
2475-1456 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2021.3086854, IEEE Control
Systems Letters

Risk-Averse Control via CVaR Barrier Functions:
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Abstract— Enforcing safety in the presence of stochas-
tic uncertainty is a challenging problem. Traditionally, re-
searchers have proposed safety in the statistical mean as
a safety measure for systems subject to stochastic uncer-
tainty. However, ensuring safety in the statistical mean is
only reasonable if system’s safe behavior in the large num-
ber of runs is of interest, which precludes the use of mean
safety in practical scenarios. In this paper, we propose a
risk sensitive notion of safety called conditional-value-at-
risk (CVaR) safety. We introduce CVaR barrier functions as
a tool to enforce CVaR-safety and propose conditions for
their Boolean compositions. Given a legacy controller, we
show that we can design a minimally interfering CVaR-safe
controller via solving difference convex programs (DCPs).
We elucidate the proposed method by applying it to a
bipedal robot locomotion case study.

Index Terms— Autonomous systems, Robotics, Stochas-
tic systems, Uncertain systems.

I. INTRODUCTION

With the rise of autonomous systems being deployed in
real-world settings, the associated risk that stems from un-
certain and unforeseen circumstances is correspondingly on
the rise. For instance, there are several inherent sources of
uncertainty in robotics systems, such as modeling uncertainty,
sensor range and resolution limitations, dynamic and uncertain
environments, noise and wear-and-tear in robot actuation [1],
that lead to higher risk during deployment.

Mathematically speaking, risk can be quantified in nu-
merous ways, such as chance constraints [2], [3]. However,
applications in autonomy and robotics require more “nuanced
assessments of risk” [4]. Artzner et. al. [5] characterized a
set of natural properties that are desirable for a risk measure,
called a coherent risk measure, and have obtained widespread
acceptance in finance and operations research, among other
fields. An important example of a coherent risk measure is the
conditional value-at-risk (CVaR) that has received significant
attention in decision making problems, such as Markov deci-
sion processes (MDPs) [6], [7], [8]. For stochastic discrete-
time dynamical systems, a model predictive control technique
with coherent risk objectives was proposed in [9], wherein the
authors also proposed Lyapunov conditions for risk-sensitive
exponential stability. Moreover, a method based on stochastic
reachability analysis was proposed in [10] to estimate a CVaR-
safe set of initial conditions via the solution to an MDP.
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Fig. 1. Risk-averse obstacle avoidance using CVaR barrier functions
(robot behavior and barrier function evolution). The shaded yellow area
denotes safe regions. (a) safety violation with no barrier function; (b)
safety violation with risk-neutral barrier function; (c) safe behavior with
CVaR barrier function. Plots on the right side show the values of the
barrier functions.

In this work, we use a special class of barrier functions
as a tool for enforcing risk-sensitive safety. Control barrier
functions have been proposed in [11] and have been used for
designing safe controllers (in the absence of a legacy con-
troller, i.e., a desired controller that may be unsafe) and safety
filters (in the presence of a legacy controller) for continuous-
time dynamical systems, such as bipedal robots [12], with
guaranteed robustness [13], [14]. For discrete-time systems,
discrete-time barrier functions have been formulated in [15],
[16] and applied to the multi-robot coordination problem [17].
Recently, for a class of stochastic (Ito) differential equations,
safety in probability and statistical mean were also studied
in [18], [19], [20].

In this paper, we go beyond the conventional notions of
safety in probability and statistical mean for discrete-time
systems subject to stochastic uncertainty. To this end, we
define safety in the risk-sensitive CVaR sense, which is con-
cerned with safety in the worst possible scenarios. We then
propose CVaR barrier functions as a tool to enforce CVaR-
safety and formulate conditions for their Boolean composi-
tions. We propose a computational method based on difference
convex programs (DCPs) to synthesize CVaR-safe controllers
for stochastic linear discrete-time systems. These CVaR-safe
controllers are designed such that they minimally interfere
with a given legacy controller. We show the efficacy of our
proposed method on collision avoidance scenarios involving a
bipedal robot subject to modeling uncertainty (see Figure 1).
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Fig. 2. Comparison of the mean, VaR, and CVaR for a given confidence
β ∈ (0, 1). The axes denote the values of the stochastic variable h and
its pdf p(h). The shaded area denotes the %β of the area under p(h).
If h ≥ 0 represents a safe behavior, using E(h) as a performance
measure is misleading (note that E(h) is positive). VaR gives the value
of h at the β-tail of the distribution. But, it ignores the values of h with
probability below β. CVaR is the average of the values of VaR with
probability less than β (average of the worst-case values of h in the β
tail of the distribution). Note that CVaRβ is negative indicating unsafe
behavior.

