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Abstract. The concept of  risk is essential to many problems 

in economics and business. Usually, risk is treated in the tra- 

ditional expected utility framework where it is defined only 

indirectly through the shape of  the utility function. The pur- 

pose of  utility functions, however, is to model preferences. 

In this paper, we review those approaches which directly 

model risk judgements. After a short review of naive risk 

measures used in earlier economic literature, we present re- 

cent theoretical and empirical developments. 

Zusammenfassung. Risiko ist ein Konzept, das bei der 

Behandlung vieler volks- oder betriebswirtschaftlicher Pro- 

bleme eine wesentliche Rolle spielt. 0blicherweise wird Ri- 

siko im Rahmen des traditionellen Erwartungsnutzenmodells 

behandelt, bei dem es nur indirekt fiber die Form der Nutzen- 

funktion erfagt wird. Der Zweck von Nutzenfunktionen 

besteht aber darin, Prfiferenzen zu modellieren. In diesem 

Aufsatz wird ein 0berblick fiber solche Ansfitze gegeben, 

die Risikowahrnehmungen direkt modellieren. Nach einer 

kurzen Darstellung naiver Risikomage, die aus der frfiheren 

6konomischen Literatur bekannt sind, werden neuere theo- 

retische und empirische Konzepte prfisentiert. 

Key words:  Risk judgement, perceived risk, axiomatic mea- 

sures of risk 

Schliisselwiirter: Risikobeurteilung, wahrgenommenes Ri- 

siko, axiomatische Risikomage 

1 Introduction 

The term risk obviously plays a pervasive role in much of  the 

current writings on economic, political, social, and techno- 

logical issues. In all of these fields, risk is a kind of negative 

feature characterizing a decision alternative. Risk is meant 

to be a chance of injury or loss connected with a given ac- 

tion. However, risk is not an objective feature of  a decision 

alternative. It is an inherently subjective construct because 
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what is considered a loss and what its significance and its 

chance of occurring is, is peculiar to the person concerned. 

In the economic as well as in the psychological litera- 

ture on decision making, there are various attempts to define 

or to characterize risk for purpose o f  descriptive as well as 

of  prescriptive theory. There is a growing interest in what 

constitutes the risk of  an alternative and how to measure it. 

Thereby, the main emphasis lies on the risk itself of an al- 

ternative, independently of  the problem of risk preference. 

Risk refers to the riskiness of  an alternative. It is a mat- 

ter of perception or estimation. Risk preference refers to the 

preferability of an alternative under conditions of  risk and 

is a matter of preferences. In such situations, risk is only 

one significant aspect of the available options. The deci- 

sion maker 's  preference for a certain action, generally, also 

depends on other positive or perhaps additional negative fea- 

tures. 

In this paper, we start from the assumption that there 

exists a meaningful risk ordering which can be obtained di- 

rectly by asking an individual to judge which of a given pair 

of comparable alternatives is riskier. The key concept will 

therefore be a binary relation ~ ,  with A ~ B meaning that 

an alternative A is at least as risky as another alternative B. 

In general, this relation is assumed to be a weak order, i.e. 

strictly complete and transitive. Only in Sect. 11 complete- 

ness is resigned. Throughout the paper the relation A ~ B 

states that alternative A is riskier than alternative B while 

A ~ B means that A and B are equally risky. Thereby, 

and ~ denote the symmetric and the asymmetric parts of ~ ,  

respectively. The risk ordering - derived from judgements 

about perceived risk - need not be related to the individual's 

preference ordering in any simple way. 

According to the conception of standard measurement 

theory, we are looking for functions R which numerically 

represent the risk ordering ~ ,  i.e. functions/~ with the prop- 

erty 

A ~ B ~ R(A)  > R ( B ) .  (1) 

Every such function R will be called risk measurement func- 

tion or simply risk measure. Note that we take a subject's 

risk judgement as a primitive. As we are interested in mea- 

sures of perceived risk, we cannot and we should not give 
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an abstract definition of  risk. It is peoples' perception which 

ultimately determines the definition of risk. 

There are three main reasons which necessitate a means 

for the direct comparison of alternatives as to their risk. 

First, the understanding of  riskiness judgements might help 

to understand preference. Taking risk and value as primi- 

tives, one might explain preference by a risk-value model, 

i.e. by a function of these two components. Many theories 

in management and finance rely on such a separate con- 

sideration of  risk and value. Possibly the best known ex- 

ample is modern portfolio selection theory as developed by 

Markowitz [48] and others. Within this context, the decision 

problem is viewed as choosing among possible risk-return 

combinations and formulated as either maximizing return for 

a given level of risk or minimizing risk for a given level of  

return. With such an approach, obviously, the decision will 

generally depend on the risk measure used. Second, there is 

growing empirical evidence that, under conditions of  uncer- 

tainty, people base their decisions on qualitative aspects of  

choice alternatives such as risk. For a study from the prac- 

tice of investment decision making see, e.g., Brachinger and 

Schubert [15]. Finally, judgements of  perceived risk may be 

required as such, independent of  the necessity of choice, e.g., 

for intervention before the decision stage in a public policy 

setting. People talk all the time about the riskiness of  things 

like nuclear energy or how risky it might be not taking an 

afternoon nap. 

Despite the importance of risk, there is little consensus 

on its definition. In empirical studies, typically, two dimen- 

sions which appear to determine perceived risk have been 

identified: amount of potential loss and probability of oc- 

currence of  loss. The risk of an alternative increases if the 

probability of loss increases or if the amount of potential 

loss increases. Unfortunately, up to now no agreement has 

been reached on the relative importance of the uncertainty 

of outcomes versus their undesirability for determining per- 

ceived risk. Furthermore, there is empirical evidence that 

possible gains reduce the perceived risk of  an alternative. 

But it is by no means clear how and to what extent risk 

perception depends on potential gains. Other empirical stud- 

ies have shown that risk is not simply equal to something 

like negative preference, it is an own important concept. 

E.U. Weber, Anderson and Birnbaum [67], e.g., suggest that 

people, when judging the riskiness of an alternative, encode 

and combine probability and outcome information in quali- 

tatively different ways than when judging its attractiveness. 

Having accepted that risk is something different from 

risk preference, it would be interesting to know what the re- 

lation between risk and risk preference is. There are various 

theories of  decision making under risk. Some of these theo- 

ries like risk-value models make explicit use of a risk mea- 

sure, others do not. Within the framework of the Expected 

Utility Model, e.g., a single alternative's risk is not quanti- 

fied, only an individual's general attitude towards risk is re- 

flected by the shape of his or her utility function and, given 

the utility function, quantified by the welt-known Arrow- 

Pratt measure. Nevertheless, we will neither review the lit- 

erature on risk-value models nor discuss the relation of risk 

measures to utility based theories of decision making under 

risk. For an overview on risk-value models and their rela- 

tion to utility based theories of  decision making under risk 

see Sarin and Weber [54]. We want to concentrate on one 

important component of risk-value models, the factor risk, 

independently of any risk preferences. The literature on risk 

and its measurement is relatively new, scattered in different 

fields and covering theoretical as well as empirical work. 

We also do not want to review the vast amount of liter- 

ature dealing with the psychology of risk judgements. See 

Slovic [58] and Bayerische Rtick [6] for an overview or 

Burgemeister and Weber [16] for an application. It is defi- 

nitely interesting to know that people in Hungary are more 

afraid of  collecting and eating mushrooms than US-citizens 

and even more important how these judgements can be ex- 

plained. In our overview, we want to concentrate on how 

people evaluate the riskiness of lotteries, the fruit flies of  

modern economics. Risk measurement as it will be presented 

in our paper seeks to get behind specific contextual referents 

of risky alternatives to consider characteristics of risk that 

apply to many different situations. 

It is the objective of our paper, first, to review the more 

naive risk measures which have been used in the earlier eco- 

nomic literature and for which no strict theoretical founda- 

tions have been given. Then an overview is given on recently 

developed economic or psychological theories of  perceived 

risk which rely on the axiomatic approach of modern mea- 

surement theory. (see also Brachinger [10], Weber [68], as 

well as E.U. Weber and Bottom [65]). In addition to a the- 

oretical discussion of risk measurement, we will review the 

empirical work investigating jugdements of  perceived riski- 

ness. 

2 Naive  risk measures  

In the economic, especially the finance literature, tradition- 

ally, the risk of an option has primarily been associated with 

the dispersion of the COlxesponding random variable. There- 

fore, not later than since Markowitz's [47, 48] and Tobin's 

[61] pioneering work on portfolio selection, it is common to 

measure the riskiness of an alternative by the variance c~ ~ or 

the standard deviation cr of its outcomes. Let an alternative's 

future wealth be characterized by a random variable Y~ with 

distribution function F~ and probability density function re. 

Then, with the mathematical expectation 

+OO 

P 

:: E(~) :: / x dF~(x)~ (2) 

--oo 

these risk measures are defined by 

+OO 

O -2  :---- var(Y 0 1: / (x -- #)2d,F,2(x) (3) 

- - o o  

and 

+OO 

[ / (X -- [~)2dF~(x)]t/2. (4) O" 

o<3 

In addition, sometimes similar naive risk measures are 

discussed (cf. Markowitz [48, pp. 286-297]). Within these 

are the expected absolute deviation around # 
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+O<3 

I x p (5) I dF~(x) 

- - 0 r  

and the expected absolut deviation around 0 

+00 

. /  [ x l dF~(x). (6) 

- - O O  

Besides, it has been conventional wisdom in economics 

and other fields of research that risk is the chance of some- 

thing bad happening. In this vein, risk is associated with 

an outcome that is worse than some specific target outcome 

and its probability. Within the risk measures tailored to this 

notion of  risk are the lower semivariance 

# 

f (x -- #)2dF~(x), (7) 

- - O O  

the expected value of loss 

0 

/ x dFz(x), (8) 

- - 0 0  

and the probability of loss or probability of ruin 

P~(2 <_ r) = '~ dF~(x). (9) 

- - O O  

Thereby, r is a certain target level outcomes lower of which 

are a loss or disastrous to the decision maker. 

