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Te California Department of Motor Vehicles (DMV) reports, including disengagement and collision reports, provide infor-
mation on each accident or disengagement activity for on-road testing of autonomous driving systems (ADSs) and autonomous
vehicles (AVs). Unfortunately, current DMV reports have been misleading in relation to many key details, making it challenging
for readers of those reports to discern the events’ root causes and interrelationships. Terefore, appropriate systematic clas-
sifcation methods and principles need to be adopted. We follow an identifcation method similar to fault tree analysis (FTA) with
the help of the driving reliability and error analysis method (DREAM 3.0) and the Haddon matrix to fnd the potential key
accident factors from all disengagement data. We also conduct ADS risk assessments of potential disengagements and genuine
accidents classifed by traditional accident types. In addition, the automated driving system is composed of various software
modules, and a classifcation method that is suitable from the standpoint of ADS software developers is developed in this paper.
Next, we sort out the characteristics of the most frequent accidents based on the risk assessment results. Finally, we propose a
workable risk reduction solution according to the characteristics of accidents.

1. Introduction

Autonomous driving systems (ADSs) and autonomous
vehicles (AVs) have fourished. One reason for their rapid
growth is that ADSs may enhance driving safety. Te Na-
tional Highway Trafc Safety Administration (NHTSA) is
the ofcial department responsible for driving safety in the
US. Its ofcial report has stated that 94% of serious car
accidents in the US involve human-driver-related factors
[1, 2]. Tese factors include dangerous driving, distraction,
speeding, and illegal driving. After all, such resulting trafc
accidents may consume signifcant medical resources and
repair costs. Advanced ADS safety technology could help
avoid up to 79% of trafc accidents, including distracted
driving, insufcient reaction time, the inability to maintain a

safe distance, drunkenness, physical discomfort, and reckless
driving. In recent years, there has been an increasing ex-
pectation that a well-designed ADS/AV could reduce or
entirely avoid these accidents. To achieve a well-designed
AV or ADS product, ADS safety is critical and deserves in-
depth study.

So far, most current research related to ADS safety has
focused on essential driverless functions, such as lane de-
parture suppression, collision prevention between for-
warding and lane changes, autonomous cruise driving, and
driverless parking. Other related studies have focused on
driving safety concerns under normal and abnormal con-
ditions, such as driving in bad weather or special road
conditions, sudden obstacles, hazard avoidance, blind-spot
monitoring, fatigued driving prevention, and abnormal
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behavior of other road users [3–7]. However, for the public,
the results of a fully government-implemented ADS safety
test would be more impartial and credible than individual
announcements by ADS developers or media reports that
may be subjective andmisleading. ADS developers must also
ensure that their products can gain public trust before en-
tering the market.

For these reasons, in 2015, the California Department of
Motor Vehicles (DMV) became the frst ofcial agency in the
world to develop empirical ADS road testing regulations. As
of April 4, 2022, there were three diferent types of permit
holders in its Autonomous Vehicle Testing (AVT) program:
48 permit holders with a driver, seven permit holders
without drivers, and three deployment permit holders.Tese
permit holders included nearly all major automakers and
ADS developers. AVTpermit holders are required to submit
mandatory collision and disengagement reports each year in
this program; otherwise, they may have their permits sus-
pended by the DMV. As a result, the ofcial California DMV
AVT collision and disengagement data, being that of the
largest and most credible ADS regulator in the world, are
able to provide the latest ADS safety test results as well as a
glimpse into state-of-the-art ADS technology.

Most of the existing safety research literature based on
the California DMV AVT program has derived the ADS
safety factors or their root causes through proportions by
grouping and calculating their disengagement or collision
data directly according to the authors’ subjective induction
[8–18]. However, these practices may contain some faws.
First, these studies did not examine the characteristics and
signifcance that the data represented or verify whether they
were suitable for pooling. For example, these ADS disen-
gagement events are near-miss incidents without real
crashes. We can interpret them as drivers’ risk averse re-
actions or ADS-detecting hazards early. Te risk factors for
disengagement events may represent “potential” ADS risk
factors. Whenever active disengagement (ADE) or passive
disengagement (PDE) occurs, a human driver can imme-
diately take over.Teymay avoid authentic collisions as long
as there is sufcient reaction time and relevant skills for
human drivers that allow the driver to perform correct
reactions. Because of the rapid development of ADS tech-
nology, incorporating outdated disengagement data that
have never occurred may seriously distort the proportion of
existing potential fault data. Te results may also not refect
the latest progress in ADS technology that the disengage-
ment data represent. However, the ADS collision data signify
that crashes have indeed occurred and can be combined.

Second, the California DMV AVT reports, including
collision and disengagement reports, often contain subjec-
tive perceptions and overly succinct descriptions from hu-
man drivers. In some detailed text descriptions, critical
analytical judgment factors are often lacking. When writing
event descriptions, human drivers sometimes oversimplify,
deliberately omit, or inadvertently ignore specifc points.
Moreover, human drivers may not have sufcient knowledge
to determine all root causes of faults because they do not
comprehend how the ADS system works in the background.
Terefore, it is essential to adopt an impartial, systematic

classifcationmethod to infer ADS risk factors by referring to
all information about events. Te process may reference
relevant factors such as vehicle damage locations, envi-
ronment and weather circumstances, and other related
factors. Ten, the results obtained may become more
meaningful.

Tird, we have summarized eight potential ADS risk
factors based on the current research literature on California
DMV AVT safety. Tey are (1) hardware/advanced driver
assistance system (ADAS) issues, (2) system and software
discrepancies, (3) planning issues, (4) perception issues, (5)
environmental conditions, (6) undesired behavior of other
road users, (7) control discrepancies, and (8) others [8–18].
Such classifcation results are difcult for ADS software
developers to judge and fnd the issue locations of their
software program modules. After all, the ADS system is an
integrated system dominated by software program modules
and combined with related hardware for interconnection
and operation. It would be of great help if the results could
be sorted into software modules.

Tis study thus attempts to improve the abovementioned
shortcomings, conduct a risk analysis of California DMV
disengagement and collision events, and determine critical
risk factors. Finally, based on the results of the risk analysis,
probing the characteristics of these risk factors provides a
novel and workable solution to reduce ADS risks.