The rest of the paper is organized as follows. In the next
section, we introduce CVaR-safety and formulate CVaR barrier
functions as a tool to synthesize risk-averse safe controllers.
In Section III, we discuss our robot bipedal locomotion case
study and present the obtained results. Finally, in Section V,
we conclude the paper and give directions for future research.

Notation: We denote by Rn the n-dimensional Euclidean
space and N≥0 the set of non-negative integers. For a finite
set A, we denote by |A| the number of elements of A. For
a probability space (Ω,F ,P), L1(Ω,F ,P). The Boolean
operators are denoted by ¬ (negation), ∨ (conjunction), and ∧
(disjunction).

II. CVAR BARRIER FUNCTIONS FOR
RISK-AVERSE CONTROL

In this section, we formulate the risk-averse safety problem
and propose a solution based on a special class of barrier
functions. We begin by describing the class of systems under
study.

A. System Description
We consider Markov control processes of the form

xt+1 = f(xt, ut, wt), x0 = x0, (1)

where t ∈ N≥0 denotes the time index, xt ∈ X is the
state, ut ∈ U is the control input, wt ∈ W is the
uncertainty/disturbance, and f : X×U×W → X is a (possibly
nonlinear) Borel-measurable function. We assume that the
sets X and U are compact Borel subsets of Rn and Rm,
respectively. Moreover, the stochastic process {wt} is i.i.d.
and is drawn from a finite sample spaceW = {w1, . . . , w|W|}
with the probability mass function p(wi) := P(wt = wi),
i = 1, 2, . . . , |W|, and wt is independent of the deterministic
initial condition x0 and the state-control pairs (xτ , uτ ), for all
τ ≤ t.

We are interested in studying the properties of the solutions
to (1) with respect to the compact set S described as

S := {x ∈ X | h(x) ≥ 0}, (2)

where h : X → R is a continuous function. For instance, S can
represent robot constraints, e.g. joint limits, safe exploration
regions, etc.

B. Conditional Value-at-Risk Safety
In the presence of the stochastic uncertainty w, assuring

almost sure (with probability one) invariance or safety may not
be feasible. Moreover, enforcing safety in expectation is only
meaningful if the law of large numbers can be invoked and
we are interested in the long term performance, independent
of the realization fluctuations.

At any time step t 6= 0, from the compactness of X and
continuity of h, it follows that the random variable ht :=
h(xt) ∈ Ht ⊂ L1(Wt,F t,Pt) is bounded, where the sample
space Wt is the t times Cartesian product of W with itself,
and F t and Pt are the corresponding filteration and probability
measures. From the description of the safe set (2), we infer
that h is a continuous random variable for which higher values
are of interest (for example, greater values of h indicate safer
performance).

For a given confidence level β ∈ (0, 1), value-at-risk
(VaRβ) denotes the β-quantile value of ht ∈ Ht described
as VaRβ(ht) = supζ∈R{ζ | Pt(ht ≤ ζ) ≤ β}.

Unfortunately, working with VaR for non-normal stochastic
variables is numerically unstable, optimizing models involving
VaR are intractable in high dimensions, and VaR ignores the
values of ht with probability less than β [21].

