# Risk-Averse Dynamic Programming for Markov Decision Processes

# Andrzej Ruszczyński



### Outline

- Dynamic Risk Measurement
- Markov Risk Measures
- Risk-Averse Control Problems
- Value and Policy Iteration

## How to Measure Risk of Sequences?

Probability space  $(\Omega, \mathcal{F}, P)$  with filtration  $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs)  $Z_1, Z_2, \ldots, Z_T$ Spaces:  $\mathcal{Z}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P), p \in [1, \infty]$ , and  $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$ 

#### Conditional Risk Measure

A mapping  $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$  satisfying the monotonicity condition:

$$\rho_{t,T}(Z) \leq \rho_{t,T}(W)$$
 for all  $Z, W \in \mathcal{Z}_{t,T}$  such that  $Z \leq W$ 

### Dynamic Risk Measure

A sequence of conditional risk measures  $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t, t = 1, \dots, T$ 

$$\rho_{1,T}(Z_1, Z_2, Z_3, \dots, Z_T) \in \mathcal{Z}_1 = \mathbb{R}$$

$$\rho_{2,T}(Z_2, Z_3, \dots, Z_T) \in \mathcal{Z}_2$$

$$\rho_{3,T}(Z_3, \dots, Z_T) \in \mathcal{Z}_3$$
:

## Evaluating Risk on a Scenario Tree



## Evaluating Risk on a Scenario Tree



## Evaluating Risk on a Scenario Tree



## Time Consistency of Dynamic Risk Measures

A dynamic risk measure  $\{\rho_{t,T}\}_{t=1}^{T}$  is time-consistent if for all  $\tau < \theta$ 

$$Z_k = W_k, \ k = \tau, \dots, \theta - 1 \quad \text{and} \quad \rho_{\theta, T}(Z_\theta, \dots, Z_T) \le \rho_{\theta, T}(W_\theta, \dots, W_T)$$

imply that  $\rho_{\tau,T}(Z_{\tau},\ldots,Z_{T}) \leq \rho_{\tau,T}(W_{\tau},\ldots,W_{T})$ 

Define 
$$\rho_{\tau,\theta}(Z_{\tau},\ldots,Z_{\theta})=\rho_{\tau,T}(Z_{\tau},\ldots,Z_{\theta},0,\ldots,0), \quad 1\leq \tau\leq \theta\leq T$$

### Risk-Averse Equivalence Theorem

Suppose  $\{\rho_{t,T}\}_{t=1}^{T}$  satisfies the conditions:

$$\rho_{t,T}(Z_t, Z_{t+1}, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T)$$
$$\rho_{t,T}(0, \dots, 0) = 0$$

Then it is time-consistent if and only if for all  $\tau \leq \theta$ :

$$\rho_{\tau,T}(Z_{\tau},\ldots,Z_{\theta},\ldots,Z_{T}) = \rho_{\tau,\theta}(Z_{\tau},\ldots,Z_{\theta-1},\rho_{\theta,T}(Z_{\theta},\ldots,Z_{T}))$$

## Collapsing Subtrees by Conditional Risk Measures



## Collapsing Subtrees by Conditional Risk Measures



## Recursive Structure of Dynamic Risk Measures

Define one-step conditional risk measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

$$\rho_t(Z_{t+1}) = \rho_{t,T}(0, Z_{t+1}, 0, \dots, 0)$$

### **Nested Decomposition Theorem**

Suppose a dynamic risk measure  $\left\{\rho_{t,T}\right\}_{t=1}^{T}$  is time-consistent and

$$\rho_{t,T}(Z_t, Z_{t+1}, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T)$$
$$\rho_{t,T}(0, \dots, 0) = 0$$

Then for all t we have the representation

$$\rho_{t,T}(Z_t, \dots, Z_T) =$$

$$= Z_t + \rho_t \left( Z_{t+1} + \rho_{t+1} \left( Z_{t+2} + \dots + \rho_{T-2} \left( Z_{T-1} + \rho_{T-1} (Z_T) \right) \dots \right) \right)$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures  $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ :

- Convexity:  $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$  $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If  $Z \leq W$  then  $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance:  $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity:  $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

### Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

## Multistage Risk-Averse Optimization Problems

Probability Space:  $(\Omega, \mathcal{F}, P)$  with filtration  $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ 

Decision Variables:  $x_t(\omega)$ ,  $\omega \in \Omega$ , t = 1, ..., T

Nonanticipativity: Each  $x_t$  is  $\mathcal{F}_t$ -measurable

Cost per Stage:  $Z_t(x_t)$  with realizations  $Z_t(x_t(\omega), \omega)$ ,  $\omega \in \Omega$ 

Objective Function: Time-consistent dynamic measure of risk

### Interchangeability Principle

$$\min_{X_{1},X_{2}(\cdot),...,X_{T}(\cdot)} \left\{ Z_{1}(X_{1}) + \rho_{1} \left( Z_{2}(X_{2}) + \rho_{2} \left( Z_{3}(X_{3}) + ... \right) \right) + \rho_{T-2} \left( Z_{T-1}(X_{T_{1}} + \rho_{T-1}(Z_{T}(X_{T}))) \cdot ... \right) \right) \right\}$$

$$= \min_{X_{1}} \left\{ Z_{1}(X_{1}) + \rho_{1} \left[ \min_{X_{2}} \left( Z_{2}(X_{2}) + \rho_{2} \left[ \min_{X_{3}} \left( Z_{3}(X_{3}) + ... \right) + \rho_{T-2} \left[ \min_{X_{T-1}} \left( Z_{T-1}(X_{T_{1}}) + \rho_{T-1} \left( \min_{X_{T}} Z_{T}(X_{T}) \right) \right) \right] \cdot ... \right) \right] \right) \right] \right\}$$

## Interchangeability on a Scenario Tree



## Interchangeability on a Scenario Tree



### Interchangeability on a Scenario Tree



### Controlled Markov Models

- State space  $\mathcal{X}$  (Polish with Borel  $\sigma$ -algebra)
- Control space  $\mathcal{U}$  (Polish with Borel  $\sigma$ -algebra)
- Feasible control sets  $U_t : \mathcal{X} \rightrightarrows \mathcal{U}, t = 1, 2, ...$
- Controlled transition kernels  $Q_t$ : graph $(U_t) \to \mathcal{P}, t = 1, 2, ...$  $\mathcal{P}$  set of probability measures on  $\mathcal{X}$
- Cost functions  $c_t$ : graph $(U_t) \to \mathbb{R}$ , t = 1, 2, ...
- State history  $\mathcal{X}^t$  (up to time t = 1, 2, ...)
- Policy  $\pi_t : \mathcal{X}^t \to \mathcal{U}, t = 1, 2, ...$  (always with values in  $U_t(x_t)$ )
- Markov policy  $\pi_t : \mathcal{X} \to \mathcal{U}, t = 1, 2, ...$ (stationary if  $\pi_t = \pi_1$  for all t)

$$X_t \longrightarrow U_t = \pi_t(X_t)$$
  
 $(X_t, U_t) \longrightarrow X_{t+1} \sim Q_t(X_t, U_t)$ 

#### Two Basic Risk-Neutral Control Problems

Finite horizon expected cost problem:

$$\min_{\pi_1,...,\pi_T} \mathbb{E} \left[ \sum_{t=1}^T c_t(x_t, u_t) + c_{T+1}(x_{T+1}) \right]$$

with controls  $U_t = \pi_t(X_1, \ldots, X_t)$ 

Infinite horizon discounted expected cost problem:

$$\min_{\pi_1, \pi_2, \dots} \mathbb{E} \left[ \sum_{t=1}^{\infty} \alpha^{t-1} c_t(x_t, u_t) \right]$$

