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ABSTRACT Safe Routes to School is very important for students to have good physical and psycholog-
ically healthy in school life. For providing safe routes based on risk analysis, finding out dangerous points
and areas can be a target to avoid dangerous locations by pedestrians and drivers. However, analyzing the
risk assessment to derive the safe routes requires a large amount of data with a certain time of observation by
experts. Deep learning is a solution to provide information regarding safe routes based on expert knowledge.
In this paper, we propose a risk assessment inference approach using a Recurrent Neural Network (RNN)
model with Long-Short Term Memory (LSTM) cells based on geographical information for safe routes
to school. However, geographical information including coordinates is difficult used in learning-based
inference models because of the series of float values. For training the RNN model with the geographical
data, coordinates of routes and danger points are translated to be geohash through the geohash converter.
The geohash data with other data of features are fused and inputted to the one-hot encoder. The one-hot
encoded data is used in the inputs of the RNN model to train the LSTMs. The input data of the training
model is derived by the risk index model that is proposed to calculate the risk index based on distances
of route coordinates and danger points. Therefore, the risk index is correlated with the training dataset.
Through the proposed inference approach, the geographical information including multiple coordinates is
enabled to be trained by RNN as a geohash-based input string. Moreover, the input string with other features
is fused to support the one-hot encoding to get a better result in RNN models.

INDEX TERMS Recurrent Neural Network, Long-Short Term Memory, One-Hot Encoding, Geographic
Information System, Geohash, Risk Assessment, Safe Routes to School

I. INTRODUCTION

R
OAD traffic accidents are one of the wide-ranging and
most crucial problems for humanity in the world. World

health organization statistics describe that road crashes are
the second main cause of death globally among young people
aged from 5 to 29. Every year more than 1.2 million people
are killed by road crashes and nearly 50 million people are
injured [1]. Road accidents or dangers generally result of
five different factors including human (e.g., driver or pedes-

trian behavior), environmental (e.g., condition of weather),
infrastructure (e.g. road design), traffic condition (e.g. traffic
congestion) vehicle-related factors (e.g. age or size of the
vehicle) [2]. Over the last decades, remarkable practical
and methodological developments have been achieved for
decreasing dangers and accident rates on roads based on
heterogeneous technologies such as stochastic, heuristic and
fuzzy [3]–[6]. However, the lack of knowledge in terms of
human factors, driving issues, vehicle mechanisms are the
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main problem for solving human daily traveling accidents
as a whole [7]. Today many researchers are paying atten-
tion to improve vehicle design and control functionalities
to decrease risk levels, as well as, various road assessment
programs are promoting redesign roads to minimize dangers
on the roads [8]. Vehicles are believed as the main factor of
danger on roads since they are the first actors in the accidents.
For these reasons, researchers have been trying to suggest
intelligent solutions that can reduce the risk of dangers on the
ways based on historical or current sensing data in a specific
road zone [9]–[11]. The role of the intelligent services is to
sense the environment and analyze the data regarding the
current zone, then predict and detect future risks.

Safe Routes to School (SRTS) enables walking and bicy-
cling to school safer which enhance children’s health and
well-being, reduce traffic congestion near the school and im-
prove community life quality [12]. However, the complexity
of the roads makes many parents drive their children to avoid
potential dangers [13]. Most of the studies found that road
infrastructure also has an essential impact on the risk of trav-
eling both by vehicles and by walk [14]–[16]. In particular,
there are intersections on roads which are generally known
as black spots for school children as well as for all road
users [17]. Black spots are specific locations where the risk
of having accidents and expectations for potential conflicts
are higher than the rest of the roads [18], [19]. The risk
and the number of dangers on routes are generally led by
traffic conditions such as the composition of traffic, vehicle
flows, or volumes. During peak hours, the danger level and
the number of accidents increases, its influence on not only
vehicle drivers but also pedestrians [20]–[22]. Based on
these data, Geographic Information System (GIS) provides
capturing, storing, manipulating, analyzing and management
functionalities [23], [24]. The geographic information can
keep track of not only things, activities, and events, but also
where these things, activities, and events exist or happen [25],
[26]. Therefore, sufficient data enables routes to be safer by
removing dangers based on predictable parameters.