In contrast, CVaR overcomes the shortcomings of VaR.
CVaR with confidence level β ∈ (0, 1) denoted CVaRβ

measures the expected loss in the β-tail given that the par-
ticular threshold VaRβ has been crossed, i.e., CVaRβ(ht) =
E [ht | ht ≤ VaRβ(ht)]. An optimization formulation for
CVaR was proposed in [21] that we use in this paper. That
is, CVaRβ is given by

CVaRβ(ht) := inf
ζ∈R

E
[
ζ +

(−ht − ζ)+
β

]
, (3)

where (·)+ = max{·, 0}. A value of β → 1 corresponds to a
risk-neutral case, i.e., CVaR1(ht) = E(ht); whereas, a value
of β → 0 is rather a risk-averse case, i.e., CVaR0(ht) =
VaR0(ht) [22, Proposition 6]. Figure 2 illustrates these
notions for an example h variable with distribution p(h).

Unlike VaR, CVaR is a coherent risk measure on H [23],
which satisfies the following properties [24].

Definition 1 (Coherent Risk Measure): We call the one-
step conditional risk measures ρt : Ht+1 → Ht, t =
1, . . . , N − 1 a coherent risk measure, if it satisfies the
following conditions
• Convexity: ρt(λh+(1−λ)h′) ≤ λρt(h)+(1−λ)ρt(h′),

for all λ ∈ (0, 1) and all h, h′ ∈ Ht+1;
• Monotonicity: If h ≤ h′, then ρt(h) ≤ ρt(h′) for all
h, h′ ∈ Ht+1;

• Translational Invariance: ρt(h′ + h) = ρt(h′) + h for
all h ∈ Ht and h′ ∈ Ht+1;

• Positive Homogeneity: ρt(βh) = βρt(h) for all h ∈
Ht+1 and β ≥ 0.

In fact, we use the nice mathematical properties of CVaR
given in Definition 1 in the proofs of our main results in
Section II-C.

In this work, we propose safety in a dynamic coherent risk
measure, namely, CVaR sense, with conditional expectation
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(risk-neutral case) as a special case β → 1. Let CVaRt
β :

Ht+1 → Ht consistent with Definition 1. We then define the
dynamic CVaR measure CVaR0:t

β := CVaR0
β ◦ · · · ◦CVaRt

β :
Ht+1 → H0. Since x0 is deterministic, we have H0 = R.

Definition 2 (CVaR-safety): Given a safe set S as given
in (2) and a confidence level β ∈ (0, 1), we call the solutions
to (1) starting at x0 ∈ S CVaR-safe if and only if

CVaR0:t
β

(
h(xt)

)
≥ 0, ∀t ≥ 0. (4)

Note that CVaR0:t
β is also a time-consistent risk mea-

sure [24, Definition 3]. The time consistency property ensures
that contradictory evaluations of safety risk at different points
in time does not happen.

C. CVaR Barrier Functions

In order to check and enforce CVaR-safety, we define CVaR
barrier functions.

Definition 3 (CVaR Barrier Function): For the discrete-
time system (1) and a confidence level β ∈ (0, 1), the
continuous function h : Rn → R is a CVaR barrier function
for the set S as defined in (2), if there exists a constant
α ∈ (0, 1) such that

CVaRt
β(h(xt+1)) ≥ αh(xt), ∀xt ∈ X . (5)

In the next result, we demonstrate that the existence of a
CVaR barrier function indeed implies CVaR-safety.

Theorem 1: Consider the discrete-time system (1) and the
set S as described in (2). Let β ∈ (0, 1) be a given confidence
level. Then, S is CVaR-safe, if there exists an CVaR barrier
function as defined in Definition 3.

Proof: The proof is carried out by induction and using
the properties of CVaR as a coherent risk measure as outlined
in Definition 1. If (5) holds, for t = 0, we have

CVaR0
β(h(x1)) ≥ αh(x0). (6)

Similarly, for t = 1, we have

CVaR1
β(h(x2)) ≥ αh(x1). (7)

Since CVaR0
β is monotone (because it is a coherent risk

measure), composing both sides of (7) with CVaR0
β does not

change the inequality and we obtain

CVaR0
β ◦ CVaR1

β(h(x2)) ≥ CVaR0
β(α(h(x1))). (8)

Since α ∈ (0, 1), from positive homogeneity property of
CVaR, we obtain CVaR0

β(α(h(x1))) = αCVaR0
β(h(x1)).

