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Abstract

Assessing and predicting the default risk of
networked-guarantee loans is critical for the com-
mercial banks and financial regulatory authorities.
The guarantee relationships between the loan com-
panies are usually modeled as directed networks.
Learning the informative low-dimensional repre-
sentation of the networks is important for the de-
fault risk prediction of loan companies, even for
the assessment of systematic financial risk level. In
this paper, we propose a high-order graph attention
representation method (HGAR) to learn the embed-
ding of guarantee networks. Because this financial
network is different from other complex networks,
such as social, language, or citation networks, we
set the binary roles of vertices and define high-order
adjacent measures based on financial domain char-
acteristics. We design objective functions in addi-
tion to a graph attention layer to capture the impor-
tance of nodes. We implement a productive learn-
ing strategy and prove that the complexity is near-
linear with the number of edges, which could scale
to large datasets. Extensive experiments demon-
strate the superiority of our model over state-of-the-
art method. We also evaluate the model in a real-
world loan risk control system, and the results val-
idate the effectiveness of our proposed approaches.

1 Introduction

The bank loans are critical for the development of the small
and medium enterprise [Biggs, 2002]. As the traditional rules
are usually designed for the majority independent market
players, the existing loan assessment criteria is inadequate for
real demand. Companies are allowed to guarantee each other
to enhance loan security. When more and more companies
are involved, they form complex guarantee networks. Such
complex structures are a double-edged sword for the national
economy. On one hand, such easy-loans can help compa-
nies raise funds quickly, on the other hand, highly coupled
relationships could magnify default risk along the guarantee
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chain even lead to massive defaults systematic risk. Whether
a loan will be delinquent depends not only on its own finan-
cial status, but also on other companies in the network, which
brings new challenges in loan risk assessment for banks.

Traditional approaches to predicting bank loan delin-
quency mainly use financial probabilistic models [Siddiqi,
2012; Bravo et al., 2015], for example the credit scorecards,
which utilize a shallow linear regression or classification
model with the borrower’s financial information. With re-
cent advances in machine learning techniques, different al-
gorithms have emerged to improve prediction accuracy by
increasing model capacity and adding behavior information
[Fitzpatrick and Mues, 2016; Cheng et al., 2018].

However, these techniques (credit scorecards and machine
learning methods) have two significant disadvantages: 1) they
rely mainly on historical information of individual enterprises
and are therefore unable to discover the delinquency proba-
bility caused by networked loans; 2) the classification model
gives equal weights to each sample (i.e., each SME), but
different nodes contribute differently in networked-guarantee
loans. That means we should focus on dominant companies
to curb systemic risk so as to discover the risk patterns.

To this end, we propose a high-order graph attention rep-
resentation method (HGAR) for the default risk assessment
of the networked-guarantee loans. The intuition behind the
technique is that, based on our observations, the default prob-
ability of a borrower involved in a guarantee network is also
influenced by connected nodes. This is because, in guarantee
loans, if the borrower fails to repay to the bank, its guarantors
have the debt obligation. This means defaults may spread
rapidly across the network like the infectious disease trans-
mission, especially during the period of economic downturn
where many companies will fail to repay loans. This would
have a domino effect and cause numerous enterprises to fall
into an unfavorable situation.

Therefore, by integrating guarantee network representa-
tions to loan risk assessment systems, we are able to infer
the delinquent probability comprehensively. We first set each
vertex in the guarantee network to a binary role, guarantor or
guarantee, and then present a graph attention layer that cap-
tures nodes’ dominant importance in a network. Afterwards,
we propose objective functions to preserve the binary role of
nodes and high-order adjacency, and apply a productive strat-
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egy to optimize it. Through theoretical analysis, we demon-
strate that the complexity of the proposed method is linear to
the number of edges, which could scale to real-world large
networks.

In a nutshell, the main contributions of this paper are:

1. We provide the first attempt in loan risk assessment
by adding high-order graph attention representations
(HGAR) in order to predict loan delinquency and warn
of a domino effect loan crisis.

2. We propose a new high-order and graph attention based
network representation method and demonstrate that the
learned representation can improve the performance of
loan delinquency prediction.