Te remainder of this paper is organized as follows: In
Section 2, we review the literature related to ADS safety.
Section 3 assesses the potential ADS risks through the
California DMV AVT disengagement data classifed
according to accident types and software modules. In Sec-
tion 4, we establish genuine ADS risks through the Cal-
ifornia DMV AVT collision reports. We then provide some
solutions based on the characteristics of the most frequent
accidents. In Section 5, we summarize this study and discuss
its limitations.

2. ADS Safety-Related Works

According to current studies, there are some main factors
that afect ADS safety, such as hardware/ADAS, systems/
software, AI-based highly automated driving (HAD) quality,
communication ability, and environment/resilience. Te
related research is summarized and shown in Table 1. Te
key factors related to the hardware and ADAS include
sensors, GPS positioning hardware, ADAS, and hardware
discrepancies. ADAS frmware is included. For example, the
key factors for the communication type include cyberse-
curity, vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), intelligent transport systems (ITSs), and roadway
geometric layouts. Scenario simulations and empirical road
tests are the current ways of verifying their reliability and
quality [18, 32, 48].

Te empirical road tests therefore play a vital role in
validating the results of ADS safety. Research by Kalra and
Paddock [49] noted that empirical testing with sufcient
mileage is crucial for validating ADS safety. Under con-
temporaneous regulations, it may take decades for ADS
developers to bring their SAE Class 3–5 ADS products to the
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market if they do not ramp up their testing eforts. In ad-
dition, Favarò et al. [50] made regulatory recommendations
by analyzing the faws in the draft regulations at the time of
testing and deploying ADS on public roads. Tese studies
have led to several ADS safety-related research initiatives
based on California DMV AVT test data, and they can be
divided into two categories, namely, disengagement and
accident pertinent.

In studies on disengagement classifcations, Dixit et al.
[27] classifed disengagement origins into the following six
causes: weather, construction zones, road infrastructure,
driver initiation, system failure, and other road users. Boggs
et al. [8] allocated disengagement to six clusters: “envi-
ronmental and other road users,” “hardware and software
discrepancy,” “planning discrepancy,” “control discrep-
ancy,” “perception discrepancy,” and “operator takeover”
and found that the frst three clusters had higher occurrence
probabilities than the others. Tis is likely to be because
drivers could not observe the ADS data processing system
running in the background. Wang and Li [51] separated the
ADS disengagement causes into three dimensions, namely,
perception issues (33%), planning issues (60%), and control
issues (7%). Tey argued that the number of sensors,
planning and computing capabilities, and the driver’s trust
level in the ADS might infuence the occurrence of disen-
gagement. Boggs et al. [8] observed and quantifed safety-
critical events with 5Ws, including 124 collisions and
159,840 disengagements. Te 5Ws comprised who (disen-
gagement initiator), when (ADS maturity), where (disen-
gagement location), and what or why (facts causing the
disengagement).

Terefore, we can summarize these studies into eight
potential ADS risk factors. Tey are (1) hardware/ADAS
issues, (2) system and software diferences, (3) planning
issues, (4) perception issues, (5) environmental conditions,
(6) unexpected behavior of other road users, (7) control
variance, and (8) others [8–18]. Regrettably, these studies did
not cover the impact of technological advances on the data’s
variability, nor did they detail the systematic classifcation
methods used. Incorporating a large quantity of legacy ADS

disengagement data that never occurred and were outdated
into the calculation may have signifcantly distorted the
proportion of existing potential failure data. Te results also
did not refect the latest developments in ADS technology
that the disengagement data represent. Terefore, this study
has conducted a chi-square homogeneity test for the dis-
sociated data in recent years.

In the ADS risk assessment-related literature,Wang et al.
[52] pointed out that 93.7% of ADS accidents are caused by
other parties, including pedestrians, cyclists, motorcycles,
and conventional vehicles. Terefore, an excellent passive
accident prevention design may dramatically improve AV
safety. Xu et al. [53] stated that the predominant accident
type for connected and autonomous vehicles (CAVs) was
the rear-end crash, accounting for 57.5% of all accidents. By
examining the California DMV collision reports, Biever et al.
[36] found that ADS frequently encountered no-fault rear-
end collisions. Te vehicles behind triggered these rear-end
crashes which occurred, while ADS vehicles were braking,
cornering, or maintaining a safe driving distance. However,
the responsibility for negligence was entirely that of other
parties. Song et al. [54] and similar studies investigated the
California DMV AVT collision reports and briefed that the
rear-end collision is themost common type of ADS collision,
with 60–80% of ADS crashes occurring at relatively low
speeds (i.e., below 10 mph) and involving the ADS vehicle
and a second-party vehicle situated behind [25, 54, 55].
Unfortunately, from the perspective of ADS developers,
discovering programs or rule errors and identifying po-
tential safety hazards from the risk assessment reports are
the approaches that should be adopted to perfect the system.
Traditional accident classifcations only list a wide range of
accident types, and applying them to the software module
structure makes it challenging to identify the location for
enhancement. In addition, these studies rarely analyze the
features of high-risk factors or provide workable solutions.

Tere are various techniques used for assessing accidents
involving conventional vehicles, such as the Haddon matrix
[46], fault tree analysis (FTA) [56, 57], event tree analysis
(ETA) [58], and the driving reliability and error analysis

Table 1: Source types and example factors for ADS risks.

Source types Key factors References

Hardware/ADAS Sensors, GPS positioning hardware, ADAS, hardware
discrepancies

Bazzi et al. [19], Amersbach and Winner [20], Cicchino
[21], Cicchino [22], Deforio and Carboni [23], Shah

et al. [24]

Systems/software
Sensing/detection systems, computation, perception

systems, planning systems, controlling systems, software
and system discrepancies, calibration issues

Banerjee et al.[25], Brell et al. [26], Dixit et al. [27], Jiang
[28], Mimura et al. [29], Shladover [5], Sun et al. [6],
Vagale et al. [7], Vourgidis et al. [30], Wang et al. [31]

AI-based HAD Driving decision-making, HAD simulations, other road
user behavior

Schnelle et al. [32], Abu Znaid et al. [33], Dai [34],
Althof and Mergel [35], Brell et al. [26], Biever et al.
[36], Blanco et al. [37], Cui et al. [38], Fu and Sayed [39],
Habibovic et al. [40], Mozafari et al. [4], Osman et al.

