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Abstract: The peer-to-peer (P2P) strategy as a new trading scheme has recently gained attention in
local electricity markets. This is a practical framework to enhance the flexibility and reliability of
energy hubs, specifically for industrial prosumers dealing with high energy costs. In this paper, a Nor-
wegian industrial site with multi-energy hubs (MEHs) is considered, in which they are equipped with
various energy sources, namely wind turbines (WT), photovoltaic (PV) systems, combined heat and
power (CHP) units (convex and non-convex types), plug-in electric vehicles (EVs), and load-shifting
flexibility. The objective is to evaluate the importance of P2P energy transaction with on-site flexibility
resources for the industrial site. Regarding the substantial peak power charge in the case of grid
power usage, this study analyzes the effects of P2P energy transaction under uncertain parameters.
The uncertainties of electricity price, heat and power demands, and renewable generations (WT and
PV) are challenges for industrial MEHs. Thus, a stochastically based optimization approach called
downside risk constraint (DRC) is applied for risk assessment under the risk-averse and risk-neutral
modes. According to the results, applying the DRC approach increased by 35% the operation cost
(risk-averse mode) to achieve a zero-based risk level. However, the conservative behavior of the
decision maker secures the system from financial losses despite a growth in the operation cost.

Keywords: peer-to-peer energy transaction; distributed energy resources; downside risk constraint;
risk-averse; risk-neutral

1. Introduction

In the power market, the role of local energy systems including energy storage units,
wind farms, distributed energy resources, and solar photovoltaic (PV) systems has become
significant [1]. The development of smart grid facilities along with the energy and pro-
sumers communities has further accelerated the trend [2]. Hence, consumer-centric types
of energy systems with modern market designs are required for future power systems to
adapt to local energy systems and buildings for the management of DERs. An emerging
method is to develop smaller units and collect them in energy hubs [3]. Therefore, due
to the differences in the trading price of energy as well as losses, sharing DERs on a local
scale can be quite effective [4]. The peer-to-peer (P2P) strategy is an emerging alternative
that encourages neighbors in a community to share excess energy to manage peak power
demands [5], through which both consumers and prosumers can be supplied. In this regard,
the effectiveness of the DERs, self-consumption, local energy balance, and grid operation
flexibility can be strengthened [6]. The P2P concept can promote not only the flexibility
of a system (storage unit, demand response program) but also energy transaction based
on local prices [7]. Hence, the grid utility tariff is a market-based feature that potentially
influences P2P trading. For instance, the peak demand charge is a promising solution in
Norway by which consumers (commercial and industrial) are incentivized to reduce their
power demand, as they are already subject to the peak demand charge [8]. Due to the high
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level of energy, large consumers can supply a major part of their energy consumption using
a distribution network [9].

1.1. Research Review

As P2P energy transaction is a new concept, there is no agreement on a pricing
scheme or market design aiming to support the development of local markets. In this
field, recent research has mainly focused on several perspectives. Firstly, the role of storage
units in coordinating local resources is investigated in [10] to create more balance in the
system functioning. Secondly, a bidding mechanism for local energy trading is developed
in [11]. Then, while the digitalization of the system components is carried out in [12],
the requirement of computational properties as well as the coordination algorithm is
taken into account for a P2P structure in [13]. Many of the research works related to P2P
power transaction are rarely considered for real-life projects, including the Enerchain [14],
Brooklyn Microgrid [15], and Sonnen Community [16]. A further step is taken in [17] by
considering possible market frameworks for the consumers and prosumers of a community
participating in the electricity market. The development of smart grid technologies will
facilitate the establishment of local P2P energy trading with consumer-based electricity
markets having access to the wholesale electricity market [18]. In this regard, blockchain
technology can be taken into account to create an affordable and secure platform for energy
transaction [19].

Several pieces of research have also been conducted on the management of multi-
energy hubs. In [20], a two-stage stochastic programming approach is used to manage
several energy hubs, in which the reliability aspect of the system is investigated. In [21],
the authors introduced a new method for the optimal design and operation of several
energy hubs concerning the cost of cables and operation costs using a two-stage stochastic
optimization method. In [22], researchers increased the operational flexibility of several
microgrids by using P2P power transaction. In addition to the incrementing of renewable
penetration, the emission cost of the system is intended to be minimized. Random EV
charging as an uncertainty is investigated in [23] for the energy management of several EHs
to minimize the operation cost along with the power losses and greenhouse gas emissions
in a multi-objective study. In [24], the authors propose a software-defined grid system
to facilitate energy sharing in an MEH using a transactive energy framework. The result
of this implementation is the reduction of the overall cost of the EHs. In [25], the chance
constraint method is applied for the optimal day-ahead planning of an MEH, considering
environmental constraints.

In a P2P strategy, thermal energy generated by CHP units can improve not only the
energy flexibility but the proficiency of the combined heat and power unit. In [26], the
transaction of power and heat among smart energy hubs is investigated in a two-stage
process. While energy trading is considered in the first stage, financial issues related to
power and heat energy are evaluated in the second stage to ensure the privacy of the EHs.
In [27], a genetic algorithm is used to analyze P2P multi-energy sharing to increase the local
energy balance and minimize the energy cost of the proposed system. In [28], a new P2P
trading model is taken into account among FC-CHP systems to enhance the resiliency and
self-sufficiency of local energy systems by the alternating direction method of multipliers
(ADMM) algorithm. In [29], the effectiveness of a novel P2P energy transaction of multiple
energy hubs is validated by a cooperative game to establish a proper payoff allocation.

