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Dissertation Director: Professor Andrzej Ruszczyński

I consider single- and multi-product risk-averse newsvendor models under two risk

measures, coherent measures of risk and exponential utility function. Following from

the typical format of a newsvendor model, I formulate the problems in the single- and

multi-product cases and establish my models to take risk aversion into account. Thus,

my models can capture the decision making of inventory managers at a different angle

than most of literature in supply chain management. The key research questions are

how the degree of risk aversion and product demand dependence structure interact with

each other and affect jointly to the optimal decision of inventory managers. My models

can find their applications in many manufacturing, distribution and retailing companies

that handle short life-cycle products.

From my extensive literature review, I summarize and tabulate the literature of

risk-averse inventory models and categorize typical approaches to risk-averse inven-

tory models into four groups by the risk measures used. I discuss similarities and

differences between the models. In particular, I provide clear axiomatic criteria to

evaluate validity of risk measures in risk-averse newsvendor models. By the axiomatic

criteria, coherent measures of risk are chosen to fit best for risk-averse newsvendor
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models, but the exponential utility function is also studied for a comparison purpose.

This axiomatic approach can be also applicable to other types of risk-averse inventory

models.

In the main results, I study the impact of risk aversion on the optimal ordering quan-

tity. For single-product models, I obtain closed-form optimal ordering quantity under

coherent measures of risk and closed-form approximation under exponential utility

function. For a large but finite number of products, I also obtain closed-form approx-

imations under the both risk measures when product demands are independent. My

approximations are as simple to compute as the risk-neutral newsvendor solutions and

the gap between the optimal solutions and approximations quickly converges to zero as

the number of products increases. Then I prove that the risk-neutral solution is asymp-

totically optimal under coherent measures of risk, as the number of products tends to

be infinity. The same proposition is proved under exponential utility function, as the

ratio of the degree of risk aversion to the number of products goes to zero. Thus, in

both cases, risk aversion has no impact in the limit. Demand dependence significantly

affects the optimal ordering quantity. I derive analytical and numerical insights for the

interplay between demand correlation and risk aversion. All these results are consistent

with our insights and confirmed by numerical examples from my computational study.

I conclude my dissertation by comparing risk-averse newsvendor models and fi-

nancial portfolio optimization models.
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Chapter 1

Introduction

1.1 Motivations

Stochastic inventory management problems are at the center of interests in Operations

Management. In these problems, inventory managers have to decide optimal ordering

quantities before random demands are realized. The firm’s objective is to determine

the optimal solutions for products so as to optimize certain performance measures.

My dissertation research studies how risk-averse and rational inventory managers

decide their optimal choices under risk. In particular, I focus on how risk aversion

of inventory managers affects their optimal decision in the newsvendor model. My

interests in this line of research originated when I noticed a gap on the impacts of risk

aversion in the inventory management literature. That is, the inventory management

literature mainly assumes that inventory managers aim to maximize the expected value

of profits or minimize the expected value of costs, but does not consider variations

of random outcomes. However, inventory managers may not be ready to possibly

suffer significant losses with the hope of obtaining large profits. Instead, they may

prefer worse on average but stable outcomes. Schweitzer and Cachon (2000) provide

experimental evidence suggesting that inventory managers may have different attitude

of risk preferences depending on product characteristics. More specifically, inventory

managers can be risk-averse for high-value products.

By such reasons, risk aversion can capture the decision making of inventory man-

agers at a different angle than most of literature. Risk aversion is consistent to rational
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inventory managers and it significantly affects the optimal strategy of inventory man-

agers. These make risk aversion a very interesting and important factor to be consid-

ered when one analyzes the optimal choices of inventory managers. However, in the

supply chain management literature, few attempts have been made so far.

In recent years, risk-averse inventory models have received increasing attentions

from academia and industry. Risk-averse optimization was invited to the tutorial ses-

sions in both of 2007 and 2008 INFORMS (The Institute for Operations Research and

Management Sciences) annual conferences. An important and exogenous event is the

on-going subprime mortgage financial crisis, which motivates a number of academi-

cians and practitioners to recognize the importance of evaluating and managing risks

in their decision making. With such increased attention from academia and industry,

my research is very timely and interesting topic in Operations Management. My mod-

els can find their application in many manufacturing, distribution and retailing compa-

nies and also military applications, where inventory managers cannot be assumed to be

risk-neutral.

1.2 Objectives

In my dissertation, I study risk-averse newsvendor problems. I divide the problems

into three independent but closely related essays. The first essay is a single-product

risk-averse newsvendor model with coherent measures of risk and the second and third

essays are multi-product risk-averse newsvendor models with coherent measures of

risk and exponential utility function, respectively.

Following from the typical format of the classical newsvendor model, there is a

single product (the first essay) or multiple products (the second and third essays) with

random demands to be sold in a single-selling season. Backordering is not allowed in

all three models. The vendor has to order the items before the demand is realized and

the demand is only known as the form of its probability distribution. On the one hand,
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when demand exceeds supply for any product, the excessive demand is lost. On the

other hand, when supply exceeds demand, the excessive inventory is sold at a loss.

In the classical model, the objective function is to maximize the expected value

of the total profit and does not consider risk. It has a well-known simple analytical

solution. Due to its simplicity and versatility, there exist many applications, such as

plant capacity or overbooking problems. However, the outcomes which are actually

observed by inventory managers are random, and they cannot always rely on repeated

similar chances. Especially for short product-life cycle products, the first few outcomes

may turn out to be very bad due to the variability of the outcomes, and entail unaccept-

able losses. Therefore, I aim to replace the risk-neutral performance measure by new

measures taking risk aversion into account.

1.3 Contributions to the Literature

From the three models to be studied in my dissertation, I aim to contribute to the

literature as follows:

1. By my extensive literature review, I categorize typical approaches to risk-averse

inventory models into four groups by the risk measures used and outline their

similarities and differences. Then, I summarize and tabulate the literature of risk-

averse inventory models by model types and the four groups of the risk measures

in a matrix.

2. I provide an axiomatic approach to evaluate validity of risk measures in risk-

averse newsvendor models. This approach can be applicable to other risk-averse

inventory models.

3. I develop risk-averse inventory models for single- and multi-product cases under

general law-invariant coherent measures of risk and exponential utility function.

4. For single-product models,
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• I study the impact of the degree of risk aversion under general law-invariant

coherent measures of risk and exponential utility function.

• I obtain a closed-form optimal solution under general law-invariant coher-

ent measures of risk and closed-form approximation under exponential util-

ity function.

5. For multi-product models with independent demands case,

• I prove convexity of the objective functions under general law-invariant

coherent measures of risk and exponential utility function.

• I study the impact of the degree of risk aversion under general law-invariant

coherent measures of risk and exponential utility function.

• I obtain closed-form approximations under general law-invariant coherent

measures of risk and exponential utility function.

• I analyze the asymptotic behavior of the solution under general law-invariant

coherent measures of risk with respect to the number of products. I also

analyze the asymptotic behaviors of the solution under exponential utility

function with respect to the ratio of the number of products to the degree of

risk aversion.

6. For the multi-product models with dependent demands case,

• I derive analytical and numerical insights on the interplay of demand cor-

relation and risk aversion under general coherent measures of risk and ex-

ponential utility function.

7. I conduct an extensive computational study to confirm the analytical results and

derive numerical insights.

8. I compare multi-product newsvendor models to financial portfolio optimization

models.
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1.4 Structure

The remainder of the dissertation is organized as follows: Chapter 2 categorizes typical

approaches to risk-averse inventory models into four groups - Expected Utility Theory,

Stochastic Dominance, Chance Constraints and Mean-Risk Analysis. I discuss their

similarities and differences. Then, I also summarize and tabulate the literature of risk-

averse inventory models by model types and risk measures in a 5-by-5 matrix. Finally,

chapter 2 provides a clear axiomatic approach to evaluate validity of each risk measure

in risk-averse newsvendor models.

Chapter 3 studies single-product newsvendor models. It focuses on the impact of

the degree of risk aversion on the optimal ordering quantity and closed-form optimal

solutions under mean-deviation from quantile and general law-invariant coherent mea-

sures of risk.

Chapter 4 is dedicated to the multi-product newsvendor model under general law-

invariant coherent measures of risk. The key research questions are to analyze the

impacts of risk aversion and demand dependence to the optimal order quantity.

Chapter 5 is dedicated to the multi-product newsvendor model under exponential

utility function. The main results of this Chapter are well in harmony with Chapter 4.

Chapter 6 is dedicated to computational study to confirm the analytical results stud-

ied from Chapter 3 through 5, and derive insights for risk-averse newsvendors.

Chapter 7 contains concluding remarks and compares multi-product newsvendor

models and financial portfolio optimization models.
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Chapter 2

Inventory Models under Risk

2.1 Decision Making under Risk

Most of decision theory is normative. That is, it analyzes the optimal choice of an ideal

decision maker with full rationality based on hypotheses of how people act. However,

since we know that sometimes people do not make their decision in an optimal way,

there is another approach to describe what decision makers actually do and we call it

descriptive decision analysis. These two approaches are closely related to each other,

i.e., it is possible to relax normative assumptions to study what people actually do.

On the other hand, it is helpful to construct norms from revealing the actual decision

making.

In my dissertation, I assume that decision makers act in an optimal way. That

is, they want to optimize certain performance measures. Inventory managers make

their decisions on behalf of their organizations, but I exclude the possibility of any

principal-agent problems. Typically they have historical data for their decisions and

each outcome can be assumed easily to occur with a known probability. Under such

situation, the chance of non-optimal behavior is minimized.

The term risk has different meanings to different people. In my dissertation, I used

the word as uncertainty of random outcome. More specifically, it implies that only

the probability for every possible random outcome is given in advance. Then decision

makers have different risk preferences to random outcomes and the risk preferences can

be categorized into three cases: risk-neutral, risk-averse and risk-seeking behaviors.

Risk-neutral decision makers focus only the expected value regardless of the risk of
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the outcome. From that sense, risk-neutral decision making is equivalent to expected-

value optimization model. Risk-averse decision making comes from the natural dilemma

of the decision makers who want risk premiums for uncertain outcomes. It is more rel-

evant to conservative decision making, but the degree of risk aversion may be different

for each risk-averse decision maker. Risk-seeking decision maker compares the best

possible outcome from risky performance options and fixed outcomes from certain per-

formance options. Then, they choose the option of the best possible outcome unless

the guaranteed outcomes are better than the best possible outcome among the risky

performance options.

Among these three risk preferences, inventory managers are generally assumed

not to be risk-seeking. Actually, risk-seeking behaviors are more concerned with the

psychological aspects of individuals to buy lotteries or gambling. However, these situ-

ations are very different from those for inventory managers.

The risk-neutral decision making provide the best decision on average. This may

be justified by the Law of Large Numbers. When performance measure represents

profit, higher measured value of the performance is always better than lower value of

the performance measures. Then I will represent a risk-neutral optimization model.

Consider an optimization model where the decision vector x affects a random per-

formance measure, φx. Here, for all x ∈X with X being a vector space, φx : Ω→ R

is a measurable function on a probability space (Ω,F ,P) whereΩ is the sample space,

F is a σ-algebra on Ω and P is a probability measure on Ω. Then, the risk-neutral op-

timization model consider the expected-value optimization problem such as:

max
x∈X

E[φx]. (2.1)

where X ⊆ X is a feasible set. All the considerations can be modified easily for the

case of the reverse preference when lower measured value is preferred to higher mea-

sured value. However, if one is concerned with few (or just one) realizations and the
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Law of Large Numbers cannot be invoked, this formulation is inappropriate. Conse-

quently the attempts to overcome the drawbacks of the expected value optimization

have a long history, and I will describe them in detail in the following sections.

2.2 Risk Measures in Inventory Models

In my dissertation, I focus on risk-averse inventory models and risk neutrality is con-

sidered as a reference for comparison purposes. By my extensive literature review,

I classify typical approaches to risk-averse inventory models into four groups by the

risk measures used. They are expected utility theory, stochastic dominance, chance

constraints and mean-risk analysis. (Cumulative) Prospect theory by Kahneman and

Tversky (1979) and Tversky and Kahneman (1992) mainly focus on the descriptive

model of individual decision makers. It can explain why a single individual decision

maker buys insurance and lotteries simultaneously, which is not explained by expected

utility theory. However, this situation can be explained by the third-order stochastic

dominance relation and is very different from that in inventory models. Therefore, I do

not separate it as one of the independent categories.