3. We conduct extensive experiments on real-world
datasets over six months’ empirical study. The result
demonstrates that our methods can effectively predict
defaults and provide early warning of loan risks.

2 Related Works

We summarize the related works in two main areas: 1) graph
representation; 2) networked financial risk.

Graph Representation

Graph representation is also known as network embedding,
which is a learning approach designed to map each node
of a network to a low-dimensional space by machine learn-
ing techniques [Perozzi et al., 2014; Cheng et al., 2019].
It learns latent representations using local information ob-
tained from various types of walks, which are treated as the
equivalent of sentences [Velickovic et al., 2018]; alterna-
tively, it represents the connections between network vertices
in the form of a matrix and uses different matrix factoriza-
tion methods to obtain the representations [Liao et al., 2018;
Li et al., 2018]. However, most of these studies are targeted
on social, semantic, or citation networks, dismissing domain
characteristics. Few of them tackle the loan defaults problem
in financial networks.

Networked Financial Risk

Financial crises and systemic risk have always been a ma-
jor concern for financial companies and governments, with
extensive work on this having been undertaken [Fischer and
Molenaar, 2012]. Networks represented by interconnected
nodes and links between them are a good representation of
modern financial systems as they also have complex inter-
dependence and connections internally [Allen and Babus,
2008]. Researchers started to pay more attention on net-
work theory after the 2008 global financial crisis, because
the crisis brought on by the collapse of Lehman Brothers
spread throughout connected corporations is similar to the
epidemic of Severe Acute Respiratory Syndrome (SARS) in
2002. Both of them hit a networked system and caused
cascaded consequences [Bougheas and Kirman, 2015]. Al-
though initial efforts have been made using network theory
to understand fundamental problems [Van Vlasselaer et al.,
2013], there is little work on risk assessment in guarantee loan
networks except for the preliminary work [Meng et al., 2017;
Niu et al., 2018].

3 Loan Risk Assessment Methods

3.1 Problem Definition

We first present the preliminary concepts and definitions and
then introduce the main problem in this paper.

Definition 3.1: Guarantee Network. A guarantee net-
work (GN) is a directed graph G = (V,E), where V =
{v1, v2, · · · , vm} is a set of vertices and each vertex denotes
an SME, and E = {e1, e2, · · · , en} is a set of guarantee rela-
tionships (edges).

Definition 3.2: Loan Default(Delinquency) Event. A loan
default event in this paper refers to an SME’s delinquency of
overdue repayments.

We now formalize our risk prediction problem using high-
order graph attention representations as follows:

Given a set of loan and repayment records, guarantee
networks G = (V,E), for each SME, this paper aims to
present them in a low-dimensional space R

d. We want to
infer the possibility of loan default events based on learned
low-dimensional representations and loan features. The ob-
jective is to achieve a high accuracy of default prediction as
well as to explore the risk patterns of guaranteed loans.

3.2 Graph Attentional Layer

Following Velickovic’s work [Velickovic et al., 2018], we in-
troduce graph attention layer in HGAR – an attention layer
in neural networks that learns higher-level representations.
Specifically, for a given network, we denote the latent em-
bedding of node vi as ~ui and the attentional embeddings as
~u′

i.

The input of the graph attention layer is the latent embed-
dings of nodes, u = {~u1, ~u2, · · · , ~uN}, ~ui ∈ R

F , where
N is the number of nodes and F is the dimension of latent
embeddings. The layer outputs attentional features, u′ =

{~u′
1, ~u′

2, · · · , ~u′
N}, ~u′

i ∈ R
F ′

.