[41]

Communications/
resilience Cybersecurity, V2V, V2I, ITS, roadway geometric layouts

Arena and Pau [42], Blanco et al. [37], Scala et al. [43],
Khan et al. [44], Jiang [28], Javed et al. [45], Vourgidis

et al. [30]
Environment Weather, roadway conditions Yaacob et al. [46], Hassan et al. [47], Wu et al. [18]
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method (DREAM 3.0) [40, 41, 59].Tey are also available for
SAE levels 3–5 ADS. Unfortunately, the California DMV
data lack appropriate and complete accident assessment
investigation forms and often lack essential information.
Terefore, it is often necessary to combine multiple tech-
niques with accident assessment.

Rear-end collisions are the most frequent cause of ADS
accidents, including front and rear-end collisions [54].
Existing ADASs help drivers prevent rear-end collisions.
Te most commonly used rear-end collision-related
ADASs are forward collision warning (FCW), automatic
emergency braking (AEB), obstacle detection (OD), and
backward collision warning (BCW). Many studies have
shown that advanced ADAS-equipped vehicles can sig-
nifcantly reduce accident rates. However, some studies
have found that multiple ADASs of similar types or their
improper use by the driver may increase the front and rear
crash rates [21–23, 29, 54]. Song et al. [54] showed that
60–80% of ADS crashes occurred at relatively low speeds
involving ADSs and second-party vehicles. Te most
common crash pattern is a “collision after the AV comes to
a stop.” 24% of these collisions disengaged before the
collision, and then, 68% of these disengagement events
occurred; immediate collisions came afterwards. Tese
disengagements were mainly because of operator precau-
tions, or because the ADS detected reckless behavior by
other road users but did not provide sufcient reaction time
for drivers to respond. In addition, some studies have
designed linear path control and emergency steering assist
(ESA) control to avoid rear-end collisions [24, 38]. Raju
et al. [60] proposed a safety measure of instantaneous
attention time (IHT) that quantifes the follower driver’s
attentiveness.

Collision-avoidance metrics, such as temporal and
spatial proximity metrics, have advanced in recent years to
prevent vehicle accidents. For example, the deceleration
rate for collision avoidance (DRAC) has become one of the
alternative safety measures [61]. Te higher the DRAC
value, the higher the risk of collision. A crash occurs when
the DRAC value exceeds the maximum available decel-
eration (MADR). Each vehicle has a diferent MADR
value. Factors such as road conditions, vehicle weight,
tires, and braking systems also play a role. We can derive
the crash risk by calculating the probability that MADR is
less than DRAC. Earlier studies used diferent MADR-
specifc values for DRAC-related trafc safety assessments.
Tese studies have assumed a conservative MADR-specifc
value for all vehicles: 8 m/s2 [62]. Wang et al. [31] esti-
mated collisions from a bivariate extreme value model,
using MADR values of 8m/s2 and 12m/s2 as the extremes
at both ends. Fu and Sayed [39] proposed a method to
estimate the MADR to avoid crashes. Tey grounded this
method on DRAC and used Bayesian hierarchical models.
Unfortunately, there is little research on applying DRAC
and MADR to the ADS domain to provide ADS accident
risk reduction. We hypothesize that MADR will help
prevent ADS accidents, such as rear-end collisions and the
unexpected behavior of other road users, which we discuss
at the end of this paper.

3. ADS Risk Classification

Tis study has complied with the following ADS risk study
procedures shown in Figure 1. It contains four stages,
namely, the data inspection stage, accident grouping stage,
ADS risk assessment stage, and ADS risk reducing stage.
First, the purpose of the data inspection stage is to perform
the chi-square homogeneity test on the DMV AVT data to
confrm that the data are suitable for combined processing
procedures. Moreover, the results are also meaningful.
Second, the accident grouping phase is intended to identify
the root causes of the DMV AVTdata and group them into
diferent ADS accident groups. Tird, in the ADS risk as-
sessment stage, both the traditional and software module
accident classifcation methods are applied to conduct an
ADS risk assessment. Finally, in the ADS risk reduction
stage, we attempt to fnd solutions for relatively high ADS
risk factors.

In the frst stage, the data inspection stage, in order to
address the lack of examination of the disengagement data,
this study performed the following three chi-square ho-
mogeneity tests using a total of 18,557 records for the
California DMV AVT data from the last three years
(2019–2021), including 11,482 records for ADEs and 3,965
records for PDEs:

(1) Te chi-square homogeneity test for ADE (2019,
2020, and 2021): Tis test confrms whether the
number of occurrences for each factor of ADEs and
their distributions among these three years are
consistent (i.e., the null hypothesis). In this test, the p
value is <2.2e− 16 (almost equal to 0). We conclude
that the frequency distribution for ADE over the
three years is signifcantly diferent.

(2) Te chi-square homogeneity test for PDE (2019,
2020, and 2021): Tis confrms whether the number
of occurrences for each factor of PDEs and their
distributions among these three years are consistent
(i.e., the null hypothesis). In this test, the p value is
<2.2e− 16 (almost equal to 0). We conclude that the
frequency distribution of PDE over the three years is
signifcantly diferent.

(3) Te chi-square homogeneity test for aggregated ADE
and PDE (2019, 2020, and 2021): Te numbers of
occurrences for each factor for ADE and PDE are
aggregated. Ten, we examine whether the sums of
the numbers of occurrences for each factor for ADE
plus PDE with their distributions for these three
years are consistent (i.e., the null hypothesis). In this
test, the p value is <2.2e− 16 (almost equal to 0). We
conclude that the frequency distribution of the ag-
gregated ADE difers signifcantly from the aggre-
gated PDE.

Tus, we can confrm that the California DMV dis-
engagement data have varied in the most recent three years.
Te aggregation of ADE and PDE has also varied. It is
inappropriate to combine them for the analysis, and they
should thus be processed separately. When many of the
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same faults repeatedly occur, especially during the phase of
ofcial test drives, ADS developers may quickly correct
their systems. Accumulating many old faults that no longer
exist may distort the proportion of existing potential faults.
However, the collision data represent genuine crash acci-
dents, and the more complete they need to be, the better.
Terefore, we have chosen disengagement data from the
most recent three years instead of all seven years for the
analysis in this study.

We then apply FTA in this study to identify and evaluate
the interrelationships between events leading to faults,
unexpected events or states, and unintentional events or
conditions. Subsequently, we use DREAM 3.0 to distinguish
the accident groups or the Haddon matrix to analyze the
root fault causes or identify critical contributing factors
when it is difcult to judge descriptions accurately. We then
group all similar faults in the disengagement events into the
same accident group. Finally, we complete 40 accident
groups, including the “other” group. Te results are shown
in Table 2.

