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How to Measure Risk of Sequences?

Probability space (£2, F, P) with filtration 7y Cc --- Cc Fr C F
Adapted sequence of random variables (costs) Zy, 2, ..., Zr
Spaces: Zt = Lp(2, F1, P),pe[l,00,and Zi 7= Z; x --- x Z7
Conditional Risk Measure

A mapping o7 : 2.7 — 2Z; satisfying the monotonicity condition:

pt.7(Z) < pr7(W) forall Z, W € Z; rsuchthat Z < W

Dynamic Risk Measure
A sequence of conditional risk measures p;7: Zt7 — Z, t=1,..., T

o172, 2o, 23, ..., Z1) € 21 =R
p2.7(22, 23, ..., 21) € 2>
p3.7(Z3, ..., 2Z1) € Z3
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Evaluating Risk on a Scenario Tree
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Time Consistency of Dynamic Risk Measures

A dynamic risk measure {,ot,r}tT:1 is time-consistent if for all T < 6
Zk =W, k=1,...,0 -1 and pg7(Z,...,2Z7) < po,T(Wp, ..., Wr)

imply that o, 7(Z, ..., Z1) < pr,7(W,, ..., Wr)

Deflne IO‘L',G(Z‘L” L] 29) = p‘[,T(ZT9 L] Z(99 07 L] 0)9 1 S T 5 9 S T
Risk-Averse Equivalence Theorem

Suppose {p:.7},_, satisfies the conditions:

IOf,T(Ztv Zt+19 seey ZT) = Zf + ,Ot’T(O, Zt+1v L) ZT)
per(0,....0)=0

Then it is time-consistent if and only if for all T < 9:

IO‘[,T(Z‘[a ©oog Z@a °co0o0g ZT) = pt,@(Z‘tv ©0o0gQ 29—1’ IOQ,T(ZQ? 0009 ZT))
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Collapsing Subtrees by Conditional Risk Measures
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Collapsing Subtrees by Conditional Risk Measures

ﬂ§’4(22-, Z3, Z4) p§,4(22, Z3.Z4)
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Recursive Structure of Dynamic Risk Measures

Define one-step conditional risk measures p; : 21,1 — Z4:

pt(Zi+1) = pt.7(0, 244, 0,...,0)

Nested Decomposition Theorem

T

Suppose a dynamic risk measure {ptT}r=1 is time-consistent and

ot 7L Zis - L) = 244+ p1,7(0, Zpyq, ..., ZT)
pt7(0,...,00=0

Then for all t we have the representation
pt,T(Zf’ cees ZT) =

=2+ Pt(Zt+1 + ot (Zt+2 + -+ pr—2(Zr-1 + pr-1(Z7)) - ))
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Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zi 1 — Zi:
@ Convexity: pt(AZ + (1 — VW) < 2pi(2) + (1 — 1) p(W)
Viae(@,1), Z We Z 4
@ Monotonicity: If Z < W then pi(2) < pt(W), YZ, W € Z;,4

@ Predictable Translation Equivariance:
pt(Z+W)=Z+p (W), VZeZ, We Z4

@ Positive Homogeneity: pi(tZ) = 1p1(2),VZ € Zt14, T >0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Follmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(Zt1) = E[Z141F] + KE[(Zm — E[Z441 |-7:t])i}7:t] ’

Here s € [1, p] and « € [0, 1] may be F;-measurable
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Multistage Risk-Averse Optimization Problems

Probability Space: (£2, F, P) with filtration 7y c --- Cc Fr C F
Decision Variables: x;(w), w € 2,t=1,..., T
Nonanticipativity: Each x; is F-measurable

Cost per Stage: Zi(x;) with realizations Z;(x;(w), w), w € 2
Objective Function: Time-consistent dynamic measure of risk

Interchangeability Principle

min {21 (X1) + p1 (Zz(Xz) +,02<23(X3) +...

X1,X2(-), ., XT ()

o pro2(Zro1 (X + pro1(Z1(XT))) - - ))}

= n](in{Z1 X1) + p1 [rr}(in(zg(xg) + p2 [rr)1(in<23(x3) +...

R ,OT—Z[Q;]_T(ZT—1 (X7;) + pr—1 (M Zr(xr))] - )D] }

y
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Interchangeability on a Scenario Tree
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Interchangeability on a Scenario Tree

p1.4(21. 22, Z3. Zy)

min
X1,X2(),X3(-), X4 ()

4
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t—4

Andrzej Ruszczynski Risk-Averse Dynamic Programming



Interchangeability on a Scenario Tree

min (Zy +p1(-)

t=1
min (2} + p2 () min (25 + pa(-+-)
t=2 X5 X5
t=3
min(-
t=4 X3 X4 X3 X4 X3 X4 X4 X4
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Controlled Markov Models

@ State space X (Polish with Borel o-algebra)
@ Control space U (Polish with Borel o-algebra)
@ Feasible control sets U; : X = U, t=1,2,...