2.2.1 Expected Utility Theory

The expected utility model was initiated by Daniel Bernoulli as a solution of the well-

known St. Petersburg paradox. Then, the modern theory of the expected utility by

von Neumann and Morgenstern (1944) derives, from simple axioms, the existence of

a nondecreasing utility function, which transforms (in a nonlinear way) the observed

outcomes. That is, each rational decision maker has a nondecreasing utility function

u(·) such that he prefers random outcome X over Y if and only if E[u(X)] > E[u(Y)],

and then he optimizes, instead of the expected outcome, the expected value of the utility

function. Therefore, the decision maker solves the following optimization model.

max
x∈X

E[u(φx)]. (2.2)
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In the maximization context, when the outcome represents profit, risk-averse deci-

sion makers have nondecreasing and concave utility functions. An important example

of nondecreasing and concave utility function is the exponential utility function and

the optimization model can be represented such as

max
x∈X

E

[
− e−φx

]
. (2.3)

Expected utility theory and its properties are intuitive and elegant but practically

ineffective construct. The critics of the expected utility theory raise the following is-

sues: First, it is very difficult or even impossible to elicit the exact functional form

of the utility function for each decision maker. Roy (1952) argued that ”A man who

seeks advice about his actions will not be grateful for the suggestion that he maximize

expected utility.” This problem can be mitigated in the stochastic dominance approach,

which is an abstract generalization of expected utility theory. Second, there exist some

counter-intuitive examples to the expected utility theory such as Allais Paradox (see

Allais (1953)) and (Modified) Ellsberg Paradox (see Ellsberg (1961)).

2.2.2 Stochastic Dominance

The second category is based on the theory of stochastic dominance, developed in

statistics and economics (see Lehmann (1955), Quirk and Saposnik (1962), Hadar and

Russell (1969), Rothschild and Stiglitz (1969) and Hanoch and Levy (1969)). Stochas-

tic dominance relations are sequence of partial orders defined on the space of random

variables, and thus allow for pairwise comparison of different random variables (see

Whitmore and Findlay (1978) and Levy (1992)). It originated from the majorization

theory (see Hardy, Littlewood and Polya (1934) and Marshall and Olkin (1979)) for the

discrete case and was later extended to general distributions, and is now widely used

in economics and finance. Detailed and comprehensive discussion of the concept of

stochastic dominance and its relation to downside risk measures is given at Ogryczak

and Ruszczyński (1999 and 2001).
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An important feature of the stochastic dominance theory is its universal character

with respect to utility functions. More specifically, the distribution of a random out-

come X is preferred to random outcome Y in terms of a stochastic dominance relation

if and only if expected utility of X is preferred to expected utility of Y for all utility

functions in a certain class, called the generator of the relation. Thus, stochastic dom-

inance is an abstract generalization of utility function approach which eliminates the

need to specify explicitly a certain inventory manager’s utility function.

Among this sequence of relations of stochastic dominance, the second-order stochas-

tic dominance relation, in particular, corresponds to all nondecreasing and concave util-

ity functions, and is thus well suited to model risk-averse preferences. For an overview

of these issues, see Fishburn (1964), Whitmore and Findlay (1978), Bawa (1982), Levy

(1992 and 2006) and Müller and Stoyan (2002).

The strongest preference relation is the statewise stochastic dominance. Suppose

that there are two random variables, X and Y defined on the same measurable proba-

bility space (Ω,F , P). Then, the statewise dominance of X to Y is equivalent that X

has at least as good outcome as Y in every possible state of nature. Under this state-

wise dominance, anyone who prefers better to worse will always choose X. Thus, one

does not have to consider any performance functions and it is not exactly related to the

axioms of risk preference. This relation is exemplified in the following table.

ω1 ω2

X −1 3
Y −1 −1

Table 2.1: Example of the Statewise Dominance.

In Table 2.1, I set up Ω = {ω1, ω2} and P(ω1) and P(ω2) = 1 − P(ω1) can be

assigned arbitrarily from zero to one. I assume that larger value is always preferred to

smaller value in this table. Each random variable X and Y has a value for any possible

states of nature, ω1 and ω2, and X(ω) is always better than Y(ω) for ω1 and ω2. Thus,

X dominates Y by the rule of statewise dominance.
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Then, the second and third strongest preference relations are the first- and second-

order stochastic dominance relations and then the (k +1)th strongest preference relation

is the kth-order stochastic dominance relation for k ∈ N. In the each degree of stochastic

dominance relations, random variables are compared pairwisely by the same degree of

performance function constructed from their distributions.

The first performance function, F(1)
X (η), is defined as:

F(1)
X (η) = FX(η) = P(X ≤ η), ∀η ∈ R. (2.4)

where FX(η) = P(X ≤ η) denotes the right-continuous cumulative distribution function

of a random variable X itself. Then, the weak relation of the first-order stochastic

FX(1) (η)

FY(1) (η)

E[Y] E[X] η

Figure 2.1: The First-Order Stochastic Dominance

dominance (FSD), which we denote by X �(1) Y , is illustrated at Figure 2.1 and defined

as follows (see Lehmann (1955) and Quirk and Saposnik (1962)):

X �(1) Y ⇔ F(1)
X ≤ F(1)

Y , ∀η ∈ R. (2.5)

In this case, it is said that X dominates Y under the rule of the first stochastic domi-

nance. It implies that for any outcome η ∈ R, X gives a higher probability of receiving

the outcome equal to or better than η under Y .
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The second performance function, F(2)
X (η), is given by the areas below the distribu-

tion function FX,

F(2)
X (η) =

∫ η

−∞

FX(α)dα, η ∈ R.

It is well known that if E[|X|] < ∞, the function F(2)
X (η) is well defined for all η ∈ R.

F (2) (η)
η‐E[X]

E[X] η

FX(2) (η)

Figure 2.2: The Outcome-Risk Diagram

Then, F(2)
X (η) is continuous, convex and nonnegative and nondecreasing. In addition, if

FX(η0) > 0, then F(2)
X (η) is strictly increasing, ∀η ≥ η0. The graph of the function F(2)

X

can be illustrated at Figure 2.2 as the Outcome-Risk (O-R) diagram (refer to Ogryczak

and Ruszczyński (2002)) where it has two asymptotes intersecting at the point (µX, 0).

More specifically, the η-axis is the left asymptote and the line η−µX is the right asymp-

tote.

Then, the weak relation of the second-order stochastic dominance (SSD), which I

denote by X �(2) Y , is defined as follows (see Hadar and Russell (1969) and Hanoch

and Levy (1969)):

X �(2) Y ⇔ F(2)
X ≤ F(2)

Y , ∀η ∈ R. (2.6)

The second-order stochastic dominance relation has a crucial role for decision mak-

ing under risk. The function F(2)
X can also be expressed as the expected shortfall (see
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Ogryczak and Ruszczyński (1999)). That is, for each target value η we have,

F(2)
X (η) =

∫ η

−∞

(η − ξ)PX(dξ).

= E[max{η − X, 0}] = P{X ≤ η}E{η − X|X ≤ η}.

= E[(η − X)+].

Therefore, the second-order stochastic dominance relation can be represented by the

following inequality equivalently (see Noyan (2006)) and can be regarded as a contin-

uum of integrated chance constraints:

E[(η − X)+] ≤ E[(η − Y)+], ∀η ∈ R.

In Tables 2.2 and 2.3, we set up Ω = {ω1, ω2} and P(ω1) = P(ω2) = 0.5, and then the

ω1 ω2

X -1 3
Y 1 -1

Table 2.2: Example of the First-Order, but not Statewise Dominance.

ω1 ω2

X 4 2
Y 1 5

Table 2.3: Example of the Second-Order, but not First-Order Stochastic Dominance.

random variable X and Y have different values for each possible state of nature, ω1 and

ω2. By the definitions of the first- and second-order stochastic dominance relations,

Tables 2.2 and 2.3 clearly shows an example of the first and second-order stochastic

dominance relations, respectively.

For higher-order stochastic dominance relations, the kth performance function can

be defined recursively with X ∈ Lm(Ω,F ,P) such as:

F(k)
X (η) =

∫ η

−∞

F(k−1)
X (ξ)dξ, ∀η ∈ R, k = 3, 4, . . . ,m + 1.
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Then, the weak relation of the kth-order stochastic dominance (kSD), which I denote

by X �(k) Y , is defined as follows (see Ogryczak and Ruszczyński (2001)):

X �(k) Y ⇔ F(k)
X (η) ≤ F(k)

Y (η), ∀η ∈ R. (2.7)

The corresponding strict dominance relation �(k) is also defined similarly as follows:

X �(k) Y ⇔ X �(k) Y and X �(k) Y. (2.8)

Thus, it is said that X dominates Y by the kSD rule, if F(k)
X (η) ≤ F(k)

Y (η), ∀η ∈ R,

with strict inequality holding for at least one η. In the equations (2.7) and (2.8), one

implicitly assumes that the functions F(k)
X and F(k)

Y are well defined; this is guaranteed

when E(|X|k−1) and E(|Y |k−1) are defined finitely.

Clearly X �(k−1) Y implies X �(k) Y and X �(k−1) Y implies X �(k) Y when the

kth performance function F(k)
X is well defined. In the remainder of my dissertation, the

term of stochastic dominance relation refers to the weak relation of the corresponding

degree of stochastic dominance without mentioning explicitly.

As the special case of higher-order stochastic dominance relations, the third-order

stochastic dominance (TSD) is consistent to Ruin Aversion. TSD assumes that decision

makers prefer positive skewness to negative skewness as the third derivative of the

utility is positive. It can explain that some decision makers buy insurance and lottery

at the same time whose utility function is a S-shaped curve. It is also consistent with

(Cumulative) Prospect Theory (see Kahneman and Tverski (1979) and Tverski and

Kahneman (1992)).

Unfortunately, the stochastic dominance approach does not provide us with a sim-

ple computational recipe. In fact, it is a multiple criteria model with a continuum

of criteria. Therefore, it has been used as a constraint (Dentcheva and Ruszczyński

(2003) and Dentcheva and Ruszczyński (2004)), and also utilized as a reference stan-

dard whether a particular solution approach is appropriate (Ogryczak and Ruszczyński



15

(1999) and Ruszczyński and Vanderbei (2003)). Then I consider the following opti-

mization model with the kth-order stochastic dominance constraint:

max E[φx]

subject to φx �(k) Y.

x ∈ X.

Such models use random benchmark performance and find decision vectors x to max-

imize the expected outcome at which the random outcome φx is more preferred to the

benchmark random performance. Because the second-order stochastic dominance is

consistent to risk-averse preference, this condition gives an indirect way to formulate

risk-aversion when k is equal to two.

2.2.3 Chance Constraints

The third category specifies certain constraints on the probabilities that measure the

risk such as:

P(φx ≥ η) ≥ 1 − α. (2.9)

where η is a fixed target value and α ∈ (0, 1) is the maximum level of risk of violating

the stochastic constraint, φx ≥ η. Then, I consider the following optimization model.

max E[φx]

subject to P(φx ≥ η) ≥ 1 − α.

x ∈ X.

Such models were initiated and developed in Charnes, Cooper and Symonds (1958),

Miller and Wagner (1965) and Prekopa (1970). Recently Prekopa (2003) provides

a thorough overview of the state of the art of the optimization theory with chance

constraints. Theoretically, a chance constraint is a relaxed version of the first-order

stochastic dominance relation, and thus it is related to the expected utility theory, but
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there is no equivalence. However, chance constraints sometimes lead to non-convex

formulations of the resulting optimization problems.

In connection with the stochastic constraints models, some variations and exten-

sions have been suggested. They are the collection of the conditional expectations

and the conditional expectation constraints by Prekopa (1973), integrated chance con-

straints by Klein Haneveld (1986 and 2002), value-at-risk constraints by Dowd (1997),

conditional value-at-risk constraints by Rockafellar and Uryasev (2000 and 2002) and

Pflug (2000) and expected shortfall constraints by Acerbi and Tasche (2002).

In finance, chance constraints are very popular and have been actively used un-

der the name of Value-at-Risk constraints. In finance literature, the α-quantile of the

random performance X in a profit maximization context is defined as follows:

inf{η : FX(η) ≥ α}.

and the α-quantile is called the Value-at-Risk (VaR) at the confidence level α and de-

noted by VaRα(X), α ∈ (0, 1].