Particularly, we apply a shared linear transformation in an
initial step in order to transform the input features into high-
level representation. Each node is multiplied by a weighted

matrix, W ∈ R
F ′×F , and then a shared attentional mecha-

nism φ : (RF ′

,RF ′

) → R is applied on top of it. The atten-
tion coefficients indicate the importance of node vj’s feature
to node vi, denoted as:

eij = φ(W~ui,W~uj) (1)

Normally, the model involves all vertices in the graph,
which implies for each node, we need to update its attention
weights on every other node. In this paper, we inject the graph
structure by only computing ei,j for nodes vj ∈ Ni, where
Ni are the n-th order neighborhoods. We then normalize ei,j
across all choices of vj by using the softmax function:

αij =
exp(eij)∑

k∈Ni
exp(eik)

(2)

By obtaining the normalized attention coefficients, which
are parameters of a single-layer feed-forward neural network,
we utilize them to compute the linear combination of the la-
tent embeddings. Therefore, we reach the output feature as:
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~u′
i = σ


∑

j∈Ni

αijW~uj


 (3)

In order to stabilize the learning process of self-attention,
we employ multi-head attention to the final layer of the net-
work. K independent attention mechanisms execute as Equa-
tion 3. Their features are then aggregated, resulting in the
following output feature representation:

~u′
i = σ


 1

K

K∑

k=1

∑

j∈Ni

αijW
k~uj


 (4)

3.3 High-order Embedding Methods

For given nodes vi and vj , if vi provides a guarantee to node
vj , we perform an edge from vi to vj , indicating first-order
neighborhoods, and we denote its adjacency as Ai,j . Conse-
quently, we define the distance between vertex vi and vertex
vj as ri,j =

∑
l A

l
i,j , where l is the adjacent order index.

For each pair of vertices vi and vj , which connects in the
first-order, we define its joint probability distribution as:

p1(vi, vj) =
1

1 + exp(−~u′
T

i · ~u′
j)

(5)

where ~u′
i ∈ R

d is the attentional vector representation of ver-
tex vi in low-dimensional space, and p̂1(·, ·) is a distribution
on space V × V . Then, we define the empirical distribution
of p̂1 as:

p̂1(vi, vj) =
ri,j∑

(i,j)∈cus ri,j
(6)

The low-dimensional vector representation of vertices is
optimized by minimizing the distance between the above two
distributions: O1 = d(p̂1(·, ·), p1(·, ·)), where d(·, ·) denotes
the distance between p1 and p̂1.

We apply the widely used KL-divergence as the measure
of distance between two distributions[Kompass, 2007]. Then,
we get the distance as below:

dKL(p̂1‖p1) ∼ −
∑

(i,j)∈cus

ri,j log p1(vi, vj) (7)

After omitting some constants, we reach the object func-
tion as:

minO1 ∼ −
∑

(i,j)∈cus

ri,j log
1

1 + exp(−~u′
T

i · ~u′
j)

(8)

In high-order estimation, we assume that vertices which
have the same connections or similar structure are closer in
learned feature space. This means each vertex is considered
as both a vertex and a “context” of other vertices in the net-
work. Specifically, we denote û′

i as the attentional represen-

tation of a vertex and introduce û′′
i as the learned features

when vertex i is considered as the “context” of the other ver-
tex. Thus, for each pair of vertices (vi, vj), given vi, the con-
ditional probability is expressed as:

p(vj |vi) =
exp(− ~u′′

T

j · ~u′
i)

∑|V |
k=1 exp(−

~u′′
T

k · ~u′
i)

(9)

where |V | is the number of vertices which share neighbors
with vi.

Also, we preserved network structure features between ver-
tex vi and vj in the objective function. particularly, 1) the
numbers of its guarantors; 2) the number of shared neighbor-
hoods. Then, the probability between vi and vj is denoted
as:

p̂(vj |vi) =
ri,j + ρ(i, j)∑

k∈cus(ri,k + ρ(i, k))
(10)

where
∑

k∈cus ri,k is the collection of nodes that share the
same neighborhoods with vertex vi.

In order to preserve network structure information in a
learned representation, we bring ρ(i, j) in Eq. 10, which is
designed to describe the similarity of neighborhood informa-
tion between vertex vi and vj . It is defined as follows:

ρ(i, j) = λ ·



∣∣∣∣∣∣
∑

k∈gua

ri,k −
∑

k∈gua

rj,k

∣∣∣∣∣∣


 (11)

where λ is the penalty parameter to adjust the importance of
the network structure in the empirical probability distribution.