Stone [59, 60] has shown that all of these risk measures 

are special cases of one of  two related three-parameter fami- 

lies of risk measures. The first three-parameter risk measure 

is defined as 

q(F~) 

:= / I x -  p(F~) l ~ dF,~(x) (k_>O),  (10) Rs1 (Y:) 

where p(F~) denotes a reference level of wealth from which 

deviations are measured. The positive number k specifies a 

power to which deviations in wealth from the reference level 

are raised and thus k is a measure of the relative impact of 

large and small deviations. The parameter q(F~) is a range 

parameter that specifies what deviations are to be included in 

the risk measure. The second three-parameter risk measure 

is defined to be the k th root of  RsI(Y~), i.e., 

q(F~)  
o 

:= [ / I x -p (F~)  I ~ dF~(x)] j/k (k > 0). (11) Rs2(Y:) 

- - 0 0  

Through appropriate choices of the parameters p(F.~), 
q(F~), and k it is easy to see that the above listed risk mea- 

sures are special cases of one of  Stone's families. Equa- 

tion (10), e.g., gives the semivariance when k = 2 and 

p(F~:) = q(F~) = #. A further interesting special case of 

Stone's family (10) of risk measures is the generalized risk 

measure 

t 
P 

= / (t - x)~dF,:c(x) (c~ > 0), (12) RFI(~)  

proposed by Fishburn [28] where t is a fixed upper tar- 

get. This measure results from (10) if one chooses p(F.,e) = 

q(Fz) = t. The parameter c~ of Fishburn's risk measure RF1 

may as well as the parameter k in Stone's families be inter- 

preted as risk-parameter characterizing the decision-maker's 

risk attitude. Values a > 1 describe a kind of risk-sensitive, 

values a E (0, l) a kind of risk-insensitive behavior (see 

also Albrecht [1]). 

Other naive risk measures scattered in the literature are 

the Shannon entropy 

+00 

- / f~(x)ln(f~(x))dx (13) 

- - O O  

which is well-known from communication theory (cf. Ma- 

china and Rothschild [46, p. 203]), the interquartile range 
F~- 1(0.75) - F ~  1 (0.25), and the minimum outcome -x,~in 
of :~ (cf. Schneeweiss [55, p. 60]). For cases where values 

x < 0, i.e. losses are possible, the minimum outcome is 

usually called maximum loss (cf. Markowitz [48, p. 287]). 

3 Coombs' psychophysics of risk 

Among the first to approach the problem of risk itself, inde- 

pendently of the problem of risk preference, were Coombs 

and Huang [23]. They discuss two-outcome gambles of the 

form g = (Y, P, z), where two amounts y and z of money, 

y _> z, can be won with probability p and q = 1 - p ,  respec- 

tively. Let Y2p denote the space of all such two-outcome 

gambles with fixed winning probability p. Then, Coombs 

and Huang consider the transformed gambles 

a(g) := ( y + a , p , z - a p / q ) ,  a E A  (14) 

b(9) := ( y+b ,p , z+b) ,  b E B  (15) 

and 

c(g) := (y,p, z) (c) , e E C,  (16) 

where A, B are sets of real numbers and C is a set of  natural 

numbers. (y,p, z) (~) designates that the gamble g is played 

c times independently. It is easy to show that the transfor- 

mation a(.) is expectation-preserving, and that a gamble's 

variance increases with a. Defining a gamble's g expected 

regret by (1 - p)(y - z), the amount a specifies the increase 

in expected regret caused by the transformation a(.). The 

transformation b(.) is variance-preserving, but increases a 

gamble's expectation by the amount b. Furthermore, multi- 

ple play leads to multiplying expectation correspondingly. 

Coombs and Huang show that any gamble g c f2p can be 

converted by the transformations a(-) and b(-) into any other 

gamble g'  E Dp. Using the riskless gamble go = (0, p, 0) as 

origin, by means of the transformations a(-), b(.), and c(.) 

applied to go one gets a new risky gamble characterized by 

the triple (a, b, c). Thereby, a specifies gamble's (a + b, p, h -  
ap~q) expected regret, b gives this gamble's  expectation, and 
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c states the number of independent repetitions of the gamble. 
Repetition multipies both expectation and expected regret. 

Coombs and Huang presume that the perceived risk of a 

gamble 9 E ~p characterized by (a, b, c) is completely de- 

termined by these variables. As measure of risk of a gamble 
g = (a, b, c) they propose the distributive model 

R(g) := [c~(a) +/3(b)]7(c), (17) 

where c~(-), /3(.), and 2/(-) denote real-valued functions. 

Heuristically c~, /3, and 2~ correspond to three psychophysi- 
cal functions for the subjective effects on perceived risk of 

the corresponding transformations a(.), b(.), and c(.), respec- 

tively, on gambles. Empirical studies of Coombs and Huang 
[23, 24] showed that the function c~(.) may reasonably as- 

sumed to be strictly increasing, and/3(.) stricty decreasing. 
The function 2/(.) simultaneously intensifies the effect of ct(.) 

and/3(.). 
Coombs and Huang's measure of risk obviously is of low 

practical importance. It is tailored to a very special range of 

definition and Coombs and Huang do not say anything on 

how to specify the functions c~(.), /3(.), and 2/(.). However, 
Coombs and Huang were mainly interested in whether per- 

ceived risk has the structure of the simple distributive model 

and, if so, what might be said further about the functions in- 

volved. As an empirical result of their study it can be noted 
that the risk of a gamble g = (a, b, c) is perceived the higher 

the greater its variance and the lower the greater is its expec- 

tation. This follows from the above monotonicity properties. 

4 Pollatsek and Tversky's theory of risk 

Pollatsek and Tversky [52] were the first to investigate the 

perception of risk from the rigorous standpoint of measure- 

ment theory. Their theory is formulated in terms of a set 
S of real-valued random variables, interpreted as gambles 

with (arbitray numbers of) monetary outcomes. This set S 

is assumed to be closed with respect to the sum operation o 
of random variables. The key concept of Pollatsek and Tver- 

sky's theory of risk is a binary relation on S denoted by 
which is assumed to be strictly complete and transitive. For 
~, ~ E S, :~ ~ ~ states that 35 is at least as risky as ~. 

Pollatsek and Tversky require their risk ordering 

to satisfy three different axioms, an independence axiom 

("Cancellation')  and two more technical axioms ("Solvabil- 
ity" and "Archimedian"). In a first representation theorem, 

they show that, if these axioms hold, there exists a real- 

valued function, R, defined on S, such that for any :L Y C 5' 

~ ~9 ~=~ R(~) _> R(9). (18) 

This risk measure is additive in the sense that for all 2, 

9ES 

R(2 o ~)) : n(2)  + R@), (19) 

and it is unique up to positive linear-homogeneous transfor- 
mations. Introducing three additional assumptions about the 

risk ordering, two transformation axioms and a continuity 

axiom, Pollatsek and Tversky succeed in proving that there 

exists a unique real number 0, 0 < 0 < 1, such that for any 
E S with expectation E(2) and variance var(Y~) its risk 

R(2) is given with 

R(2)  = Ovar(Y:) - (1 - O)E(Yc) (20) 

(Pollatsek and Tversky [52, Theorem 2, pp. 546-547]). 

Thus, according to Pollatsek and Tversky's theory of 

risk, the risk ordering is generated by a linear combination 
of expectation and variance. The risk of any gamble with 

known expectation and variance can be readily computed, 

once a single parameter, 0, is determined. Its value specifies 
the relative contribution of the expectation and the variance 

to the riskiness of that lottery. This value can be easily calcu- 

lated from a single judgement of risk-equality between two 
different distributions. It should be noted that the risk mea- 

sure of Pollatsek and Tversky can take on negative values 

and that degenerate distributions, i.e., distributions where a 

single value is obtained with probability one, may well have 

non-zero risk. 

Subsequent empirical research has shown that the risk 

measure of Pollatsek and Tversky is not adequate. Coombs 
and Bowen [22] clearly have demonstrated that, despite the 

fact that perceived risk is indeed affected by both expecta- 

tion and variance of a gamble, they alone are insufficient to 
determine risk. They found, by using transformations that 

let expectation and variance unchanged, that subjects de- 

tect differences in risk between gambles that have the same 

mean and variance. Actually, risk varied systematically with 
the skewness of a gamble. See Sect. 10 for this and other 

stylized facts derived from a number of empirical studies. 

5 Luce 's  measures of risk 

Ensuing approaches to the problem of risk measurement, 

consistently, concentrated on the problem how certain trans- 
formations of choice alternatives affected people's percep- 

tions of their riskiness. These transformations included re- 

scaling, i.e., multiplying all outcomes by a positive con- 
stant, as well as translation, i.e., adding a (positive or nega- 

tive) amount to all outcomes (cf. Coombs and Bowen [22], 

Coombs and Huang [23, 24], and Coombs and Lehner [25]). 
Luce [41, 42] took up this approach by deriving risk mea- 

sures from functional equations characterizing the effect of 

rescaling on perceived risk. 