Thus, (8) simplifies to CVaR0
β ◦ CVaR1

β(h(x2)) ≥
αCVaR0

β(h(x1)).
Then, using inequality (6), we have

CVaR0
β ◦ CVaR1

β(h(x2)) ≥ αCVaR0
β(h(x1)) ≥ α2h(x0).

Therefore, by induction, at time t, we can show that

CVaR0:t
β (h(xt)) ≥ αth(x0). (9)

If x0 ∈ S, from the definition of the set S, we have h(x0) ≥ 0.
Since α ∈ (0, 1), then we can infer that (4) holds. Thus, the
system is CVaRβ-safe.

In many practical path planning scenarios, we encounter
multiple obstacles and safe sets composed of Boolean com-
positions of several barrier functions [25], [17], [26]. Next,
we propose conditions for checking Boolean compositions of
CVaR barrier functions.

Proposition 1: Let Si = {x ∈ Rn | hi(x) ≥ 0}, i =
1, . . . , k denote a family of safe sets with the boundaries and
interior defined analogous to S in (2). Consider the discrete-
time system (1). If there exist a α ∈ (0, 1) such that

CVaRt
β

(
min

i=1,...,k
hi(x

t+1)

)
≥ α min

i=1,...,k
hi(x

t) (10)

then the set {x ∈ Rn | ∧i=1,...,k (hi(x) ≥ 0)} is CVaR-safe.
Similarly, if there exist a α ∈ (0, 1) such that

CVaRt
β

(
max

i=1,...,k
hi(x

t+1)

)
≥ α max

i=1,...,k
hi(x

t) (11)

then the set {x ∈ Rn | ∨i=1,...,k (hi(x) ≥ 0)} is CVaR-safe.

Proof: If (10) holds from the proof of Theorem 1, we
can infer that

CVaR0:t
β

(
min

i=1,...,k
hi(x

t)

)
≥ αt min

i=1,...,k
hi(x

0).

That is, if x0 ∈ {x ∈ Rn | mini=1,...,k hi(x) ≥ 0}, then
CVaR0:t

β (mini=1,...,k hi(x
t)) ≥ 0 for all t ∈ N≥0. Let

hi∗(xt) be the smallest among hi(x
t), i = 1, 2, ..., k, i.e.,

it satisfies hj(x
t) ≥ · · · ≥ hi∗(xt), ∀j 6= i∗. Because

CVaR is monotone (see Definition 1), the latter inequality
implies CVaR0:t

β (hj(x
t)) ≥ · · · ≥ CVaR0:t

β (hi∗(xt)), ∀j 6=
i∗ (because the composition of monotone functions re-
mains monotone). Since CVaR0:t

β (mini=1,...,k hi(x
t)) =

CVaR0:t
β (hi∗(xt)) ≥ 0 for all t ∈ N≥0, we have

CVaR0:t
β (hj(x

t)) ≥ · · · ≥ CVaR0:t
β (hi∗(xt)) ≥ 0, j 6= i.

Thus, CVaR0:t
β (hi(x)) ≥ 0 for all i ∈ {1, . . . , k}.

Similarly, if (11) holds, we can infer that

CVaR0:t
β

(
max

i=1,...,k
hi(x

t)

)
≥ αt max

i=1,...,k
hi(x

0).

Hence, using similar arguments as the proof of the conjunction
case, CVaR0:t

β (maxi=1,...,k hi(x
t)) ≥ 0 for all t ∈ N≥0.

That is, there exists at least an i ∈ {1, . . . , k} for which
CVaR0:t

β (maxi=1,...,k hi(x
t)) ≥ 0.

The negation operator is trivial and can be shown by
checking if −h satisfies inequality (5).

In the next section, we demonstrate how a sequence {ut}t>0

can be designed such that system (1) becomes CVaR-safe
based on optimization techniques.
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D. CVaR-Safe Controller Synthesis

Inspired by the quadratic programming formulations of
conventional control barrier functions in the continuous-time
case [11], we pose the controller synthesis problem as an
optimization.