We then learn the low-dimensional representation of each
vertex vi by minimizing the distance between the empiri-
cal conditional probability p̂(·|vi) and estimated conditional
probability p(·|vi):

minO2 =
∑

i∈V

ωid (p̂(·|vi), p(·|vi)) (12)

where ωi denotes the number of the vertex vi’s neighbors in
networks. Same as the first-order estimation, we employ the
KL-divergence as distance measures in Eq. 12. After simpli-
fying the formation, we reach the object function as:

minO2 ∼ −

∑

(i,j)∈cus

(ri,j + ρ(i, j)) log
exp(− ~u′′

T

j ·
~u′

i)
∑|V |

k=1 exp(−
~u′′

T

k ·
~u′

i)

(13)

During training process, we include both of the first-order
and high-order attentional representation. Afterwards, we
concatenate the two estimated vectors as the final network
low-dimensional representation in the downstream default
prediction task.

3.4 Loan Default Prediction Layer

This paper aims to predict loan default events. After obtain-
ing the representation of guarantee networks, we apply this to
the prediction layer and the loss function is defined as:

L(θ) =−
1

N

N∑

i=1

[yi log(predict(u
′
i, si : θ))

+ (1− yi) log(1− predict(u′
i, si : θ))]

(14)
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where u′
i denotes the representation of the ith node (SME),

which is the output of the attention layer, si denotes the loan
features, and yi denotes the label of the ith node, which is
set to 1 if the loan defaults and 0 otherwise. predict(u′

i, si)
is a prediction function that maps u′

i and si to a real valued
score, indicating the probability of whether the company will
default in the current time window. We implement predict(, :
θ) with another shallow neural network (two-layer Relu and
one-layer sigmoid).

We extract loan features si from the user’s loan dynamic
behavior. This includes: 1) active loan behavior, e.g., default
status, loan type, loan amount, historical loan times, histor-
ical loan amounts, etc. They are calculated in the current
time window; 2) historical behavior describes the accumu-
lated features of a user’s loan behavior, such as total loan
amount, loan times and default times; 3) the user profile con-
tains company type, registered capital, number of employees,
enterprise scale, etc. Most banks require a company to sup-
ply this basic information when the enterprise makes a loan
application, and we use the latest version of the user profile.

3.5 Complexity Analysis

The calculation of objective function in Eq. 13 involves
all vertices in the network, which requires the summation
over all vertices when calculating the conditional probabil-
ity p(vj |vi). This is computationally inefficient, especially
for large-scale networks. To address this problem, we em-
ploy the negative sampling approach, which samples multiple
negative edges according to some noisy distribution for each
edge ei,j .

Specifically, sampling on a sequence of edges requires
O(|E|) time, where |E| denotes the number of edges. During
implementation, we draw a sample of edges by using the alias
table method[Li et al., 2014], which takes only O(1) time.
Afterwards, the negative sampling approach in the optimiza-
tion process takes O(d(T+1)) time, where T is the number of
negative samples. Therefore, it takes O(dT ) time in each step
in total. As the number of steps is proportional to the number
of edges and feature dimensions, we reach the overall time
complexity of HGAR as O(dTF |E|). This demonstrates the
complexity of our proposed method is linear to the number of
edges, which does not depend on the number of vertices.

Meanwhile, the edge sampling method also speeds up the
computation of the stochastic gradient descent process. In
our implementation, we apply the Adam optimizer to update
parameters. The initial learning rate is set to 0.0001, and the
batch size is set to 128 by default.

4 Experiments

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our proposed methods. We
first describe the experimental settings. Then, we give the ex-
periment results of delinquent prediction compared with other
baselines. After that, the effects of the attentional layer and
high-order embeddings are tested respectively. Finally, we
provide the parameter sensitivity and scalability evaluation of
the methods.

AUC(2014) AUC(2015) AUC(2016)

LoanFeature 0.58107 0.58045 0.59461

GF 0.67605 0.66515 0.68440
DeepWalk 0.72536 0.72369 0.72914
LINE 0.73383 0.73509 0.73512
node2vec 0.73094 0.73082 0.73931
MNDF 0.73229 0.73855 0.74532
AANE 0.76505 0.76865 0.77228
SNE 0.76914 0.77670 0.78122
GATs 0.77009 0.77731 0.78281

HGAR-noho 0.77040 0.77746 0.78270
HGAR-noatt 0.77707 0.78191 0.78553

HGAR-all 0.81310∗ 0.80988∗ 0.81875∗

Table 1: Comparison of the default prediction results.