2.2.4 Mean-Risk Analysis

The last category, originating from finance, is the mean-risk analysis. It quantifies the

problem in a lucid form of two criteria: the mean (the expected value of the outcome),

and the risk (a scalar measure of the variability of the outcome). In mean-risk analysis,

one uses a specified functional r : X → R, where X is a certain space of measur-

able functions on a probability space (Ω,F ,P), to represent variability of the random

outcomes, and then solves the problem:

min
x∈X
{−E[φx] + λr[φx]}. (2.10)

Here, λ is a nonnegative trade-off constant between the expected outcome and the

scalar-measured value of the variability of the outcome. This allows a simple trade-off

analysis analytically and geometrically.
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In the minimization context, one selects from the universe of all possible solutions

those that are efficient: for a given value of the mean he minimizes the risk, or equiv-

alently, for a given value of risk he maximizes the mean. Such an approach has many

advantages: it allows one to formulate the problem as a parametric optimization prob-

lem, and it facilitates the trade-off analysis between mean and risk. However, for some

popular dispersion statistics used as risk measures, the mean-risk analysis may lead to

inferior conclusion. Thus, it is of primary importance to decide a good risk measure

for each type of the decision models to be considered.

In the context of portfolio optimization, Markowitz (1952 and 1959) used the vari-

ance of the return as the risk functional, i.e.

r[φx] = Var[φx]] = E[(φx −E[φx])2].

It is easy to compute, and it reduces the financial portfolio selection problem to a

parametric quadratic programming problem. Since an approximation to the mean-

variance model initiated by Sharpe (1971), many attempts have been made to linearize

the portfolio optimization problem. This resulted in the consideration of various risk

measures which were the multiple criteria LP computable model in the case of finite

discrete random variable based on majorization theory (see Hardy et al. (1934) and

Marshall and Olkin (1979)) and Lorenz-type orders (see Lorenz (1905) and Arnold

(1980)).

However, one can construct simple counterexamples that show imperfection of

the variance as the risk measure: it shows a symmetric property and treats over-

performance equally as under-performance. More importantly, it may suggest a portfo-

lio which is stochastically dominated by another portfolio. Again, Table 2.1 is a good

example where an efficient solution (in the sense from mean-risk analysis) is domi-

nated by another solution. Clearly, X may be preferred to Y by the rule of statewise

dominance in Table 2.1. However, E(Y)− 1 ·Var(Y) = −1 > −3 = E(X)− 1 ·Var(X).

This implies that Y is more preferable to X under mean-variance criterion, which is

contradictory to the concept of stochastic dominance.
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To overcome the drawbacks of the mean-variance analysis, the general theory of co-

herent measures of risk was suggested by Artzner, Delbaen, Eber and Heath (1999) and

extended to general probability spaces by Delbaen (2002). For further generalizations,

see Föllmer and Schied (2002,2004), Kusuoka (2003) and Ruszczyński and Shapiro

(2005, 2006a). Dynamic version for a multi-period case were analyzed, among others,

by Riedel (2004), Kusuoka and Morimoto (2004), Ruszczyński and Shapiro (2006b).

In this theory, an integrated performance measure is considered, comprising both

mean and certain variability measure, and several transparent axioms are imposed to

guarantee consistency with intuition about rational risk-averse decision making. One

need to note that the term risk means a scalar-valued measure of variability in mean-

risk analysis. However, in coherent measures of risk, the same word refers to an in-

tegrated performance measure comprising of mean and variability measure simultane-

ously. Therefore, coherent measures of risk are extensions of the mean-risk analysis. It

is known that coherent measures of risk are consistent with the first- and second-order

stochastic dominance relations (see Shapiro, Dentcheva and Ruszczyński (2009)).

2.2.5 Coherent Measures of Risk

Artzner et al. (1999) initiated the general theory of coherent measures of risk, by spec-

ifying a number of axioms that these measures should satisfy. Here I provide a brief

information sufficient for my purposes. I follow the abstract approach of Ruszczyński

and Shapiro (2005, 2006a).

Let (Ω,F ) be a certain measurable space. In my case, Ω is the probability space

on which D is defined. An uncertain outcome is represented by a measurable function

X : Ω → R. Then, I assume that larger value of X is preferred to smaller value of X. I

specify the vector space X of possible functions; in my case it is sufficient to consider

X = L∞(Ω,F , P). Indeed, for a fixed decision variable x, the function ω → X(ω) is

bounded. For any X and Y ∈ X , I denote X � Y if and only if X ≥ Y with probability

one.
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A coherent measure of risk is a functional ρ : X → R satisfying the following

axioms:

Convexity: ρ(αX + (1−α)Y) ≤ αρ(X)+ (1−α)ρ(Y), for all X,Y ∈X and all α ∈ [0, 1];

Monotonicity: If X,Y ∈X and X � Y , then ρ(X) ≤ ρ(Y);

Translation Equivariance: If a ∈ R and X ∈X , then ρ(X + a) = ρ(X) − a;

Positive Homogeneity: If t ≥ 0 and X ∈X , then ρ(tX) = tρ(X).

All these axioms are defined in the minimization context. Thus, lower measured

risk is always better than higher measured risk under coherent measures of risk.

Coherent measures of risk are special cases of mean-risk analysis. It implies that,

for certain variability measure r[·] and a given range of λ > 0, the optimization model

(2.10) satisfies all the four axioms – Convexity, Monotonicity, Translation Equivari-

ance and Positive Homogeneity. Thus, if a mean-risk model satisfies the four axioms,

then, with the abstract approach of Ruszczyński and Shapiro (2005, 2006a), the corre-

sponding optimization model (2.10) can be reformulated as follows:

min
x≥0

ρ(X) = −E[X] + λr[X]. (2.11)

A coherent measure of risk ρ(·) is called law-invariant, if the value of ρ(X) depends

only on the distribution of X, that is ρ(X1) = ρ(X2) if X1 and X2 have identical distri-

butions. Acerbi (2004) summarizes the meaning of this property that a law-invariant

coherent measure of risk gives the same risk for empirically exchangeable random

outcomes. Law-invariance looks so obvious that it is no wonder even if most risk prac-

titioners take it for granted. However, it also implies that, for a coherent measure of risk

ρ which is not law-invariant, ρ(X1) and ρ(X2) may be different even if X1 and X2 have

same probability distribution. This apparent paradox can be resolved by reminding

the formal definition of random variables. Actually, one needs to determine simulta-

neously ”probability law” and ”field of events” endowed with a σ-algebra structure

to define a random variable. Thus, the two random variables with same probability

distributions can be different and may have different values of ρ. An example of the

coherent measure of risk which is not law-invariant is the so-called worst conditional
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expectation WCEα defined in Artzner et al. (1999).

WCEα = − inf{E[X|A] : A ∈ A ,P[A] > α}

The infimum of conditional expectations E[X|A] is taken on all the events A with

probability larger than α in the σ-algebra A . However, under certain conditions on

nonatomic probability space, this risk measure becomes law-invariant and coincides

with expected shortfall described in (2.14) and (2.15). For more technical details, see

Acerbi and Tasche (2002), Delbaen (2002) and Kusuoka (2003).

An important sequence of these four axioms is that ρ is associated with a convex

set P of probability measures, such that the following dual representation holds:

ρ[X] = sup
P∈P
{EP[X]}, ∀X ∈X .

where EP[X] is the expectation of X under the probability measure P. Therefore, a

coherent measure of risk is equivalent to calculating the maximum expectation un-

der different distributions, and thus justify approaches used in practice. Artzner et al.

(1999) also provided an alternative definition of coherent measures of risk by spec-

ifying acceptance sets. For a thorough discussion of the mathematical properties of

coherent measures of risk, see Artzner et al. (1999), Föllmer and Schied (2004) and

Ruszczyński and Shapiro (2005).

In my dissertation, I focus on the meaning of these four axioms in newsvendor

models. These axioms imply the following properties:

• Convexity axiom means that the global risk of a portfolio should be equal or less

than the sum of its partial risks. Thus, this axiom provides the diversification

effects and this is especially valid in newsvendor models. Each product is very

likely to have some nonzero value in newsvendor models because very small

amounts will be sold almost always for each product.

• Monotonicity axiom is consistent to statewise dominance.
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• Translation Equivariance axiom means that adding a constant cost is equivalent

to increasing the vendor’s performance measure by the same amount. On the

contrary, adding a constant gain is equivalent to decreasing the vendor’s perfor-

mance measure by the same amount. More specifically, by excluding the impact

of constant gains or losses, fixed parts can be separated equivalently from the

vendor’s random performance measure at every possible state of nature. Thus,

this axiom allows one to draw a comparison between the only random parts of

different random performance measures and thus rank risk properly.

• Positive Homogeneity axiom guarantees that the optimal solution is invariant to

rescaling of units such as currency (e.g., from dollars to yuans) or considering

the total profit or the average profit per product. More importantly, this axiom

guarantees no diversification effects when demands are completely correlated.

To see this, one notes that the subadditivity property, ρ(X + Y) ≤ ρ(X) + ρ(Y),

is essential to risk measures that exhibit portfolio/diversification effect because

it means that the risk measure of the sum is better than the sum of individual

risk measures. Subadditivity implies ρ(nX) ≤ nρ(X). However ρ(nX) < nρ(X)

indicates that a diversification effect exists even when the random demands are

completely correlated. To avoid this counter-intuitive effect, one is left with

ρ(nX) = nρ(X) which is the Positive Homogeneity axiom.

Because coherent measures of risk are any risk functionals ρ which satisfy the four

axioms, their functional forms are not determined uniquely. The popular examples of

functionals r[·] are the semideviation of order p ≥ 1:

σp[X] = E
[
(E[X] − X)p

+

] 1
p . (2.12)

and weighted mean deviation from quantile:

rβ[X] = min
η∈R

E
[
max

(
(1 − β)(η − X), β(X − η)

)]
, β ∈ (0, 1). (2.13)

The optimal η in the problem above is the β-quantile of X. Optimization models with

functionals (2.12) and (2.13) were considered in Ogryczak and Ruszczyński (1999,
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2001 and 2002). In the maximization context, from the practical point of view, it is

most reasonable to consider β ∈ (0, 1/2], because then rβ[X] penalizes the left tail of

the distribution of X much higher than the right tail.

The functional ρ[·] defined in (2.11), with r[·] = σp[·] and p ≥ 1, is a coherent

measure of risk, provided that λ ∈ [0, 1]. When r[·] = rβ[·], the functional (2.11) is a

coherent measure of risk, if λ ∈ [0, 1/β]. All these results can be found in Ruszczyński

and Shapiro (2006a).

The mean-deviation from quantile rβ[·] is connected to the Average Value at Risk

(AVaR), also known as expected shortfall or Conditional Value at Risk in Rockafellar

and Uryasev (2000), as follows,

AVaRβ(X) = −max
η∈R

{
η −

1
β
E
[
(η − X)+

]}
= −E[X] +

1
β

rβ[X]. (2.14)

=
1
β

β∫
0

VaRp(X) dp. (2.15)

Thus, AVaR is the special case of the mean-deviation from quantile when λ = 1/β. All

these relations can be found in Ogryczak and Ruszczyński (2002), Ruszczyński and

Vanderbei (2003) and Föllmer and Schied (2004) (with obvious adjustments for the

sign change of X). The relation (2.14) allows me to interpret AVaRβ(X) as a mean–

risk model. In the literature AVaRβ(X) is sometimes defined as the negative of (2.14)

or in the right tail version. All these definitions are equivalent after appropriate sign

adjustments.

One of the fundamental results in the theory of law-invariant measures is the theo-

rem of Kusuoka (2003): for every lower semicontinuous law-invariant coherent mea-

sure of risk ρ[·] on L∞(Ω,F , P), with an atomless probability space (Ω,F , P), there

exists a convex set M of probability measures on (0, 1] such that

ρ[X] = sup
µ∈M

1∫
0

AVaRβ[X] µ(dβ). (2.16)
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Using identity (2.14) I can rewrite ρ[X] as follows:

ρ[X] = −E[X] + sup
µ∈M

1∫
0

1
β

rβ[X] µ(dβ). (2.17)

This means that every problem (2.11) with a coherent law-invariant measure of risk is

a mean–risk model, with the risk functional

κM [X] = sup
µ∈M

1∫
0

1
β

rβ[X] µ(dβ). (2.18)

and every nonatomic coherent measure of risk can be represented as a convex combi-

nation of other coherent measures of risk. In my dissertation, Kusuoka representation

has a crucial role to derive analytical results under general coherent measures of risk.