Recently, Machine Learning (ML) algorithms have been
receiving extensive attention to determine future occurrences
or recommend actions to achieve optimal outcomes in vari-
ous fields such as healthcare, finance, and transportation to
prevent the risks [27]–[30]. Deep learning algorithms have
become one of the hottest technologies in many research
fields. Especially, Recurrent Neural Network (RNN) with
Long-Short Term Memory (LSTM) has been applied suc-
cessfully in sequential data such as time series forecasting,
natural language translation and speech recognition [31]–
[35]. LSTM-based RNN trains data by sequential processing
over time. However, the deep learning model can be easily
corrupted for learning small values because of vanishing
gradients [36], [37]. The geographical information is based
on coordinates that are comprised of a couple of float data.
Multiple coordinates are difficult to be fused with other
features for a one-hot encoded dataset to train an LSTM-
based RNN model [38]–[40]. However, predicting the risk

of routes requires a set of coordinates that illustrates the
information of a path of route and danger points. Therefore,
the LSTM-based RNN model is difficult to train a set of coor-
dinates for predicting the risk assessment using geographical
information.

For awareness of dangers to enable SRTS, in this paper,
we propose a risk inference approach model that uses geo-
graphical information including a path of route and danger
points to predict the route risk index. For predicting the risk
index, an LSTM-based RNN model is proposed to use one-
hot encoded data that involves information of coordinates of
routes and danger points. For combining the coordinates with
other strings, the coordinates are translated to a set of geohash
[41], [42]. The geohash data is a widely used standard for
describing the location using a short alphanumeric string,
more precisely, location is described with latitude and lon-
gitude values. The transformed geohash data and other data
features including danger types, transportation, and gender
are combined and used as an input parameter to the one-
hot encoder. For preparing risk index data to be used in
the RNN training model, we propose a risk index model
based on calculating the distance of danger points and routes
using a mathematical equation. For the implementation and
experiment, the RNN models are configured to be 100, 300,
500 times training epochs to test the performance of the
proposed inference approach using the geographical infor-
mation. Furthermore, we collect the predicted risk index from
the proposed inference model to compare with the risk index
of the equation-based risk index model for experimenting
with the proposed risk inference approach model using data
of school routes.

The rest of the paper is structured as follows. Section
II introduces the related works regarding risk assessment
approaches based on geographical information and inference
systems. Section III introduces the proposed risk inference
approach through the architecture of models to depict the
data pipelines and specifications. Section IV introduces data
processing and presentation to present the data that is used
in the proposed inference approach. Section V presents ex-
perimental results including the predicted risk index and
danger level. Section VI presents the performance evalua-
tion through comparisons of risk indexes and danger levels.
Finally, we conclude this paper and introduce our future
directions in Section VI.

II. RELATED WORKS

In recent years, several strategies have been developed to
decrease traffic problems in the world, many metropolitan
organizations have started to promote the development and
redesigning of vehicles and roads structure to decrease the
risk of dangers on roads [43]. Reducing the risk of dangers
offer considerable benefits to society in terms of personal
safety, health improvement, better air quality, and fewer
worries [44]. For monitoring and controlling the risk of dan-
gers on the roads, GIS and ML algorithms have been using
widely. GIS has been achieving a huge reputation, which can
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provide better visualization of the large dataset for decision
making and analyzing process. GIS-based maps help for
finding out the crash spots, risky points and danger zones in
motorways and highways [45]. The road safety analysis in
M-25 motorway, the GIS supports the required data of traffic,
characteristics of the road, and accidents with 70 segments
[46]. High risky crash zones have been described clearly
in Shanghai expressways using GIS-based applications [47].
In Tehran and Belgium, GIS-based applications have been
successfully applied to map the black zones to increase the
attention of drivers and pedestrians in such zones [48], [49].
The development of GIS-based applications has helped to
model crash data in a short-range, as well as based on short-
range identification long-range crash area points clarified
continuously using GIS in Belgium [50].

The recent improvements in the efficiency of Remote
Sensing (RS) and GIS technologies have initiated a revolu-
tion in hydrology, particularly in flood management, which
can fulfill all the requirements for flood prediction, prepara-
tion, prevention, and damage assessment [51]. Among dif-
ferent GIS-based flood models presented in the literature,
artificial neural networks [52], frequency ratio [53], logistic
regression [54], adaptive network-based fuzzy inference sys-
tem [55], multi-layered feed-forward network [56], decision
trees [57], [58], and support vector machines [59], [60] are
the most widespread techniques that utilize RS and GIS tools
[61]. Although flood forecasting and prediction models are
available, the accuracy of flood prediction maps remains a
critical issue. In flood modeling, high accuracy for flood
prediction mapping should be achieved, and thus, new and
efficient models should be explored to increase the accuracy.
Flood risk can be expressed as a combination of hazard and
vulnerability [62]–[64]. In particular, the risk is a mathemat-
ical expectation of the vulnerability (consequence) function.
Flood probabilities are determined to produce flood hazard
maps. Hydraulic models may result in uncertainties because
they require complete and sufficient hydrological data [65],
[66]. Therefore, using RS data and GIS-based models can be
considered a complementary approach to flood modeling.