4.1 Experimental Settings

We evaluate our method on the data from a major commercial
bank in Asia, between 01/01/2013 and 31/12/2016. This in-
cludes 112872 nodes (companies), with 124957 edges (guar-
antee relationships). We found that most of the loans are re-
paid monthly. Hence, we aggregate the behavior feature with
a one-month time window and mark the delinquency loans as
the target label in the month.

Compared Methods

We use eight state-of-the-art methods to highlight the ef-
fectiveness of HGAR. These are: Graph Factorization (GF)
[Ahmed et al., 2013], DeepWalk [Perozzi et al., 2014], LINE
[Tang et al., 2015], node2vec [Grover and Leskovec, 2016],
MNDF [Wang et al., 2017], AANE [Huang et al., 2017], SNE
[Liao et al., 2018] and GATs [Velickovic et al., 2018]. We
also construct sub-modules of our proposed model in compar-
ison: HGAR-noatt/noho/nolf, in which attention layer/high-
order/loan features are not used. For LoanFeature, we only
utilize loan features in the prediction task.

We set the network embedding dimensions to 64, combin-
ing loan features (64) with 128 dimensional vectors in the
experiments. The parameters of the methods compared are
set to their default values. For our method, we set λ = 1
and l = 3 since we often reach stable results with these.
We apply the prediction layer for all methods and evaluate
the performance by AUC (Area Under the Curve) and Preci-
sion@k. Precision@k means the prediction precision of the
top k nodes, formulated as:

Precision@k =
|{i|i ∈ Vp ∩Vo}|

Vp

where Vp is the set of predicted top k defaulted nodes, Vo is
the set of observed default nodes and | · | represents the size
of the set.

4.2 Loan Default Prediction

We evaluate the performance of different models for the de-
fault prediction task. Records from the year 2012 are used as
training data, and then we predict defaults of the next three
years in months. We report the average AUC in Table 1.
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Figure 1: Precision@k results of default prediction. We compare HGAR-all with its sub-modules and LoanFeature. The result shows our
proposed attentional high order embedding method achieves the best performance in all time windows.
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Figure 2: Case study results of the attention layer. The node with
around 3-6 adjacent nodes is generally highlighted.

The first 9 rows of Table 1 report the results only of loan
features and some state-of-the-art baselines. As we can see,
eight baselines, which add network embeddings, outperform
LoanFeature, showing improvements of at least 15%, demon-
strating the effectiveness of adding guarantee network topol-
ogy information in loan delinquency prediction. Of all the
baselines, GATs and SNE are shown to be the most compet-
itive. Rows 10–12 show the results of HGAR and some of
its sub-models. The performance of HGAR-noho is similar
to SNE. HGAR-noho and HGAR-noatt perform better than
the baselines and LoanFeature, and the binary role proper-
ties prove to be effective when the guarantor and guarantee
are treated differently in the embedding methods. The re-
sults of HGAR-all are significantly better than the sub-model
methods, proving that high-order and attention layers could
improve the model’s performance. Moreover, compared with
other baselines, the improvement in results using HGAR-all
is especially noticeable.

4.3 Effects of Attentional High-order Models

In this experiment, we report the precision of the top k nodes
in delinquent prediction. In order to prove the effects of each
module on the proposed methods, we experimented on the
benchmark dataset with LoanFeature, HGAR-nolf, HGAR-
noho, HGAR-noatt, and HGAR-all. Figure 1 shows the pre-
cision@k of default prediction with different k. The perfor-
mance of HGAR-noho is similar to HGAR-noatt, and both
are much better than HGAR-nolf and LoanFeature, showing
the necessity of integrating topological and loan behavior fea-
tures. HGAR-all performs much better than the four other
baselines. The experimental results demonstrate the effec-
tiveness of our proposed methods in loan risk assessment and
default prediction.

(a) (b)

Figure 3: Case study: network visualization of GN75 (a) community
detection by random walk; (b) clustered by HGAR.