CVaR Control Barrier Function Optimization: At every
time step t, given xt, a set S as described in (2), a confidence
level β ∈ (0, 1), a parameter α ∈ (0, 1), control upper bounds
u, lower bounds u, and a legacy controller utlegacy, solve

ut∗ = argmin
ut

(ut − utlegacy)T (ut − utlegacy)

subject to u ≤ ut ≤ u, (12a)

CVaRt
β

(
h(f(xt, ut, w))

)
≥ αh(xt). (12b)

Note that instantaneous controls ut are the only variables in the
optimization. The cost function (ut−utlegacy)T (ut−utlegacy) =
‖ut− utlegacy‖2 ensures that ut remains as close as possible to
the legacy controller utlegacy in the Euclidean 2-norm; hence, it
guarantees the minimal interference.

For general nonlinear h, optimization problem (12) is a
nonlinear program in the decision variable ut (note that CVaR
is a convex function in h since it is a coherent risk measure).
Indeed, this was the case for optimization problems designed
for synthesizing discrete control barrier functions for discrete-
time systems even without stochastic uncertainty [16], as well.
MATLAB functions such as fmincon can be used to solve
the nonlinear program.

Next, we show that under some assumptions the search over
CVaR-safe controls ut can be carried out by solving DCPs.
For the remainder of this section, we restrict our attention to
the case when system (1) is a linear system. That is,

f(xt, ut, wt) = A(wt)xt +B(wt)ut +G(wt),

where A :W → Rn×n, B :W → Rn×m and G :W → Rn.
For such systems, we assume the CVaR barrier function

takes the form of a linear function

h(xt) = Hxt + l, (13)

where H ∈ R1×n and l ∈ R. Then, the
term CVaRt

β (h(f(xt, ut, w))) in constraints (12b) changes
to

CVaRt
β(HA(w)xt +HB(w)ut +HG(w) + l). (14)

Since CVaRβ is a convex function, the above term is a convex
function in ut, i.e., the control variable.

Re-writing optimization problem (12) for linear discrete
time systems with stochastic uncertainty and CVaR barrier
function (13) gives the following optimization problem

ut∗ = argmin
ut

(ut − utlegacy)T (ut − utlegacy)

subject to u ≤ ut ≤ u, (15a)
(14) ≥ αh(xt), (15b)

Substituting the expression for CVaR (3) in (14) for uncer-
tainty w with finite |W| yields

infζ∈R

{
ζ + 1

β

∑|W|
i=1

(
−HA(wi)x

t

−HB(wi)u
t −HG(wi)− l − ζ

)
+
p(wi)

}
, (16)

which introduces the extra decision variable ζ ∈ R.
Hence, (15) can be rewritten in the standard DCP form

ut∗ = argmin
ut,ζ

q0(ut)

subject to q1(ut) ≤ 0 and q2(ut) ≤ 0, (17a)
q3 − q̂4(ζ, ut) ≤ 0, (17b)

where q0(ut) = (ut − utlegacy)T (ut − utlegacy) is a convex
(quadratic) function, q1(ut) = u − ut is a convex (linear)
function, q2(ut) = ut − u is a convex (linear) function,
and q3 = αHxt + αl is a convex (constant) function. The
expression for q̂4(ζ, ut) is given inside the braces in (16) which
is a convex function in ut and ζ since q̂4(ζ, ut) is convex in
ζ [21, Theorem 1] because the function (·)+ is increasing and
convex [27, Lemma A.1.].

DCPs like (17) arise in many applications, such as risk-
averse MDPs [28] and inverse covariance estimation in statis-
tics [29]. In order to solve DCPs, we use a variant of the
convex-concave procedure [30], wherein the concave terms are
replaced by a convex upper bound and solved. In fact, the dis-
ciplined convex-concave programming (DCCP) [30] technique
linearizes DCP problems into a (disciplined) convex program
(carried out automatically via the DCCP package [30]). Then,
the cone program can be solved readily by available solvers,
such as YALMIP [31].

We remark that solving (17) via the DCCP method,
finds the (local) saddle points to optimization problem (17).
Nonetheless, every such local ut guarantees CVaR-safety.