In the existing literature, the importance of P2P power trading among residential
prosumers has been mainly considered to evaluate the operational and economic aspects of
systems. However, a few of them focused on the importance of P2P heat and power trading
among industrial energy hubs and the functions of system components under uncertainties.

1.2. Novelties and Contributions

In this paper, a framework of a Norwegian industrial multi-energy hub (MEH) is
developed, in which the hubs are equipped with various energy resources to supply their
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power and heat demands and share their excess energy with other peers and the electricity
network. The CHP unit, solar photovoltaic (PV) system, wind turbine (WT), and plug-
in electric vehicles (PEVs) are the generation facilities being used in the industrial hubs.
Also, load shifting is a flexibility asset that is considered for two hubs, upon which the
decision-maker can shift a part of the energy demand from peak demand to valley demand.
However, the performance of stochastic renewable generations as well as the thermal and
electrical demands with market electricity price in the energy hubs (EHs) have potential
effects on the optimal function of the system. In this concern, a scenario-based stochastic
optimization procedure called the downside risk constraint (DRC) approach is applied to
investigate the functions of the system components under uncertainties. The risk-averse
(λ = 1) and risk-neutral (λ = 0) modes are used to forecast the impact of uncertain
parameters, concisely. The contribution of this paper can be summarized below:

v Techno-economic analysis of an industrial MEH with P2P heat and power transaction.
v Risk analysis of an industrial MEH with the downside risk constraint method (DRC)

as a stochastic optimization procedure.
v Load-shifting flexibility asset and distributed energy resources, namely WTs, PVs,

convex and non-convex CHP units, and plug-in electric vehicles (PEVs) to support
energy demands.

In order to achieve a better perception, the overall structure of the proposed system is
represented in Figure 1.
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Figure 1. The structure of the proposed system.

1.3. Paper Structure

This paper is organized as follows: Section 2 expresses the objective function as well
as the mathematical modeling of the MEHs. The constraints related to the DRC method
are presented in Section 3. The study case along with the input data and the simulation
results of the MEH are shown in Section 4. Finally, the conclusion of this paper is discussed
in Section 5.

2. Mathematical Formulation

The mathematical model of the MEH is a linear optimization model representing the
P2P interaction of the EHs and the operational decisions related to the DERs and flexibility
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assets. The objective function is to minimize the operational cost and analyze the risk level
in the industrial EHs that are equipped with the CHP units and other distribution resources.

2.1. Objective Function

Based on the market features, the industrial EHs have the opportunity to trade their
excess power through local P2P transaction. However, the operational cost arises in the
cases of grid power consumption, load-shifting practice, and importing electricity from
other peers. As there is a capability of trading power with the network and other peers,
the units can obtain an income from grid feed-in and exporting electricity to a peer, which
affects the optimal operation of the individual hubs. As shown in Equation (1), the cost of
trading power with the power network is given in the first three terms. While the fourth
term indicates the operational cost of the CHP units, the load-shifting cost is shown in the
fifth term. Finally, the power and thermal energy transaction among the industrial peers is
demonstrated in the last four terms.

min
∀t ∈ T
∀b ∈ B

C =



B

∑
b



T
∑
t

[(
Cg,eng + Cg,SP

(t)

)
· Pg,buy

(t,h)

]
+

M
∑
m

[
Cg, f ix + Cg,peak · P

g,peak
(t,h)

]
−

T
∑
t

[
C f eed−in
(t) · Pg,sell

(t,h)

]
+

T
∑
t

H
∑
h

C
∑
c

[
a_chp× Pchp

t,h,c + b_chp + c_chp× Tchp
t,h,c

]
+

T
∑
t

[
CLS
(h) · P

ls,sh
(t,h)

]
+

T
∑
t

[
CP,P2P
(t,h) · P

imp
(t,h) ·

1
ψP,P2P

]
−

T
∑
t

[
H
∑

p 6=h
CP,P2P
(t,p) · P

exp,p
(t,h→p)

]
+

T
∑
t

[
CTh,P2P
(t,b) · Timp

(t,h) ·
1

ψTh,P2P

]
−

T
∑
t

[
H
∑

p 6=h
CTh,P2P
(t,p) · Texp,p

(t,h→p)

]




(1)

The overall cost of power network electricity for the Norwegian industrial MEHs is
presented in Equation (2). As the local network company is responsible for determining
the utility tariff, the utility tariff system in Norway differs from the flat rate tariffs towards
time-of-use pricing, which has a peak-demand cost [30]. As shown in the equation, the first
and second parenthetical terms represent buying electrical energy at a spot price and the
price of energy during the peak hours, respectively. Moreover, in the second term, feed-in
energy cost is calculated and considered for selling power to the power grid.

Cg.tot
(h) = ∑

t∈T

(
Cg,SP
(t) · P

g.buy
(t,h) + Cg,eng · Pg.buy

(t,h)

)
+
(

Cg, f ix + Cg,peak · P
g.peak
(h)

)
− ∑

t∈T

(
C f eed−in
(t) Pg.sell

(t,h)

)
(2)

2.2. Energy Balance

P2P power transaction between the industrial hubs will affect the balance of the system.
In this regard, the constraint of power balance is shown in Equation (3), in which the total
amount of electrical demand is equal to the overall level of power generated by the DERs.
Also, thermal energy transaction is considered to increase the energy flexibility, though
the related constraint is given in Equation (4). As mentioned in the equation, the overall
amount of heat energy produced by CHP units along with the imported power from other
peers, bought power from the main grid, and discharged energy of PEVs must be equal
to the overall level of electrical demand. Also, the thermal energy produced by the CHP
unit and imported from other peers must be equivalent to the demand and the exported
heat energy. Finally, the limitations of trading power with a power network are shown in
Equations (5) and (6).