Khan et al. suggested an approach based on Hidden
Markov Model (HMM) for destination and route prediction
[67]. They have suggested a lightweight algorithm for pre-
dicting driver routes and destinations. The last visited road
links were used as an input parameter for the HMM-based
prediction algorithm, a client application supports real-time
visual predicted risks with GPS. Vehicle to the cloud, cloud
to vehicle connectivity-based road and route risk assessment
planning have been suggested in [68]. They have developed
a crash prediction model using Artificial Neural Network
(ANN) and more than 30,000 road segments and 144,821
crashes data which was collected from the highway. Their
proposed system analyzes how current weather, current time
and day of the week influence on safe route planning. Zheng
et al. have proposed a road traffic risk assessment framework
based on HMM [69]. They analyzed the steering angle and
the velocity of the vehicle to predict the movement of the

vehicle over a period, also they can calculate the expected
path of the neighbor car. The HMM algorithm is used for
calculating the steering angle of each vehicle, as well as,
road safety level also considered as an input parameter to
train the HMM algorithm. They have successfully tested their
proposed framework on real-time and road traffic risks can
be monitored continuously based on their algorithm. In this
study, only the motion of vehicles is mentioned, but in the real
road includes various types of participants such as cyclists,
walkers, animals, and pedestrians.

A study is presented in [70] that provides GIS and ANN-
based road safety risk evaluation research. The authors se-
lected two motorways in Belgium (E-313 and E-314), and
they divided the lengths of the motorways to 67 segments,
the crash data used in this research includes occurred crush
location from 2010 and 2012. Vehicle position, horizontal
and vertical crash points, speed, environment condition, and
flow are taken as an input parameter for training the ANN
model. The output of the prediction model describes the
riskiest points on a motorway, as well as, the length of
the riskiest segments. The predictive capability of GIS has
been improved by using ANN algorithms in a wide range
of applications [71]. The combination of GIS and ANNs are
a popular solution in agriculture, meteorology, geoscience,
and land irrigation. GIS-based RNN model is being used to
predict the injury points and crashes in Malaysia expressways
[72]. Some studies have been focusing on improvements in
vehicle mechanisms, while others are paying attention to the
design of the roads to decrease risk levels in routes. The
routing security and predicting the safest routine based on
risk factors concept has been presented in [73]. They have
developed a cost-effective infrastructure, their proposed ap-
plication operates in three steps, firstly based on the starting
point and destination the system collects the list of risks from
the database. Secondly, the data is preprocessed for removing
stop words from the original data. Finally, the system sug-
gests the most optimal and closest route to users. According
to the comparisons of google safe route suggestions, their
proposed system more clear and safer. However, the authors
did not discuss predictive algorithms on how they configured
and which type of algorithm is used for the system.

Several ML approaches are proposed to learn sequences
for deriving the results such as classes, floats, identifies
and sequences in various studies. Guo et al. [74] proposed
a sequential classifier based on Support Vector Machine
(SVM) that reads the image data as sequences to classify
the multitemporal remote sensing images. Meng et al. [75]
proposed an SVM-based protein identification solution that
extracts the information from the training dataset and delivers
to the learning for reducing the complexity of data. Zahidul et
al. [76] proposed a text classification approach based on the
random forest that is suitable to process the high dimensional
noisy data through extracting features using trees. Moreover,
for classifying the text data, Xu et al. [77] proposed an im-
proved random forest that is developed with a novel weight-
ing and tree selection methods to reduce subspace size and
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improve performance. Sutskever et al. [34] proposed a multi-
layer LSTM in the RNN for translating English to French
which achieves outstanding accuracy and brings the approach
into notice [78]. The use of Evolutionary Computing (EC) for
machine learning is presented from various perspectives such
as feature selection and classification, regression and deep
learning [79]. In deep learning the EC provides an optimal
solution to machine learning for reducing the cost such as
a significant amount of time and domain expertise [80]–
[82]. Bui et al. [83] proposed a flash prediction model using
Particle Swarm Optimization (PSO) in an extreme learning
machine that delivers the weights efficiently.