III. CASE STUDY: BIPEDAL ROBOT LOCOMOTION

Planning and controlling of bipedal walking are challenging
problems, and there has been various related approaches [32]
in the literature. In this paper, we apply the approach in [33]
to approximate the bipedal walking dynamics via a discrete
linear system subject to stochastic uncertainty.

Let xh = [c, p, v]T denote the horizontal state, where c is
the horizontal position of the center of mass (COM) of the
robot relative to the inertia frame, p is the horizontal position
of the COM relative to its stance foot, and v is the horizontal
velocities of the COM. Then, the horizontal step-to-step (S2S)
dynamics [33] of the horizontal COM state is represented as

xt+1
h = Ph(xt, τ(t)), (18)

where x is the full robot state and τ is the input torque.
However, the S2S dynamics Ph (18) cannot be obtained
in analytical form due to the nonlinear and hybrid dynamics
of the robot walking.

Our previous work [33] suggests that the S2S dynamics of
the walking of the Hybrid-Linear Inverted Pendulum (H-LIP)
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Fig. 3. A schematic diagram of our proposed risk-averse control
method based on CVaR barrier functions for bipedal robots.

can be used to approximate the actual horizontal S2S dynamics
of the walking of the robot in Eq. (18). The S2S dynamics of
the H-LIP [33] is:

xt+1
H-LIP = AxtH-LIP +ButH-LIP (19)

where xt+1
H-LIP = [cH-LIP, pH-LIP, vH-LIP]T is the discrete pre-

impact state of the H-LIP, and utH-LIP is the step size. The
expressions of A,B can be found in [33]. By approximation,
(18) can be rewritten as

xt+1
h = Axth +But + wt, (20)

where wt := Ph(xt, τ(t))− Axth − But ∈ W can be treated
as a stochastic disturbance to the linear system in (19).

For application of 3D bipedal walking, the H-LIP model is
applied in each plane of walking: the sagittal and the lateral
planes. The H-LIP based planning provides the desired step
sizes for the robot, which become the desired outputs for the
low-level controller to track [33].

A. Risk-Averse Bipedal Robot Control
We apply the CVaR barrier function based risk-averse

control presented in Section II to the 3D bipedal walking
as described in Fig. 3. Model discrepancy w is treated as
stochastic uncertainty and as a risk factor that can lead to
undesired behavior on the generated walking.

To circumvent this issue, we synthesize CVaR barrier func-
tions based controllers to filter the H-LIP based stepping
controller on the robot. The barrier functions are designed
to represent the safe regions, where there are no obstacles.
We are then interested in keeping the robot inside the safe
(obstacle-free) regions during walking.

The uncertainty w is numerically calculated by several
hours of simulations of different walking behaviors, which
provided a polytopic set that bounds w. We took |W| random
samples from the latter polytopic set. Since w is sparse in
nature, we assumed a uniform distribution of w inside W ,
i.e., p(w) = 1/|W|. To design the risk-averse safe controllers,
we then solve DCP (17), where A, B, and G(w) = w are
given by the approximated S2S dynamics (20).

B. Simulation Results
We apply the proposed approach in high-fidelity simulation

on the under-actuated bipedal robot Cassie. DCP (17) is
solved in YALMIP using MOSEK solver at each step. The

Fig. 4. Case 1: Trajectories of the positions (blue is the desired
trajectory) and step length of the robot in the sagittal plane for (a)
walking without CVaR barrier function, where (a2) shows the legacy
controller input, (b1) walking with risk neutral CVaR barrier function with
β = 0.999, where (b2) shows the output of the CVaR-safe controller
with β = 0.999, (c) walking with the risk-averse CVaR barrier function
with β = 0.1, where (c2) shows the output of the CVaR-safe controller
with β = 0.1. The red shaded area indicates the safe region for the
robot.

optimization typically takes 100 ∼ 700 steps under 10 seconds
to solve on a laptop with the processor intel(R) Core(TM) i7-
7700HQ@2.8GHz. The low-level controller on the robot is
solved at 1kHz. The legacy controller used in our experiments
is a model predictive controller. The simulation video of all
the experiments can be found at https://youtu.be/
QNMW1zey3cI.