Te eight potential risk factors for ADS accident types
of the traditional classifcation method are shown in Ta-
ble 3. Te adopted classifcation relationships are presented
in an FTA-like manner, as shown in Figure 2. Te tradi-
tional accident-type classifcation results for the ofcial
DMVAVTdisengagement data are provided in Table 4. We
can see that the PDEs were central to planning issues in
2019 and 2020, accounting for 59.37% and 66.63%, re-
spectively, whereas the ADS cannot handle the issues. In
2021, PDEs that occurred were central to system and
software discrepancies (53.47%). By contrast, ADEs that
were intervened by human drivers in 2019 were centralized
based on the unexpected behavior of other road users
(44.26%) and in 2020 on two issues, namely, perception
issues (35.40%) and control discrepancies (32.45%).
However, in 2021, ADEs were centralized based on plan-
ning issues (66.63%) and were followed by perception is-
sues (32.42%). Terefore, to sum up, in the cases of both
ADEs and PDEs, planning issues have always occupied a
signifcant proportion. Second, the ADE values of the
perception issues difer signifcantly from the PDE values
from year to year, which shows that human drivers lack

trust in the ADS perception system. Furthermore, the
proportion of ADEs in 2021 for system and software dis-
crepancy issues increased substantially, which deserves
close observation. However, their numbers are low with
regard to the hardware/ADAS issues and environmental
conditions that concern society. Finally, the unexpected
behavior of other road users is insignifcant except for a
higher proportion of ADE in 2019. Tis part is signifcantly
diferent from the results of the risk assessment carried out
later.

As mentioned earlier, it is difcult for ADS software
developers to view the traditional accident-type classif-
cation method intuitively. Terefore, this study provides a
new way for classifcation from the perspective of fve
software modules, as shown in Table 5. Te adopted
classifcation relationships are presented in an FTA-like
manner, as shown in Figure 3. Te software module
classifcation results for the ofcial DMV AVT disen-
gagement data are shown in Table 6. We can see that PDEs
were centralized in the navigation software modules in
2019 and 2020, and their percentages are 59.37% and
66.63%, respectively, whereas ADS cannot handle the is-
sues. However, in 2021, PDEs were centralized in the
condition diagnostic software module (67.11%). By con-
trast, ADEs that were intervened by human drivers were
centralized in AI-driven decision-making software mod-
ules (45.42%) in 2019. In 2020, ADEs were consolidated
into two software modules, namely, the sensing software
module (35.40%) and the control software module
(32.45%). However, in 2021, ADEs were centralized in
navigation software modules (34.71%), followed by sensing
software modules (32.42%). Terefore, to sum up, for both
ADEs and PDEs, the navigation software module has al-
ways occupied a signifcant proportion. Second, the ADE
values of the AI driving decision software module difer
signifcantly from the PDE values from year to year, which
shows that human drivers lack trust in the ADS AI driving
decisions.

Furthermore, the proportion of ADEs in 2021 for the
status diagnosis software module increased substantially,
which deserves close observation. Finally, the value of the
AI-driven decision software module is insignifcant except

ADS Risk Study Procedures

ADS Risk Assessment Stage
Both traditional and sofware-module accident

classifcation methods apply to conduct ADS risk
assessments.

ADS Risk Reducing Stage
Trying to fnd reducing solutions for the

relatively high risk factors.

Data Inspection Stage
Te data are suitable.

Accident Grouping Stage
To identify the root causes of the DMV AVT

data and group them into diferent ADS
accident groups.

ADS R
isk

Asse
ssm

en
t

Summarize ADS

Safety Factors
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dent G
roups

Setu
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Data Examination

Figure 1: ADS risk study approach diagram.
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Table 2: Defnitions and descriptions of ADS accident groups.

SQ Code ADS accident groups Description
1 H01 ADAS issues ADAS component failed to detect, identify, raise alerts, or take specifed actions

2 H02 Sensor issues Te sensor hardware failed to detect the object or could not transmit data to the sensor
system of the ADS

3 H03 GPS, localization issues GPS hardware could not obtain the correct position of the vehicle or could not locate it
correctly on the map

4 H04 Communication hardware issues Communication components or wires failed to transmit complete and correct data to
target recipients

5 H05 Hardware discrepancy and
requirement issues

ADS hardware components were defective, the quality was not consistent with the
design, or the ADS hardware component design did not meet the basic requirements of

the ADS hardware
6 H06 Other hardware/ADAS issues Other hardware or ADAS accidents and incidents

7 S1-1 Invalid object or trafc light
detection

Invalid object or invalid trafc light detection caused system or software accidents and
incidents

8 S1-2 Computation issues of perception Perceptual computing problems caused system or software accidents and incidents

9 S1-3 Delayed perception detection Delayed sensing or perception detection caused system or software accidents and
incidents

10 S1-4 Perception gaps between ADS and
drivers Issues consisted of the perceptual discrepancies between the ADS system and the driver

11 S1-5 Failed to detect an object correctly Unable to detect an object, incorrectly identify it, or specify an entity that does not exist
12 S1-6 Other perception issues Perceptual issues were diferent from the above

13 S2-1 Improper localization and planning System or software accidents and incidents occurred because of inaccurate ADS
positioning, map-related issues, or route planning discrepancies

14 S2-2 Computation issues of planning System or software accidents and incidents occurred because the performance of
planning computation was below expectations

15 S2-3 Motion planning issues System or software accidents and incidents occurred because object motion prediction
capabilities or results were inaccurate or could not meet expectations

16 S2-4 Other planning issues Planning issues other than the above

17 S3-1 Improper acceleration/deceleration/
cruise

System or software control discrepancies due to the timing, speed, and scope of the
acceleration and deceleration, or cruise control activities did not meet expectations

18 S3-2 Improper steering wheel/lane
change

System or software control discrepancies occurred due to imprecise steering wheel
control or inaccurate lane change activities

19 S3-3 Unwanted maneuver/control
irregularity

System or software control discrepancies occurred due to unnecessary control activities,
violations, and irregularities

20 S3-4 Computational issues of controlling System or software control discrepancies occurred due to the performance of controlling
computation being below expectations

21 S3-5 Improper gap or other control
discrepancies

System or software control discrepancies occurred for reasons other than the above
issues

22 S4-1 Software discrepancy Software discrepancies caused software programs to run abnormally due to errors in
software codes or missing programs