III. PROPOSED RISK INFERENCE APPROACH BASED

ON GEOGRAPHICAL DANGER POINTS

The proposed risk inference approach is used for predicting
risk index to be aware of dangers in SRTS based on geo-
graphical information. The inference approach is comprised
of the RNN model, one-hot encoder, geohash converter, and
data to predict the route risk index. The data for building the
approach is collected from the Jeju province, South Korea.
The data is provided by students through the survey that
includes path, danger points, danger type, transportation, and
gender. The dataset includes 1707 rows that are used for
training and testing the RNN model separately to evaluate
the performance.

Figure 1 presents the proposed data pipeline for the RNN-
based inference approach. The data pipeline is comprised
of input data, functional blocks, and RNN prediction mod-
els to predict the route risk index based on geographical
information. For training the RNN model with the dataset,
coordinates of routes and danger points are converted to
be geohash through the geohash converter. The collected
data is spatial data which is represented in two dimensional,Proposed data pipeline for inference approach of route risk index based on geographical 

information
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FIGURE 1. Proposed data pipeline for the inference approach of route risk

index based on geographical information.

namely, longitude and latitude. This two-dimensional data is
re-coordinate to single shorter string values using the geo-
hash converter. Geohash algorithm provides a hierarchical
grid-based model of the earth where locations are presented
in Base32 strings [84]. To use more accurate, consistent
data for our data processing, the converted geohash data,
and other data features are integrated through data fusion.
Data fusion helps to combine data from multiple sources or
associated databases for improving accuracies and making
simpler overall operational processes [85]. Fused data are
inputted to the one-hot encoder. The one-hot encoding is a
data pre-processing process in which categorical variables
are converted to binary parameters which can provide better
performance to ML algorithms. The one-hot encoded data is
used for the inputs of the RNN model to train the LSTMs.
The output of the trained model is derived by the risk index
model that is proposed to calculate the risk index through
route coordinates and danger points.

RNN is used for training sequence data to derive the next
value in a real-valued sequence or outputting a class label
for an input sequence. For providing the risk index in SRTS,
the proposed approach can be categorized as the solution that
processes multiple-input time steps to deliver one output time
step. LSTM is a popular approach that achieves outstanding
accuracy in training the sequences [34]. The provided data is
converted to a string through the geohash converter and data
fusion. However, the string data is comprised of characters
that need to be converted to numerical data for training in
the ML [86], [87]. Therefore, in the proposed approach, the
one-hot encoding is applied to the integer representation.

Figure 2 depicts the risk index model dataflow. The risk
index model includes two parameters, danger points, and
route points. Each danger and route points’ latitude and lon-
gitude parameters are respectively presented using (Dlat(j),
Dlng(j)) and (Rlng(i), Rlng(i)). Latitude and longitude play

Risk Index Model

Risk index model dataflow

      = (   1 Dlat(j) , 
Dlng(j) , 

Rlat(i) , 
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FIGURE 2. Risk index model dataflow.
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Data processing flow for inputs of RNN learning model 
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FIGURE 4. The architecture of the RNN learning model for one-hot encoded

sequence value.

an essential role in several areas, but one of their most
valuable usages is the measurement of distances between
two locations. Especially, aerospace engineering, logistics,
transportation and just to name a few. Distance calculations
provide the shortest, the fastest and the most optimal routes
between two locations [88]. Distance is calculated between
all of the danger points and route points. The route risk index
is calculated by the below-given equation. As can be seen
equation, based on a real distance between danger points and
route points. The route risk index is calculated by the below-
given equation.

Figure 3 presents the data processing flow for RNN learn-
ing model input parameters. The first and very important step
for conducting the route risk index analysis is the selection
of input and output variables properly. Input variables are
based on geographical information danger point coordinates
of school routes danger points and risk levels which are
collected by student survey. These data set coordinates are
described in the two-dimensional format including latitude
and longitude of locations. Output variables are risk in-

dex and risk level of routes. Route and danger points are
converted to the geohash data using a geohash converter.
Geohash data helps to encode latitude and longitude based
geographic location into a short string of digits and letters.
Geohash converter provides route geohash sequence and
danger point data in geohash data format. The converted
geohash data and other data of features including danger
type, transportation, and gender of students are fused to the
one data set. The fused dataset contains categorical variables
such as gender, name of transportation, danger type, and
geohash based danger points’ location. These different data
variables manner confuses the ML model, to avoid this the
data should be encoded. One-hot encoded data represents
each type of data in a format that the computer easily can
understand through the binary format for the LSTM-based
RNN.