The Kusuoka theorem also allows one to constructively define law-invariant coher-

ent measures of risk, by specifying the set of measures M . For example, setting M

to the set of all probability measures on [βmin, βmax] , with 0 < βmin ≤ βmax < 1, one

obtains the risk functional as the worst scaled average deviation from quantile:

κM [Z] = max
βmin≤β≤βmax

1
β

rβ[Z]. (2.19)

2.2.6 Relationships between Different Risk Measures

The relation between stochastic dominance and utility functions is represented as fol-

lows:

X �(1) Y ⇔ E[U(X)] ≥ E[U(Y)], for every nondecreasing U[·].

X �(2) Y ⇔ E[U(X)] ≥ E[U(Y)], for every nondecreasing and concave U[·].

Then, the relation between stochastic dominance and coherent measures of risk is

known as follows:

X �(2) Y ⇒ ρ(X) ≤ ρ(Y). (2.20)

where ρ(·) is a law-invariant coherent measures of risk with non-atomic spaces (Ω,F ,P).

It also implies that

X �(1) Y ⇒ ρ(X) ≤ ρ(Y). (2.21)
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because the second-order stochastic dominance is a weaker rule than the first-order

stochastic dominance.

Lastly, some fundamental relations are represented among the concepts of Value-

at-Risk (VaR), Conditional Value-at-Risk (CVaR) and the stochastic dominance rela-

tions. Recall to §2.2.3. Then, by the definition of the first-order stochastic dominance

relation, one obtains

X �(1) Y ⇔ VaRα(X) ≥ VaRα(Y),∀α ∈ (0, 1]. (2.22)

The Conditional Value-at-Risk (CVaR), also called Mean Shortfall or Tail VaR, at level

α, is defined in a simple way as follows (see Rockafellar and Uryasev (2000)):

CVaRα(X) = E[X|X ≤ VaRα(X)]. (2.23)

The formula (2.23) is precise when VaRα(X) is not an atom of the distribution X.

Also, it is well known (see Ogryczak and Ruszczyński (2001) and Dentcheva and

Ruszczyński (2006)) that the second-order stochastic dominance relation is equivalent

to a continuum of CVaR constraints:

X �(2) Y ⇔ CVaRα(X) ≥ CVaRα(Y), ∀α ∈ (0, 1]. (2.24)

2.3 Risk-Averse Inventory Models

In recent years, risk-averse inventory models have received increasing attention in the

supply chain management literature. From my extensive literature review, I classify

and summarize the literature of risk-averse inventory models at Table 2.4 by inventory

models and risk measures used. Because there is no research so far directly applying

stochastic dominance to this field, I drop it from the table.

In this 5-by-5 matrix, the rows represent risk measures used and the columns mean

model types. Table 2.4 shows that most works to date focus on single-product in-

ventory models for model types and utility function approach or mean-variance (or
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Single-product & Sing-product
&

Multi-product
&

Multi-echelon or

Single-period Multi-period Single-period Multi-agent
Utility Func-
tion

Lau (1980), Eeckhoudt et
al. (1995), Agrawal &
Seshadri (2000a), Gaur
& Seshadri (2005)

Bouakiz &
Sobel (1992),
Chen et al.
(2007)

van Mieghem
(2007)

Agrawal & Se-
shadri (2000b),
van Mieghem
(2003), Gan et al.
(2004)

Mean-
Deviation
from Quan-
tile or Mean-
Semideviation

Gotoh & Takano (2007) None Agrali & Soylu
(2006), Tomlin
& Wang (2005)

None

General Co-
herent Mea-
sures of Risk

Ahmed et al. (2007),
Choi & Ruszczyński
(2008)

Ahmed et al.
(2007)

Choi,
Ruszczyński
and Zhao
(2009)

None

Mean-
Variance
(or Mean-
Standard
Deviation)

Anvari (1987), Chung
(1990), Chen & Feder-
gruen (2000), Gaur & Se-
shadri (2005), Martinez-
de-Albeniz & Simchi-
Levi (2006)

None van Mieghem
(2007)

Lau & Lau
(1999), Tsay
(2002), van
Mieghem (2003),
Gan et al. (2004)

Chance Con-
straints (or
Value-at-
Risk)

Lau (1980), Özler et al.
(2009)

None Özler et al.
(2009)

Gan et al. (2005)

Table 2.4: Summary of Literature on Risk-Averse Inventory Models.

mean-standard deviation) models for risk measures. Recently some studies use mean-

deviation from quantile (including Conditional Value-at-Risk) or mean-semideviation,

which are special cases of general coherent measures of risk. Then, on top of these

studies, Ahmed et al. (2007), Choi and Ruszczyński (2008) and Choi, Ruszczyński

and Zhao (2009) develop their inventory models further under general coherent mea-

sures of risk.

For newsvendor models, most research focuses on finding the optimal solution

under a risk-averse performance measure, and studying the impact of the degree of

risk aversion (and other model parameters) on the optimal solution. A typical finding

is that as the degree of risk aversion increases, the optimal order quantity tends to

decrease.

For single-product but multi-period dynamic inventory models under risk aversion,
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the literature focuses on characterizing the structure of the optimal ordering or pricing

policies and quantifying the impact of the degree of risk aversion on the optimal po-

lices. For the risk measures used, Chen, Sim, Simchi-Levi and Sun (2007) provide an

excellent review and a summary of results for this literature.

For multi-product risk-averse newsvendor models, Tomlin and Wang (2005) study

how characteristics of products (e.g., profit margin, demand correlation), resource re-

liability and firm’s risk attitude affect the preference of resource flexibility and supply

diversification. Under a downside risk measure and Conditional Value at Risk (CVaR),

they show that for a risk-averse firm with unreliable resources, a supply chain can pre-

fer dedicated resources than a flexible resource even if the cost of the latter is smaller

than the former. While it seems counter-intuitive, it is possible because if the flexi-

ble resource fails then all products are negatively affected. However, in the dedicated

resource case, for all products to be negatively affected, all resources have to fail.

Van Mieghem (2007) studies three newsvendor networks with many products and

many resources under mean-variance and utility function approaches. These networks

feature resource diversification, flexibility (e.g., ex post inventory capacity alloca-

tion) and/or demand pooling. The paper addresses the question of how the aforemen-

tioned operational strategies reduce total risk and create value. It shows that a risk-

averse newsvendor may invest more resources in certain networks than a risk-neutral

newsvendor (i.e., operational hedging) because such resources may reduce the profit

variance and mitigate risk in the network. Among the three networks, the dedicated one

is mostly related to our model. In this network, there are two products with correlated

demand. The author characterizes the impact of demand correlation on the optimal

order quantities in two extreme cases of complete positive or negative correlation. A

numerical study is conducted to cover cases other than the extreme ones.

Özler et al. (2009) consider a multi-product newsvendor with a Value-at-Risk con-

straint. For a single-product system, they obtain the closed-form optimal ordering

quantity which is the same result of Gan et al. (2004). Their biggest contribution to the
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literature is that for a two-product system, they obtain the mathematical formulation

of mixed integer programming where the objective function is nonlinear and the con-

straints are mixed linear and nonlinear functions. Then, they conducted their numerical

analysis to confirm their analytical results under multi-variate exponential demands.

Finally, Agrali and Soylu (2006) conduct a numerical investigation on a two-product

newsvendor model under the risk measure of CVaR. Assuming a discretized multi-

variate normal demand distribution, the authors studied the sensitivity of the optimal

solution with respect to the mean and variance of demand, demand correlation, and

various cost parameters. Interestingly, the report shows that as the demand correlation

increases, the optimal order quantities tend to decrease.

For multi-echelon or multi-agent models, so far all papers consider single-product

and single-period models. Lau and Lau (1999) study a manufacturer’s pricing strategy

and return policy under the mean-variance risk measure. Agrawal and Seshadri (2000b)

introduce a risk-neutral intermediaries to offer mutually beneficial contracts to risk-

averse retailers. Tsay (2002) studies how a manufacturer can use return policies to

share risk under the mean-standard deviation measure. Gan, Sethi and Yan (2004)

study Pareto-optimality for suppliers and retailers under various risk-averse measures.

Gan, Sethi and Yan (2005) design coordination schemes of buyback and risk-sharing

contracts in a supply chain under a Value-at-Risk constraint. Van Mieghem (2003)

provides an excellent review on the literature that incorporates risk aversion in capacity

investment models and reduces risk via operational hedging.

2.4 Validity of Risk Measures in Newsvendor Models

Although the typical approaches to risk-averse inventory models are closely related and

consistent to some extent, they are different from each other. There are advantages and

disadvantages of each particular risk-averse inventory model. In this section, I com-

pare various risk measures by two criteria in newsvendor models. The first criterion
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is consistency to stochastic dominance and the second one is consistency to the four

axioms in coherent measures of risk. My axiomatic approach provides a clear standard

to evaluate risk measures in risk-averse newsvendor models. This axiomatic approach

can be also applicable to other types of risk-averse inventory models after appropriate

adjustments.

Consistency to Stochastic Domi-
nance

Consistency to the Four Axioms for
Coherent Risk Measures

Utility Function First-order for nondecreasing
utility function

Convexity & Monotonicity

Second-order for nondecreasing
and concave utility function

Mean-Variance Not consistent Translation Equivariance
Mean-Standard
Deviation

Not consistent Translation Equivariance & Positive
Homogeneity

Chance Con-
straints (Value-at-
Risk)

Relaxed version of First-order
Could violate Second-order

Monotonicity & Translation Equivari-
ance & Positive Homogeneity

General Coherent
Measures of Risk

First and Second order All of the four axioms

Convex Measures
of Risk

Same as Coherent Measures of
Risk

Convexity & Monotonicity & Transla-
tion Equivariance

Insurance Risk
Measures

Same as Coherent Measures of
Risk

Monotonicity & Positive Homogeneity
& Translation Equivariance

Natural Risk
Statistic

Same as Coherent Measures of
Risk

Same as Insurance Risk Measures

Tradeable Mea-
sures of Risk

Same as Coherent Measures of
Risk

Same as Insurance Risk Measures

Table 2.5: Comparison between Various Risk Measures.

Utility functions satisfy Convexity and Monotonicity when they are nondecreasing

and concave. Nevertheless, they do not satisfy Translation Equivariance and Positive

Homogeneity. Although these two axioms are not always desirable in supply chain

applications (for instance, when initial endowment plays a significant role in risk pref-

erences), they can capture risk preferences better in newsvendor models. This is true

because in the newsvendor model, I am mainly concerned about the risk of random de-

mand and the associated overage/underage costs. Thus, I use exponential utility func-

tion approach as a reference model to general coherent measures of risk. The work of

multi-product newsvendors with exponential utility function approach is conducted in

Chapter 5.
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Mean-variance and mean-standard deviation model have been very well-known

since Markowitz (1952). The mean-variance model satisfies the Translation Equiv-

ariance axiom only. Mean-standard deviation model satisfies Translation Equivariance

and Positive Homogeneity, but not Convexity and Monotonicity. More importantly,

these models are not consistent with any of stochastic dominance relations because

they treat equally over-performance and under-performance.

Chance constraints and Value-at-Risk have been actively used in finance histori-

cally. In financial terms, they are easy to understand and intuitive. However, they

generally violate Convexity, which implies that Value-at-Risk may penalize diversi-

fication instead of encouraging it. This situation may be justified in finance such as

insurance company but very different from that in supply chain management.

General coherent measures of risk are consistent to the first- and second-order

stochastic dominance relations and satisfy all the four axioms. Thus, they can ar-

guably be the best risk measure for the single- and multi-product newsvendors by my

axiomatic approach. That is the reason the work on single- and multi-product newsven-

dors under coherent measures of risk is at the heart of my dissertation in Chapter 3 and

4. However, these four axioms might be too strong in several financial markets such

as insurance companies. More specifically, a very popular VaR (Value-at-Risk) is not

a coherent measure of risk because it does not satisfy the Convexity axiom in gen-

eral. Due to the popularity of VaR in financial markets, the Convexity has been a long

controversial axiom in finance literature.