- Both problems have optimal solutions in form of Markov policies
- Optimal policies can be found by dynamic programming equations

#### **Our Intention**

Introduce risk aversion to both problems by replacing the expected value by dynamic risk measures

## Using Dynamic Risk Measures for Markov Decision Processes

- Controlled Markov process  $x_t$ , t = 1, ..., T, T + 1
- Policy  $\Pi = \{\pi_1, \pi_2, \dots, \pi_T\}$  defines  $u_t = \pi_t(x_t)$
- Cost sequence  $c_t(x_t, u_t)$ , t = 1, ..., T, and  $c_{T+1}(x_{T+1})$
- Dynamic time-consistent risk measure

$$J(\Pi) = c_1(x_1, u_1) + \rho_1 \bigg( c_2(x_2, u_2) + \rho_2 \bigg( c_3(x_3, u_3) + \cdots + \rho_{T-1} \bigg( c_T(x_T, u_T) + \rho_T (c_{T+1}(x_{T+1})) \bigg) \cdots \bigg) \bigg)$$

Risk-averse optimal control problem

$$\min_{\varPi} J(\varPi)$$

### Difficulty

The value of  $\rho_t(\cdot)$  is  $\mathcal{F}_t$ -measurable and is allowed to depend on the entire history of the process. We cannot expect a Markov optimal policy if our attitude to risk depends on the whole past

### New Construction of a Conditional Risk Measure

- $\mathcal{B}$  Borel  $\sigma$ -field on  $\mathcal{X}$ ,  $P_0$  probability measure on  $(\mathcal{X}, \mathcal{B})$
- Spaces:  $\mathcal{V} = \mathcal{L}_p(\mathcal{X}, \mathcal{B}, P_0), \, \mathcal{Y} = \mathcal{L}_q(\mathcal{X}, \mathcal{B}, P_0) \, (\frac{1}{p} + \frac{1}{q} = 1)$
- Densities on  $(\mathcal{X}, \mathcal{B})$

$$\mathcal{M} = \left\{ m \in \mathcal{Y} : \int_{\mathcal{X}} m(x) P_0(dx) = 1, \ m \ge 0 \right\}$$

ullet Pairing of the spaces  ${\mathcal V}$  and  ${\mathcal Y}$  with the bilinear form

$$\langle v, m \rangle = \int_{\mathcal{X}} v(x) m(x) P_0(dx)$$

## Risk Transition Mapping Associated with a Kernel Q: graph $(U) \rightarrow \mathcal{M}$

A measurable functional  $\sigma: \mathcal{V} \times \mathcal{X} \times \mathcal{M} \to \mathbb{R}$  satisfying for every measurable selection  $u(\cdot)$  of  $U(\cdot)$  the conditions

- (i) For every  $x \in \mathcal{X}$  the functional  $v \mapsto \sigma(v, x, Q(x, u(x)))$  is a coherent measure of risk on  $\mathcal{V}$
- (ii) For every  $v \in \mathcal{V}$  the function  $x \mapsto \sigma(v, x, Q(x, u(x)))$  is in  $\mathcal{V}$

## **Dual Representation of Risk Transition Mappings**

If the mapping  $\sigma(v, x, m)$  is lower semicontinuous with respect to v, then there exist convex sets  $\mathcal{A}(x, m)$  such that

$$\sigma(\mathbf{V}, \mathbf{X}, \mathbf{m}) = \sup_{\mu \in \mathcal{A}(\mathbf{X}, \mathbf{m})} \langle \mathbf{V}, \mu \rangle$$

### Example: Mean-Semideviation Mapping

$$\sigma(v, x, m) = \langle v, m \rangle + \kappa(x) \Big( \big( (v - \langle v, m \rangle)_+^s, m \big) \Big)^{\frac{1}{s}}$$