Case 1: We consider a scenario where the robot is following
a straight path and an obstacle is placed in this path. The
results are shown in Fig. 1 (a) and Fig. 4. The legacy controller
is not aware of this wall, which results in collision that in
practice would cause hardware failure. Then, we apply a CVaR
barrier function to filter the output of the legacy controller. The
safe set is defined as

h(cx) = px − cx ≥ 0,

where px = 1 is the position of the obstacle, cx denotes the
position of the robot in the forward direction. We first apply
the CVaR barrier function with β = 0.999 (risk neutral) risk-
averse controller. The result is shown in Fig. 1 (b): the robot
walks and stop at the location of the obstacle. However, due the
stochastic uncertainty w, the risk-neutral controller violates the
safety requirement. Lastly, we apply the CVaR barrier function
with β = 0.1 (risk-averse case), which generates the walking
in Fig. 1 (c). The legacy controller directs the robot forward,
but the CVaR-safe controller keeps the robot away from the
obstacle.

Case 2: In this scenario, we consider the robot following a
forward reference path. However, there is a wall at an angle,
which does not completely prevent the robot from walking
forward. The safe set is defined as

h(cx, cy) = cy + k(cx − p) ≥ 0,

where k indicates the angle of the wall, p indicates the location
of the wall in forward direction, and cy is the position of the
robot in the lateral plane. Here k = −0.5 and p = 2. Fig.
5 (a) shows the generated walking behavior. With the CVaR
barrier function with β = 0.5, the robot keeps a distance from
the wall and maintains its original forward walking behavior
in its sagittal plane, which is similar to the walking in Fig.
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Fig. 5. The generated walking for Case 2 (a1, a2) and Case 3 (b).

4 (a1). As a result, the robot also walks laterally as well to
assure CVaR-safety.

Case 3: We consider a scenario with multiple barrier
functions. The robot is supposed to follow a sinusoidal path.
We add two walls on its way. The safe set is then defined as
min(h1, h2) ≥ 0, where

h1(cy) = cy + p1 ≥ 0, h2(cy) = −cy + p2 ≥ 0,

with p1 = 2 and p2 = 0. Fig. 5 (b) illustrates the walking
with the CVaR barrier function β = 0.5, where the robot
successfully avoided the collision with the walls.

IV. CONCLUSION

We proposed a method based on CVaR barrier functions
to verify and enforce risk-averse safety for discrete-time
stochastic systems. We proposed a computational method
for synthesizing CVaR-safe controllers in the case of linear
dynamics. The method was applied to enforce risk-averse
safety of a bipedal robot. Future work will extend the CVaR
barrier functions to other coherent risk measures, continuous-
time systems, and applications involving cooperative human-
robot teams and imperfect sensor measurements [34] and
convex/polytopic approximations of barrier functions leading
to convex programs.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge,
Mass.: MIT Press, 2005.

[2] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space
exploration,” Autonomous Robots, vol. 39, no. 4, pp. 555–571, 2015.

[3] A. Wang, A. M. Jasour, and B. Williams, “Non-Gaussian chance-
constrained trajectory planning for autonomous vehicles under agent
uncertainty,” IEEE Robotics and Automation Letters, 2020.

[4] A. Majumdar and M. Pavone, “How should a robot assess risk? towards
an axiomatic theory of risk in robotics,” in Robotics Research. Springer,
2020, pp. 75–84.

[5] P. Artzner, F. Delbaen, J. Eber, and D. Heath, “Coherent measures of
risk,” Mathematical finance, vol. 9, no. 3, pp. 203–228, 1999.

[6] Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-sensitive and
robust decision-making: a CVaR optimization approach,” in Advances
in Neural Information Processing Systems, 2015, pp. 1522–1530.

[7] Y. Chow and M. Ghavamzadeh, “Algorithms for CVaR optimization in
MDPs,” in Advances in neural information processing systems, 2014,
pp. 3509–3517.
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