23 S4-2 System discrepancy System discrepancies caused system programs to run abnormally due to errors in system
codes or missing programs

24 S4-3 System tuning and calibration issues Te inability to accept, process, modify, or fne-tune system performance for higher
loads or multiple tasks

25 S4-4 System health and readiness issues Te system health check or reliability-related examination issues caused accidents and
incidents

26 E1-1 Bad weather Accidents and incidents occurred in bad weather
27 E1-2 Insufcient lighting Accidents and incidents occurred due to insufcient lighting

28 E1-3 Roadway surface and conditions Accidents and incidents occurred on hazardous roadway surfaces or due to other
hazardous conditions

29 E1-4 Construction Accidents and incidents occurred due to construction conditions
30 E1-5 Poor lane markings Poor lane markings caused accidents and incidents
31 E1-6 Blocked lane Accidents and incidents were caused by blocked lanes
32 E1-7 Road debris or rough pavement Accidents and incidents were caused by road debris or rough pavement

33 E1-8 Other environment-associated
factors Accidents and incidents occurred due to other environment-associated factors

34 E2-1 Malbehavior of other road users Inadequate behavior of other road users caused accidents and incidents

35 E2-2 Undesired behavior of emergency
vehicle Accidents and incidents were due to the behavior of emergency vehicles

36 E2-3 Forward collision Accidents and incidents caused forward collisions and hitting other road users
37 E2-4 Rear-end Accidents and incidents caused rear-end collisions and hitting by other road users
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for a higher proportion of ADE in 2019. Tis part difers
signifcantly from the results of the risk assessment result
carried out later.

4. ADS Actual Risk Assessment and
Suggested Solutions

After evaluating the potential risk of ADS, we used the same
method to assess the second set of data: the accident (col-
lision) report of the California DMV AVT. Incident reports

included 0 fatalities, 86 injuries, and 358 PDO incidents.
Unlike the disengagement profles of potential risks, acci-
dent reports are actual accidents that occurred during the
same testing period. Te results using the traditional acci-
dent-type classifcation method are shown in Table 7, while
the results using the software module classifcation method
are shown in Table 8.

As the results show, actual ADS accidents are highly
concentrated in the unintended behavior of other road users
based on the traditional accident-type classifcation method

Table 3: Classifcation, defnitions, and descriptions of ADS risk factors and accident groups.

SQ Code ADS risk factors Description
1 H Hardware/ADAS issues Accidents and incidents are purely related to hardware components or ADAS
2 S1 Perception issues System or software accidents and incidents occur due to the sensing or perception system

3 S2 Planning issues System or software accidents and incidents occur due to the planning and localization
system

4 S3 Control discrepancy Te system or software discrepancies occur because of the controlling discrepancy

5 S4 System and software discrepancy System or software accidents and incidents occur due to the imperfect system or software
errors or lack of program codes

6 E1 Environmental conditions Accidents and incidents occur due to driving environment or conditions

7 E2 Unexpected behavior of other
road users Accidents and incidents are related to the unexpected behavior of other road users

8 O Other factors Accidents and incidents factors are diferent from the above

H5 H6H4H3H2H1

AV Faults

S2-1 S2-2 S2-3 S2-4

S1-1 S1-2 S1-3 S1-4 S1-5

S3-1
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S3-2

S4-2

S3-3

S4-3

S3-4

S4-4

S3-5

S1-6

E2-1

E1-1

E2-2

E1-2

E2-3

E1-3

E2-4

E1-4

E2-5

E1-5

E2-6

E1-6 E1-7 E1-8

E1 E2
H

S2

S1
S3

S4

Figure 2: Classifcation diagram for ADS risk factors and accident groups.

Table 2: Continued.

SQ Code ADS accident groups Description

38 E2-5 Overly conservative behavior of
other road users

Accidents and incidents occurred due to the overly conservative behavior of other road
users

39 E2-6 Other road users’ associated factors Accidents and incidents caused rear-end and hitting by other road users
40 O Other factors Accidents and incidents factors were diferent from the above
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Table 4: Potential risk assessment results through 2019–2021 DMV AVT disengagement reports (grouped by accident types).

Code AV failures
ADE PDE

2021 2020 2019 2021 2020 2019
H Hardware/ADAS issues 38 1.70% 40 1.37% 227 3.58% 61 13.65% 69 8.44% 41 1.52%
H01 ADAS failure 0 0.00% 11 0.38% 4 0.06% 0 0.00% 2 0.24% 0 0.00%
H02 Sensors failure 35 1.57% 11 0.38% 211 3.33% 2 0.45% 15 1.83% 10 0.37%
H03 GPS, localization issues 1 0.04% 0 0.00% 0 0.00% 0 0.00% 20 2.44% 6 0.22%

H04 Communication hardware
failures 0 0.00% 0 0.00% 2 0.03% 0 0.00% 12 1.47% 9 0.33%

H05 Hardware discrepancy and
requirement issues 2 0.09% 8 0.27% 10 0.16% 59 13.20% 3 0.37% 16 0.59%

H06 Other hardware/ADAS issues 0 0.00% 10 0.34% 0 0.00% 0 0.00% 17 2.08% 0 0.00%
S4 System and software discrepancy 43 1.93% 35 1.20% 486 7.67% 239 53.47% 17 2.08% 520 19.26%
S4-1 Software discrepancy 15 0.67% 2 0.07% 483 7.62% 169 37.81% 16 1.96% 199 7.37%
S4-2 System discrepancy 26 1.17% 29 0.99% 2 0.03% 10 2.24% 1 0.12% 177 6.56%

S4-3 System tuning and calibration
issues 2 0.09% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

S4-4 System health and readiness
issues 0 0.00% 4 0.14% 1 0.02% 60 13.42% 0 0.00% 144 5.33%

S2 Planning issues 774 34.71% 488 16.74% 1269 20.03% 59 13.20% 545 66.63% 1603 59.37%

S2-1 Improper localization and
planning 577 25.87% 85 2.92% 1000 15.78% 7 1.57% 63 7.70% 74 2.74%

S2-2 Computation issues of planning 68 3.05% 93 3.19% 98 1.55% 48 10.74% 471 57.58% 780 28.89%
S2-3 Motion planning issues 129 5.78% 168 5.76% 171 2.70% 4 0.89% 8 0.98% 749 27.74%
S2-4 Other planning issues 0 0.00% 142 4.87% 0 0.00% 0 0.00% 3 0.37% 0 0.00%
S1 Perception issues 723 32.42% 1032 35.40% 260 4.10% 73 16.33% 43 5.26% 283 10.48%