Luce [41] supresses the random variable notation and 

associates risk with densities. The set of all densities obvi- 

ously is closed with respect to rescaling. If f = f~ denotes 
the density function of a random variable ~ then for the 

density f~ .  of the transformed random variable c~Y~ holds 

f ~ ( x )  = (1 /a ) f~(x /oO (21) 

where c~Y~ denotes the random variable gained from Y~ through 
rescaling by a scale factor c~ > O, i.e., through multiplying 

Y: by a positive real constant ~. 

Luce presumes that the risk R( fa~)  of a density f ~  is 
some function of the risk R(f~)  of the density f~ and of ~. In 

his paper, he explores the two simplest possibilities, namely, 
that their effects are additive and that they are multiplicative. 

In a first assumption, Luce assumes that there is a strictly 
increasing function S with S(1) = 0 such that for all density 

functions f~ and all real c~ > 0 

t~(.f.~) = R( f~)  + S(cx). (22) 
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In his second assumption concerning the structure of risk, 

Luce assumes that there is an increasing function S with 

S(1) = 1 such that for all density functions f~ and all real 

a > 0  

R(f~) = S(a)R(f~). (23) 

A second class of assumptions concerns the nature of the 

aggregation of a density into a single number characterizing 

its risk. In a first assumption, Luce assumes that the density 
undergoes a pointwise transformation and then is integrated. 

More specifically, he assumes that there is a non-negative 
function T, with T(0) = 0, such that for all density functions 

f 

+oo 
/ ,  

R(f) = / T(f(x))dx. (24) 

- -  C i X )  

In a second assumption, Luce supposes that there is some 
transformation of the random variable itself and R is the 

expectation of the resulting variable. More specifically, he 
assumes that there is a function T such that for all densities 

f 
+OG 

/ ,  

R(f) = / T(x)f(x)dz = E(T(Y:)). (25) 

Combining each structural assumption with each aggre- 

gational, Luce gets four different functional forms of risk 

measures. The parameters of these functional forms depend 
on the subject's risk perception and are to be determined 

such that they fit this perception best. Combining the first 
aggregation rule (24) with the additivity assumption (22) 

leads to 

+OO 

Rl(f) = -A  / f(x)logf(x)dx + B, (26) 

- -  O C )  

with A > 0 and B > 0. Combining it with the multiplica- 

tivity assumption (23) leads to 

+OO 

R2(f) = A / f(x)l-~ (27) 

with A > 0 and 0 > 0. With both measures, Ra and/~2, the 
risk of a random variable Y~ is expressed by an integral of a 

certain non-linear transform of its density. The risk measure 

R1, obviously, is an affine transformation of the Shannon 

entropy (see Sect. 2). In both measures, no difference is made 
between potential losses and potential gains of :~. 

Combining the second aggregation rule (25) with the 

additivity assumption yields 

ac 0 

R3(f)=Bl f f(x)dx + B2 f f(z)dx 
0 - - o o  

+A E(log l Y~ I), (28) 

where B1, Be, and A are real numbers, A > 0. With this 
measure, the risk of a random variable :~ is quantified by a 
linear combination of the expectation of the log-transform of 

~, the probability of positive outcomes, and the probability 

of negative outcomes. 

Combining the second aggregation rule (25) with the 

multiplicativity assumption yields 

oc 0 

A1/'x~ A2 / Ix I 0 f(x)dx, (29) R4(f) = 
, J  , 2  

0 --o~ 

where 0 is a real number, 0 > 0, and 

1 
o 

= (0 + 1) / T(x)dx A1 (30) 
. J  

0 

and 

0 

A2 = (0 + 1) / T(x)dx. (31) 
, /  

--I  

With the measure R4, the risk of a random variable 2 is rep- 
resented by a linear combination of the conditional expecta- 

tion of positive outcomes and the conditional expectation of 

negative outcomes, where all outcomes are raised to some 

power 0. An important feature of the risk measures R3 and 

R4 is that gains and losses are treated separately and in a dif- 
ferent manner. In the measure R4, the "chance component" 

of :~, i.e. the possible gains, and its pure "risk component", 
i.e. the possible losses, combine clear-cut additively. 

Luce leaves the question of the reasonableness of these 

forms to empirical investigation. Nevertheless, he remarks 
that many psychologists believe that the risk of a gamble 

that is repeated n times is less than n times the risk of the 

gamble played once. This is known to hold only for the 

risk measure R3 and fails for the others. However, the risk 
measure R3 suffers, as well as the risk measure R4, from 

another drawback. It increases with a for positive uniformly 
distributed random variables with constant range b - a, For 

some people, this property is highly counter-intuitive. In fact, 

there is empirical evidence that risk decreases if a positive 
constant is added to all outcomes of a gamble (see Sect. 10). 

There are two fundamental problems with Luce's struc- 

tural and aggregational assumptions. A first problem con- 
cerns the additivity assumption (22). This assumption obvi- 

ously implies that a gamble having zero risk is transformed 

by any change of scale into one with non-zero risk. Rescal- 
ing by any positive factor c~ < 1 leads to negative risk, 

whereas risk is increased by rescaling with any c~ > 1. This 

argument favours the multiplicativity assumption (23) and 

thus the risk measures R2 and R4. 

A second fundamental problem concerns the first aggre- 
gation rule (24). This aggregation rule leads to risk measures 

which are translation invariant or location free. Thereby, a 
risk measure R is called translation invariant or location free 

if and only if 

R(f~+z) = R(f~) (32) 

where f~+z denotes the density of the transformed random 

variable ~ +/3 gained from :~ through translation by/3, i.e., 

by adding a real constant/3. Translation invariance of risk 
measures of type (24) is immediately shown by 
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f f 

= /T ( f~ (x ) )dx  = R(f~). (33) 

Translation invariance of risk measures of  type (24) im- 

plies that the risk measures R~ and R2, for any shift family 

of distributions, depend only on the range and are indepen- 

dent of the location of  a random variable. It follows, e.g., 

that gambles with a uniform distribution of the same range 

b - a are, in the sense of ~1 and R~, equally risky irrespec- 

tively of their location. Again, this property can be regarded 

as highly counter-intuitive. In fact, it can be deduced from 

the empirical evidence mentioned above that risk depends 

on the location of  a gamble (see Sect. 10). 

It should be noted that also most of the naive risk mea- 

sures reviewed in Sect. 2 are translation invariant. This holds 

in particular for the most important risk measures used in fi- 

nance, namely variance (3), standard deviation (4), and lower 

semivariance (7). Risk of  a random variable is measured in- 

dependent of its location. In contrast to this, Coombs'  dis- 

tributive risk model (17) as well as Pollatsek and Tversky's 

risk measure (20), are not location free. Both risk measures 

decrease if a positive constant is added to all outcomes of 

a gamble. For a short discussion of the issue of translation 

invariance of  risk measures, again, see Sect. 10. 

E.U. Weber [62, 63] investigated Luce's four assump- 

tions (22) through (25) and the properties of the risk mea- 

sures implied. Empirical evidence against translation invari- 

ance of perceived risk (see E.U. Weber [62]), first, led her 

to reject assumption (24) and therefore the risk measures 

(26) and (27). Then she pointed out (see E.U. Weber [63]) 

that the risk measure (28) can be ruled out because of its 

unreasonable behavior in the neighborhood of zero. Obvi- 

ously, this measure approaches negative infinity if, e.g., any 

positive gamble with uniform distribution is rescaled by a 

factor c~ > 0 converging to zero. 

Revising and extending Luce's  model (29), Luce and 

E.U. Weber [44] presented a new axiomaticly based risk 

model, called conjoint expected risk (CER). Like Pollatsek 

and Tversky [52], Luce and E.U. Weber start from an arbi- 

trary set ~r of  real-valued random variables, interpreted as 

gambles with (arbitray numbers of) monetary outcomes, and 

assume that the decision maker involved has a binary risk 

ordering, ~ ,  on 5K~. Then the CER model is derived from a 

certain system of axioms or assumptions on ~ .  

First, two axioms are presented which are purely tech- 

nical and could be omitted if the authors assumed that the 

domain of  the risk measure consists of  all possible random 

variables. Another axiom simply postulates that the risk mea- 

sure is well behaved near 0. A further axiom requires that 

the risk ordering fulfills certain assumptions implying the 

expectation principle, i.e., transitivity, continuity, and inde- 

pendence, well known from expected utility literature. These 

four axioms do not offer any special insight into what is spe- 

cial about the CER measure. It is a final fifth axiom which 

shapes the risk ordering. 

This axiom consists of four requirements on ~.  Let Yc and 

be two random variables in ,~: which, both, can take on 

only positive outcomes or, both, can take on only negative 

outcomes and let a, b, b ~, and b" be positive real numbers. 

Then, the first requirement of this axiom is the independence 
condition 

: c L z )  ~ a Y e S @ ,  (34) 

and 

aye L bye ~ a~? L @ '  (35) 

Condition (34) states that a change in scale does not change 

the risk ordering between random variables which, both, can 

take on only positive outcomes or, both, can take on only 

negative outcomes. The second part (35) of  the independence 

condition says that if, for any random variable which can 

take on only positive or only negative values, one scale is 

perceived as at least as risky than onother scale, then the 

same ordering holds for any other random variable which can 

take on only positive or only negative values, respectively. 

The second condition states that the ordering induced 

by independence on the positive reals R + is the ordinary 

ordering _>, i.e. 

aye ~ bye e==~ a >_ b. (36) 

Assuming independence, this condition says that the riski- 

ness of gambles which can take on only positive or only neg- 

ative outcomes is an increasing function of the scale value. 
Thus, e.g., the gamble ye -- ($15, .5;$1) is perceived to be 

less risky than the gamble 42 = ($60, .5; $4). 