C
∑

c=1
Pchp
(t,h,c) + Pdem

(t,h) + Pg.sell
(t,h) + Pexp

(t,h) + Pev,ch
(t,h) + Pls,dem

(t,h) +

Pcurtail
(t,h) = PDER

(t,h) + Pg.buy
(t,h) + Pimp

(t,h) + Pev.dch
(t,h) + Pls.sh

(t,h)

(3)

C

∑
c

(
Tchp

t,h,c

)
+ Timp

t,h = Tdem
t,h + Texp

t,h (4)
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0 ≤ Pg.buy
(t,h) ≤ Pg.peak

(h) (5)

0 ≤ Pg.sell
(t,h) ≤ Pmax

f eed−in (6)

2.3. Constraints of P2P Energy Transaction

As the interconnected industrial hubs have the opportunity to trade energy among
each other, specific market mechanisms defined by local markets can secure the trading
process [31]. As the proposed P2P energy transaction methodology is a general model, the
implementation of the system on different decentralized platforms like blockchains can be
carried out according to [32,33]. The total sums of exported and imported power by hub h
are shown in Equations (7) and (8), respectively. As indicated in Equation (9), the imported
electricity from a peer must be equal to the electricity exported from the peer to the EH,
which involves power losses (ψP2P). Also, the total level of traded power among the EHs is
given by Equation (10). The mentioned constraints are also indicated for thermal energy
transaction between Equations (11) and (14)

Pexp
(t,h) = ∑

p 6=h
Pexp,p
(t,h→p) (7)

Pimp
(t,h) = ∑

p 6=b
Pimp,p
(t,h←p) (8)

Pimp,p
(t,h←p) = Pexp,p

(t,h→p) × ψP,P2P, ∀p 6= h (9)

H

∑
h

Pexp
(t,h) × ψP,P2P =

H

∑
h

Pimp
(t,h) (10)

Texp
(t,h) = ∑

p 6=h
Texp,p
(t,h→p) (11)

Timp
(t,h) = ∑

p 6=b
Timp,p
(t,h←p) (12)

Timp,p
(t,h←p) = Texp,p

(t,h→p) × ψTh,P2P, ∀p 6= h (13)

H

∑
h

Texp
(t,h) × ψTh,P2P =

H

∑
h

Timp
(t,h) (14)

2.4. Load-Shifting Constraints

Load shifting as a crucial strategy can help industrial hubs to reduce their operational
cost by running a production process in the low–peak interval instead of the peak de-
mand period. However, this strategy imposes productivity losses and labor rescheduling
costs, both of which are considered penalty costs in the objective function. The math-
ematical modeling of load shifting is regarded in the form of a storage unit with 10%
capacity to ease the computational burden [34], which is defined in the form of hourly
rescheduled load in Equation (15). In this regard, while the storage balance for each EH is
shown in Equation (16), their energy level with the maximum power shift is indicated in
Equation (17).

0 ≤ Pls,sh
(t,h) , Pls,dem

(t,h) ≤ 0.1× Pg,peak
(h) (15)

Els
(t,h) = Els

(t−1,h) + Pls,sh
(t,h) − Pls,dem

(t,h) (16)

0 ≤ Els
(t,h) ≤ 0.4× Pg.peak

(h) (17)
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2.5. Electric Vehicle (EV) Constraints

Vehicle-to-grid (V2G) is an on-site flexibility option providing a bi-directional use of
electricity for EHs as a fast-responding storage unit that can be used for spinning reserve
and peak shaving. As the industrial units hold a large number of employees, considering
V2G technology for the parking lots can be an alternative flexibility asset. As given in
Equation (18), the EV parking lot is a storage unit balancing the energy consumption
of EHs. Equation (19) shows the limitation of the charging/discharging process by the
nominal capacity of the EV charger. Finally, the start and end of a workday are limited by
Equation (20) and Equation (21), respectively [35].

Eev
(t,h) = Eev

(t−1,h) + ηev,ch · Pev,ch
(t,h) −

1
ηev,ch

· Pev,dch
(t,h) (18)

0 ≤ Pev,ch
(t,h) , Pev,dch

(t,h) ≤ Pnom
ev,charger · EVnum (19)

Eev
(dstart(t),h)

= Enom
ev · EVnum · Estart dstart(t) ∈ T (20)

Eev
(dend(t),h)

≥ Enom
ev · EVnum · Eend dend(t) ∈ T (21)

2.6. Constraints of CHP Units

Due to the high proficiency of CHP units, they can be used to supply both power
and thermal energy in the EHs. The concept of the feasible operation region (FOR), which
is shown in Figure 2, is used to model the constraints of the CHP units. The installed
CHP units are convex and non-convex; hence, the start-up and shutdown limitations
are given in Equations (22) and (23), respectively. While the convex unit is modeled by
Equations (24)–(28), the model of the non-convex unit is formulated by Equations (29)–(34).

Energies 2022, 15, 8920 7 of 24 
 

 

 

Figure 2. The feasible operation regions of the CHP units. 