By this reason, several modifications and extensions of coherent measures of risk

have been studied actively in finance literature to hold different subsets of the four

axioms. They are insurance risk measures, convex measures of risk, natural risk statis-

tic and tradeable measures of risk. Thus, in general, these four risk measures do not

satisfy at least one of the four axioms in coherent measures of risk nor can avoid the

potential problems from violating them in newsvendor models.

Föllmer and Schied (2002) consider convex measures of risk, in which the Positive
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Homogeneity axiom is relaxed. Again, in our context, this may lead to a diversification

effect when demands are completely correlated; it may also lead to counter-intuitive

effects of changing my attitude to risk when the outcomes are re-scaled, by changing

the currency in which profits are calculated, or by considering the average profit per

product.

The other three risk measures do not satisfy the Convexity axiom in general. They

are based on the reality of financial markets where non-coherent risk measures, such

as VaR (Value-at-Risk), are still widely used. Insurance risk measures, initiated by

Wang, Young and Panjer (1997), satisfy conditional state independence, monotonicity,

comonotone additivity and continuity and this risk measure is law-invariant. Wang et

al. (1997) set the comonotone additivity axiom based on their argument that comono-

tone portfolios cannot hedge each other. Heyde, Kou and Peng (2006) propose a natural

risk statistic, which is law-invariant, and in which the convexity axiom is required only

for comonotone random variables. Ahmed, Filipovic and Svidland (2008) show that

such a risk measure can be represented as a composition of a coherent measure of risk

and a certain law-preserving transformation, and thus our insights into models with

coherent measures of risk are relevant for natural risk statistics. Pospišil, Večer and

Xu (2008) propose tradeable measures of risk. They argue that the proper risk mea-

sures should be constructed by historically realized returns. However, comparing to

the coherent measures of risk, these risk measures appears to be much more difficult

to handle, due to non-convexity and/or nondifferentiability of the resulting model. We

shall see that even in the case of coherent measures of risk, the technical difficulties are

substantial.
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Chapter 3

Single-Product Newsvendor Models

The work in this chapter was based on ”A risk-averse newsvendor with law-invariant

coherent measures of risk” by S. Choi and A. Ruszczyński (2008) published at Op-

erations Research Letters, 36, 77-82 and partially complemented by another working

paper, ”A multi-product risk-averse newsvendor with law-invariant coherent measures

of risk” by S. Choi, A. Ruszczyński and Y. Zhao (2009).

In this chapter, I study a risk-averse newsvendor problem with coherent measures

of risk. I first formulate this problem as a mean–risk model and consider risk-averse

newsvendor solutions with mean-deviation from quantile and mean-semideviation. Then

I study the impact of risk aversion on optimal ordering quantity with both risk measures

and obtain a closed-form optimal solution under mean-deviation from quantile. Finally

I generalize my analysis to every law-invariant coherent measure of risk and obtain a

closed-form optimal solution.

By using the standard definition of the newsvendor problem and employing modern

theory of law-invariant coherent measures of risk, I arrive that the more risk-averse the

newsvendor is, the smaller his order is. This is in harmony with my intuition and with

the results of Eeckhoudt et al. (1995), where a utility model was considered, and with

Gotoh and Takano (2007), for a Conditional Value-at-Risk model.
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3.1 Problem Formulation

Following from the typical format of the newsvendor model, I introduce the following

parameters: unit resale price r, unit ordering cost c, and unit salvage value s. Backo-

rdering is not allowed in this model. I assume that r > c > s ≥ 0 in order to avoid

trivial cases. Let x denote ordering amounts by the newsvendor and let D be random

demand. The net profit can be calculated as follows:

Π(x,D) = −cx + r min(D, x) + s max(0, x − D).

Simple manipulation yields an equivalent formula:

Π(x,D) = −cx + s min(D, x) + s max(0, x − D) + (r − s) min(D, x)

= −cx + sx + (r − s) min(D, x). = −(c − s)x + (r − s) min(D, x).

It is thus sufficient to consider the newsvendor problem with adjusted resale price r =

r − s and adjusted ordering cost c = c − s > 0, and with no salvage value. Here,

r̄ > c̄ > 0. The objective function can be written simply as

Π(x,D) = −cx + r min(x,D). (3.1)

Thus, Π(x; D) is piecewise linear and concave in x with a refraction point x = D as

follows:

Π(x,D) =


(r̄ − c̄)x, if x ≤ D.

−c̄x + r̄D, if x > D.

As the function Π(·,D) is piecewise linear and concave in x for all given D ∈ R, the

expected newsvendor’s profit, E
[
Π(x; D)

]
is piecewise and concave as well.

Similarly, the function Π(·; x) is piecewise linear and concave in D for all given

x ∈ R, the expected newsvendor’s profit, E
[
Π(D; x)

]
is piecewise and concave as well.

The risk-neutral newsvendor’s problem

max
x≥0

E
[
Π(x,D)

]
. (3.2)
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Figure 3.2: Profit, a Function of Random Demand with Given Ordering Quantity x

has the well-known solution

x̂RN ∈
[
q−α(D), q+

α(D)
)
, with α = (r − c)/r, (3.3)

where

q−α(D) = inf
{
η : P[D ≤ η] ≥ α

}
: the left α-quantile of D, (3.4)

q+
α(D) = sup

{
η : P[D < η] ≤ α

}
: the right α-quantile of D. (3.5)

When I assume a nonatomic probability space of the product demand, it implies that

the demand distribution is continuous and the risk-neutral solution given at the equation

(3.3) is equivalent as follows:

x̂RN = F̄D(α), with α = (c − s)/(r − s). (3.6)
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where F̄D(·) = 1 − FD(·) and FD(·) is a cumulative distribution function of demand D.

In this chapter, I aim to replace the new risk-averse objective function with coherent

measures of risk. Then, I recall the objective function shown at the equation (2.11) and

this is same as follows:

min
x≥0

ρ(X) = −E[X] + λr[X]. (3.7)

In the next two sections, I will consider the two popular and special cases of coherent

measures of risk, mean-deviation from quantile and mean-semideviation. Lastly, I will

consider general coherent measures of risk.

3.2 Mean-Deviation from Quantile Model

In this section, I study the impact of the degree of risk aversion on the optimal order-

ing quantity and obtain the closed-form optimal solution for a mean-deviation from

quantile model.

3.2.1 Impact of Degree of Risk Aversion

Lemma 1. For every β ∈ (0, 1) the function x 7→ rβ[Π(x)] is nondecreasing on R+.

Proof. I use here the idea based on simple inequalities for quantiles. This proof idea

does not require an assumption of continuous demand distribution. The result can be

proved (for a continuous distribution of D) by differentiating rβ[Π(x,D)] with respect

to x and changing the order of integration (see Ahmed et al. (2007) and Gotoh and

Takano (2007) for similar derivations).

Observe that rβ[Π(x)] = rβ[Π(x)+ϕ(x)] for any deterministic function ϕ : R→ R.

Also, the function rβ[·] is positively homogeneous. In particular, using ϕ(x) = cx, I see

from (3.1) that rβ[Π(x)] = r · rβ[min(x,D)]. It remains to prove the assertion for the

function x 7→ rβ[min(x,D)].
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Consider 0 ≤ x1 ≤ x2 and define the random variables Z1 = min(x1,D) and Z2 =

min(x2,D). Let qβ(D) be a fixed β-quantile of D.

Suppose x1 ≤ qβ(D) ≤ x2. Then qβ(Z1) = x1 and qβ(Z2) = qβ(D). By (2.13) with

η = qβ(D),

r[Z2] = E[max(β(Z2 − qβ(D)), (1 − β)(qβ(D) − Z2))]. (3.8)

If D < x1 then D < qβ(D) ≤ x2 and Z2 = D. The expression under the expected value

in (3.8) reads

max(β(Z2 − qβ(D)), (1 − β)(qβ(D) − Z2)) = (1 − β)(qβ(D) − D) ≥ (1 − β)(x1 − D).

If D ≥ x1 the “max” expression under the expected value in (3.8) is nonnegative.

Therefore

r[Z2] ≥ (1 − β)E[(x1 − D)+] = r[Z1].

as required. The other two cases (qβ(D) < x1 and qβ(D) > x2) can be analyzed in a

similar way. �

Proposition 1. Assume that 0 ≤ λ1 ≤ λ2. Then for every solution x̂RA1 of the problem

min
x≥0
−E

[
Π(x,D)

]
+ λ1rβ

[
Π(x,D)

]
. (3.9)

there exists a solution x̂RA2 of the problem

min
x≥0
−E

[
Π(x,D)

]
+ λ2rβ

[
Π(x,D)

]
. (3.10)

such that x̂RA2 ≤ x̂RA1 . Conversely, for every solution x̂RA2 of problem (3.10) there

exists a solution x̂RA1 of problem (3.9) such that x̂RA2 ≤ x̂RA1 .

Proof. Suppose that x̂RA1 is an optimal solution of (3.9). Observe that the objective

function of (3.10) differs from the objective function of (3.9) by (λ2 − λ1)rβ
[
Π(x,D)

]
which, by Lemma 1, is a nondecreasing function of x. Thus, for every x ≥ x̂RA1 I have
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the inequality

−E
[
Π(x,D)

]
+ λ2rβ

[
Π(x,D)

]
= −E

[
Π(x,D)

]
+ λ1rβ

[
Π(x,D)

]
+ (λ2 − λ1)rβ

[
Π(x,D)

]
.

≥ −E
[
Π(x̂RA1 ,D)

]
+ λ1rβ

[
Π(x̂RA1 ,D)

]
+ (λ2 − λ1)rβ

[
Π(x̂RA1 ,D)

]
.

= −E
[
Π(x̂RA1 ,D)

]
+ λ2rβ

[
Π(x̂RA1 ,D)

]
.

The reverse implication is similar. �

3.2.2 Closed-Form Optimal Solution

Now I assume a continuous demand distribution, D. Then, I study mean-deviation

from quantile model by differentiating rβ[Π]. In this subsection, I add a notation Z1
x =

r̄ min(x,D). Then, let fD(·) and FD(·) be the probability density function (pdf) and the

cumulative distribution function (cdf) of D, respectively. Denote F̄D(ξ) = 1 − FD(ξ),

∀ξ ∈ R. Then,

Π(x,D) = −c̄x + Z1
x .

Thus,

ρ[Π(x,D)] = c̄x +
(
−E[Z1

x] + λrβ(Z1
x)
)
.

= c̄x +
(
E[Z1

x](λβ − 1) − λβmax
η∈R

{
η −

1
β
E
[
(η − Z1

x)+

]})
.

(3.11)

Here η̂ be the maximizer in (3.11), among η ∈ R, at a fixed x. Then η̂ is the β-quantile

of Z1
x . To take the derivative of ρ[Π(x,D)] with respect to x, I consider two cases.

Case (i): η̂ < r̄x.

Assuming that the quantile η̂ is unique and differentiating the equation (3.11), I

observe that

dρ[Π(x,D)]
dx

= c̄ + r̄(λβ − 1)P[D > x] − r̄λP
[
{Z1

x < η̂} ∩ {D > x}
]
. (3.12)

Observe that in Case (i)

P
[
{Z1

x < η̂} ∩ {D > x}
]

= P
[
Z1

x < η̂|D > x
]
P[D > x] = 0.
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Therefore,
dρ[Π̄(x,D)]

dx
= c̄ + r̄(λβ − 1)P[D > x].

This yields the exact solution of the single product problem

x̂RA = F̄−1
D

(
c̄

r̄(1 − λβ)

)
≤ F̄−1

D

( c̄
r̄

)
= x̂RN.

This special case solution is the same as the result of Gotoh and Takano (2007).

Case (ii): η̂ = r̄x.

I have

ρ[Π(x,D)] = c̄x +
(
E[Z1

x](λβ − 1) − λβ
{
r̄x −

1
β
E
[
r̄x − Z1

x
]})
.

Taking derivative with respect to x yields,

dρ[Π(x,D)]
dx

= c̄ + r̄(λβ − 1)P[D > x] − r̄λβ
{
1 −

1
β

(
1 − P[D > x]

)}
.

= c̄ + r̄λ(1 − β) + r̄P[D > x]
(
− 1 + λ(β − 1)

)
. (3.13)

Equating the right hand side to 0, I obtain an exact solution as follow:

x̂RA = F̄−1
D

(
c̄ + r̄λ(1 − β)

r̄(1 + λ(1 − β))

)
. (3.14)

Clearly, if λ = 0, x̂RA = x̂RN in both of case (i) and (ii). As λ increases, x̂RA is

decreasing, which confirms the Proposition 1. For any 0 ≤ λ ≤ 1/β, x̂RA is well-

defined. To determine whether Case (i) or Case (ii) applies, one can compute x̂RA for

both cases, and then compute η̂ to check the case conditions.