Figure 4 presents one-hot encoded data based RNN learn-
ing model architecture. Then input and output parameters
are presented as x and y for the learning module, respec-
tively. RNN can provide one of the most powerful algorithms
for processing sequential data. LSTM defines the unit of
computation (memory cell) that replaces traditional artificial
neurons in the hidden layer of the network. Networks can
be able to associate with these memory cells effectively and
high prediction performance can be achieved [89]. As we
have mentioned above the converted geohash data and other
data features are converted to the one-hot encoding data
format. The input layer consists of 38 features that are each
connected to all RNN hidden neurons (10) and the outputs are
taken to the fully connected layer that outputs are the route
danger points and route risk index.

IV. DATA PROCESSING AND PRESENTATION

For providing the data to the proposed inference model
based on geographical information, we collect the data from
students through a survey that includes path, danger points,
danger type, transportation, and gender. Using data collec-
tion, feature selection, the geohash data converting, and data
fusion, the data for a row of the dataset is translated to
a string to be used for one-hot encoding to get a binary
data. The original data is collected schools’ route-ways and
danger point coordinates from the Jeju province, South Ko-
rea. The dataset contains student survey-based danger points,
students’ gender, transportation type, and other features. Co-
ordinates of location are given in latitude and longitude. For
the original data, outliers, duplicates, and irrelevant records
were identified and removed and other unimportant strings
are cleaned for further processing.

The collected spatial data includes latitude and longitude
of routes and danger points. These coordinates are given
in the float data type. To improve the performance of the
process based on latitude and longitude, the function of
geohash data conversion is used for converting float data to
geohash data and described with a short string of digits and
letters. The data fusion is used for integrating the data from
multiple sources to offer more compatible and accurate data.
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Original dataset of route information

POINT(126.58983518605717 33.26810735108034)

No. ID Gender TP Route DP1 DP2 DP3 DT1 DT2 DT3 DL
1 4551 M 1 MULTILINESTRING((126.59147074871272 33.2683697001577,126.58981363606591 33.26812531256432,126.58883145330223 33.26700404852026,126.58895593299208 33.26563398387517,126.58959839999999 33.26593239999999))POINT(126.58983518605717 33.26810735108034)POINT(126.59002846152909 33.268089955952476)POINT(126.5892690464876 33.267528439649276)31 31 31 3
2 4552 F 3 MULTILINESTRING((126.58146960475956 33.276376703036114,126.58332915811496 33.2764009820925,126.58679095568884 33.27980265531766,126.58702432079748 33.27583627046762,126.58647653504586 33.2736344778061,126.58746758027553 33.27288040273701,126.58970063929439 33.27277959703664,126.589970714849 33.27011166798175,126.58959839999999 33.26593239999999))POINT(126.58874190506106 33.26664535482391)POINT(126.59157801508633 33.266077660613675)33 99 5
3 4553 M 3 MULTILINESTRING((126.5965027019191 33.26293578168357,126.59595549269036 33.26173934502988,126.59481706037428 33.261915966620336,126.59251913668413 33.26217894646135,126.5903018778164 33.26585030897819,126.58959839999999 33.26593239999999))5

MULTILINESTRING((126.56520640093214 33.252515646886906,126.5653582851606 
33.25218257470514,126.56474698353856 33.252108306330406,126.563782909076 
33.251762309062556,126.56317817061634 33.25252657186056,126.56389673807264 
33.25261024044725,126.5639143 33.2527179))

1705 8547 F 1 MULTILINESTRING((126.56588601934325 33.25369464816697,126.56585535332736 33.253385732885135,126.5660183910338 33.25296704403003,126.56635187473901 33.25280140578941,126.56666899379455 33.25268980742565,126.56662680444852 33.252540891456036,126.56627840623732 33.25246754647662,126.56597282074733 33.252416890698655,126.56565125080479 33.25234363759388,126.56510996645336 33.25221551772069,126.56468108941063 33.2521418868179,126.56454563444554 33.25240739344404,126.56445281159681 33.25273165516844,126.56410383255673 33.252775513956806,126.5639143 33.2527179))POINT(126.56585909139721 33.25371484083573)POINT(126.56582295213167 33.253698936145824)POINT(126.56588740530916 33.25368563670661)12 22 4
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FIGURE 5. Original dataset of route information.
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FIGURE 6. Converted dataset of route information.
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FIGURE 7. Count of routes for each danger level.