For s > 1 we obtain

$$\mathcal{A}(x, m) = \left\{ g = m \left( 1 + h - \langle h, m \rangle \right) : \left( \left\langle |h|^{\frac{s}{s-1}}, m \right\rangle \right)^{\frac{s-1}{s}} \le \kappa(x), \ h \ge 0 \right\}$$

and for s = 1 we have

$$\mathcal{A}(x, m) = \left\{ g = m \left( 1 + h - \langle h, m \rangle \right) : \sup_{y \in \mathcal{X}} |h(y)| \le \kappa(x), \ h \ge 0 \right\}$$

#### Markov Risk Measures

Assumption: The controlled kernels  $Q_t$  have values in the set  $\mathcal{M}$  (with densities with respect to  $P_0$ )

A one-step conditional risk measure  $\rho_t: \mathcal{Z}_{t+1} \to \mathcal{Z}_t$  is a Markov risk measure with respect to the controlled Markov process  $\{x_t\}$ , if there exists a risk transition mapping  $\sigma_t: \mathcal{V} \times \mathcal{X} \times \mathcal{M} \to \mathbb{R}$  such that for all  $v \in \mathcal{V}$  and for all measurable  $u_t \in U_t(x_t)$  we have

$$\rho_t(\mathbf{V}(\mathbf{X}_{t+1})) = \sigma_t(\mathbf{V}, \mathbf{X}_t, \mathbf{Q}_t(\mathbf{X}_t, \mathbf{U}_t))$$

Duality: 
$$\rho_t(v(x_{t+1})) = \sup_{\mu \in \mathcal{A}_t(x_t, Q_t(x_t, u_t))} \langle v, \mu \rangle$$
  
 $\mathcal{A}_t(x_t, Q_t(x_t, u_t)) - \text{controlled multikernel}$ 

In the risk neutral setting, when  $\rho_t(v(x_{t+1})) = \mathbb{E}[v(x_{t+1})|\mathcal{F}_t]$  we have a single-valued controlled kernel  $\mathcal{A}_t(x_t, Q_t(x_t, u_t)) = \{Q_t(x_t, u_t)\}$ . Risk-averse preferences  $\leftrightarrows$  Ambiguity in the transition kernel

### Markov Risk Evaluation

t-1



t + 1

### Markov Risk Evaluation



#### Markov Risk Evaluation



### Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process  $\{x_t\}$  with  $u_t = \pi_t(x_1, \dots, x_t)$ .

Risk-averse optimal control problem:

$$\min_{\Pi} c_{1}(x_{1}, u_{1}) + \rho_{1} \left( c_{2}(x_{2}, u_{2}) + \rho_{2} \left( c_{3}(x_{3}, u_{3}) + \cdots \right) + \rho_{T-1} \left( c_{T}(x_{T}, u_{T}) + \rho_{T} \left( c_{T+1}(x_{T+1}) \right) \right) \cdots \right) \right)$$

#### **Theorem**

If the conditional measures  $\rho_t$  are Markov (+ technical conditions), then the optimal solution is given by the dynamic programming equations:

$$v_{T+1}(x) = c_{T+1}(x), \quad x \in \mathcal{X}$$

$$v_{t}(x) = \min_{u \in U_{t}(x)} \left\{ c_{t}(x, u) + \sigma_{t}(v_{t+1}, x, Q_{t}(x, u)) \right\}, \quad t = T, \dots, 1$$

Optimal Markov policy  $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$  - the minimizers above

### Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process  $\{x_t\}$  with  $u_t = \pi_t(x_1, \dots, x_t)$ .