3.3 Mean-Semideviation Model

The property that the solution set of the problem (3.7) is a nonincreasing function of

the risk aversion parameter λ can now be extended to the case of the semideviation risk

functional. One way to do it is a direct proof, as Lemma 1 and Proposition 1 above.
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I focus on the mean-semideviation with degree one and then choose another approach

that uses the general identity proved by Ogryczak and Ruszczyński (2002):

σ1[Π] = max
0<β<1

rβ[Π]. (3.15)

Lemma 2. For every β ∈ (0, 1) the function x 7→ σ1[Π(x)] is nondecreasing on R+.

Proof. Owing to Lemma 1, for every β ∈ (0, 1) the function x 7→ rβ[Z(x)] is non-

decreasing. Consequently, their maximum is nondecreasing as well, and my result

follows from the identity (3.15). �

It is now clear that Proposition 1 also holds true for the mean–risk model with the

risk functional r[·] = σ1[·]. The proof is identical. In addition, I confirm Lemma 2

alternatively by taking derivatives (for a continuous demand distribution) or subgra-

dient (not necessarily differentiable at all points) in the following subsections. One

needs to note that mean-semideviation is a special case of general law-invariant co-

herent measures of risk. Thus, similar analysis made in section 3.2 can be done for a

mean-semideviation model. However, in a mean-semideviation model, it is very com-

plicated to establish a convex set M of probability measures from the equation (2.16)

through (2.19) and thus it is very difficult to obtain a closed-form optimal solution for

a mean-semideviation model.

3.3.1 Impact of Degree of Risk Aversion with Uniform Demand

Distribution

First, as the special case of continuous demand distribution, I assume that the demand

has a uniform probability distribution where the minimum (or maximum) value of the

demand is dmin (or dmax) with 0 ≤ dmin ≤ dmax. Then, the profit function shown from

the equation (3.1) can be represented equivalently as follows:
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Π(x,D) =


−c̄x + r̄D, if dmin ≤ D < x.

(r̄ − c̄)x, if x ≤ D ≤ dmax.

Then,

E[Π(x,D)] = (r̄ − c̄)x
(

dmax − x
dmax − dmin

)
+

∫ x

dmin

(
r̄D − c̄x

dmax − dmin

)
dD.

= (r̄ − c̄)x
(

dmax − x
dmax − dmin

)
−

c̄x(x − dmin)
dmax − dmin

+
r̄(x − dmin)(x + dmin)

2(dmax − dmin)
.

Thus,

E[Π(x,D)] − Π(x,D) =


r̄x

(
dmax−x

dmax−dmin

)
+

r̄(x−dmin)(x+dmin)
2(dmax−dmin) − r̄D, if dmin ≤ D < x.

−r̄x
(

x−dmin
dmax−dmin

)
+

r̄(x−dmin)(x+dmin)
2(dmax−dmin) , if x ≤ D ≤ dmax.

Here, when x ≤ D ≤ dmax,

E[Π(x,D)] − Π(x,D) = −r̄x
(

x − dmin

dmax − dmin

)
+

r̄(x − dmin)(x + dmin)
2(dmax − dmin)

.

=
r̄

2(dmax − dmin)

[
− 2x(x − dmin) + (x − dmin)(x + dmin)

]
.

= −
r̄(x − dmin)2

2(dmax − dmin)
< 0.

Thus, (E[Π(x,D)] − Π(x,D))+ is positive only if dmin ≤ D < x(dmax−x)
(dmax−dmin) +

(x−dmin)(x+dmin)
2(dmax−dmin) .

Otherwise, it is zero. When I denote E[(E[Π(x,D)] − Π(x,D))+] = σ1(x) and a(x) =

x(dmax−x)
(dmax−dmin) +

(x−dmin)(x+dmin)
2(dmax−dmin) ,

dσ1(x)
dx

=
d
dx

∫ a(x)

dmin

(
r̄x

(
dmax − x

dmax − dmin

)
+

r̄(x − dmin)(x + dmin)
2(dmax − dmin)

− r̄D
) (

1
dmax − dmin

)
dD.

=
r̄

(dmax − dmin)2

∫ a(x)

dmin

(dmax − x)dD, by the Leibnitz Integral Rule.

=
r̄(dmax − x)

(dmax − dmin)2

(
x(dmax − x)
dmax − dmin

+
(x − dmin)(x + dmin)

2(dmax − dmin)
− dmin

)
.

=
r̄(dmax − x)

2(dmax − dmin)3

(
2x(dmax − x) + (x − dmin)(x + dmin) − 2dmin(dmax − dmin)

)
.

Thus, (dmax − x) ≥ 0 and the remaining is to prove:

2x(dmax−x)+(x−dmin)(x+dmin) ≥ 2dmin(dmax−dmin), where dmin ≤ x ≤ dmax. (3.16)
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Now, the left-hand side of the equation (3.16) is equal to

−x2 + 2xdmax − d2
min = −(x − dmax)2 + d2

max − d2
min. (3.17)

Thus, the left-hand side of the equation (3.17) is an increasing function with dmin ≤

x ≤ dmax and the left-hand side of the equation (3.17) is equal to the right-hand side of

the equation (3.17) when x = dmin. Thus, lemma 2 is confirmed again when product

demand has a uniform distribution function.

3.3.2 Impact of Degree of Risk Aversion with (Arbitrarily) Contin-

uous Demand Distribution

Next I relax the assumption of uniform demand distribution and then the product de-

mand has an arbitrarily continuous distribution function. Again I define the objective

function, ρ(Π(x,D)) as follows:

min
x≥0

ρ(Π(x,D)) = −E[Π(x,D)] + λσ1(Π(x,D)).

= −E[Π(x,D)] + λE[E[Π(x,D)] − Π(x,D)]+.

Then,
∂ρ(Π(x,D))

∂x
= E

[∂ρ(Π)
∂Π

·
dΠ(x,D)

dx

]
.

where
∂ρ(Π)
∂Π

=
∂(−E(Π) + λσ1(Π))

∂Π
= −1 + λG(ω).

and

G(ω) =
∂E[(E(Π) − Π)+]

∂Π
= −1E(Π)>Π +P(E(Π) > Π).

then

Π
′

x =
dΠ(x,D)

dx
=


−c̄, if D < x.

(r̄ − c̄), if D ≥ x.

Therefore,

∂ρ(x,D)
∂x

= E[Π
′

x(−1 + λG(ω))] = −E[Π
′

x] + λE[Π
′

x ·G(ω)].
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In order to prove that x̂RA ≤ x̂RN, it is enough to prove that ∂ρ

∂x (x̂RN) ≥ 0 and also

equivalent to prove that E[Π
′

x(x̂RN) ·G(ω)] because E[Π
′

x(x̂RN)] = 0. Thus,

E[Π
′

x(x̂RN) ·G(ω)] = −E[Π
′

x(x̂RN) · 1E(Π)>Π] +E[Π
′

x(x̂RN) ·P(E(Π) > Π)].

= −E[Π
′

x(x̂RN) · 1E(Π)>Π] +E[Π
′

x(x̂RN)] ·P(E(Π) > Π).

= −E[Π
′

x(x̂RN) · 1E(Π)>Π].

= −P(E(Π) > Π) ·E[Π
′

x(x̂RN)|E(Π) > Π].

Then, Π
′

x(x̂RN) < 0 if E(Π) > Π because E(Π) > Π implies that D < x. Therefore,
∂ρ

∂x (x̂RN) > 0 and x̂RA ≤ x̂RN.

Then, the next step is to prove that x̂RA2 ≤ x̂RA1 when x̂RA1 and x̂RA2 are the optimal

solutions for λ1 and λ2, respectively, with 0 ≤ λ1 ≤ λ2. Then, I also denote the

objective function similarly as ρ1 and ρ2, respectively. Similarly to the previous proof,

it is enough to show that ∂ρ2
∂x (x̂RA1) ≥ 0. Then,

∂ρ2

∂x
(x̂RA1) = −E[Π

′

x(x̂RA1)] + λ2E[Π
′

x ·G(ω)](x̂RA1).

= −E[Π
′

x(x̂RA1)] + λ1E[Π
′

x ·G(ω)](x̂RA1) + (λ2 − λ1)E[Π
′

x ·G(ω)](x̂RA1).

= (λ2 − λ1)E[Π
′

x ·G(ω)](x̂RA1).

Then, the remaining is to prove that E[Π
′

x ·G(ω)](x̂RA1) ≥ 0. Thus,

E[Π
′

x ·G(ω)](x̂RA1) = E[Π
′

x · (−1E(Π)>Π +P(E(Π) > Π))](x̂RA1). (3.18)

= −P(E(Π) > Π) ·E[Π
′

x|E(Π) > Π](x̂RA1) +P(E(Π) > Π)E[Π
′

x](x̂RA1).

(3.19)

Then, the first term of (3.19) is positive because Π
′

x(x̂RA1) < 0 when E(Π) > Π . Also,

the second term of (3.19) is also positive because x̂RA1 ≤ x̂RN. Therefore, x̂RA2 ≤ x̂RA1 ≤

x̂RN.
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3.3.3 Impact of Degree of Risk Aversion with (Arbitrarily) General

Demand Distribution

Finally I assume more general case - the risk-adjusted performance measure has only

convexity and may not be differentiable in all domain of Π . Again,

min
x≥0

ρ(Π(x,D)) = −E[Π(x,D)] + λσ1(Π(x,D)).

Here, ρ(Π) = infµ∈A

∫
Π(ω)µ(dω), where µ is a measure on (µ,F ). If Π ∈ L = Lp

which implies that the existence of pth moments with p = 1 is equivalent toE[Π] exists

and then µ(dω) = g(ω) ·P(dω). Thus,

ρ(Π) = inf
g∈A

∫
Π(ω)g(ω)P(dω) = inf

g∈A
E[Π · g].

where A: a convex set and ∀g ∈ A,
∫

g · dP = 1 and g ≥ 0. Specifically, g ≡ 1

corresponds to the expected-value problem.

Now, we apply a directional derivative, ρ′(Πx; d) in a vector d. Then,

ρ′x(Πx; d) = lim
τ↓0

f (Πx + τ · d) − f (Πx)
τ

.

= inf
g∈A(x)

∫
Π
′

x(x; d) · g(ω) · dP(ω) = inf
g∈A(x)

E[Π
′

x(x; d) · g].

with the optimal densities A(x) ⊆ A such that A(x) = {g ∈ A : ρ(Πx) = E[Πx · g]} and

A(x) depends on Π .

Each gradient of
∫

[E(Π) − Π]+dP is calculated as follows: First, I choose any

function ν(ω) such that

ν(ω) =


1, if E[Π] − Π > 0.

0, if E[Π] − Π < 0.

{0, 1}, if E[Π] − Π = 0.

Second, I calculate h(ω) = E[ν(ω)] − ν(ω). Then, g(ω) = −1 + λh(ω). Now, to prove

that x̂RA ≤ x̂RN, it is enough to show that

inf
g∈A(x)

(E[Π
′

x(x; d) · (−1 + λh(ω))]) ≥ 0, with x = x̂RN. (3.20)
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Also, it is equivalent to prove that

inf
g∈A(x)

(E[Π
′

x(x̂RN; d) · h(ω)]) ≥ 0. (3.21)

because infg∈A(x)(E[Π
′

x(x̂RN; d)]) = 0. When x = x̂RN,

E[Π
′

x(x; d) · h(ω)] = E[Π
′

x(x; d) · (E[ν(ω)] − ν(ω))].

= E[Π
′

x(x; d) · (−ν(ω))] = −E[Π
′

x(x; d)|E(Π) > Π].

Thus, E[Π
′

x(x; d) · h(ω)] > 0 because Π
′

x(x; d) = −c̄ < 0 when E[Π] > Π .