S1-1 Invalid object or trafc light
detection 166 7.44% 18 0.62% 133 2.10% 61 13.65% 1 0.12% 6 0.22%

S1-2 Computation issues of perception 51 2.29% 478 16.40% 83 1.31% 12 2.68% 25 3.06% 1 0.04%
S1-3 Delayed perception detection 164 7.35% 55 1.89% 44 0.69% 0 0.00% 0 0.00% 276 10.22%

S1-4 Perception gaps between ADS
and drivers 79 3.54% 461 15.81% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

S1-5 Failed to detect an object
correctly 263 11.79% 19 0.65% 0 0.00% 0 0.00% 3 0.37% 0 0.00%

S1-6 Other perception issues 0 0.00% 1 0.03% 0 0.00% 0 0.00% 14 1.71% 0 0.00%
E1 Environmental conditions 37 1.66% 28 0.96% 73 1.15% 0 0.00% 30 3.67% 7 0.26%
E1-1 Bad weather 3 0.13% 1 0.03% 41 0.65% 0 0.00% 5 0.61% 2 0.07%
E1-2 Insufcient lighting 0 0.00% 2 0.07% 0 0.00% 0 0.00% 2 0.24% 0 0.00%
E1-3 Roadway surface and conditions 11 0.49% 0 0.00% 11 0.17% 0 0.00% 21 2.57% 4 0.15%
E1-4 Construction 13 0.58% 1 0.03% 8 0.13% 0 0.00% 1 0.12% 1 0.04%
E1-5 Poor lane markings 9 0.40% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
E1-6 Blocked lane 1 0.04% 16 0.55% 12 0.19% 0 0.00% 1 0.12% 0 0.00%
E1-7 Road debris or rough pavement 0 0.00% 0 0.00% 1 0.02% 0 0.00% 0 0.00% 0 0.00%

E1-8 Other environment-associated
factors 0 0.00% 8 0.27% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

E2 Unexpected behavior of other
road users 181 8.12% 346 11.87% 2805 44.26% 0 0.00% 15 1.83% 1 0.04%

E2-1 Malbehavior of other road users 146 6.55% 196 6.72% 190 3.00% 0 0.00% 15 1.83% 0 0.00%
E2-2 Behavior of emergency vehicles 2 0.09% 1 0.03% 3 0.05% 0 0.00% 0 0.00% 0 0.00%
E2-3 Forward collision 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
E2-4 Rear-end 0 0.00% 2 0.07% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

E2-5 Overly conservative behavior of
other road users 33 1.48% 132 4.53% 2612 41.22% 0 0.00% 0 0.00% 1 0.04%

E2-6 Associated factors of other road
users 0 0.00% 15 0.51% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

S3 Control discrepancy 429 19.24% 946 32.45% 1215 19.17% 15 3.36% 87 10.64% 150 5.56%

S3-1 Improper acceleration/
deceleration/cruise 100 4.48% 515 17.67% 803 12.67% 5 1.12% 22 2.69% 33 1.22%

S3-2 Improper steering wheel/lane
change 245 10.99% 391 13.41% 129 2.04% 0 0.00% 18 2.20% 0 0.00%
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(88.32%) or the AI driving decision software module when
using the software module classifcation method (90.61%).
Tis result is signifcantly diferent from potential ADS risk
assessment using disengagement data.When we take a closer
look, the accident group with the most signifcant risk is the
rear-end collision accident group, accounting for 43.65%,
and the bad behavior accident group of other road users

follows in second place, accounting for 39.34%. However,
the advanced ADS safety design has successfully decreased
front collision accidents (3.55%), but the reduction in rear-
end collisions (44.70%) is not apparent. Terefore, this study
frst tries to analyze some of the characteristics of rear-end
collisions and then attempts to fnd solutions to reduce the
occurrence of these accidents.

Table 5: Defnitions and descriptions of ADS software module risk factors.

Code ADS risk factors Description

M1 Condition diagnostic software
module Accidents and incidents happen during the condition diagnostic module

M2 Navigation software module Accidents and incidents happen during the diagnostic navigation module due to planning and
localization issues

M3 Sensing software module During the sensing module, accidents and incidents happen due to sensing or perception issues

M4 AI driving decision software
module

Accidents and incidents happen during the AI driving decision module due to the sensing or
perceiving of the driving environment or other road users’ issues

M5 Control software module Accidents and incidents occur during the control module due to the controlling discrepancy
O Other factors Accidents and incidents factors are diferent from the above
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Figure 3: Relationship diagram for ADS accident groups and risk factors of software modules.

Table 4: Continued.

Code AV failures
ADE PDE

2021 2020 2019 2021 2020 2019

S3-3 Unwanted maneuver/control
irregularity 83 3.72% 25 0.86% 63 0.99% 8 1.79% 1 0.12% 11 0.41%

S3-4 Computation issues of
controlling 1 0.04% 9 0.31% 220 3.47% 2 0.45% 0 0.00% 106 3.93%

S3-5 Improper gap or other control
discrepancies 0 0.00% 6 0.21% 0 0.00% 0 0.00% 46 5.62% 0 0.00%

O Others 5 0.22% 0 0.00% 2 0.03% 0 0.00% 12 1.47% 95 3.52%
Total 2230 100.00% 2915 100.00% 6337 100.00% 447 100.00% 818 100.00% 2700 100.00%
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Table 6: Potential risk assessment results through 2019–2021 DMV AVT disengagement reports (grouped by software modules).