Risk-averse optimal control problem:

$$\min_{\Pi} c_{1}(x_{1}, u_{1}) + \rho_{1} \left( c_{2}(x_{2}, u_{2}) + \rho_{2} \left( c_{3}(x_{3}, u_{3}) + \cdots \right) + \rho_{T-1} \left( c_{T}(x_{T}, u_{T}) + \rho_{T} \left( c_{T+1}(x_{T+1}) \right) \right) \cdots \right) \right)$$

#### **Theorem**

If the conditional measures  $\rho_t$  are Markov (+ technical conditions), then the optimal solution is given by the dynamic programming equations:

$$v_{T+1}(x) = c_{T+1}(x), \quad x \in \mathcal{X}$$

$$v_t(x) = \min_{u \in U_t(x)} \left\{ c_t(x, u) + \sup_{\mu \in \mathcal{A}_t(x, Q_t(x, u))} \langle v_{t+1}, \mu \rangle \right\}, \quad t = T, \dots, 1$$

Optimal Markov policy  $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$  - the minimizers above

## Discounted Risk Measures for Infinite Sequences

- $\{\mathcal{F}_t\}$  filtration on  $(\Omega, \mathcal{F})$
- $Z_t$ , t = 1, 2... adapted sequence of random variables
- $\mathcal{Z}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P), \mathcal{Z} = \mathcal{Z}_1 \times \mathcal{Z}_2 \times \cdots$
- $\rho_t: \mathcal{Z}_{t+1} \to \mathcal{Z}_t$  conditional risk mappings

Fix the discount factor  $\alpha \in (0, 1)$ . For T = 1, 2, ... define

$$\rho_{1,T}^{\alpha}(Z_{1}, Z_{2}, ..., Z_{T}) = \rho_{1,T}(Z_{1}, \alpha Z_{2}, ..., \alpha^{T-1} Z_{T})$$

$$= Z_{1} + \rho_{1} \left( \alpha Z_{2} + \rho_{2} \left( \alpha^{2} Z_{3} + \cdots + \rho_{T-1} (\alpha^{T-1} Z_{T}) \cdots \right) \right)$$

#### Discounted Risk Measure

$$\varrho^{\alpha}(Z) = \lim_{T \to \infty} \rho_{1,T}^{\alpha}(Z_1, Z_2, \dots, Z_T)$$

It is well defined, convex, monotone, and positively homogeneous, whenever  $\max_t \text{essup}\,|Z_t(\omega)| < \infty$ 

### Discounted Infinite Horizon Problem

We consider a controlled stationary Markov process  $\{x_t\}$ , t=1,2,... with a discounted measure of risk  $(0 < \alpha < 1)$ :

$$\min_{\Pi} J(\Pi, x_1) = \varrho^{\alpha} (c(x_1, u_1), c(x_2, u_2), \cdots) 
= c(x_1, u_1) + \rho_1 (\alpha c(x_2, u_2) + \rho_2 (\alpha^2 c(x_3, u_3) + \cdots))$$

Conditional Markov risk measures  $\rho_t$  are stationary, if they share the same risk transition mapping  $\sigma: \mathcal{X} \times \mathcal{V} \times \mathcal{M} \to \mathbb{R}$ 

#### **Theorem**

If the conditional measures  $\rho_t$  are Markov and stationary, then the optimal value function  $\hat{v}(x)$  satisfies the dynamic programming equation:

$$V(X) = \min_{u \in U(X)} \left\{ c(X, u) + \alpha \, \sigma \big( V, X, \, Q(X, u) \big) \right\}, \quad X \in \mathcal{X}$$

Optimal stationary Markov policy  $\hat{\Pi} = \{\hat{\pi}, \hat{\pi}, \dots\}$  - the minimizer above

### Discounted Infinite Horizon Problem

We consider a controlled stationary Markov process  $\{x_t\}$ , t=1,2,... with a discounted measure of risk  $(0 < \alpha < 1)$ :

$$\min_{\Pi} J(\Pi, x_1) = \varrho^{\alpha} (c(x_1, u_1), c(x_2, u_2), \cdots) 
= c(x_1, u_1) + \rho_1 (\alpha c(x_2, u_2) + \rho_2 (\alpha^2 c(x_3, u_3) + \cdots))$$

Conditional Markov risk measures  $\rho_t$  are stationary, if they share the same risk transition mapping  $\sigma: \mathcal{X} \times \mathcal{V} \times \mathcal{M} \to \mathbb{R}$ 