@ Controlled transition kernels @y : graph(Uy) — P, t=1,2,...
P - set of probability measures on X

@ Cost functions ¢; : graph(Uy) — R, t=1,2,...
@ State history X! (uptotime t=1,2,...)
@ Policy m; : X' — U, t=1,2,... (always with values in U;(x;))
@ Markov policy iy : X - U, t=1,2,...
(stationary if 7y = 74 for all f)
Xt —> Ut = m¢(X)
(Xt, Ut) —> Xpy1 ~ Qe(Xt, Up)
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Two Basic Risk-Neutral Control Problems

Finite horizon expected cost problem:

;
min E |:Z Ct(Xt, Ut) + CT41 (XT+1)j|

T,een TT
t=1
with controls u; = (x4, ..., Xp)

Infinite horizon discounted expected cost problem:

o
min E aei(x, u
Lmin. |:Z t(Xt, Ut)

t=1

@ Both problems have optimal solutions in form of Markov policies
@ Optimal policies can be found by dynamic programming equations

Our Intention

Introduce risk aversion to both problems by replacing
the expected value by dynamic risk measures
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Using Dynamic Risk Measures for Markov Decision Processes

@ Controlled Markov process x;, t=1,..., T, T +1
@ Policy IT = {ny, 72, ..., w7} defines uy = m:(x;)
@ Cost sequence ci(x;, up), t=1,..., T, and cr1(X741)

@ Dynamic time-consistent risk measure
JUT) = ¢1(x1, ) + p1 (Cz(Xz, W) + ,02(03()(3, us) +

-+ prot(cr(XT, ur) + pr(Cre1(XT41))) - - ))

@ Risk-averse optimal control problem
mnln JUT)

Difficulty

The value of p;(-) is F;-measurable and is allowed to depend on the
entire history of the process. We cannot expect a Markov optimal policy
if our attitude to risk depends on the whole past
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New Construction of a Conditional Risk Measure

@ BB - Borel o-field on X, Py - probability measure on (X, B)
@ Spaces: V = Lp(X, B, Py), Y = Lq(X, B, Po) (,13 + 23 =1)
@ Densities on (X, B)

M= {mey:f m(x) Po(dx) =1, mzo}
X
@ Pairing of the spaces V and ) with the bilinear form

(v,m) = f v(x)m(x) Py(dx)
X

Risk Transition Mapping Associated with a Kernel Q : graph(U) — M

A measurable functional o : V x X x M — R satisfying for every
measurable selection u(-) of U(-) the conditions

(i) Forevery x € X the functional v — o (v, x, Q(x, u(x))) is a
coherent measure of risk on V

(ii) For every v € V the function x — o (v, x, Q(x, u(x))) is in V
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Dual Representation of Risk Transition Mappings

If the mapping o (v, x, m) is lower semicontinuous with respect to v,
then there exist convex sets A(x, m) such that

o(v,x,my= sup (v,pu)
neA(x,m)
Example: Mean—Semideviation Mapping
1

o(v,x,m) = (v,m) + /c(x)<((v — (v, m)S, m))s

For s > 1 we obtain

s—1

A(x, m) = {g:m(1 + h—(h,m)): <(|h|s%,m)) S <k, hzo}
and for s = 1 we have

Ax, m) = {g =m(1+h—(h,m)):suplh(y)l <k(x), h> 0}
yeX
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Markov Risk Measures

Assumption: The controlled kernels Q; have values in the set M
(with densities with respect to P)

A one-step conditional risk measure p; : Zi1 — Z;is a Markov risk

measure with respect to the controlled Markov process {x;}, if there

exists a risk transition mapping o; : V x X x M — R such that for all
v € VY and for all measurable u; € U;(x;) we have

pt(V(Xt11)) = ot (V. Xe, Qe(X, Up)

Duality: p¢(v(Xt41)) = sup (v, u)
neAr(xe, Qr(xe,up))

Ai(xt, Qi(X¢, Up)) — controlled multikernel

In the risk neutral setting, when p;(v(xi+1)) = E[v(X¢+1)|Ft] we have a
single-valued controlled kernel A;(x;, Qi(Xz, Up)) = {Qi(X;, Up)}.
Risk-averse preferences <= Ambiguity in the transition kernel
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Markov Risk Evaluation
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Markov Risk Evaluation
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Markov Risk Evaluation
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {x;} with u; = m¢(xq, ..., Xp).