Code AV failures Module
ADE PDE

2021 2020 2019 2021 2020 2019

M1 Condition diagnostic
software module issues 1 81 3.63% 75 2.57% 713 11.25% 300 67.11% 86 10.51% 561 20.78%

M1H1 ADAS issues 1 0 0.00% 11 0.38% 4 0.06% 0 0.00% 2 0.24% 0 0.00%
M1H2 Sensor issues 1 35 1.57% 11 0.38% 211 3.33% 2 0.45% 15 1.83% 10 0.37%

M1H3 GPS, localization
issues 1 1 0.04% 0 0.00% 0 0.00% 0 0.00% 20 2.44% 6 0.22%

M1H4 Communication
hardware issues 1 0 0.00% 0 0.00% 2 0.03% 0 0.00% 12 1.47% 9 0.33%

M1H5
Hardware discrepancy

and requirement
issues

1 2 0.09% 8 0.27% 10 0.16% 59 13.20% 3 0.37% 16 0.59%

M1H6 Other hardware/
ADAS issues 1 0 0.00% 10 0.34% 0 0.00% 0 0.00% 17 2.08% 0 0.00%

M1S1 Software discrepancy 1 15 0.67% 2 0.07% 483 7.62% 169 37.81% 16 1.96% 199 7.37%
M1S2 System discrepancy 1 26 1.17% 29 0.99% 2 0.03% 10 2.24% 1 0.12% 177 6.56%

M1S3 System tuning and
calibration issues 1 2 0.09% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

M1S4 System health and
readiness issues 1 0 0.00% 4 0.14% 1 0.02% 60 13.42% 0 0.00% 144 5.33%

M2 Navigation module
software issues 2 774 34.71% 488 16.74% 1269 20.03% 59 13.20% 545 66.63% 1603 59.37%

M2P1 Improper localization
and planning 2 577 25.87% 85 2.92% 1000 15.78% 7 1.57% 63 7.70% 74 2.74%

M2P2 Computation issues of
planning 2 68 3.05% 93 3.19% 98 1.55% 48 10.74% 471 57.58% 780 28.89%

M2P3 Motion planning
issues 2 129 5.78% 168 5.76% 171 2.70% 4 0.89% 8 0.98% 749 27.74%

M2P4 Other planning issues 2 0 0.00% 142 4.87% 0 0.00% 0 0.00% 3 0.37% 0 0.00%

M3 Sensing module
software issues 3 723 32.42% 1032 35.40% 260 4.10% 73 16.33% 43 5.26% 283 10.48%

M3D1 Invalid object or trafc
light detection 3 166 7.44% 18 0.62% 133 2.10% 61 13.65% 1 0.12% 6 0.22%

M3D2 Computation issues of
perception 3 51 2.29% 478 16.40% 83 1.31% 12 2.68% 25 3.06% 1 0.04%

M3D3 Delayed perception
detection 3 164 7.35% 55 1.89% 44 0.69% 0 0.00% 0 0.00% 276 10.22%

M3D4
Perception gaps
between ADS and

drivers
3 79 3.54% 461 15.81% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

M3D5 Failed to detect an
object correctly 3 263 11.79% 19 0.65% 0 0.00% 0 0.00% 3 0.37% 0 0.00%

M3D6 Other perception
issues 3 0 0.00% 1 0.03% 0 0.00% 0 0.00% 14 1.71% 0 0.00%

M4 AI-HAD driving
decision module issues 4 218 9.78% 374 12.83% 2878 45.42% 0 0.00% 45 5.50% 8 0.30%

M4E1 Bad weather 4 3 0.13% 1 0.03% 41 0.65% 0 0.00% 5 0.61% 2 0.07%
M4E2 Insufcient lighting 4 0 0.00% 2 0.07% 0 0.00% 0 0.00% 2 0.24% 0 0.00%

M4E3 Roadway surface and
conditions 4 11 0.49% 0 0.00% 11 0.17% 0 0.00% 21 2.57% 4 0.15%

M4E4 Construction 4 13 0.58% 1 0.03% 8 0.13% 0 0.00% 1 0.12% 1 0.04%
M4E5 Poor lane markings 4 9 0.40% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
M4E6 Blocked lane 4 1 0.04% 16 0.55% 12 0.19% 0 0.00% 1 0.12% 0 0.00%

M4E7 Road debris or rough
pavement 4 0 0.00% 0 0.00% 1 0.02% 0 0.00% 0 0.00% 0 0.00%

M4E8 Other environment-
associated factors 4 0 0.00% 8 0.27% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

M4B1 Malbehavior of other
road users 4 146 6.55% 196 6.72% 190 3.00% 0 0.00% 15 1.83% 0 0.00%
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Having gone through the 394 accident reports provided to
the California DMV, 198 were found to be rear-end-related
collision reports. After an in-depth analysis of these 198
reports, we found one valuable feature in rear-end collisions.
In Figure 4, more than half (59.30%) of rear-end collisions
occurred when the AV stopped, and 34.30% of rear-end
collisions took place at extremely slow speeds (moving
at≤ 10mph). By contrast, nearly half (47.67%) of other ve-
hicles involved in rear-end collisions were moving
at≤ 10mph. After excluding the records where the speeds of
other vehicles were unknown, the proportion of other vehicles
moving at≤ 10mph was as high as 85.42%. Te fact that, in
most cases, two vehicles collided at a slower speedwas another
reason for the lower property damage. Of particular note, the
results difered slightly from the range (60%∼ 80%) of Song
et al. [54]. We assume that the gap existed due to the “un-
known speed of other vehicles.”Te contents of these records
did not include details of their speed.

Although relevant applied research is currently rare, in
accordance with this feature, we assume that the MADR
theory discussed in the literature review in Section 2
[31, 39, 62] may apply to ADSs to reduce the rear-end
collision risk and the unexpected behavior of other road
users. Tis is because traditional vehicles are not equipped
with components and associated software modules required
for the application.Te equipment consists of a set of camera
groups that surround the body, short-range radars with a
monitoring distance of about 8meters, and a system chip
that can perform high-speed calculations and immediately
make driving decisions.

First, in order to prevent rear-end collisions, rear sensors
can monitor the vehicles behind and continuously calculate
their speed, DRAC, MADR, and the distance from the AV.
According to the study by Fu and Sayed [39], when the
DRAC of the rear vehicle exceeds the MADR bivariate
extreme value of Wang et al. [31], the ADS can issue a
warning and then calculate the distance between the AV and
obstacles in front. When sufcient space is available, the
ADS can immediately speed up to free up more space to
avoid collision accidents or reduce the severity of injuries
and PDOs.

For example, if we suppose that the ADS stops at a stop
sign, the AV can advance by 1.5m (the distance from the
ADS to the vehicle in front) within 0.8 seconds. Te AV can
also estimate the diference in speed through the rear sensor
and HAD when the vehicle behind hits the AV (e.g., 5mph).
According to MADR, the ADS may avoid this crash entirely.
Based on research by scholars [25, 54, 55], the AV could have
avoided about 60%∼ 80% of existing collisions altogether.
Indeed, after re-examining the California DMV AVT col-
lision reports, over 48 of the 198 rear-end collisions could
have been avoided entirely in this way (24.24%), which is
also 10.84% of all 394 ofcial ADS collision reports over a
period of 7 years.