As a third requirement a condition of restricted solv- 
ability is introduced which states that for any two random 

variables .~ and ~) which, both, can take on only positive val- 

ues or, both, can take on only negative values there exists a 

positive real number b such that 

b ' $ ~ a y e ~ b " ~  ~ @ ~ a y e .  (37) 

This solvability condition says that perceived risk is a con- 

tinuous function of scale changes. Note, that this solvability 

condition is different but related to the standard continuity 

assumption which is part of  the axioms which imply the 

expectation principle. 

As the fourth requirement of this axiom an Archimedean 
condition is introduced which states that for any two random 

variables ye and ~ which, both, can take on only positive 

outcomes or, both, can take on only negative outcomes there 

exists a positive real number a such that 

Y: ~- 9 ~ a9 L y:' (38) 

This condition says that given two gambles 2 and ~9 where 2 

is riskier than ~, then, by means of a sufficiently large scale 

transformation, ~ can be transformed into a gamble that is 

at least as risky as ye. 

Based on these axioms on the risk ordering ~,  Luce and 

E.U. Weber [44] prove that ~ can numerically be represented 

through the CER-model RcER(Yc) which, for any (discrete 

or continuous) random variable ye C ,~, ~ ,  is given by 

RCER(Ye) = BI dF~(x) + B2 dEc(x) 
O O  

+B3 dF~(x) + A1 Ix 
O O  

jo +A2 x~ (39) 
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where Bi, Ai, and 0i are scaling constants, Oi > 0, and Fe. 

denotes the distribution function corresponding to :L 

As a result, according to the CER-model, perceived risk 

of a "gamble" :? can be quantified by a linear combination 

of the probability of negative outcomes, the probability of 

positive outcomes, and the probability of  the zero outcome 

as well as the conditional expectation of  negative outcomes 

raised to some power 0~ and the conditional expectation of  

positive outcomes raised to some power 02. As Luce's  mea- 

sure R4, the measure RCER evaluates gains differently from 

losses and the "chance component" of  a "gamble" and its 

pure "risk component" combine additively. But, contrary to 

R4, the probabilities to win, to lose and to break even are 

additionally part of  this risk measure. For gambles with only 

positive or only negative outcomes the CER-model is equiv- 

alent to R4. Therefore, it suffers from the same behavioral 

problems as pointed out above for R4. The high number of  

scaling constants poses an additional challenge for a reliable 

assessment of the risk measure RCER. 
It should be noted that, in general, the scaling constants 

Ai and Bi of the CER-model (39) can take on negative or 

positive values, depending on the decision maker 's  risk or- 

dering. For a particular individual, these scaling constants 

can be easily estimated from a sample of observed judge- 

ments of  perceived risk. Based on their perceived risk judge- 

ments, E.U. Weber [64] estimated the parameters of the 

CER-model for several individuals. For all of these individ- 

uals she found A1 and B1 to be positive as well as A2 and 

B2 to be negative. In such cases, the probability of positive 

outcomes of a gamble as well as their conditional expecta- 

tion reduce the gamble's perceived risk and the risk measure 

(39) can take on negative values when the positive outcome 

contributions outweigh the negative outcome contributions. 

It is interesting to think about the system of axioms on 

which the CER-model is founded. All axioms make intutive 

sense, and, in addition, do not appear to be so strong. Nev- 

ertheless, these axioms imply a pretty restrictive set of risk 

measures, quite different from what we will come to know 

in the next sections. 

6 Sarin's  measures of  risk 

The purpose of  Satin's paper [53] is to extend Luce's  risk 

measures to obtain risk measures that are empirically more 

reasonable. Therefore, Sarin starts from the overwhelming 

empirical observation that the risk of a gamble appears to 

decrease when all possible outcomes are improved by a con- 

stant, i.e., when a positive constant is added to all outcomes 

of a gamble. 

Sarin's first assumption concerns the risk of the density 

f~+~ belonging to the transformed random variable ~ +/3. He 

assumes that R(f~+~) is a multiplicative function of R(f~) 
and/3. More specifically, it is assumed that there is a strictly 

monotonic function 5: with 5:(0) = 1 such that for all density 

functions f~ and all real/3 > 0 

R(f,~+~) = 5:(/3)R(f~). (40) 

Thereby, without being explicitly stated, it is assumed that 

R(fs:+~) decreases as/3 increases. For non-negative risk mea- 

sures this implies that 5:(.) is strictly decreasing. 

As indicated in the last section, Luce 's  first aggregational 

assumption (24) implies risk measures which are translation 

invariant. Holding such risk measures to be empirically not 

reasonable, Satin therefore, in his second assumption, re- 

quires that the expectation principle (25) be used to aggre- 

gate densities into single numbers. 

From these two assumptions Satin derives the risk mea- 

sure 

+OO 

R(f) = / KeCXf(x)dx = KE(e~ (41) 

- - o o  

with real constants K > 0, c < 0, or K < 0, c > 0. 

Through this measure, risk of a random variable Yc, essen- 

tially, is represented by the expectation of its exponential 

transform. 

As, for example, implicitly stated in Luce 's  assumption 

(24), it seems sensible to assume risk measures to be non- 

negative. This implies for Sarin's risk measure c < 0 and 

K > 0. Evidently, this risk measure gives higher weight 

to a gamble's potential losses than to its potential gains. 

Because of assumption (40), Satin's risk measure does not 

suffer the last critizism of Luce's  risk measures, it is not 

location free and, in particular, decreases under translations 

with increasing/3. Furthermore, it can be easily shown that 

it increases with the scale factor c~ under rescaling. 

Weber [68[, contrary to Sarin advocating translation in- 

variance of  risk judgements, presents an extension of  Sarin's 

risk measure (41). To make this measure location free he 

suggests, first, to "normalize" gambles by substracting their 

respective expected values, i.e., to transform all random vari- 

ables ~ to the "normalized" variables 

~' = ~' - E(~) .  (42) 

The "normalized" random variables all have zero mean and 

reflect the risk of  the original distributions with reference to 

their expectation. Thereby, the expectation serves as a tar- 
get outcome such that every outcome whose value is smaller 

than the expectation is viewed as undesirable or risky, while 

outcomes with values as large as the expectation are desir- 

able or nonrisky. 

Weber's location free variant of  Sarin's risk measure (41) 

is then given with 

+ o o  

R'(f) = I KeC(~-e('+))f(x)dx = KE(eC~')' (43) 

o o  

with real constants K > 0, c < 0 . Through this measure, 

risk of a random variable Yc, essentially, is represented by the 

expectation of  the exponential transform of its normalized 

version Y~'. Weber points out that for normally distributed 

random variables the measure (43) and the variance (3) yield 

the same risk ordering of lotteries. In Sect. 9 will be shown 

that (43) can also be derived using a quite different way of  

arguing. 

Sarin's risk measure (41) as well as Luce's  risk mea- 

sures R3 and R4 use the expectation principle for aggregat- 

ing densities into single numbers. This principle implies that 

resulting risk measures are linear in probabilities. I.e., if, for 

0 < 0 < 1, the gamble with 0 chance of  obtaining density 
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f and (1 - 0) chance of obtaining density fo is denoted by 

Of + (1 - O)fo, we have 

R(Of + (1 - O)fo) = OR(f) + (1 - O)R(fo). (44) 

Thus, if f and 9 are judged to be equally risky, then all the 

gambles Of + (1 - O ) f o  and 09 + (1 - O ) f o  will also be judged 

equally risky. In other words, if the expectation principle is 

used for aggregating densities into risk numbers, then, for 

any given distribution fo, the risk function is, between fo 
and any other distribution f ,  independent of f as long as f 

belongs to a set of  distributions with some given risk level. 

It is well-known that linearity in probabilities is a pretty 

strong requirement when preferences are modelled. In deci- 

sion theory under risk quite a number of new theories has 

been developed to overcome this strong requirement implied 

by the expectation principle (for an overview see Weber and 

Camerer [69]). In the spirit of the generalization of  expected 

utility theory by Machina [45], Sarin generalizes Luce's  ex- 

pectation assumption (25) to 

J J 1 
R(f) = r (x ) f ( x )dx  + S(I x I)f(x)dx] 2. (45) 

- - 0 0  - -  0 0  

Thereby, T(.) is a real function and S(.) is that strictly mono- 

tonic function the existence of which is postulated in Luce's  

assumptions (22) and (23), as well as in Sarin's assumption 

(40). In this generalized expectation form of a risk measure 

the "local" risk function depends on the gamble. As a con- 

sequence, even if two densities f and g are equally risky, 

Of + (1 - O)fo and 09 + (1 - O)fo may not have equal risk. 
Sarin points out that the generalized expectation assump- 

tion (45) can, just as Luce's  expectation assumption, be com- 

bined with different structural assumptions to derive alterna- 

tive measures of risk. Combining the generalized expectation 

assumption, in turn, with Luce's  structural assumptions Sarin 

gets two new families of risk measures. Combining it with 

the additivity assumption (22) he obtains the risk measure 

oo 0 

R(f) : Bl f f(cc)dx + B2 f f(z)dz 

0 - - a c  

+AE(Iog l x I ) -  ~AZvar(l~ x I) (46) 

with some constants BI,  B2, and A > 0. Combining it with 

the multiplicativity assumption (23) he receives the risk mea- 

sure 

oo 0 

R(f) = B e / x ~  B2 / IX I ~ f(x)dx 
~2 

0 - - 0 0  

~var( I x I~ (47) 

It should be noted that in the generalized risk measures 

(46) and (47) of Sarin as well as already in Luce's  risk 

measures (28) and (29) potential gains and potential losses 

are treated separately. This seems to be in accordance to 

observed differential preference attitudes towards gains and 

losses. Sarin stresses the fact that empirical data will be 

needed to test the validity of  the generalized expectation 

principle and the corresponding generalized risk measures. 