Risk-averse optimal control problem:

min ¢1(x, Ur) + p1 (Cz(Xz, Up) + ,02(03()(3, us) +- -
-+ prog(er(xT, ur) + pr(CTi1(XT441))) - - ))

Theorem

If the conditional measures p; are Markov (+ technical conditions), then
the optimal solution is given by the dynamic programming equations:

Vipi(X) =crpi(x), xe X

Vi(X) = ugnUIt?x) {Ct(X, u) + or(Virr, X, Qi(x, u)) } t=T,...,1
Optimal Markov policy IT = {#1, ..., #7} - the minimizers above

Andrzej Ruszczynski Risk-Averse Dynamic Programming



Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {x;} with u; = m¢(xq, ..., Xp).

Risk-averse optimal control problem:

min ¢1(x, Ur) + p1 (Cz(Xz, Up) + ,02(03()(3, us) +- -
-+ prog(er(xT, ur) + pr(CTi1(XT441))) - - ))

Theorem

If the conditional measures p; are Markov (+ technical conditions), then
the optimal solution is given by the dynamic programming equations:

Vipi(X) =crpi(x), xe X

weo = min facw + s (waw) (=T,
uel;(x) neAr(x, Qy(x,u))

Optimal Markov policy IT = {#1, ..., #7} - the minimizers above

Andrzej Ruszczynski Risk-Averse Dynamic Programming



Discounted Risk Measures for Infinite Sequences

@ {F;} - filtration on (£2, F)
@ Z;, t=1,2... - adapted sequence of random variables
(] Z[Zﬁp(Q,Ft,P),Z:Z1 X Zo X +--
@ p;: 211 — 2 - conditional risk mappings

Fix the discount factor « € (0,1). For T =1, 2, ... define
0114, 22, ... Zr) = p1.7(4, 0, .., a1 Z7)

=2 + p1 (0622 +p2(?Zs + -+ prot(@ ' Zr) - ))

Discounted Risk Measure
0“(2) = lim p¢ (21, 2o, ... Zr)
T—o00

It is well defined, convex, monotone, and positively homogeneous,
whenever m?x essup | Zi(w)| < oo
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Discounted Infinite Horizon Problem

We consider a controlled stationary Markov process {x;}, t=1,2, ...
with a discounted measure of risk (0 < a < 1):

mHin JUT, xq) = QO‘(C(X1, uy), c(Xo, Up), - - )
= C(X1, U1) + p1 <OlC(X2, Us) + pa2(a?c(xs, Ug) + - - ))

Conditional Markov risk measures p; are stationary, if they share
the same risk transition mappingo : X x V x M — R

Theorem

If the conditional measures p; are Markov and stationary, then the
optimal value function V(x) satisfies the dynamic programming
equation:

V(X) = umUi(r}() f[ecx,u)+ao(v,x,Qx,w)}, xeX

Optimal stationary Markov policy IT = {#, #, ...} - the minimizer above

V.
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Value lteration

Dynamic programming equation:
Vi) = min {cx,u) +ao(v,x,Qx,u)}, xeX
Observation: The operator on the right hand side is monotone
and is a contraction in L., (X, B, Py) for o € (0, 1)

Theorem
The sequence {v*} generated by the value iteration method

K1 vy i k _
v (x)_ugnul(r)o {ex,u) +ao (V. x, Qx,u)}, xeX, k=12, ...

is convergent linearly in £..(X, B, Py) to the optimal value function v,
with quotient «. If v! = 0, then the sequence {v*} is nondecreasing
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Policy Iteration

@ Fork=0,1,2,..., given a stationary Markov policy {z*, 7%, ...},
find the value function v by solving the nonsmooth equation

v(x) = c(x, 7(x)) + aa (v, x, Q(x, 78 (x))), xeX
@ Find the next policy 7%*'(-) by one-step optimization

7' (x) = argmin {e(x, u) + ao (VK, x, Q(x, w))}, xeX
uelU(x)

@ Increase k by 1, and continue.

Theorem

The sequence of functions v¥, k = 1,2, ..., is nonincreasing and
convergent to the unique bounded solution v(-) of the dynamic
programming equation
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Specialized Nonsmooth Newton Method

The nonsmooth equation at each step of policy iteration

v(X) =C(X) + o sup (v, u), xeX

neAx)
with ¢(x) = c(x, 7¥(x)) and A(x) = A(x, Q(x, 75(x)))
@ For¢ =1,2,..., having an approximate value function v, calculate
the kernel  w,(x) = argmax (vp, u), xe X

pneAx)
@ Find vy41 by solving the linear equation
v(X) =c(X) +alv, u(x)), xeX
@ Increase ¢ by one, and continue.
Theorem

For every initial function v4 the sequence {v,} generated by the Newton
method is convergent to the unique solution v* of the policy equation.
Moreover, the sequence is monotone.
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