, , , , , , , 1, , ,

chp SU chp chp

t h s c h c t h s c t h s cSU C V V −
  −   (22) 

, , , , 1, , , , , ,

chp SHD chp chp

t h s c h c t h s c t h s cSD C V V−
  −   (23) 

, ,

, ,, ,

, , , , , , , ,, ,

, ,

0

chp A chp B

h c h cchp chp A chp chp A

t h s c h c t h s c h cchp A chp B

h c h c

P P
P P T T

T T

−
 − − −  −

 (24) 

, ,

, ,, ,

, , , , , ,, ,

, ,

chp B chp C

h c h cchp chp B chp chp B

t h c h c t h c h cchp B chp C

h c h c

P P
P P T T M

T T

−
 − − −  − −

 (25) 

, ,

, ,, ,

, , , , , ,, ,

, ,

chp C chp D

h c h cchp chp C chp chp C

t s c h c t s c h cchp C chp D

h c h c

P P
P P T T M

T T

−
 − − −  − −

 (26) 

,

, , , , ,0 chp chp A chp

t h c h c t h cP P V    (27) 

,

, , , , ,0 chp chp B chp

t h c h c t h cT T V    (28) 

, ,

, ,, ,

, , , , , ,, ,

, ,

0

chp B chp C

h c h cchp chp B chp chp B

t h c h c t h c h cchp B chp C

h c h c

P P
P P T T

T T

−
 − − −  −

 (29) 

, ,

, ,, ,

, , , , , ,, ,

, ,

0

chp C chp D

h c h cchp chp C chp chp C

t h c h c t h c h cchp C chp D

h c h c

P P
P P T T

T T

−
 − − −  −

 (30) 

, ,

, ,, ,

, , , , , , ,, ,

, ,

1

chp D chp E

h c h cchp chp D chp chp D a

t h c h c t h s c h c tchp D chp E

h c h c

P P
P P T T X M

T T

−
   − − −  − −   −

 (31) 

, ,

, ,, ,

, , , , , ,, ,

, ,

1

chp D chp F

h c h cchp chp D chp chp D b

t h c h c t h c h c tchp D chp F

h c h c

P P
P P T T X M

T T

−
   − − −  − −   −

 (32) 

,

, , , , ,0 chp chp A chp

t h c h c t h cP P V    (33) 

,

, , , , ,0 chp chp C chp

t h c h c t h cT T V    (34) 

Figure 2. The feasible operation regions of the CHP units.

SUchp
t,h,s,c ≥ CSU

h,c

[
Vchp

t,h,s,c −Vchp
t−1,h,s,c

]
(22)

SDchp
t,h,s,c ≥ CSHD

h,c

[
Vchp

t−1,h,s,c −Vchp
t,h,s,c

]
(23)

Pchp
t,h,s,c − Pchp,A

h,c −
Pchp,A

h,c − Pchp,B
h,c

Tchp,A
h,c − Tchp,B

h,c

[
Tchp

t,h,s,c − Tchp,A
h,c

]
≤ 0 (24)

Pchp
t,h,c − Pchp,B

h,c −
Pchp,B

h,c − Pchp,C
h,c

Tchp,B
h,c − Tchp,C

h,c

[
Tchp

t,h,c − Tchp,B
h,c

]
≥ −M (25)



Energies 2022, 15, 8920 7 of 24
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2.7. Constraints of Renewable Energy Sources

Wind turbines and solar photovoltaic (PV) systems are renewable resources that are
considered in this model. The generated available power of wind turbines and PV systems
are modeled in Equation (35) and Equation (36), respectively. As shown in the equations,
while wind speed potentially affects the power generation of WTs, solar radiation influences
the PV system function.

Pwt
t,h =


0 Vt < Vcut−in , Vt ≥ Vcut−out

Pwt
rated ×

(
Vt−Vcut−in

Vrated−Vcut−in

)3
Vcut−in ≤ Vt ≤ Vrated

Pwt
rated Vrated ≤ Vt ≤ Vcut−out

(35)

Ppv
t,h =

Ppv
rated

(
I2
t

Istd IC

)
It ≤ IC

Ppv
rated

(
I2
t

Istd

)
IC ≤ It

(36)

3. Downside Risk Constraint (DRC) Method

The downside risk constraint (DRC) method is applied to control the risk of financial
losses. Regarding decision variables, convexity is the most important feature of the DRC
method. Compared to other risk measures, the DRC method has more robustness [36],
with substantial advantages from the risk-management point of view. As the DRC has a
convex function with a set of minimum points, it simplifies the optimization and control of
the uncertainty through mathematical programming. As shown in Equation (37), when the
cost of the scenario is less than the expected cost, the risk level is zero; otherwise, the level
of risk can be obtained from the difference between the scenario cost and the expected cost.
Also, the expected risk of the DRC method is given in Equation (38), in which the operator
aims to achieve a small value for DRC(C0) .

RISK (ω) =

{
Cost(ω)− C0 i f Cost(ω) > C0
0 i f Cost(ω) ≤ C0

(37)
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DRC(C0) = E[RISK(ω)] = ∑
ω=Ω

π(ω) · RISK(ω) (38)

Equation (39) indicates that the scenario costs have more value than the expected
cost. In this equation, the term P(ω|Cost(ω) ≥ C0 ) shows the probability of a cost that is
higher than the target cost. If the operator is not satisfied with the obtained risk level, a risk
constraint like Equation (40) can be added to the main formulation as below:

DRC(C0) = C0 −
1

P(ω|Cost(ω) ≥ C0 )
×

Ω

∑
ω=1
{π(ω) ·max[(Cost(ω)− C0), 0]} (39)

DRC(C0) ≤ DRC0 (40)

where the term DRC0 indicates the tolerance of the downside risk constraint. The flowchart
of the proposed method with the strategy of the system operator is demonstrated in
Figure 3.
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As shown, the initial data related to the uncertain parameters are provided based
on the historic data, upon which the scenario generation of uncertainties is performed
by applying the Monte Carlo method for the wind turbine (WT), PV, electricity price,
power, and thermal energy demands. In order to ease the computational burden, the
Kantorovich method is used to achieve an optimal allocation of scenarios being used in the
DRC programming.