7 Fishburn's  measures  of  pure risk 

Various empirical studies have demonstrated that prefer- 

ence attitudes towards gambles exhibit striking differences 

in the loss and the gain regions (cf. Fishburn and Kochen- 

berger [31], Hershey et al. [33], Kahneman and Tversky 

[35], Laughhunn et al. [40], Payne et al. [50, 51]). Although 

the association of  preferences between probability distribu- 

tions with the distributions' risks is far from being clear, 

it seems reasonable to assume that these differences also 

play an important role in risk assessments. Furthermore, ex- 

periments with monetary gambles have convincingly shown 

the salience of  loss probability and loss amount on perceived 

risk (cf. Aschenbrenner [5], Coombs and Lehner [25], Payne 

[49], Slovic [57]). Based on these observations, Fishburn, in 

his Foundations of Risk Measurement [29, 30], developed 

theories of risk in which gains and losses are treated sepa- 

rately. In the first part of his study, Fishburn focusses on risk 

as probable loss, i.e. on what is usually called pure risk. In 

the second part, measures of risk are proposed that include 

effects of gains on perceived risk. 

In the first part of his study, Fishburn is guided by the 

conventional wisdom that risk is a chance of something bad 

happening, that risk arises from the possibility of undesired 

outcomes. As Pollatsek and Tversky, Fishburn's theory of  

risk is based on a binary risk relation ~ ,  "is at least as risky 

as", defined on a set of probability distributions of some 

outcome values. From the standpoint of measurement theory, 

this relation is to be represented by a numerical risk measure. 

Similar to the way Pollatsek and Tversky derive their risk 

measure, Fishburn's measures are a direct consequence of 

the axioms the risk relation is fulfilling. 

In the spirit of  most of the classical risk measures used 

in finance and of  Luce's  assumption 24, Fishburn implicitly 

adopts the position that risk judgements are location free. 

Therefore he presumes that some target outcome can be iden- 

tified so that every outcome whose value is smaller than the 

value of the target is viewed as undesirable or risky, while 

outcomes with values as large as the target's are desirable 

or nonrisky. Without loss of generality, for convenience, the 

value of  this target outcome is set at zero. Fishburn regards 

a distribution as having zero risk if and only if it has no 

chance of delivering a outcome below zero. 

More specifically, Fishburn starts from the assumption 

that all possible outcomes are ordered by preference and 

represented numerically so that one outcome is preferred to 

another if and only if the former has a larger value. Let X 

denote the (non-empty) set of all possible outcome values. 

Non-zero outcome values are partitioned into undesirable 

and desirable subsets as X -  := {x E X ] x < 0} and 

X + := {x C X ] x > 0}.  The outcomes in X -  ( X -  ~ 0 

by assumption) are referred to as losses, and the outcomes 

in X § as gains. 

Probability distributions of X are defined on the (7- 

algebra of subsets of X generated by all singletons and 

"intervals" of  outcomes. With regard to its pure risk ev- 

ery probability distribution of X is characterized by the pair 

(a,p) ,  where the parameter a,  0 _< a _< 1, gives the loss 

probability of that distribution and p is its conditional dis- 

tribution, given a loss. The pair (a, p) is to be interpreted as 

a two-dimensional measure that yields the probability of a 
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subset Y of X -  as ap(Y).  Then, the binary risk relation 

is applied to the set 

A := [0, 1] x P := {(a ,p)  I 0 < a < 1,p E P - } ,  (48) 

where P -  is the set of all probability measures p with 

p(X- )  = 1. By identifying every outcome value x �9 X -  

with (1,p) where p({x}) = 1, this set contains all determin- 

istic losses. 

The risk relation ~- defined on A is assumed to be a 

weak order, i.e. strictly complete and transitive. Then, for 

a first basic representation theorem, Fishburn uses four ax- 

ioms. Among these a continuity axiom and an axiom that 

states that for every measure in P - ,  some deterministic toss 

is at least as risky as the measure. Another axiom states that 

risk increases as the loss probability increases for fixed p, 

another one that worse outcomes entail greater risks. The 

latter axioms seem reasonable in view of the common per- 

ception that risk increases as bad outcomes become more 

probable, and as probable bad outcomes get worse. In his 

first basic representation theorem, Fishburn shows that there 

is a non-negative real-valued function p on A with 

(a,  p) ~ (a ' ,  p ' )  r p(a,  p) > p(a', p') (49) 

which has p(a,p) = 0 if and only if a = 0, and is continuous 

and increasing in a.  

Three additional axioms yield what Fishburn calls a-p- 
separability, namely the existence of real-valued functions 

Pl on [0,1] and P2 on P -  such that 

p(a,p) = p l ( a ) '  P2(P) (50) 

Thereby, the function Pl is continuous and increasing in a 

with p~(0) = 0, and the functional P2 is, restricted to one- 

point-distributions Px over X - ,  increasing as x decreases. 

Certain combinations of additional axioms, then, yield 

special forms of  risk measures of the multiplicative separable 

type (50). Fishburn axiomizes risk measures of  type 

p(a ,p )  = p l ( a )  { pz(x)dp(x), (51) 

x 

p(a,p) = a { p2(x)dp(x), (52) 

x -  

and 

p(a,p) = pl(a) f Ix I ~ dp(x), (53) 

x -  

where 0 is a real parameter, 0 > 0. With all of these types 

of risk measueres, each outcome x is identified with the 

one-point measure Px and integration is Lebesque-Stieltjes- 

integration. 

In a further theorem, Fishburn gives conditions for the 

representation of  ~ by a risk measure of the expectation 

type 

p(a,p) = /"  p(a, x)dp(x). (54) 

x 

This corresponds to the expectation principle (25) used by 

Luce and Satin as aggregational assumption. 

These families of  risk measures contain some of  the 

naive risk measures listed in Sect. 2 as special cases. In the 

family (53) of risk measures, the choice Pl (a) = a together 

with 0 = 1 yields the expected value of  loss (8) of  a ran- 

dom variable; the choice pl(a) = a together with 0 = 2 

leads to the lower semivariance (7) of a mean-centered ran- 

dom variable. Furthermore, the family (53) of  risk measures 

with p l (a)  = a is contained in Stone's family (10), if one 

chooses there p(F) = q(F) = 0. The risk measures (52) and 

(53) obviously are special cases of the more general familiy 

(51). With the choice p l (a)  -- a,  the family (51) yields (52), 

with the choice pZ(x) =1 X I 0 it yields (53). With the choice 

pa(a) =-- a, the family (53) leads to the risk measures (12) 

which Fishburn considered in his earlier paper [28]. 

8 Fishburn's measures of speculative risk 

In the second part of  his Foundations of Risk Measurement 
[29], Fishburn considers measures of  risk that explicitly in- 

clude effects of  gains on perceived risk. He adopts the po- 

sition that increased gains reduce the risk of  fixed probable 

losses without completely negating this risk. Thus he fo- 

cusses on what is usually called speculative risk. Speculative 

risk measures, generally, are to incorporate the consensus 

that risk increases as loss probability or amount increases, 

and that greater gains as well as greater gain probabilities 

reduce perceived risk. As Fishburn's theory of pure risk, his 

theory of  speculative risk is based on a binary risk relation 

~ ,  "is at least as risky as", defined on a set of probability 

distributions of  some outcome values. Again, this relation is 

to be represented by a numerical risk measure. 

As in his first study, Fishburn starts from a non-empty 

set X of numerical outcome values that includes a non- 

risky target outcome. Without loss of generality, the value 

of  that target outcome is set at zero. As above, the set of  all 

non-zero outcomes is partitioned into an undesirable subset 

X of losses and a desirable subset X + of  gains, each of  

which is assumed non-empty. Furthermore, it is assumed 

that outcome preference increases in x. 

Again, probability distributions of  X are defined on the 

a-algebra of  subsets of  X generated by all singletons and 

"intervals" of  outcomes. With regard to its speculative risk 

every probability distribution of X is characterized by the 

quadrupel (a, p;/3, q), where, as above, the parameter a ,  0 _< 

a _< 1, gives the loss probability of that distribution and p 

is its conditional distribution, given a loss. The parameter 

/3, 0 _</3 _< 1, gives the gain probability of  that distribution 

and q is its conditional distribution, given a gain. Hence, 

the probability for the target-outcome {0} equals 1 - a - 

p. The quadrupel (a,p;/3,q) is to be interpreted as a four- 

dimensional measure that yields the probability for a subset 

Y of  X -  as ap(Y), and the probability for a subset Z of  

X + as/3q(Z). 

Then, the risk relation is applied to the set 

B = {(a,p;/3, q)]a,/3 > O,a+/3 < 1, 

p E P - , q  �9 P+} ,  (55) 

where P -  is defined as above, and P+ is the set of  all 

probability measures q with q(X +) = 1. By identifying every 

outcome value x �9 X -  with (1,p) where p({x}) = 1 and 
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every outcome value x E X + with (1, q) where q({z}) = 1, 

this set contains all deterministic losses and gains. 

Also in this generalized case, the risk relation ~ defined 

on B is assumed to be a weak order. Then, Fishburn presents 

sufficient conditions for a basic representation of ~ by a 

non-negative real-valued function R on B that has 

R(c~,p;3, q) = 0 ~ c~ = 0 (56) 

and satisfies, for all (c~,p;/3, q), (7, r; 6, s) E B 

(c~,p;3, q )~ ( ' , / , r ;6 , . s )  .: ;. 