The converted geohash data and other data features fused
and inputted to the one-hot encoder. One-hot encoding is a
conversion process of categorical data to binary form which
ML algorithms can do a better prediction performance. For
improving our proposed prediction approach performance,
all of the fused data is converted to the one-hot encoding
based binary data. After data preparation processes, the one-
hot encoded data is used to train RNN LSTMs. The outcome
of the proposed model is route danger level and risk index.

Figure 5 presents the original dataset of route danger points

and the risk levels used for the proposed approach. The
dataset includes several columns such as number, id, gender
(Male or Female), transportation type (TP), danger points
(DP), danger type (DT) and danger level (DL). As can be
seen, the dataset includes 1707 routes for going to schools in
Jeju. The most important part of this database is route danger
point coordinates and risk levels. Danger points reveal the
route coordinates in two-dimensional coordinate variables:
latitude and longitude. Danger levels are based on the degrees
of the risk from 1 to 6. Danger level 1 is accepted as the least
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dangerous, whereas danger level 6 is accounted for the most
crucial level for students.

Figure 6 presents the dataset after processing techniques
that presents the gender of the students who attended the
survey through encoded values 0 (male) and 1 (female). The
geographical latitude and longitude coordinates of the route
are converted to the geohash data. Geohash data is converted
of the two-dimensional latitude and longitude float data to the
one-dimensional geohash data.

Figure 7 illustrates the number of routes in terms of each
danger level. As we mentioned above 1707 school route
danger points and 6 danger levels considered to conduct this
work. It can be seen that in the highest quantity of routes
(668), the danger level is equal to 4. In contrast, the lowest
number of routes (15 and 74) accounted for danger level 1
and danger level 2, respectively. The second most widely
danger level was 3 and it was counted in 399 routes. The
figures for 300 and 251 routes were responsible for danger
level 5 and danger level 6, respectively, in the collected
dataset. The largest proportion of danger level in the dataset
was comprised of 39.13% (danger level 4) of overall danger
levels, whereas the smallest shares of danger levels were
0.88% and 4.34% for danger level 1 and danger level 2,
respectively. The second highest contribution for danger level
was accounted for danger level 3 with 23.37%, according to
the survey. There was little difference between the figures for
danger level 5 and danger level 6, as the former contributes
the third-highest percentage with 17.57%, whereas, the share
of the latter was marginally lower (14.7%).

Figure 8 presents the risk index of each route in ascending
order. The risk index is categorized according to the growing
order from 0 to 3. Each route risk index calculation is related
to the route danger coordinates. If the student lives close to
school and the route, which he or she uses, has more danger
coordinates, then the risk index can be higher. If the student
lives far away from school and danger coordinates are less
in the route, after that, the risk index of the route becomes
lower. Until 727 sequence numbers risk index is nearly 0,
this is followed by a continuous increase, and the highest risk
index is equal to 1.636.

Figure 9 shows the map-based visualization of routes
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FIGURE 8. Risk index of each route.

Map-based visualization of routes and danger points. (a) All routes and danger points. (b) 
Route information window for clicked route.

(a)

(b)

FIGURE 9. Map-based visualization of routes and danger points. (a) All

routes and danger points. (b) Route information window for the clicked route.

and danger points. Map visualization helps to analyze and
display the geographical information in the maps. This type
of data description is clear and more understandable. Based
on our prediction approach all routes and danger points are
predicted using geographical information and presented on
the map where 164, 444 and 1169 danger points are marked
in separated groups. Once the route has been clicked from
the window then the ID of the route and danger level and risk
index can be visible.

V. EXPERIMENTAL RESULTS

Implementation of the proposed system consists of various
steps and methods, such as data collection, data analysis, data
conversion, data fusion, one-hot encoding, and RNN LSTM
based on data training. We use geographical information-
based datasets which include routes’ danger points of ways
to go to schools in Jeju province (Korea), as well as students
survey-based route danger levels and danger points. The
presented data is applied to the proposed inference approach
that is comprised of risk index model, geohash converter, data
fusion, one-hot encoder, and RNN prediction.