The next step is to prove that x̂RA2 ≤ x̂RA1 similar to the previous section. Thus, it

is enough to show that

inf
g∈A(x)

(E[Π
′

x(x; d) · (−1 + λ2h(ω))]) ≥ 0, with x = x̂RA1 . (3.22)

Also similar to the last subsection, it is also enough to prove that equivalently:

inf
g∈A(x)

(E[Π
′

x(x̂RA1; d) · h(ω)]) ≥ 0. (3.23)

Then, when x = x̂RA1 ,

E[Π
′

x(x; d) · h(ω)] = −E[Π
′

x(x; d)|E(Π) > Π] > 0.

Therefore, x̂RA2 ≤ x̂RA1 ≤ x̂RN.

3.4 Extension to General Law-Invariant Coherent Measures of Risk

Lemma 3. The function x 7→ κM [Z(x)] is nondecreasing on R+.

Proof. By Lemma 1, each function x 7→ rβ[Z(x)] is nondecreasing, for every β ∈ (0, 1).

Then the integral over β with respect to any nonnegative measure µ is nondecreasing

as well. Taking the supremum in (2.18) does not change this property. �

Owing to this result, Proposition 1 also holds true for the mean–risk model with

the risk functional r[·] = κM [·]. The proof is identical.
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For closed-form optimal solutions under general law-invariant nonatomic coherent

measures of risk, I apply the equation (3.11) to the equation (2.18) and obtain the

following equation such as:

ρ[Π̄(x,D)] = c̄x + sup
µ∈M

1∫
0

(
E[Z1

x](λβ − 1) − λβmax
η∈R

{
η −

1
β
E
[
(η − Z1

x)+

]})
µ(dβ).

(3.24)

Then,

dρ[Π̄(x,D)]
dx

= c̄ + sup
µ∈M

1∫
0

(
r̄(λβ − 1)P[D > x] − r̄λP

[
{Z1

x < η̂} ∩ {D > x}
])
µ(dβ).

Similarly to mean-deviation from quantile case,

P
[
{Z1

x < η̂} ∩ {D > x}
]

= P
[
Z1

x < η̂|D > x
]
P[D > x] = 0.

Therefore,

dρ[Π̄(x,D)]
dx

= c̄ + sup
µ∈M

1∫
0

(
r̄(λβ − 1)P[D > x]

)
µ(dβ).

= c̄ + r̄

−1 + λ sup
µ∈M

1∫
0

βµ̂(dβ)

 P[D > x].

Therefore, the closed-form solutions for general coherent measures of risk are as fol-

lows:

x̂RA = F̄−1
D

(
c̄

r̄(1 − λβ̄)

)
≤ F̄−1

D

( c̄
r̄

)
= x̂RN, where β̄ = sup

µ∈M

1∫
0

βµ̂RN(dβ).
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Chapter 4

Multi-Product Newsvendor Model - Coherent Measures
of Risk

The work in this chapter was constructed by the working paper, ”A multi-product

risk-averse newsvendor with law-invariant coherent measures of risk” by S. Choi, A.

Ruszczyński and Y. Zhao (2009). This work was also presented by me at the special

interest group of iFORM (Interfaces of Finance, Operations and Risk Management)

at 2009 INFORMS (INstitute For Operations Research and Management Sciences)

MSOM (Manufacturing and Service Operations Management) Annual Conference in

Boston at June 28.

This model presents a considerable challenge, both analytically and computation-

ally, because the objective function cannot be decomposed by product and I have to

look at the totality of all products as a portfolio rather than one-by-one. In particu-

lar, one has to characterize the impact of risk aversion and demand dependence on the

optimal solution, identify efficient ways to find the optimal solution, and connect this

model to the financial portfolio theory. While Tomlin and Wang (2005) study a two-

product system under CVaR, their focus is on the design of material flow topology and

thus is very different from mine.

I should also point out that in most practical cases where this model is relevant

(either manufacturing or retailing), firms may have a large number of heterogenous

products. Due to the complex nature of risk optimization models, they become practi-

cally intractable for problems of these dimensions. Thus, it is theoretically interesting

and practically useful to obtain fast approximation for large size problems and study
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the asymptotic behavior of the system as the number of products tends to infinity.

This work contributes to literature in the following ways: First, this chapter con-

siders a multi-product risk-averse newsvendor using law-invariant coherent measures

of risk. As I argued in §2.4, coherent measures of risk can be more attractive than the

expected utility theory in multi-product newsvendor problems due to their additional

axioms of Translation Equivariance and Positive Homogeneity.

Then I first establish several fundamental properties for the model at §4.3, e.g., the

convexity of the model, the symmetry of the solution, the impact of risk aversion and

the impact of the shift in mean demand.

I then consider large but finite number of independent heterogenous products, for

which I develop closed-form approximations at §4.4.2 which are exact in single-product

case. The approximations are as simple to compute as the risk-neutral solutions. I also

show that under certain regularity conditions, risk-neutral solutions are asymptotically

optimal under risk aversion as the number of products tends to be infinity. This asymp-

totic result has an important economic implication: companies with many products or

product families with low demand dependence need to look only at risk-neutral solu-

tions, even if they are risk-averse.

The impact of dependent demand under risk aversion poses a substantial analytical

challenge. By utilizing the concept of associated random variables, I am able to prove

at §4.5 that in a two-identical product system, positively dependent demand leads to a

lower optimal order quantity than independent demand under risk aversion, while neg-

atively dependent demand leads to a higher optimal order quantity under risk aversion.

Then I study the impact of risk aversion with dependent demands. More interestingly,

the optimal order quantity can increase in the degree of risk aversion when the demands

are strongly negatively correlated while in most cases the order quantity decreases in

the degree of risk aversion. In §4.6, I analyze three special examples with perfectly

negative correlations in which each marginal demand distribution is uniform. Then I

obtain a closed-form optimal solution in each case, which is equal to, higher than or
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lower than risk-neutral solutions, respectively. These analytical results can be extended

to general uniform distributions and other symmetric random variables.

4.1 Multi-Product Inventory Models

The multi-product newsvendor problem is a classical model in the inventory manage-

ment literature. In this model, a newsvendor has multiple products to be procured and

sold in a single selling season. The newsvendor only knows the demand for each prod-

uct as a form of probability distribution at the time of making orders and the demand

realization is determined after some time during the season. When the newsvendor

orders less than the actual demand realization for any product, the excessive demand

is lost. On the other hand, when the newsvendor orders more than the actual demand

realization, the excessive inventory is sold at a loss. The objective of the newsvendor is

to determine his ordering quantity for each product to optimize a certain profit or cost

function.

The literature of the multi-product newsvendor model has mainly used risk-neutral

performance measures as an objective function. For example, the newsvendor op-

timizes the expected profit or cost. Under these objective functions, the model is

decomposable and the newsvendor can consider each product separately as multiple

single-product newsvendor models, unless resource constraints are imposed or demand

substitution is allowed. Under risk-averse objective functions, however, the model is

generally not decomposable. One needs to consider all products simultaneously, as a

portfolio.

Below, I first review the literature of risk-neutral multi-product inventory mod-

els by ways products interact. Hadley and Whitin (1962) consider a multi-product

newsvendor model with storage capacity or budget constraints, and provide the so-

lution methods based on Lagrangian multiplier. Porteus (1990) presents a thorough

review of various newsvendor models. Veinott (1965) considers the dynamic version
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of the multi-product inventory models in a multi-period setting, with general assump-

tions in demand process, cost parameters and lead times. Conditions under which

myopic policy is optimal are identified. Ignall and Veinott (1969) and Heyman and

Sobel (1984) extend the work by identifying new conditions for the myopic policy in

models with risk-neutral assumption, see Evans (1967), Federgruen and Zipkin (1984),

DeCroix and Arreola-Risa (1998) and Aviv and Federgruen (2001) for exact analysis

and approximations.

Starting from 1990s’, multi-product newsvendor models gain attention again by al-

lowing demand substitution, where unsatisfied demand of one product can be satisfied

by on-hand inventory of another product. Bassok, Anupindi and Akella (1999) stud-

ies the manufacturer-driven downward substitution based on a stochastic programming

approach. Van Ryzin and Mahajan (1999) consider a multi-product newsvendor with

customer-driven substitution. The demand is modeled by the multinomial logit model

(MNL). The paper focuses on the static substitution and develops structural results for

product assortment and replenishment planning. Smith and Agrawal (2000) considers

a similar problem but using a different demand model: the exogenous demand model,

where a customer does not find her first choice may either pick her second choice

or leave. The authors developed upper and lower bounds for the performance mea-

sures. Mahajan and van Ryzin (2001) studies dynamic substitution where customer

makes choice dynamically based on current inventory levels of all products. Sample

path based simulation algorithm is proposed to determine the optimal ordering quan-

tity. Van Ryzin and Mahajan (1999) provides a review on multi-item inventory systems

with substitution.

4.2 Problem Formulation

Given products j = 1, . . . , n, let x = (x1, x2, . . . , xn) be the vector of ordering quantities

and let D = (D1, . . . ,Dn) be the demand vector. I also define r = (r1, . . . , rn) to be the
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price vector, c = (c1, . . . , cn) to be cost vector, and s = (s1, . . . , sn) to be the vector

of salvage values. Finally, let fD j(·) and FD j(·) be the marginal probability density

function (pdf), if it exists, and the marginal cumulative distribution function (cdf) of

D j, respectively. Denote F̄D j(ξ) = 1 − FD j(ξ).

Setting c̄ j = c j − s j and r̄ j = r j − s j, I can write the profit function as follows:

Π(x,D) =

n∑
j=1

Π j(x j,D j). (4.1)

where
Π j(x j,D j) = −c̄ jx j + r̄ j min{x j,D j}.

= (r j − c j)x j − (r j − s j)(x j − D j)+, j = 1, . . . , n.
(4.2)

Then, (r j − c j) and (c j − s j) are underage and overage costs for product j, respectively.

I assume that the demand vector D is random and nonnegative. Therefore, for every

x ≥ 0 the profit Π(x,D) is a real bounded random variable.

The risk-neutral multi-product newsvendor optimization problem is to maximize

the expected profit:

max
x≥0

E[Π(x,D)]. (4.3)

This problem can be decomposed into independent problems, one for each product.

Thus, under risk-neutrality, a multi-product newsvendor problem is equivalent to mul-

tiple single-product newsvendor problems. Then the optimal solution is given similarly

to the equation (3.6) as follows.

x̂RN
j = F̄D j(α), with α = (c j − s j)/(r j − s j), j = 1, . . . , n. (4.4)

Under a coherent measure of risk, the optimization problem of the risk-averse

newsvendor is defined as follows:

min
x≥0

ρ[Π(x,D)]. (4.5)

where ρ[·] is a law-invariant coherent measure of risk, and Π(x,D) represents the profit

of the newsvendor, as defined in (4.1). It is worth stressing that problem (4.5) cannot be

decomposed into independent subproblems, one for each product. Thus, it is necessary

to consider the portfolio of products as a whole.
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4.3 Analytical Results for Independent Demands

In this section, I provide several analytical results for the multi-product newsvendor

model under coherent measures of risk. I assume independent demands. These results

lay the theoretical foundation for the paper.

Proposition 2. If ρ[·] is a coherent measure of risk, then ρ[Π(x,D)] is a convex function

of x.

Proof. I first note that Π(x,D) =
∑n

j=1 Π j(x j,D j) is concave in x. That is, for any

0 ≤ α ≤ 1 and all x, y,

Π(αx + (1 − α)y,D) ≥ αΠ(x,D) + (1 − α)Π(y,D), for all D.

Using the monotonicity axiom, I obtain

ρ[Π(αx + (1 − α)y,D)] ≤ ρ[αΠ(x,D) + (1 − α)Π(y,D)].

≤ αρ[Π(x,D)] + (1 − α)ρ[Π(y,D)].

The second inequality follows by the axiom of convexity. �

Observe that I did not use the axiom of positive homogeneity, and thus Proposition

2 extends to more general convex measures of risk. I next prove an intuitively clear

argument that identical products should be ordered in equal quantities under coherent

measures of risk.

Proposition 3. Assume that all products are identical, i.e., prices, ordering costs and

salvage values are the same across all products. Furthermore, let the joint probability

distribution of the demand be symmetric, that is, invariant with respect to permutations

of the demand vector. Then, for every law invariant coherent measure of risk ρ[·], one

of optimal solutions of problem (4.5) is a vector with equal coordinates, x̂RA
1 = x̂RA

2 =

· · · = x̂RA
n .
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Proof. An optimal solution exists, because without loss of generality I can assume that

x is bounded by some large constant, and ρ[Π(x,D)] is continuous with respect to x

(see Ruszczyński and Shapiro (2006a)).