A similar risk prevention approach to rear-end collisions
can also be applied to the prevention approach that seeks to
reduce the risks of unexpected behavior of other road users.
Te only diference between these two is that the former only
needs to apply the approach to the data on rear sensors
(which may include data from the rear camera and short-

Table 6: Continued.

Code AV failures Module
ADE PDE

2021 2020 2019 2021 2020 2019
M4B2 Emergency vehicles 4 2 0.09% 1 0.03% 3 0.05% 0 0.00% 0 0.00% 0 0.00%
M4B3 Forward collision 4 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
M4B4 Rear-end 4 0 0.00% 2 0.07% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

M4B5
Overly conservative

behavior of other road
users

4 33 1.48% 132 4.53% 2612 41.22% 0 0.00% 0 0.00% 1 0.04%

M4B6 Other road users’
associated factors 4 0 0.00% 15 0.51% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

M5 Control software
module issues 5 429 19.24% 946 32.45% 1215 19.17% 15 3.36% 87 10.64% 150 5.56%

M5C1
Improper

acceleration/
deceleration/cruise

5 100 4.48% 515 17.67% 803 12.67% 5 1.12% 22 2.69% 33 1.22%

M5C2 Improper steering
wheel/lane change 5 245 10.99% 391 13.41% 129 2.04% 0 0.00% 18 2.20% 0 0.00%

M5C3 Unwanted maneuver/
control irregularity 5 83 3.72% 25 0.86% 63 0.99% 8 1.79% 1 0.12% 11 0.41%

M5C4 Computation issues of
controlling 5 1 0.04% 9 0.31% 220 3.47% 2 0.45% 0 0.00% 106 3.93%

M5C5 Improper gap or other
control discrepancies 5 0 0.00% 6 0.21% 0 0.00% 0 0.00% 46 5.62% 0 0.00%

O Others O 5 0.22% 0 0.00% 2 0.03% 0 0.00% 12 1.47% 95 3.52%
Total 2230 100.00% 2915 100.00% 6337 100.00% 447 100.00% 818 100.00% 2700 100.00%
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range radar). However, the latter approach requires that the
method involving the data of all surrounding sensors be
used. It may also be helpful to include other related studies,
such as linear path control design and ESA control [24, 38],
to assist the ADS in taking corresponding actions in re-
sponse to driving decisions.

5. Concluding Remarks

ADS safety is one of the critical factors for ADS products.
Tis study aims to provide a solution to reduce the currently
high ADS risk according to the California DMV AVT re-
ports. We frst found the ofcial California DMV AVTdata
to be the most trusted data source. Ten, we validated the
California DMV AVT disengagement data and found that
the data for each year varied. It is also inappropriate to
combine such data for the analysis, and the diferent types of
data should be processed separately. Terefore, we classifed
15,447 records for California DMV AVT disengagement
events into 40 accident groups and 6 risk factors using the
traditional accident-type classifcation for potential ADS risk
assessment. In addition, we provided another kind of
software module classifcation for prospective software de-
velopers to assess their potential ADS risks and compare the
two types. Next, we evaluated the ADS risk based on the 394
California DMV AVT collision reports using two classif-
cations. Rear-end collisions and the unexpected behavior of
other road users were corroborated as the most signifcant
ADS risk factors with the highest occurrences.

After that, we explored the features of the rear-end
collisions. One of the features was that most of these ac-
cidents occurred at speeds below 10mph, which is a cause
for concern.Terefore, we provided an approach to applying
MADR theory in ADS to reduce the rear-end collisions and
the unexpected behavior of other road users as a suggested
solution to minimize the ADS risk.Tis approach utilizes the
components and related software modules required for
applications not incorporated into traditional vehicles and
can give full play to the advantages of ADS. After re-ex-
amining the California DMV AVT collision reports, more
than 48 collisions (24.24%) among the 198 rear-end colli-
sions could have been avoided entirely, which is also 10.84%
of all 394 ofcial ADS collision reports over 7 years.

Tis study has a number of limitations, such as multiple
interrelationships between accident groups and risk factors,
which are because human drivers may not discover all causes
of the faults or comprehend the ADS system processes
running in the background. Another limitation is that if we
want to evaluate the actual performance of the solution, we
may need to implement the solutions in AVs and proceed
with some crash tests, which are costly to our research.
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[55] F. M. Favarò, N. Nader, S. O. Eurich, M. Tripp, and
N. Varadaraju, “Examining accident reports involving au-
tonomous vehicles in California,” PLoS One, vol. 12, no. 9,
Article ID 184952, 2017.

[56] W.-S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “fault tree
analysis, methods, and applications ∞ A review,” IEEE
Transactions on Reliability, vol. 34, no. 3, pp. 194–203, 1985.

[57] P. Wu, X. Meng, L. Song, and W. Zuo, “Crash risk evaluation
and crash severity pattern analysis for diferent types of urban
junctions: fault Tree analysis and association rules ap-
proaches,” Transportation Research Record, vol. 2673, no. 1,
pp. 403–416, 2019.

[58] D. Huang, T. Chen, and M.-J. J. Wang, “A fuzzy set approach
for event tree analysis,” Fuzzy Sets and Systems, vol. 118, no. 1,
pp. 153–165, 2001.

[59] H. Wallén Warner, M. Ljung, J. Sandin, E. Johansson, and
G. Björklund, “Manual for DREAM 3.0, driving reliability and
error analysis method. deliverable d5. 6 of the eu fp6 project
safetynet,” Chalmers University of Technology, Gothenburg,
Sweden, TREN-04-FP6TRSI2: 395465/506723, 2008.

[60] N. Raju, S. S. Arkatkar, S. Easa, and G. Joshi, “Investigating
performance of a novel safety measure for assessing potential
rear-end collisions: an insight representing a scenario in
developing nation,” IATSS Research, vol. 46, no. 1, 2021.

[61] T. Fahrerassistenz and J. Archer, “Indicators for trafc safety
assessment and prediction and their application in micro-
simulation modelling: a study of urban and suburban in-
tersections,” Doctoral Dissertation, KTH Royal Institute of
Technology, Stockholm, Sweden, 2005.

[62] T. De Ceunynck, Defning and Applying Surrogate Safety
Measures and Behavioural Indicators through Site-Based
Observations, Hasselt University, Hasselt, Belgium, 2017.

18 Journal of Advanced Transportation