R (c~,p;3, q) > R(7,  r;6, s). (57) 

It should be noted that, according to condition (56), there 

is no risk if and only if there is no chance of getting an unde- 

sirable outcome. Therefore, this condition rules out measures 

of risk that are additively separable in gains and losses in 

the sense of  

R(O~, p ;  3 ,  q) = R1 (OZ, p )  -t- R 2 ( 3 ,  q ) ,  (58)  

with a gain part R2 and a loss part RI.  

Condition (56) has two interesting empirical implica- 

tions. According to that condition, every sure loss (o~ = 1) 

has non-zero risk and is therefore regarded as risky. In addi- 

tion, every 50 - 50 gamble of  receiving the target outcome 

or some amount above the target outcome (ct = 0) has zero 

risk and is therefore regarded as riskless. Both properties are 

highly controversial, as can be verified in any class-room ex- 

periment. 

For a first representation theorem, Fishburn uses five ax- 

ioms. Among these are a continuity condition for loss and 

gain probabilities and an axiom which asserts some suitably 

bad outcome which is at least as risky as a given p E P - .  

The third axiom states the commitment to no risk when there 

is no chance of loss. The first two axioms assert monotonic- 

ity for gain and loss probabilities and for gains and losses, 

respectively. These axioms are in accordance with the con- 

ventional notion of speculative risk. In his representation 

theorem, Fishburn shows that there is a non-negative real- 

valued function R on B satisfying conditions (56) and (57) 

that is continuous and increasing in loss probability as well 

as continuous and decreasing in gain probability when the 

loss probability is positive. 

In Fishburn's study a series of further axioms is formu- 

lated. Certain groups of axioms assure special types of risk 

measures. According to commitment (56), only such repre- 

sentations are considered which are multiplicatively separa- 

ble in a risk-part quantifying an option's pure risk and a 

chance-part expressing an option's potential gain. In his ap- 

proach, Fishburn essentially follows conventional conjoint 

measurement (cf. Krantz, Suppes, Luce, and Tversky [39]). 

The axiomatized types of risk measures include 

R(c~, p; 3, q) = p(c~, p)T(3, q), (59) 

/ / _R(c~,p;3, q) = [ p(c~, x)dp(x)][ 7-(3, y)dq(y)], (60) 

X- X + 

R(ct,p; 3, q) = [Pl(O~) / p2(x)dp(x)] 

X -  

• [ 1 - ~-1 (/3) / ~-2(y)dq(y)]. (61 ) 

X + 

These types of risk measures get more and more special- 

ized. The family (59) has the basic multiplicatively separable 

form. The second is a specialization using the expectation 

principle for the risk-part as well as for the chance-part. 

The third family (61) goes a step further by separating out 

the effects of loss and gain probabilities. Assuming that the 

indifference relation ~ implied by the risk relation ~ is pre- 

served under uniform rescaling of  outcomes in his pure risk 

setting Fishburn, finally, arrives at the risk measure 

R(c~,p;3, q) = [pl(c~) f ] x  10 dp(x) 

X -  

T1(3) / Tz(y)dq(y)]. (62) x [1 

X + 

The central idea of all these families of speculative risk mea- 

sures is that gains reduce risk in a proportional way that is 

independent of  the particular (a, p) involved, unless c~ = 0, 

in which case there is no risk to be reduced (cf. Fishburn 

[29, p. 228]). 

The risk measure (62) is the most specific risk mea- 

sure axiomatized by Fishburn. For deducing this measure he 

refers to no less than 19 axioms. Fishburn [29, p. 242] him- 

self doubts the importance of his axiomatization: "I wish I 

could say that the axiomatization for this measure was el- 

egant, straightforward, and convincing, but this is clearly 

absurd in view of the number of axioms used ... and the 

tentative nature of some of them for perceived risk." 

9 Risk defined through utility 

In the literature reported so far, mixing measurement of  per- 

ceived risk with preference measurement has been rather 

carefully avoided. Jia and Dyer [34] take a different ap- 

proach. As with other authors before their objects of risk 

measurement are (discrete or continuous) random variables 

which are regarded as lotteries or gambles with (arbitrary 

number of) monetary outcomes. Like Fishburn, they believe 

that mere risk judgements are a "relative matter" and should 

be independent of location. Jia and Dyer therefore presume 

that the perceived riskiness of a lottery is evaluated with ref- 

erence to a certain target level and advocate that the expected 

value of a lottery should serve as such a reference point for 

identifying relative gains and losses. Furthermore, Jia and 

Dyer believe that the expectation principle (25) should be 

used as aggregation rule. 

Jia and Dyer [34] start from a convex set ~ of proba- 

bility distributions over a nonempty set X of  possible out- 

comes. Each probability distribution is identified with the 

corresponding random variable .~. To end up with a location 

free "standard measure of risk", Jia and Dyer first like Weber 

[68] (cf. Sect. 6) "normalize" gambles by substracting their 

respective expected values E(:~). As mentioned above, the 

"normalized" variables 

~' =~ E(~). (63) 

all have zero mean and reflect the risk of the original distri- 

bution with reference to the target outcome E(Yc). 
As domain of the risk ordering ~ ,  then, Jia and Dyer 

take the set 
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~-o = {~, I Yc' = Y: - E(:~), 9 E ~ }  (64) 

of all normalized random variables induced by ~ .  Com- 

paring the asymmetric part ~ of  the risk ordering with the 

decision maker's strict preference ordering >-p on ~ o ,  they 

assume that there is an inverse relationship between m and 

b-, in the sense that for all 9 ' ,  ~)' C ~ o  holds 

Y~' >- 9 '  "', :" Y:' -<p Y ' .  (65) 

Supposing that the preference relation ~-p satisfies the 

axioms of  the Expected Utility Model, Jia and Dyer define, 

for any :~ E ~ their s t a n d a r d  m e a s u r e  o f  r i sk  by 

R(Y~) = -E[u(Y: ')]  = - E [ u ( ~ c  - E(Y:))] (66) 

where u is the decision maker 's  yon Neumann-Morgenstem 

utility function. As well as the utility function, R is unique 

up to positive affine transformations. Under the assumptions 

(65), for this risk measure holds 

:~' ~- ~' r R(Yc') > R(~ ' ) .  (67) 

Because the standard measure of risk is only unique up 

to positive affine transformations it can always be rescaled 

such that all degenerate lotteries have zero risk. This can be 

achieved by setting 

R'(Y:) = R(Y:) - R(0) = R(Y:) + u(0). (68) 

One advantage of the standard measure of  risk is that it 

does not impose any restrictions on the set ~ of random 

variables on which the risk ordering is defined or the form 

of the decision maker's utility function u. Through its quite 

general definition, this measure of risk allows for a number 

of different risk measures thus giving less structure than the 

risk measures presented in the earlier sections. 

The main advantage of  the standard measure of risk is 

that it can be easily incorporated into a risk-value framework 

which allows the derivation of a measure of perceived risk. 

Jia and Dyer [34] show that if the axioms of  the Expected 

Utility Model hold and if, in addition, a certain condition of  

r i sk  i n d e p e n d e n c e  is fulfilled the decision maker 's  expected 

utility E[u(:~)] allows the decomposition 

E[u(Y:)] = u(E(Y: ) )  - r (69) 

where r is a monotonically decreasing positive real function. 

This decompositon shows that the expected utility E[u(~)] 

of a risky random variable :~ is equal to the utility of  its 

expectation which is, because of the riskiness of :~, reduced 

by an amount proportional to the rescaled standard measure 

of  risk. Tbereby, 4)(E(Yc)) can be interpreted as a trade-off 

factor between "value" u(E(9 . ) )  and "risk" R'(:~). 

Jia and Dyer suggest to consider the "risk"-part of  (69) as 

a measure of the "intensity of the risk effect on preference" 

and, therefore, to use it as a measure of perceived risk. As 

already mentioned in Sect. 5, there is empirical evidence that 

subjects' perceived risk decreases if a positive constant is 

added to all outcomes of  a lottery. For that reason, the trade- 

off function 4) should be decreasing. 

Jia and Dyer 's  measure of perceived risk is given with 

R*(Y~) : 4)(E(:~))R'(Yc) : 4)(E(~))[R(Y:) - R(0)] ,  (70) 

where 4) is a monotonically decreasing positive real func- 

tion. This measure of perceived risk keeps the appealing 

properties of the standard measure of risk (66). It is zero 

for degenerate lotteries, i.e. for lotteries with a single sure 

outcome, and adding a positive constant to all outcomes of 

a given lottery decreases its risk. 

The risk measure (66) obviously depends on the decision 

maker's utility function. If  one takes, e.g., u to be a linear 

plus exponential utility model, u ( x )  = a x  - be - ~ x ,  where 

a > 0 and b, c > 0, then the corresponding standard measure 

of risk (66) is given with 

R(Y:) = bE[e -C(~-E(~ ) ) ]  . (71) 

Note that the linear term of the utility function has no effect 

on the standard measure of  risk. 

Rescaling of  the measure (71) according to (68) such that 

degenerate lotteries have zero risk leads to the risk measure 

R'(Y:) = b E [ e  - c (~ -E(~) )  - 1]. (72) 

The standard risk-value model (69) corresponding to the lin- 

ear plus exponential utility model, finally, implies the risk 

m e a s u r e  

R*(Yc) = b e - C E ( ~ ) E [ e  -c (~-E(~) )  - 1], (73) 

where, obviously, r = e -~x is a monotonically decreasing 

positive real function. The measures (71), (72), and (73) 

of  perceived risk all have the appealing properties of the 

standard measure of  risk (66). They are zero for degenerate 

lotteries, they fit into the standard risk-value model (69), and 

adding a positive constant to all outcomes of  a given lottery 

decreases its risk. It should be noted that these risk measures 

are closely related to Sarin's measure (41) and to Weber's 

measure (43). 