#### **Theorem**

If the conditional measures  $\rho_t$  are Markov and stationary, then the optimal value function  $\hat{v}(x)$  satisfies the dynamic programming equation:

$$v(x) = \min_{u \in U(x)} \left\{ c(x, u) + \alpha \sup_{\mu \in \mathcal{A}(x, Q(x, u))} \langle v, \mu \rangle \right\}, \quad x \in \mathcal{X}$$

Optimal stationary Markov policy  $\hat{\Pi} = \{\hat{\pi}, \hat{\pi}, ...\}$  - the minimizer above

#### Value Iteration

### Dynamic programming equation:

$$V(x) = \min_{u \in U(x)} \left\{ c(x, u) + \alpha \, \sigma \big( v, x, Q(x, u) \big) \right\}, \quad x \in \mathcal{X}$$

Observation: The operator on the right hand side is monotone and is a contraction in  $\mathcal{L}_{\infty}(\mathcal{X}, \mathcal{B}, P_0)$  for  $\alpha \in (0, 1)$ 

#### **Theorem**

The sequence  $\{v^k\}$  generated by the value iteration method

$$v^{k+1}(x) = \min_{u \in U(x)} \{c(x, u) + \alpha \sigma(v^k, x, Q(x, u))\}, \quad x \in \mathcal{X}, \quad k = 1, 2, ...$$

is convergent linearly in  $\mathcal{L}_{\infty}(\mathcal{X}, \mathcal{B}, P_0)$  to the optimal value function  $\hat{v}$ , with quotient  $\alpha$ . If  $v^1 = 0$ , then the sequence  $\{v^k\}$  is nondecreasing

## Policy Iteration

• For k = 0, 1, 2, ..., given a stationary Markov policy  $\{\pi^k, \pi^k, ...\}$ , find the value function  $v^k$  by solving the nonsmooth equation

$$V(X) = C(X, \pi^k(X)) + \alpha \sigma(V, X, Q(X, \pi^k(X))), \quad X \in \mathcal{X}$$

• Find the next policy  $\pi^{k+1}(\cdot)$  by one-step optimization

$$\pi^{k+1}(x) = \underset{u \in U(x)}{\operatorname{argmin}} \left\{ c(x, u) + \alpha \sigma \left( v^k, x, Q(x, u) \right) \right\}, \quad x \in \mathcal{X}$$

• Increase k by 1, and continue.

#### **Theorem**

The sequence of functions  $v^k$ ,  $k=1,2,\ldots$ , is nonincreasing and convergent to the unique bounded solution  $\hat{v}(\cdot)$  of the dynamic programming equation

## Specialized Nonsmooth Newton Method

The nonsmooth equation at each step of policy iteration

$$v(x) = \bar{c}(x) + \alpha \sup_{\mu \in \bar{\mathcal{A}}(x)} \langle v, \mu \rangle, \quad x \in \mathcal{X}$$

with 
$$\bar{c}(x) = c(x, \pi^k(x))$$
 and  $\bar{\mathcal{A}}(x) = \mathcal{A}(x, Q(x, \pi^k(x)))$ 

- For  $\ell=1,2,\ldots$ , having an approximate value function  $v_\ell$  calculate the kernel  $\mu_\ell(x) = \operatorname*{argmax}_{\mu \in \bar{\mathcal{A}}(x)} \langle v_\ell, \mu \rangle, \quad x \in \mathcal{X}$
- Find  $v_{\ell+1}$  by solving the linear equation

$$V(X) = \bar{C}(X) + \alpha \langle V, \mu_{\ell}(X) \rangle, \quad X \in \mathcal{X}$$

• Increase  $\ell$  by one, and continue.

#### **Theorem**

For every initial function  $v_1$  the sequence  $\{v_\ell\}$  generated by the Newton method is convergent to the unique solution  $v^*$  of the policy equation. Moreover, the sequence is monotone.