Figure 10 shows the experiment details of the proposed
inference approach including functional blocks and data in-
cluding inputs and outputs. The experiment is separated into
two parts that are data preparation and data process. The
original dataset is extracted from a survey that includes co-
ordinates of danger points and routes which are translated to
the geohash through the geohash converter. The geographical
information is used for providing the inputs data and output
data of the proposed learning model. For the inputs of the
learning model, the geohash converter translates the geo-
graphical information of the original dataset and generates
the geohash data. Also, other route features are converted
to be numeric data. For the output of the learning model,
the risk index model derives the risk index data that is
calculated by the proposed equation. The equation derives
the risk index based on geographical data. Therefore, there

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028852, IEEE Access

Wenquan Jin et al.: Preparation of this Paper

Geo-Info

Risk Index Model

Risk Index

Danger Levels

Geohash Converter 

Geohash

Route Features

Inputs of Learning Model Output of Learning Model

One-Hot Encoder

RNN based on LSTM
(TensorFlow)

Data Fusion

RNN 
Prediction 

Model

1507 
rows

200 
rows

200 
rows

1507 
rows

Train

Test Result

Inputs of Learning Model Output of Learning Model

Train

200 rows 
Result

VS

(a)

(b)
FIGURE 10. Experimental details. (a) Data preparation. (b) Data process.

is a reasonably high correlation between inputs data and risk
index. Furthermore, we also bring danger levels to the leaning
model for experimenting with the proposed learning model.
However, the result of the inference model with the danger
levels is not considered which can be assumed the danger
levels are related to the geographical data.

The inputs of the learning model include data of gender,
geohash and danger type 1,2, and 3. The translated geohash
data is combined with a string for each row. Then, through the
data fusion, all values of each row are fused into the on-hot
encoder to prepare the training and testing dataset with a risk
index for the RNN model that is implemented in TensorFlow
1.8. Also, instead of the risk index the danger level data
also used in the RNN model. The total rows for training the
learning model are 1507 that is comprised of strings. Each
string presents the information of a record from the original
dataset that includes geographical information and survey in-
formation. The RNN model is consists of LSTMs based on 10
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FIGURE 11. Loss over training epochs in RNN models for risk index.
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FIGURE 12. Loss over training epochs in RNN models for danger level.

hidden layers. The TensorFlow framework provides LSTM
cells through the library to build the RNN architecture. At
the last of the architecture, a fully-connected layer is added to
deliver the result. Through training the RNN model with 100,
300, 500 epochs, the inference models are derived to predict
the risk index. For testing the inference modes, 200 rows data
are applied and evaluated using Mean Absolute Percentage
Error (MAPE).

Figure 11 shows the loss over training epochs in RNN
based risk index. Loss over training epochs measures the
distance between the proposed risk index model’s output and
the desired output during the training. It can be seen that in
the initial steps of the training, the loss is about 0.1; after the
second sequence numbers, the loss is decreasing gradually.
There is no training error after the 11th and 30th sequence
numbers in the case of RNN100 and RNN300, respectively.
This means the proposed prediction is performing well.

Figure 12 shows the loss over training epochs in RNN
based danger level prediction. Loss over training epochs
measures the distance between the proposed danger level
model’s output and desired output during the training. It can
be seen that in the initial steps of the training, the loss is about
19.59 according to all RNN100, RNN300 and RNN500.
After the 1.22 training loss, the RNN100 loss has changed
to 0. RNN300 is changed to 0, in the sequence number 30,
while the training loss is almost 1.84. The latest training loss
is leveled off 1.180 based on RNN500 in sequence number
50.
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VI. PERFORMANCE EVALUATION

For the risk index inference approach, the training data is
comprised of 1507 rows. Each row includes information
about gender, transportation, route, danger points, danger
type, and risk index. The 1507 values of risk index are
brought from the result of the risk index model to be used for
the output, and others are the input which converted to one-
hot encoded data. The RNN prediction model is generated by
training the LSTM-based RNN model. We use 200 rows to
test the RNN prediction model to the 200 rows result which
is 200 values of risk index. From the result of the risk index
model, we bring the corresponding 200 values to compare
with the predicted values.

The geographical information-based data includes route
and danger point coordinates in latitude and longitude values
which are converted to a short string of digits and letters
based geohash data using the geohash converter. Geohash
converter converts two-dimensional coordinates (latitude and
longitude) to one-dimensional value. One-dimensional geo-
hash data is easy to implement complex scenarios. Converted
geohash data and other data features are fused and encoded
to the binary values (0 and 1) using One-Hot Encoder. The
categories need to be converted into numbers using a one-
hot encoder to achieve high performance for deep learning
algorithms. One-hot encoded 1507 rows of data is used for
training the RNN based LSTM model, 200 rows of data have
been used to evaluation of the proposed prediction model. As
well as, actual risk index and danger level (1507 rows) data
applied to the RNN prediction model without using geohash
converting, data fusion and one-hot encoding techniques.

