining it with
the additivity assumption (22) he obtains the risk measure

<] 0
R(f)= B, / f@)dz + B / f(@)dz
0 — 00

+AE(og |z )~ %szar(log |z ) (46)

with some constants B, B, and A > 0. Combining it with
the multiplicativity assumption (23) he receives the risk mea-
sure

oo 0
R(f) = By / 2% f(z)dz + B, / |z |° fa)dx
0 — 00
+%(%)E(| z %) — %var(| z|%). 47

It should be noted that in the generalized risk measures
(46) and (47) of Sarin as well as already in Luce’s risk
measures (28) and (29) potential gains and potential losses
are treated separately. This seems to be in accordance to
observed differential preference attitudes towards gains and
losses. Sarin stresses the fact that empirical data will be
needed to test the validity of the generalized expectation
principle and the corresponding generalized risk measures.
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7 Fishburn’s measures of pure risk

Various empirical studies have demonstrated that prefer-
ence attitudes towards gambles exhibit striking differences
in the loss and the gain regions (cf. Fishburn and Kochen-
berger {31], Hershey et al. [33], Kahneman and Tversky
[35], Laughhunn et al. [40], Payne et al. [50, 51]). Although
the association of preferences between probability distribu-
tions with the distributions’ risks is far from being clear,
it seems reasonable to assume that these differences also
play an important role in risk assessments. Furthermore, ex-
periments with monetary gambles have convincingly shown
the salience of loss probability and loss amount on perceived
risk (cf. Aschenbrenner [5], Coombs and Lehner [25], Payne
[49], Slovic [57]). Based on these observations, Fishburn, in
his Foundations of Risk Measurement [29, 30], developed
theories of risk in which gains and losses are treated sepa-
rately. In the first part of his study, Fishburn focusses on risk
as probable loss, i.e. on what is usually called pure risk. In
the second part, measures of risk are proposed that include
effects of gains on perceived risk.

In the first part of his study, Fishburn is guided by the
conventional wisdom that risk is a chance of something bad
happening, that risk arises from the possibility of undesired
outcomes. As Pollatsek and Tversky, Fishburn’s theory of
risk is based on a binary risk relation b “is at least as risky
as”, defined on a set of probability distributions of some
outcome values. From the standpoint of measurement theory,
this relation is to be represented by a numerical risk measure.
Similar to the way Pollatsek and Tversky derive their risk
measure, Fishburn’s measures are a direct consequence of
the axioms the risk relation is fulfilling.

In the spirit of most of the classical risk measures used
in finance and of Luce’s assumption 24, Fishburn implicitly
adopts the position that risk judgements are location free.
Therefore he presumes that some target outcome can be iden-
tified so that every outcome whose value is smaller than the
value of the target is viewed as undesirable or risky, while
outcomes with values as large as the target’s are desirable
or nonrisky. Without loss of generality, for convenience, the
value of this target outcome is set at zero. Fishburn regards
a distribution as having zero risk if and only if it has no
chance of delivering a outcome below zero.

More specifically, Fishburn starts from the assumption
that all possible outcomes are ordered by preference and
represented numerically so that one outcome is preferred to
another if and only if the former has a larger value. Let X
denote the (non-empty) set of all possible outcome values.
Non-zero outcome values are partitioned into undesirable
and desirable subsets as X~ = {x € X | ¢ < 0} and
X*:={z € X | z > 0}. The outcomes in X~ (X~ #
by assumption) are referred to as losses, and the outcomes
in X* as gains.

Probability distributions of X are defined on the o-
algebra of subsets of X generated by all singletons and
“intervals” of outcomes. With regard to its pure risk ev-
ery probability distribution of X is characterized by the pair
(a, p), where the parameter o, 0 < o < 1, gives the loss
probability of that distribution and p is its conditional dis-
tribution, given a loss. The pair («, p) is to be interpreted as
a two-dimensional measure that yields the probability of a
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subset Y of X~ as ap(Y"). Then, the binary risk relation =~
1s applied to the set

A=[01]xP ={a,p|0<a<lpeP7}, (48

where P~ is the set of all probability measures p with
p(X ™) = 1. By identifying every outcome value z € X~
with (1, p) where p({z}) = 1, this set contains all determin-
istic losses.