10 Empirical research on risk judgements 

There are quite a lot of empirical studies investigating judge- 

ments of  perceived risk. For more comprehensive overviews 

see Keller [36], E.U. Weber and Bottom [65] and Weber 

[68]). Much of the empirical evidence stated in the sequel 

has been gained through studies investigating the reasonable- 

ness of  one or more of the risk measures presented above or 

their respective axioms. 

Overall these studies show that there is no model which 

is clearly superior to all the others in modelling risk judge- 

ments. However, there are some results which appear to be 

pretty stable across different empirical studies. 

�9 S u b j e c t s  c a n  g i v e  r e l i ab l e  r i sk  j u d g e m e n t s .  

A standard argument against measuring the riskiness of  gam- 

bles is that subjects might not know what the riskiness of  

a gamble means to them. However, empirical studies have 

shown that subjects have a definite notion about the per- 

ceived riskiness of gambles and can give reliable risk judge- 

ments. Subjects were asked to rate alternatives according 

to their perceived riskiness twice. Ratings which were done 

two weeks later were remarkably identical to the original rat- 

ings. Even a cross cultural comparison yielded nearly iden- 

tical results in those judgements. Keller, Satin and Weber 

[37]) compared risk judgements for lotteries from students 

in California and Germany. The average judgements were 
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practically identical. In addition, the degree to which these 

risk judgements followed certain basic properties, e.g., de- 
creasing under positive translations, or disconfirmed some 

measures, e.g., Luce's logarithmic measure (28), was the 

same for both groups. 

�9 Risk is not just  negative preference. 

A number of studies has shown that risk judgements cannot 
be easily explained as negative preference (see, e.g., Luce 

and E.U. Weber [44], Payne [49], and E.U. Weber and Bot- 

ton [65]). E.U. Weber, Anderson, and Birnbaum [67] asked 
people to judge the riskiness and the attractiveness of lotter- 

ies. They found that both ratings were negatively correlated. 

However, the two tasks showed systematic differences in 
the rank order of judgements, thus indicating that perceived 

riskiness and preference are two distinct concepts. 

�9 Risk is not represented by variance. 

Consider the three two-outcome gambles 91 = ($10, .5, $ - 

10), 92 = ($20, .2, $ - 5), and 93 = ($5, .8, $ - 20), which 
all have equal mean and variance. Coombs and Bowen [22] 

as well as Keller, Sarin and Weber [37] found that subjects, 

asked about riskiness judgements, consistently judge 93 or 92 

to be more risky than 91- This finding shows that a classical 
risk measure such as the variance is, in general, not suitable 
to numerically represent a risk ordering. 

�9 Risk increases with an increase in variance or expected 

loss. 

To empirically test their distributive model (17), Coombs 

and Huang [23, 24] asked people to judge the riskiness of 
different two-outcome gambles (y, p, z) with uniform prob- 

abilities, i.e. with p = 0.5. Thereby they clearly found that 

perceived risk of a lottery increases when variance or ex- 

pected loss of the lottery are increased. This finding implies 
that, in particular, perceived risk of a lottery increases when 

the range of the lottery is increased or when all outcomes of 

the lottery are multiplied by a constant with absolut value 
greater than one. Together, the last two results mean that an 

increase in variance is sufficient but by no means necessary 
for an increase in perceived risk. 

�9 Risk decreases under positive translations. 

Testing their distributive model (17), Coombs and Huang 

[23, 24] also found that perceived risk of a lottery decreases 

under positive translations, i.e., if a positive constant is added 
to all outcomes of a gamble. This result has been confirmed 

by the study of Keller, Sarin and Weber [37]. Appearently, it 

indicates that people's risk judgements are not location free. 
As mentioned in Sect. 6, this empirical finding has been the 

starting point for the derivation of Satin's risk measure (41). 

However, there is some doubt if these studies really 

elicited pure risk judgements. It cannut be excluded that peo- 
ple not strictly separated risk from preference judgements. 

For that reason, e.g., Weber [68] suggests to use Sarin's 

risk measure in the location free form (43). As mentioned 

in Sects. 8 and 9, also Fishburn as well as Jia and Dyer 

maintain the attitude that risk measures should be transla- 
tion invariant. 

�9 Risk increases if a gamble is repeated several times. 

Repetition of gambles, up to now, has explicitly only been 
treated within Coombs psychophysics of risk (cf. Sect. 3). 

Using different two-outcome gambles (y, p, z) with uniform 

probabilities, i.e. with p = 0.5, Coombs and Meyer [26] have 
shown that the risk of a lottery increases when it is played 

several times. However, as mentioned in Sect. 5, many psy- 

chologists believe that the risk of a gamble that is repeated 
n times is less than n times the risk of the gamble played 

once. 

�9 The expectation principle may be violated. 

Keller, Sarin and Weber [37] elicited subjects' risk judge- 

ments where the gambles presented were those introduced by 
Allais [4] leading to the well-known Allais-paradoxa. They 
found that subjects violate the expectation principle. How- 

ever, these violations occur less frequently than for prefer- 

ence judgements (E.U. Weber and Bottom [65]). 

�9 Risk judgements additivly combine loss and gain compo- 

nents o f  gambles. 

E.U. Weber and Bottom [65] have shown in two experiments 

that there is little support for Fishburn's multiplicative com- 

bination of risk measures depending on gains and losses. The 
experimental results can be explained by the CER-model of 

Luce and E.U. Weber [44]. 

11 Risk measurement under partial 
probability information 

All of the risk measures discussed so far refer to the riski- 

ness of alternatives that can be described by precise proba- 
bility distributions over possible one-dimensional outcomes. 

In practice, however, situations of partial probability infor- 

mation are prevailing. Such situations of "partial ignorance" 
(Luce and Raiffa [43]) or "ambiguity" (Ellsberg [27]) are 

simply characterized by uncertainty about probabilities of 

outcomes. 
A well-known example of a decision situation under par- 

tial probability information is Ellsberg's [27] so-called three- 
colour-problem. In this problem, an urn containing 90 balls 

is presented. 30 of these balls are known to be red. The 

remaining ones are known to be black or yellow, but with 
unknown proportion. From this urn, exactly one ball is to 

be drawn randomly. The alternatives are different bets on 

colors or pairs of colors, respectively. In this situation, ob- 
viously, the probability of red is 1/3 and the probabilities 

of black or yellow are known to be between 0 and 2/3 but 

uncertain. Camerer and Weber [17] point out the relevance 
of ambiguity for a wide range of professions and disciplines. 

They give a review of models that have been proposed to 

accomodate ambiguity. 

There is some empirical evidence that in practical eco- 
nomic situations under partial probability information, e.g. 

project evaluation, decision makers use some sort of gener- 
alized mean-risk decision rule (cf. Brachinger and Schubert 

[15]). Modelling that kind of decision behavior presupposes 

a theory of risk under conditions of partial probability infor- 
mation. Based on the emprical evidence that already guided 
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Fishburn's risk study (cf. Sect. 8), Brachinger [10, 14] devel- 

oped a theory of risk under conditions of partial probability 

information in which gains and losses are treated separately. 

First, a theory of pure risk under partial probability informa- 

tion is developed where only potential losses are affected. 

Then, measures of speculative risk are proposed that allow 

for effects of potential gains on perceived risk. 

Brachinger starts from the idea of a m-dimensional vec- 

tor X = (xl, �9 �9 �9 x~,~) E I~ m of possible outcome values, 

m >_ 2. Partial  probabili ty information on X is covered by 

any (non-empty) subset ~ ,  with ] ~ ]> 1, of  the set 

:= {P = ( P l , . . .  ,Pro) t I Pi ~ O, Z p  i = 1} (74) 

i=1 

of all m-dimensional discrete probability distributions, Pi = 

p(xO.  Thereby, ,~/~ is to be interpreted as the set of all prob- 

ability distributions compatible with the available informa- 

tion on the likelihood of  the outcomes of X.  In Ellsberg's 

three-colour-problem, e.g., partial probability information is 

covered by 

= {P ]Pl  = ~ A P2 = A A P3 = 5 -  A ;  A C [0, ]} .(75) 

The most important practical cases of  partial probability 

information are those where the decision maker is able to 

(not necessarily completely) rank the outcomes of a given 

vector according to their likelihood or where he or she dis- 

poses of  interval-valued probabilities of  these outcomes. It 

can be shown that in all of these cases the probability infor- 

mation ~/~ is linear in the sense that it allows a description 

/ ~ = { p E ~ l B p > _ b }  , ( 7 6 )  

where B is a (k x m)-dimensional matrix and b is a k- 

dimensional vector. 

According to the idea of  partial probability information 

on a finite-dimensional vector of  possible outcomes the the- 

ory of risk under partial probability information is, for any 

given finite dimension m, formulated in terms of  the set of  

all pairs (X, ~J~), where X ~ N~  is an m-dimensional vector 

of  potential outcome values and ~ c ~ a partial prob- 

ability information on X.  As Fishburn, Brachinger adopts 

the position that risk judgements are location free. There- 

fore, he presumes that some target value can be identified 

so that every value smaller than the target value is viewed as 

risky and is called a loss. Every value as large as the target 

value is viewed as non-risky and is called a gain. Without 

loss of generality, for convenience, this target value is set 

at zero. Furthermore, it is assumed that outcome preference 

increases in x. 

Each vector X = (x~ , . . . ,  x,~) E I~ ~ is decomposed into 

its corresponding loss vector given by 

X + := ( z ] - , . . . ,  + Xm) 

:= (X+(-x~)  " - X l ,  . . . , ) t + ( - x , O  �9 - x ~ )  , (77) 

and its corresponding gain vector given by 

X :=(x~-,... ,x~) 

:---- ( ~ + ( X l ) ' X l , . - - ,  ~+(Xm)" X~r~) , (78) 

where X+ is the characteristic function of  the positive reals. 