Figure 13 compares the original risk index and predicted
risk index results based on 100, 300 and 500 training epochs.
As we have already mentioned above, as the number of
training increases the error will also decrease. For risk index
and danger level evaluation performance, we configure the
RNN model with 100, 300, and 500 times training epochs to
test the prediction performance. Epoch presents the process
when the whole training data passes through the network,
more precisely, an epoch is one iteration of the whole training
data being passed through the network. For training our
proposed model, we have split the training data into a batch
size, where the batch size was defined as 100, 300 and 500.
This means that the first 100 data have been taken from the
training data (0-99) and trained on the network, after that it
takes 100 samples (99-199) and trains the network. The same
applies to 300 and 500 epochs as well. The epoch continues
until all samples are propagated through the network hence
then one epoch is passed through the network.

Figure 14 shows comparisons of the original danger level
and RNN 100, 300 and 500 epochs based predicted dan-
ger level comparison results. Using the proposed inference
approach, we applied a dataset that involves danger level
data. With the dataset, the training model generates an RNN
prediction model that is used for predicting the danger levels.
However, according to the results, the data of danger level
cannot be predicted well.

Comparison of original risk index and RNN-predicted risk index. (a) Training 100 epochs. 
(a) Training 300 epochs. (c) Training 500 epochs. 
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FIGURE 13. Comparison of original risk index and RNN-predicted risk index.

(a) Training 100 epochs. (a) Training 300 epochs. (c) Training 500 epochs.
Comparison of original danger level and RNN-predicted danger level. (a) Training 100 
epochs. (a) Training 300 epochs. (c) Training 500 epochs. 
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Comparison of evaluation results using MAPE
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FIGURE 15. Comparison of evaluation results using MAPE

There are different ways to calculate the error or accuracy
in the prediction models, such as Mean Squared Error, Root
Mean Square Error, and MAPE. For comparing the experi-
menting results, we use MAPE to calculate the accuracy to
evaluate the predicted results as shown in Figure 15. MAPE
is a mathematical formula that gives us the ability to calculate
the accuracy of our predicted risk index and predicted danger
level. The calculation is done by taking the difference be-
tween actual values, predicted risk index, or predicted danger
level dividing the difference by the actual value. In the next
stage, it is multiplied by the number of data points and 100
to yield the percentage error. For predicting the risk index
and danger level, the LSTM-based RNN model is trained
with 100, 300, 500 epochs separately to get three different
prediction models. For the results of the predicted risk index,
MAPE values are calculated as 5.27%, 5.04%, and 5.03%
using the three models. For the results of the predicted danger
level, MAPE values are calculated as 17.99%, 17.98%, and
17.65% using the three models. The evaluation illustrates the
proposed training model of RNN based on LSTM presents
approximately the same performance by increasing training
epochs.

For predicting the risk index, the result is much better than
predicting the danger level. The reason can be assumed by the
training data. The risk index in the training data is derived by
the risk index model that calculates the risk index based on
distances of data using the proposed equation. Therefore, the
result of predicting risk index using the proposed inference
approach is considerable because of the risk index correlating
with other data from the training dataset.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed an inference approach based on
an RNN model with geographical information for the risk
assessment of SRTS. The geographical information involves
multiple coordinates that is difficult to be fused with other
features for a one-hot encoded dataset to train an LSTM-
based RNN model. For this purpose, we convert a set of
coordinates to a string of geohash and combine with other
information to make a string. Then we convert the string
to a one-hot encoded data that improves the performance
of the LSTM-based RNN model. For the implementation
and experiment, the RNN models are configured to be 100,

300, 500 times training epochs to test the performance of
the proposed inference approach using the geographical in-
formation. However, the MAPE-based evaluation illustrates
the proposed inference approach presents approximately the
same performance by increasing training epochs. The input
data of the training model is derived by the risk index model
that is proposed to calculate the risk index based on the
student survey data. Therefore, the result of predicting risk
index using the proposed inference approach is considerable
because of the risk index correlating with other data from the
training dataset.

As future directions, we will apply the proposed inference
approach to multiple datasets such as path clustering, tra-
jectory tracking, and other coordinates-based datasets. We
will enhance the efficiency of the fused string data through
removing and representing some unnecessary values such as
space, and duplicated values of geohash to present significant
results for leaning to geographical information.
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