4. Study Case

In this paper, a Norwegian industrial area with five energy hubs is considered, the
prosumers of which are connected to each other to become more flexible by applying
a P2P power and heat transaction strategy. These industrial units are related to food-
processing industries, mechanical workshops, and manufacturing factories. In this regard,
supporting their energy demand due to their high power consumption is a big challenge.
The EHs are equipped with several energy sources, including PV systems and wind
turbines as renewables, as well as EVs and CHP units. From a flexibility perspective, the
load-shifting strategy increases the productivity of the energy hubs significantly. Intuitively
speaking, load shifting means that the industrial building is willing to move demand from
the peak demand period to valley demand, making a production process run at a later
time. However, this strategy has rescheduling costs, namely overtime pay for laborers,
rescheduling, and productivity losses. Moreover, the interconnected EHs have a connection
with the main power grid, as the installed sources may not be able to meet the power
demand of prosumers on their own. The industrial hubs are located in different places,
and they are completely different in terms of load consumption and size [37]. As a final
remark, the simulation of the proposed system is carried out through the GAMS software
as a mixed-integer linear programming model with the CPLEX solver.

4.1. Input Data

This subsection presents the input data related to the generated scenarios for the
uncertain parameters. The market electricity price, power demand, thermal energy demand,
and renewable generations are taken into account as uncertainties. In this regard, Table 1
is given to show the price of electricity over the period of a 24 h scheduling horizon
in 10 scenarios [37]. For each energy EH, 10 scenarios of power and heat demand are
generated, which are shown in Figures 4 and 5, respectively. In fact, the scenario generation
is carried out based on the Monte Carlo method, in which a probability distribution is
used to generate 100 scenarios for each uncertainty [38]. Whereas a large number of
scenarios results in a computational burden, the Kantorovich procedure is applied to select
10 scenarios with high probability [39]. Based on the figures, hub5 has more energy demand
compared to the other hubs. Meanwhile, in Figure 6 the PV function is demonstrated in
hub1, hub4, and hub5, Figure 7 shows the function of WTs in hub2 and hub3. Also, Table 2
gives related data about the convex and non-convex CHP units [40].



Energies 2022, 15, 8920 10 of 24

Table 1. The electricity price generated in 10 scenarios (Nok).

SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

t = 1 0.2125 0.2762 0.4314 0.3241 0.3631 0.3883 0.2539 0.3572 0.3039 0.2153

t = 2 0.3486 0.2504 0.2775 0.2111 0.2695 0.3523 0.4421 0.2276 0.3448 0.3589

t = 3 0.3888 0.4054 0.2231 0.3130 0.4031 0.3503 0.4162 0.4021 0.4889 0.1063

t = 4 0.2782 0.2776 0.1954 0.2638 0.4112 0.3078 0.3762 0.4273 0.2813 0.2723

t = 5 0.2078 0.2883 0.2545 0.2928 0.2923 0.2534 0.2211 0.2805 0.3109 0.2404

t = 6 0.3793 0.3360 0.3259 0.4281 0.5496 0.4225 0.4046 0.3490 0.3599 0.3993

t = 7 0.3250 0.2364 0.4177 0.3110 0.4144 0.2988 0.2590 0.2448 0.4037 0.5615

t = 8 0.403 0.4308 0.3975 0.4058 0.6106 0.3087 0.3684 0.3191 0.4522 0.4082

t = 9 0.359 0.4635 0.2927 0.4026 0.4105 0.5448 0.4436 0.3942 0.2596 0.2471

t = 10 0.4481 0.3221 0.3669 0.3056 0.4082 0.4127 0.5607 0.5679 0.4941 0.4963

t = 11 0.2697 0.5027 0.2914 0.2287 0.6829 0.4115 0.3180 0.3819 0.3877 0.1839

t = 12 0.3095 0.4268 0.3803 0.2202 0.3306 0.3628 0.3846 0.2187 0.4010 0.5211

t = 13 0.2244 0.4139 0.4983 0.4084 0.4279 0.3287 0.3557 0.2662 0.3616 0.3214

t = 14 0.3112 0.5073 0.3616 0.4311 0.4074 0.2780 0.1965 0.2389 0.3982 0.3444

t = 15 0.4501 0.3423 0.2532 0.3879 0.4824 0.4033 0.3606 0.3384 0.4982 0.4647

t = 16 0.3398 0.2525 0.2937 0.4124 0.2767 0.3438 0.3690 0.3179 0.3212 0.3591

t = 17 0.3301 0.2543 0.4533 0.2948 0.4819 0.3499 0.3534 0.5068 0.4078 0.3443

t = 18 0.3051 0.3345 0.4230 0.4660 0.3892 0.3372 0.4168 0.4491 0.3440 0.5233

t = 19 0.3493 0.4706 0.4773 0.3897 0.3761 0.4688 0.2110 0.3875 0.3909 0.4194

t = 20 0.2996 0.2491 0.1309 0.4372 0.4885 0.3420 0.6137 0.3232 0.2586 0.370

t = 21 0.3960 0.4517 0.3976 0.3122 0.2389 0.3292 0.2543 0.4556 0.3758 0.2071

t = 22 0.4198 0.2960 0.5145 0.3897 0.4067 0.3089 0.4350 0.3909 0.4055 0.3539

t = 23 0.4451 0.1496 0.3993 0.4839 0.3651 0.4388 0.3263 0.4000 0.3274 0.4932

t = 24 0.4254 0.5116 0.3767 0.3750 0.4105 0.5185 0.1532 0.2211 0.5013 0.5609

Table 2. Parameters related to the operation region of the CHP unit.