For every vector X ~ Nm, its loss vector X + and its gain 

vector X are m-dimensional vectors with non-negative 

components, X +, X -  E N~.  The loss vector summarizes 

all potential losses and the gain vector all potential gains of  

a given vector. 

With regard to its pure risk every pair (X, ~ )  is charac- 

terized by the corresponding pair (X +, :~) .  I.e., objects of  

the theory of pure risk under partial probability information 

are all pairs (X +, ?~), where X + E IR~'~ is an m-dimensional 

vector of potential losses and 22~ C , ~  a partial probabil- 

ity information. Each pair (X +, :~/~ c IR~+ x p ( ~ )  will be 

called risk vector. 

The theory of pure risk under partial probability infor- 

mation is based on a binary risk relation ~ ,  "is at least as 

risky as", defined on I ~  • p ( ~ ) .  This relation is assumed 

to be a quasi-order, i.e. reflexive and transitive. In a first 

axiom it is required that a risk vector is riskless if and only 

if there are no potential losses. In two further axioms, the 

two components of  risk vectors are reflected on separately. 

A potential loss is the greater the more the corresponding 

outcome value deviates from the target value. According to 

that it is assumed that of two risk vectors with identical 

probability components one is riskier than the other if the 

loss vector of the former dominates the loss vector of the 

latter. 

According to conventional notion, risk increases as the 

chance of  losses increases. In its intuitive sense, risk is the 

worst that can happen under given conditions. In the case of  

a partial probability information ,r given a specified loss 

vector X +, the "worst that can happen" is that probability 

distribution p E 2))~ which maximizes loss expectation. This 

leads to the claim that of two risk vectors (X +, ?~/~1) and 

(X +, ?/~) with identical loss vectors X + one is riskier than 

the other if 

77~ m 

X + sup Z x + p i ( > _ ) s u  e Z iPi  (79) 
pE/~q i=1 pE;~f i=1 

Finally, in a further axiom it is supposed that rescaling 

of the outcome values lets the risk relation ~ invariant. 

The risk relation ~ is not assumed to be complete and 

can, beyond the structure fixed by the above axioms, be 

quite arbitrary. The intersection of all risk relations ~- on 

1I~+ x p ( ~ )  is the smallest relation fulfilling these axioms. 

Therefore, Brachinger presumes that a risk measure should 

be a nonnegative, real-valued mapping 

R . ~ +  • ~( ,~/~)  ~ R~+ (80) 

which numerically represents the intersection of all risk rela- 

tions ~ on R~+ • ~ ( ~ ) .  According to the first axiom on the 

risk relation ~ it should be equal to zero if and only if a risk 

vector's loss component is identical to the null vector. Fur- 

ther, analogous to Luce's  theory of risk, it is assumed that 

the risk JR(X + , / ~ )  of  a risk vector (X +, ~ )  with rescaled 

loss component, X + :-- c~X +, is some function of  the risk 

JR(X +, ~ )  and c~. More specifically, corresponding to equa- 

tion (23) it is required that, for all risk vectors (X +, ~7o~) and 

all c~ > 0, there is a real function S with S(1) = 1 such that 

R ( X  2, ~ )  = S ( o O R ( X  +, , ~ )  . (81) 

Thereby, S should be increasing and continuous. 
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Finally, according to the generally accepted conception 
that risk measures should have a kind of expectation prop- 
erty, it is assumed that, for all risk vectors (X § d/z), there 

is a real function T with 

R ( X  +, s~)  = T ( E ~ / ( X + ) )  , (82) 

where, for any random variable ~, 

:= sup ~ p i x ~  �9 E~(37) (83) 
PC'~  i 

From these assumptions Brachinger derives the risk mea- 
sure 

m 

R~2(X +, ~/~) = k , ~ ( X  +, 2/))k: := k,(supEx+pi)k2 (84) 
P6'~/' i=1 

where kl, k2 are positive real constants. Equation (84) shows 

that measurement of pure risk under partial probability in- 

formation by means of a measure R ~  is measurement on a 

log-interval scale. 

In a second part of  his study, as in Fishburn's "Founda- 
tions of Risk Measurement", Brachinger considers measure- 

ment of  speculative risk where risk-reducing effects of gains 

on perceived risk are explicitly taken into account. Based on 
empirical results provided by E.U. Weber and Bottom [65] 

and similar as in Luce and E.U.Weber 's  risk measure (39), 

but contrary to Fishburn's multiplicativity assumption (56), 
it is started off from the idea that positive and negative com- 

ponents of  a vector of outcome values, i.e. possible gains and 

losses are combined additively to arrive at judgements of its 
riskiness. 

With regard to its speculative risk every pair (X, ;~/~ 
is characterized by the corresponding triple (X +, X - ,  :J/c). 

I.e., objects of the theory of speculative risk under par- 

tial probability information are all generalized risk vectors 

(X +, X - ,  ~ ) ,  where X +, X -  6 N~'+ are m-dimensional 
vectors of potential losses or gains, respectively, and :)/~ C 

~ is a partial probability information. 
Analogous to the axioms for pure risk measurement, the 

axioms for speculative risk measurement under partial prob- 

ability information are based on a binary risk relation 

defined on IR0" ~ x IR0" ~ x P(,~/)z), which is presumed to be 
a quasi-order. In a first axiom a certain kind of continuity 

is assumed by requiring that there is, for any measure R of 
pure risk, a real constant 2 />  0 with 

(X +, X - ,  ~ )  ~ (0, O, ~ )  r 

R ( x - ,  y~) = 2 /R(x  +, .~) .  (85) 

By this constant the decision maker ' s  risk attitudes are charc- 

terized. Risk-lovers prefer 2 /<  I, risk-averters "7 > 1; 2/= 1 
implies risk-neutrality. Note that according to axiom (85) 

pure risk may be overcompensated by possible gains. There- 
fore, this condition favors speculative risk measures that are 

additively separable in gains and losses. 

In further axioms it is assumed that, ceteris paribus, gen- 
eralized risk should increase with increasing amount and 

probability of loss and decrease with increasing possible 

gains and gain probability. Finally, rescaling of the outcome 
values should leave the risk ordering ~ invariant. 

A measure of  speculative risk under partial probability 

information should be a mapping 

R *  . ] ~ m  o+ x R~+ x ~ X ~ )  ~ 1~ (86) 

with R* = 0 for every vector of outcome values which is 

riskless in the sense of (85). It should be separable in the 

sense that there are measures R~2 l, and Rll~ and a function 

F : R2+ ~ ]R such that for every generalized risk vector 

(X +, X - ,  5~) holds 

R * ( x  +, x - ,  2~) = F[R~2(X + , ~ ) ,  Rz~21(X-, ~)11. (87) 

Thereby, F should be strictly increasing in the first vari- 

able and strictly decreasing in the second one. It should 
be linear-homogenous and fulfill certain additional technical 

properties. The measures R~21 and Rl2h quantify the pure risk 

and the chances connected with the outcome vector X.  

These assumptions lead to the three-parametric class 

R * ( X + , X  , / ~ )  * + X - , ? / ~ )  = R.y,e,k(X , 

:= g ( @ ~ ( X  +, ~ ) k  _ ~ ( X - ,  ?/~)k), (88) 

with 7, g, k > 0 (cf. Brachinger [12] [14]). Within this class 
of generalized risk measures the parameter 7 covers the de- 

cision maker ' s  risk attitude. The parameter k can be inter- 

preted as sensitivity parameter.  In case of k > 1 the decision 

maker is sensitive, and in case of k _< 1 he is insensitive 
against the extents ~ ( X  +, ~ )  of a generalized risk vector 's  

perceived risk or perceived chance, respectively. The param- 
eter g expresses the importance the decision maker assigns 

to generalized risks. In case of g > 1 the decision maker 

"plays up", and in case of g _< 1 he "plays down" every 

non-zero generalized risk. 

12 Final remarks 

A reading of the literature on concepts and measurements 
of risk shows that there is, by now, a variety of theoret- 

ical approaches. Among these approaches it is difficult to 
select anyone as superior by convincing a priori arguments. 

Empirical data will be needed. The need for more empiri- 

cal investigations to evaluate alternative measures of risk is 

obvious. 
It seems quite realistic that some definitions of risk may 

be more useful when the objective is to predict choices un- 

der uncertainty while others may be superior predictors of  

introspective judgements of perceived risk. It has to be emp- 
hazised, however, that the risk ordering, which is the subject 

matter of  all the theories reviewed, need not be related to 

the preference ordering in any simple way. 

We hold that the research on perceived risk should be 

better integrated with the descriptive as well as the prescrip- 
tive models of  decisions under risk (see Sarin and Weber 

[54] for a review of risk-value models and Brachinger [13] 

for a new model). A better understanding of risk judgements 
could help us to develop more realistic risk-value models. 

In the areas of  strategic planning (Bowman [9]), investment 
(Albrecht [1]), insurance (Albrecht [2]) and, especially, in 

finance risk-return considerations are standard. The capital 

asset pricing model (cf., e.g., Sharpe [56]) is based on a 

variance-expected value model, thus a special case of  risk- 
return model. For the capital asset pricing model one has al- 

ready tried to develop alternative risk-value foundations (see 
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W e b e r  [68] f o r  an  o v e r v i e w  a n d  a n e w  m o d e l ) .  H o w e v e r ,  all  

t h e s e  e c o n o m i c  a p p l i c a t i o n s  r e s t  o n  a d e e p e r  u n d e r s t a n d i n g  

o f  r i s k  j u d g e m e n t s .  
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