4.4 Deployment and Case Studies

In HGAR, the attention layer is used to determine the impor-
tance of nodes during embedding within a certain time win-
dow. Figure 2 visualizes the attention weights of nodes in
sampled time windows. We observe that a node with around
4 adjacent nodes is generally the most important since the
colors of its heat distribution are brighter overall.

In order to validate the above observation, we employ an
empirical study on a typical graph that is coded as GN75,
which includes 112 nodes and 126 edges. We apply the K-
Means algorithm on the learned embeddings of HGAR, as
presented in Figure 3 (b). For comparison, we utilize random
walk [Pons and Latapy, 2005] as the baseline for commu-
nity detection, as presented in Figure 3 (a). It is clear that
the results of random walk could only separate community
equivalence. Our proposed method preserves better structure
information in the learned embeddings, and the nodes with
high attentions are clustered together, colored as blue and
lilac. These companies show medium scale input, no out-
put, star structures. This is because companies facing default
need guarantors, but cannot gain many of them so as to form a
normal star structure and do not have the ability to guarantee
other companies. This phenomenon is also reported in [Meng
et al., 2017], which proves the observation from the attention
layer visualization.

We further investigate the attention selected high default
patterns during the deployment period. Specifically, we ap-
ply motif detection from high attention nodes for risk pattern
discovery: (1) we employ the gtrieScanner approach [Ribeiro
and Silva, 2012] on around 4 nodes motif detection, as nodes
with around 4 neighbors are highlighted in Figure 2. (2) We
match the motifs with the entire network and calculate the
ratio for default firms as shown in Figure 4. (3) We rank de-
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(a) (b) (c)

Figure 4: Deployed user interfaces of the loan management system, where “D:” denotes the defaults ratio. (a) presents the control and metric
panel, including the risk statistics of each of the loan communities and control menus. (b) displays the loan status monitoring screen. The node
size indicates the predicted delinquent probability, which is dynamic and changes with the time windows. Thus, risk managers could focus
on risky and dominant companies. (c) lists all risky patterns discovered by the HGAR attention mechanism; our system could automatically
search the whole complex network to find other companycandidates that match selected risky patterns.
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Figure 5: Risky patterns (4-vertex-motif structures) detected from
GN32. Among them, patterns 15, 16, and 17 show single-input,
single-output, and feed-forward structures.

tected patterns in descending default order, and mark the top
n of them as high default pattern candidates. It is compu-
tationally expensive to detect all those motifs in the whole
network, so we start from motifs of 4 vertices.

We select a typical graph coded as GN32, which consists of
103 enterprises; 36% of them default on 85% loans from the
bank. Figure 5 shows the risky pattern candidates detected
from GN32. As can be seen, although there are nearly 199
kinds of 4-vertex motif shapes theoretically, only 12 of them
are discovered as high default pattern candidates. The struc-
tures of them are normally complex. It should be noted that
some of these motifs are well known by domain experts. Tak-
ing motif 16 for example, it is a joint liability loan and motif
5 is a combination of a joint liability guarantee loan with a
single guarantee. The top five risk motifs show single input,
single output, feed forward structures.

Our method is deployed in the loan management system.

Figure 4 presents the system interface and main components.
During the observation time window, it successfully warns
76% of true positive ratio of all risky loans with an accept-
able 26% false positive rate, involving 2538 SMEs and 7006
guarantors. It is worth noting that these risky loans failed to
be discovered by conventional scorecard based risk control
system.

5 Conclusions

In the loan risk assessment systems, an company’s basic pro-
file may not be completely accurate (it may be out of date or
even include fake data), but the guarantee network provides a
new dimension for loan risk assessment, which is more trust-
worthy. Thus, in this paper, we present a novel loan risk pre-
diction system using high-order graph attention representa-
tions. In particular, it contains three characteristics: 1) binary
roles of nodes; 2) high-order adjacent approximation; 3) at-
tentional layer selection. Extensive experiments demonstrate
that our proposed methods are better than eight other state-
of-the-art baseline methods. By observing gradual changes
of attention weights after deployment, we discover risk guar-
antee patterns, which have been employed by bank’s internal
risk managers to monitor possible delinquent companies and
to curb systemic loan crises.
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