CHP Units a ($/kW2) b ($/kW2) c ($) d ($/kWth2) e ($/kWth) f ($/kW.kWth) Feasible Region
Coordinates

CHP 1 0.0345 44.5 26.5 0.03 4.2 0.031
[1.258 0], [1.258 0.324],
[1.102 1.356], [0.4 0.75],

[0.44 0.159], [0.44 0]

CHP 2 0.0435 56 12.5 0.027 0.6 0.011 [2.47 0], [2.15 1.8],
[0.81 1.048], [0.988 0]
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4.2. Numerical Results

In this section, the levels of operational cost and risk are shown for different iterations.
In Figure 8, the simulation result is obtained in 11 iterations, in which the lambda value
changes from zero (λ = 0) to one (λ = 1). In this case, λ = 0 and λ = 1 imply the
risk-neutral and risk-averse modes, respectively. Despite an increment in operational cost,
the existing risk level decreases as we approach a high value of λ. In order to ease the
understanding of this concept, the amount of risk in each iteration is shown in Figure 9.
As shown, In the risk-neutral mode, the amount of risk is at its maximum value, but in
the risk-averse mode, the operational cost is at its maximum amount (4.5 NOK), while the
amount of risk for the system operator is flattened. The numerical results of the operational
cost and risk level are demonstrated in Tables 3 and 4, respectively. According to Table 3, the
operational cost of the system for different lambdas is shown. When λ = 0 (risk-neutral), a
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low level of cost is obtained for all scenarios. However, in the second scenario, which is
the worst-case scenario, a high level of cost (663866 NOK) is obtained because there is a
probability of scenarios with maximum financial losses.
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Table 3. Operational cost for each scenario and iteration (NOK).

n1 SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 223,296 663,866 478,104 419,689 252,088 586,506 377,805 366,694 560,148 560,861

λ = 0.1 239,965 663,866 478,104 441,956 279,744 586,506 411,143 387,756 560,148 560,861

λ = 0.2 295,246 663,867 478,105 454,059 301,644 586,506 416,584 414,024 560,148 560,861

λ = 0.3 282,311 663,867 486,978 478,361 339,428 586,506 448,238 463,084 560,148 560,861

λ = 0.4 283,285 663,867 502,102 492,357 406,741 586,506 470,921 494,234 560,148 560,861

λ = 0.5 322,415 663,867 517,226 477,362 484,446 586,506 482,204 517,226 560,148 560,861

λ = 0.6 381,447 663,867 532,350 515,415 532,350 586,506 485,118 505,438 560,148 560,861

λ = 0.7 547,474 663,867 547,474 547,474 464,808 586,506 489,965 506,162 560,148 560,861

λ = 0.8 514,006 663,867 564,691 564,691 564,691 586,506 494,385 564,691 564,691 564,691

λ = 0.9 603,371 663,867 603,371 603,371 598,991 603,371 603,371 547,256 603,371 603,371

λ = 1 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867

Table 4. Risk level for each scenario and iteration (NOK).

C SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 0 214,960 29,198 0 0 137,600 0 0 111,242 111,955

λ = 0.1 0 202,861 17,099 0 0 125,501 0 0 99,143 99,856

λ = 0.2 0 190,762 5000 0 0 113,402 0 0 87,044 87,757

λ = 0.3 0 176,888 0 0 0 99,528 0 0 73,170 73,883

λ = 0.4 0 161,764 0 0 0 84,404 0 0 58,046 58,759

λ = 0.5 0 146,641 0 0 0 69,280 0 0 42,922 43,635

λ = 0.6 0 131,517 0 0 0 54,156 0 0 27,798 28,511

λ = 0.7 0 116,393 0 0 0 39,032 0 0 12,674 13,387

λ = 0.8 0 99,176 0 0 0 21,815 0 0 0 0

λ = 0.9 0 60,495 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0

Figures 10 and 11 show the amounts of electrical and thermal energy exchanged
among the EHs, respectively. According to Figure 10, all energy hubs have exported a
large proportion of their generated power to meet the power demand of hub5. Because
the load demand in hub5 is higher than in the other hubs (with a maximum value of
3000 kW), each of them has exported an amount of power between 1500 kW and 3000 kW
to hub5. Also, the same trend is achieved for thermal energy transaction, as shown in
Figure 11. As the evaluation of the energy transaction is carried out in both the risk-averse
and risk-neutral modes, the level of transacted energy in the risk-averse mode is less than
that in the risk-neutral mode due to the conservative behavior of the system operator.
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Figure 11. P2P heat transaction between energy hubs.

Figure 12 shows the amount of electrical energy exchanged between the network and
the EHs that are connected to the power network. Although the first, third, and fifth hubs
bought electricity from the network in the risk-neutral mode, all hubs sold a portion of their
energy to the grid which was between 400 kW and 800 kW. As shown in the figure, the EHs
sold 70% more electrical energy in the risk-neutral mode compared to the risk-averse mdoe.
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Figures 13 and 14 demonstrate the power and heat energy produced by the CHP units
in the EHs, respectively. By comparing the figures, it can be deduced that the second CHP
unit (non-convex) generates more power, but the first CHP unit (convex) produces more
thermal energy. The functioning of the CHP units is considerable in hub5 (CHP1 (1600 kW
in risk-neutral mode and 1250 kW in risk-averse mode) and CHP2 (3400 kW in risk-neutral
mode and 2600 kW in risk-averse mode)).
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Figure 14. Heat generation of CHP units.