The risk relation > defined on A is assumed to be a
weak order, i.e. strictly complete and transitive. Then, for
a first basic representation theorem, Fishburn uses four ax-
ioms. Among these a continuity axiom and an axiom that
states that for every measure in P—, some deterministic loss
is at least as risky as the measure. Another axiom states that
risk increases as the loss probability increases for fixed p,
another one that worse outcomes entail greater risks. The
latter axioms seem reasonable in view of the common per-
ception that risk increases as bad outcomes become more
probable, and as probable bad outcomes get worse. In his
first basic representation theorem, Fishburn shows that there
is a non-negative real-valued function p on A with

(a,p) (@, p)y =  pla,p > pd, D) (49)

which has p(«, p) = 0 if and only if « = 0, and is continuous
and increasing in o.

Three additional axioms yield what Fishburn calls a-p-
separability, namely the existence of real-valued functions
p1 on [0,1] and p; on P~ such that

pla,p) = pi(a) - p2(p) (50)

Thereby, the function p; is continuous and increasing in o
with p(0) = 0, and the functional p, is, restricted to one-
point-distributions p, over X ~, increasing as x decreases.

Certain combinations of additional axioms, then, yield
special forms of risk measures of the multiplicative separable
type (50). Fishburn axiomizes risk measures of type

pla,p) = p1(@) / pr(@)dp(a), 1)
J
pla,p)=a / pa(@)dp(a), 52)
J
and
pla,p) = pl(oz)/ |z | dp(a), (53)
J

where 8 is a real parameter, > 0. With all of these types
of risk measueres, each outcome x is identified with the
one-point measure p, and integration is Lebesque-Stieltjes-
integration.

In a further theorem, Fishburn gives conditions for the
representation of > by a risk measure of the expectation

type
pla,p) = / pla, x)dp(x). (54)
e

This corresponds to the expectation principle (25) used by
Luce and Sarin as aggregational assumption.
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These families of risk measures contain some of the
naive risk measures listed in Sect.2 as special cases. In the
family (53) of risk measures, the choice p;(a) = a together
with § = 1 yields the expected value of loss (8) of a ran-
dom variable; the choice p;j(a) = « together with 6 = 2
leads to the lower semivariance (7) of a mean-centered ran-
dom variable. Furthermore, the family (53) of risk measures
with pj(a) = « is contained in Stone’s family (10), if one
chooses there p(F) = q(F) = 0. The risk measures (52) and
(53) obviously are special cases of the more general familiy
(51). With the choice p;(a) = o, the family (51) yields (52),
with the choice pa(x) =|  |? it yields (53). With the choice
p1{e) = «, the family (53) leads to the risk measures (12}
which Fishbum considered in his earlier paper [28].

8 Fishburn’s measures of speculative risk

In the second part of his Foundations of Risk Measurement
[29], Fishburn considers measures of risk that explicitly in-
clude effects of gains on perceived risk. He adopts the po-
sition that increased gains reduce the risk of fixed probable
losses without completely negating this risk. Thus he fo-
cusses on what is usually called speculative risk. Speculative
risk measures, generally, are to incorporate the consensus
that risk increases as loss probability or amount increases,
and that greater gains as well as greater gain probabilities
reduce perceived risk. As Fishburn’s theory of pure risk, his
theory of speculative risk is based on a binary risk relation
=, “is at least as risky as”, defined on a set of probability
distributions of some outcome values. Again, this relation is
to be represented by a numerical risk measure.

As in his first study, Fishburn starts from a non-empty
set X of numerical outcome values that includes a non-
risky target outcome. Without loss of generality, the value
of that target outcome is set at zero. As above, the set of all
non-zero outcomes is partitioned into an undesirable subset
X~ of losses and a desirable subset X* of gains, each of
which is assumed non-empty. Furthermore, it is assumed
that outcome preference increases in .

Again, probability distributions of X are defined on the
o-algebra of subsets of X generated by all singletons and
“intervals” of outcomes. With regard to its speculative risk
every probability distributi