Figure 15 shows the charging and discharging statements of the EVs. Because we
have considered the presence of EVs for 8 h in hub5, the functioning is obtained from 8
to 16. Due to the high peak demand, a significant amount of power has been delivered to
hub5—about 20 kW. Finally, the function of the load-shifting strategy is demonstrated in
Figure 16 for hub1 and hub3. This strategy is quite helpful in terms of energy cost reduction
by moving the demand from peak demand to other time intervals. Based on this strategy,
20 kW and 15 kW of power loads in hub1 and hub3, respectively, are moved out of peak
demand to reduce the energy cost of the hubs.
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5. Results Validation

In this section, the generation of scenarios is carried out for different data representing
a risky condition to validate the obtained results. Under such a condition, the standard
deviation, as well as the fluctuation level, are a somewhat larger compared to the previous
model. However, there is a slight difference when there is a comparison between uncertain
parameters. In this regard, Figures 17–21 indicate the generated scenarios for PV systems
and WTs, market price, power demand, and thermal energy demand, respectively. As
shown in Table 5, the scenario costs are obtained for different lambda values, for which
the operating costs were led to a certain number (663852 NOK) in the last iteration. In the
previous section, however, the obtained value when λ = 1 is 663867 NOK, representing the
fact that in all uncertain situations, the scenario cost is quite close to our results.

Energies 2022, 15, 8920 19 of 24 
 

 

 

Figure 17. Generated scenario for PV system function. 

 

Figure 18. Generated scenario for WT system function. 

 

Figure 19. Generated scenario for electricity market price. 

Figure 17. Generated scenario for PV system function.



Energies 2022, 15, 8920 20 of 24

Energies 2022, 15, 8920 19 of 24 
 

 

 

Figure 17. Generated scenario for PV system function. 

 

Figure 18. Generated scenario for WT system function. 

 

Figure 19. Generated scenario for electricity market price. 

Figure 18. Generated scenario for WT system function.

Energies 2022, 15, 8920 19 of 24 
 

 

 

Figure 17. Generated scenario for PV system function. 

 

Figure 18. Generated scenario for WT system function. 

 

Figure 19. Generated scenario for electricity market price. Figure 19. Generated scenario for electricity market price.

Energies 2022, 15, 8920 20 of 24 
 

 

 

Figure 20. Generated scenario for power demand. 

 

Figure 21. Generated scenario for thermal energy demand. 

Table 5. Obtained scenario costs versus different levels of lambda. 

 SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10 

λ = 0 223,256 550,148 477,104 418,689 251,083 576,426 374,801 365,674 633,806 560,661 

λ = 0.1 249,265 564,361 478,604 448,456 279,244 586,402 411,243 387,550 663,840 560,661 

λ = 0.2 295,416 564,361 478,605 453,049 301,534 586,402 416,514 413,064 663,852 560,661 

λ = 0.3 282,231 564,361 486,278 476,351 338,328 586,402 448,248 463,124 663,852 560,661 

λ = 0.4 283,755 564,361 502,001 492,357 405,541 586,402 470,451 494,144 663,852 560,661 

λ = 0.5 322,345 564,361 517,026 476,342 484,356 586,402 482,164 517,247 663,852 560,661 

λ = 0.6 381,627 564,361 532,140 518,412 532,530 586,402 485,248 505,531 663,852 560,661 

λ = 0.7 547,284 564,361 547,974 547,671 464,758 586,402 489,855 505,212 663,852 560,661 

λ = 0.8 514,126 564,361 564,792 564,664 564,521 586,402 494,245 564,951 663,852 565,691 

λ = 0.9 603,321 603,451 603,470 603,571 598,691 603,371 603,191 547,426 663,852 602,371 

λ = 1 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 

  

Figure 20. Generated scenario for power demand.



Energies 2022, 15, 8920 21 of 24

Energies 2022, 15, 8920 20 of 24 
 

 

 

Figure 20. Generated scenario for power demand. 

 

Figure 21. Generated scenario for thermal energy demand. 

Table 5. Obtained scenario costs versus different levels of lambda. 

 SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10 

λ = 0 223,256 550,148 477,104 418,689 251,083 576,426 374,801 365,674 633,806 560,661 

λ = 0.1 249,265 564,361 478,604 448,456 279,244 586,402 411,243 387,550 663,840 560,661 

λ = 0.2 295,416 564,361 478,605 453,049 301,534 586,402 416,514 413,064 663,852 560,661 

λ = 0.3 282,231 564,361 486,278 476,351 338,328 586,402 448,248 463,124 663,852 560,661 

λ = 0.4 283,755 564,361 502,001 492,357 405,541 586,402 470,451 494,144 663,852 560,661 

λ = 0.5 322,345 564,361 517,026 476,342 484,356 586,402 482,164 517,247 663,852 560,661 

λ = 0.6 381,627 564,361 532,140 518,412 532,530 586,402 485,248 505,531 663,852 560,661 

λ = 0.7 547,284 564,361 547,974 547,671 464,758 586,402 489,855 505,212 663,852 560,661 

λ = 0.8 514,126 564,361 564,792 564,664 564,521 586,402 494,245 564,951 663,852 565,691 

λ = 0.9 603,321 603,451 603,470 603,571 598,691 603,371 603,191 547,426 663,852 602,371 

λ = 1 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 

  

Figure 21. Generated scenario for thermal energy demand.

Table 5. Obtained scenario costs versus different levels of lambda.

SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 223,256 550,148 477,104 418,689 251,083 576,426 374,801 365,674 633,806 560,661

λ = 0.1 249,265 564,361 478,604 448,456 279,244 586,402 411,243 387,550 663,840 560,661

λ = 0.2 295,416 564,361 478,605 453,049 301,534 586,402 416,514 413,064 663,852 560,661

λ = 0.3 282,231 564,361 486,278 476,351 338,328 586,402 448,248 463,124 663,852 560,661

λ = 0.4 283,755 564,361 502,001 492,357 405,541 586,402 470,451 494,144 663,852 560,661

λ = 0.5 322,345 564,361 517,026 476,342 484,356 586,402 482,164 517,247 663,852 560,661

λ = 0.6 381,627 564,361 532,140 518,412 532,530 586,402 485,248 505,531 663,852 560,661

λ = 0.7 547,284 564,361 547,974 547,671 464,758 586,402 489,855 505,212 663,852 560,661

λ = 0.8 514,126 564,361 564,792 564,664 564,521 586,402 494,245 564,951 663,852 565,691

λ = 0.9 603,321 603,451 603,470 603,571 598,691 603,371 603,191 547,426 663,852 602,371

λ = 1 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852

6. Conclusions

In this paper, the value of P2P heat and power trading in combination with different
resources of on-site flexibility is investigated for a Norwegian industrial site, where indus-
trial units are considered as EHs and equipped with energy sources including renewables
(WTs and PV systems), CHP units (convex and non-convex), and EVs. Due to the presence
of uncertain parameters that greatly reduce the flexibility of the system, the downside
risk constraint (DRC) method is applied to evaluate the flexibility of the system under
risk-averse and risk-neutral modes. In comparison with the risk-neutral mode, the operator
acts more conservatively in the risk-averse mode. For instance, as hub5 has a significant
level of electrical demand, more power is imported from the network (4500 kW), and a
small amount of value is sold to the grid (100 kW) based on the conservative behavior of
the decision maker. Also, by increasing the system’s operational cost, the amount of risk is
set at zero. In this concern, the operational cost to achieve a zero-risk condition is increased
by nearly 36%. Because the CHP units produce power and heat simultaneously, thermal
energy is exchanged among the EHs to meet their thermal loads. Also, the consideration
of the load-shifting strategy in the first and third hubs resulted in a significant electrical
load reduction in the risk-neutral mode (20 kW in hub1 and 15 kW in hub3). By and large,
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although the operational cost rises in the risk-averse mode, the decision maker becomes
capable enough to face uncertain parameters.

In future research studies, the game-theoretic modeling of energy hubs could be
examined based on free competition. Also, applying the ADMM algorithm to analyze
the P2P heat and power transaction in a decentralized mode could be another research
direction for studying the power flow among the energy hubs.
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Nomenclature

Sets CLS
h Load-shifting penalty for hub h

t Index of time interval CP,P2P
t,h Price of P2P power transaction (kWh/NOK)

h Index of energy hubs CT,P2P
t,h Price of P2P heat transaction

s Index of scenarios Cg,SP
t Spot price of wholesale (kWh/ NOK)

c Index of CHP units
a_chp
b_chp
c_chp

Cost coefficients of CHP units

Parameters Variables
Cg,eng Energy cost (NOK/kWh) Pg,buy

t,h Power consumption from the grid

Nwt
h The number of wind turbines in energy hubs Pg,peak

h The maximum power demand of hub h
Vt Wind speed Pg,sell

t,h Power feed-in to the grid

It Solar radiation Pimp
(t,h) P2P electricity imported by hub h

Pwt
rated The nominal capacity of wind turbine Pimp,p

(t,h←p) P2P electricity imported by hub h from peer p

Vrated Rated wind speed Pexp
(t,h) P2P electricity exported by hub h

Vcut-in Cut-in wind speed Pexp,p
(t,h→p) P2P electricity exported by hub h to the peer p

Vcut-out Cut-out wind speed Pchp
t,h,c Generated power by CHP units

Istd Solar radiation in a typical day Tchp
t,h,c Produced heat by CHP units

IC Radiation point Timp
t,h P2P heat energy imported by hub h

Ppv
rated The nominal capacity of solar panels Timp,p

t,h←p P2P heat energy imported by hub h from peer p
Cg, f ix Utility tariff cost Texp

t,h P2P heat energy exported by hub h
ψP2P The power loss of the distribution network and P2P transaction Texp,p

t,h←p P2P heat energy exported by hub h to the peer p
∆t Time duration of step t Eev

t The overall level of EV storage unit
Pmax

f eed-in Maximum power to meet prosumers’ needs (kWh) Pev,ch
t,h Charged power to the EV storage unit

ηev,ch The efficiency of EV charging unit Pev,dch
t,h Discharged power from the EV storage unit

ηev,dch The efficiency of EV discharging unit Pls,sh
t,h Shifted load by hub h

Enom
ev The nominal capacity of the storage unit Pls,dem

t,h Rescheduled load by hub h
Pnum

ev,charger The nominal capacity of the EV charger (kWh) Els
t,h The amount of shifted power
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Estart The energy level in EVs when they arrive at work Binary Variable
Eend The energy level in EVs when they leave work ubuy

t,h Binary variable to buy power from the network
EVnum The number of parked EVs during work time usell

t,h Binary variable to sell power to the network

Cg,peak Peak power price of utility tariff (NOK/Month) SDchp
t,h,c Strat-up status of CHP unit

Pdem
t,h Power demand of energy hubs (kW) SUchp

t,h,c Shut-down status of the CHP unit

Tdem
t,h Heat demand of energy hubs (kW) vchp

t,h,c Commitment status of the CHP unit
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