Let me consider an arbitrary order vector x = (x1, . . . , xn) and let P be an n × n

permutation matrix. Then, the distribution of profit associated with Px is the same as

that associated with x. There are n! different permutations of x and let us denote them

x1, . . . , xn!. Consider the point

y =
1
n!

n!∑
i=1

xi.

It has all coordinates equal to the average of the coordinates x j. As the joint probability

distribution of D1,D2, . . . ,Dn is symmetric, the distribution of Π(xi,D) is the same for

each i. By Proposition 2 and by law-invariance of ρ[·], I obtain

ρ[Π(y,D)] ≤
1
n!

n!∑
i=1

ρ[Π(xi,D)] = ρ[Π(x,D)].

This means that for every plan x, the corresponding plan y with equal orders is at least

as good. As an optimal plan exists, there is an optimal plan with equal orders. �

Note that Proposition 3 only requires symmetric joint demand distribution, but not

independent demands. To study the impact of the degree of risk aversion, let me first

focus on a specific variability functional – the weighted mean-deviation from quantile,

given by (2.13). The corresponding measure of risk has the form,

ρ[V] = −E[V] + λrβ[V]. (4.6)

Due to (2.14), I can write

ρ[V] = −(1 − λβ)E[V] + λβAVaRβ[V]. (4.7)

Consider the problem

min
x≥0

{
−E[Π(x,D)] + λrβ[Π(x,D)]

}
. (4.8)
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Proposition 4. Assume that all products are identical and demands for all products

are iid and have a continuous distribution. Let x̂RA1 be the solution of problem (4.8)

for λ = λ1 > 0, having equal coordinates. If λ2 ≥ λ1 then there exists a solution

x̂RA2 of problem (4.8) for λ = λ2, having equal coordinates and such that x̂RA2
j ≤ x̂RA1

j ,

j = 1, . . . , n.

Proof. In view of Proposition 3, I can assume that the coordinates of x̂RAi are equal,

i = 1, 2. My argument extends Proposition 1 at the single-product case in Chapter 3 to

the multi-product case.

Since all coordinates of the solutions are assumed equal, with a slight abuse of

notation, I consider a fixed decision variable x and simplify (4.1)–(4.2) to

Π(x,D) = nx(r − c)− (r − s)
n∑

j=1

(x−D j)+ = −n(c− s)x + (r − s)
n∑

j=1

min(x,D j). (4.9)

For every nonrandom a we have rβ[V + a] = rβ[V] and thus

−E[Π(x,D)]+λ2rβ[Π(x,D)] = −E[Π(x,D)]+λ1rβ[Π(x,D)]+ (λ2−λ1)rβ[Π(x,D)].

= −E[Π(x,D)] + λ1rβ[Π(x,D)] + (λ2 − λ1)(r − s)rβ
[ n∑

j=1

min(x,D j)
]
.

As x̂RA1 minimizes the sum of the first two terms, it remains to show that the function

x 7→ rβ
[ n∑

j=1

min(x,D j)
]
.

is nondecreasing on R+. Consider the random variable Zx =
∑n

j=1 min(x,D j). From

formula (2.14) I obtain:

1
β

rβ[Zx] = E[Zx] −max
η∈R

{
η −

1
β
E
[
(η − Zx)+

]}
.

Then I differentiate both terms of the right-hand side with respect to x. I have:

dE[Zx]
dx

=

n∑
j=1

P[D j > x] = nP[D j > x].

To differentiate the second term, I define η̂ to be the maximizer (among η ∈ R) at a

given x, equal to the β-quantile of Zx. Clearly, η̂ depends on x, but I suppress this

dependence here for the ease of exposition. I consider two cases.



53

Case (i): η̂ < nx.

If η̂ is unique, I can use the differential properties of the optimal value:

d
dx

[
max
η∈R

{
η −

1
β
E
[
(η − Zx)+

]}]
= −

1
β

d
dx

{
E
[
(η̂ − Zx)+

]}
.

Note that differentiation here is only on Zx (see Theorem 4.13 of Bonnans and Shapiro

(2000)). By differentiation I obtain

d
dx

{
E
[
(η̂ − Zx)+

]}
= −E

[
1{Zx<η̂}

n∑
j=1

1{D j>x}
]

= −

n∑
j=1

P
[
{Zx < η̂} ∩ {D j > x}

]
.

The events {Zx < η̂} and {D j > x} are dependent, but for independent D j we have

P
[
{Zx < η̂} ∩ {D j > x}

]
= P

[
Zx < η̂|D j > x

]
P[D j > x].

≤ P[Zx < η̂]P[D j > x] = βP[D j > x].

The inequality holds true because

P
[
Zx < η̂|D j > x

]
= P

[∑
i, j

min(x,Di) < η̂ − x
]
.

≤ P
[∑

i, j

min(x,Di) < η̂ −min(x,D j)
]

= P[Zx < η̂].

Thus
d
dx

[
max
η∈R

{
η −

1
β
E
[
(η − Zx)+

]}]
≤

n∑
j=1

P[D j > x] = nP[D j > x].

I conclude that
d
dx

rβ[Zx] ≥ 0.

If η̂ is not unique, one can consider the left and the right derivatives of the optimal

value, by substituting the largest and the smallest β-quantile for η̂ in the calculations

above. I observe that the event {Zx < η̂} does not change, and conclude that the right

derivative is non-negative.

Case (ii): η̂ = nx.
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As Zx has an atom at nx, for sufficiently small x I can just substitute η̂ = nx in

formula (2.14):
1
β

rβ[Zx] = E[Zx] −
{
nx −

1
β
E
[
(nx − Zx)

]}
.

Taking derivative with respect to x, I conclude that

d
dx

rβ[Zx] = β{nP[D j > x] − (n −
1
β

(n − nP[D j > x]))}.

= n(1 − P[D j > x])(1 − β) ≥ 0.

as required. In the general case, I consider the left derivative here, because if η̂(x) = nx

then η̂(y) = ny for all y < x, and I arrive at the same conclusion. �

I can extend this Proposition of the monotonicity property to all law-invariant co-

herent measures of risk. Observe that my assumption about continuous distribution of

the demand implies that the probability space is nonatomic.

Consider the problem

min
x≥0

{
−E[Π(x,D)] + λκM [Π(x,D)]

}
. (4.10)

where κM [V] is given by (2.18).

Proposition 5. Assume that all products are identical and demands for all products

are iid. Let x̂RA1 be the solution of problem (4.10) for λ = λ1 > 0, having equal

coordinates. If λ2 ≥ λ1 then there exists a solution x̂RA2 of problem (4.10) for λ = λ2,

having equal coordinates and such that x̂RA2
j ≤ x̂RA1

j , j = 1, . . . , n.

Proof. As in the proof of Proposition 4, each function x 7→ rβ[Π(x,D)] is nondecreas-

ing, for every β ∈ (0, 1). Then the integral over β with respect to any nonnegative

measure µ is nondecreasing as well. Taking the supremum in (2.18) does not change

this property. Therefore, Proposition 5 holds true also for the mean–risk model with

the risk functional r[·] = κM [·]. �
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I need to point out that the parameter λ represents how sensitive a newsvendor

is to the risk defined by another parameter β. Thus, β is another important factor to

determine risk in my model. However, the analysis of β is much more demanding than

that of β.

Finally, I discuss the impact of the shifts in mean demands on the optimal order

quantities under general coherent measures of risk. For this purpose, I consider iden-

tical products and demands with identical and independent probability distributions

except that µ j = E[D j], j = 1, . . . , n, may be different. Without loss of generality, I as-

sume that µ1 ≤ µ2 ≤ · · · ≤ µn. Consider the demand vector D̃ j = D j − µ j + µ1. Because

it has iid components, due to Proposition 3 there exists an optimal order vector x̃ with

equal coordinates: x̃1 = x̃2 = · · · = x̃n, for the risk-averse multi-product newsvendor

with D̃ as the demand vector. I can interpret the demand D as a sum of the random

demand D̃ and a deterministic demand vector h with coordinates h j = µ j−µ1. If x̃ j > 0

then

x̂ j = x̃ j + µ j − µ1, j = 1, . . . , n

are the optimal order quantities for the risk-averse problem with D as the demand

vector.

This can be easily shown analytically. From formula (4.2) I obtain

Π j(x j, D̃ j) = Π j(x j + µ j − µ1,D j) − (r̄ j − c̄ j)(µ j − µ1).

Using the Translation Equivariance axiom of a coherent measure of risk ρ[·], I obtain

ρ[Π(x, D̃)] = ρ[Π(x + h,D)] + 〈r̄ − c̄, h〉. (4.11)

where 〈·, ·〉 is the inner product. Therefore, if x̃ minimizes the left hand side (over

x ≥ 0) and is positive, then it also minimizes the right hand side over x + h ≥ 0. Thus

x̂ = x̃ + h is the solution of the problem

min
x≥0

ρ[Π(x,D)].
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This is true for every coherent measure of risk ρ[·].

For law-invariant measures of risk I can also analyze the impact of the parameter

λ on the solution with the shifts in mean demands . The considerations in this case

follow directly from Proposition 5, with the use of identity (4.11).

4.4 Asymptotic Analysis and Closed-Form Approximations

In this section, I study the asymptotic behavior of the risk-averse newsvendor model

when the number of products tends to infinity, and develop closed-form approximations

to its optimal solution in the case of a large but finite number of products. I assume

heterogenous products with independent demands.

4.4.1 Asymptotic Optimality of Risk-Neutral Solutions

I start from the derivation of error bounds for the risk-neutral solution. Consider a

sequence of products j = 1, 2, . . . , with corresponding prices r j, costs c j, and salvage

values s j. I assume that s j < c j < r j, and that all these quantities are uniformly bounded

for j = 1, 2, . . . . As before, I set c̄ j = c j − s j and r̄ j = r j − s j. The demands D1,D2, . . .

are assumed to be independent.

Consider the risk-neutral optimal order quantities

x̂RN
j = F̄−1

j

( c̄ j

r̄ j

)
, j = 1, 2, . . . . (4.12)

I assume that the following conditions are satisfied:

(i) There exist xmin > 0 and xmax such that

xmin ≤ x̂RN
j ≤ xmax, j = 1, 2, . . . .

(ii) There exists σmin > 0 such that

Var
[
min(x̂RN

j ,D j)
]
≥ σ2

min, j = 1, 2, . . . .
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My intention is to evaluate the quality of the risk-neutral solution x̂RN in the risk-

averse problem such that

min
x1,...,xn

ρ
[1
n

n∑
j=1

Π j(x j,D j)
]
. (4.13)

Observe that in (4.13) I consider the average profit per product, rather than the total

profit, as in (4.5). The reason is that I intend to analyze properties of the optimal value

of this problem as n→ ∞ and I want the limit of the objective value of (4.13) to exist.

Owing to the Positive Homogeneity axiom, problems (4.5) and (4.13) are equivalent.

I denote by ρ̂n the optimal value of problem (4.13). I also introduce the following

notation,

µRN
j = E

[
min(x̂RN

j ,D j)
]
, µ̄n =

1
n

n∑
j=1

r̄ jµ
RN
j ,

(
σRN

j
)2

= Var
[
min(x̂RN

j ,D j)
]
, s̄2

n =
1
n2

n∑
j=1

r̄2
j
(
σRN

j
)2
.

Finally, I denote by N the standard normal variable.

Proposition 6. Assume that ρ[·] is a law-invariant coherent measure of risk and the

space (Ω,F , P) is nonatomic. Then

lim sup
n→∞

1
s̄n

ρ[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n

 ≤ ρ[N ]. (4.14)

Proof. Denote Zn = 1
n

∑n
j=1 r̄ j min(x̂RN

j ,D j). I have E[Zn] = µ̄n, Var[Zn] = s̄2
n, and

1
n

n∑
j=1

Π j(x̂RN
j ,D j) =

1
n

n∑
j=1

E

[
Π j(x̂RN

j ,D j)
]

+ (Zn − µ̄n).

Owing to conditions (i) and (ii), the sequence {r̄ j min(x̂RN
j ,D j)}, j = 1, 2 . . . , satisfies

the Lindeberg condition (see, e.g, Feller (1971), p. 262). I can therefore apply the

Central Limit Theorem for non-identical independent random variables, to conclude

that
Zn − µ̄n

s̄n

D
→ N . (4.15)
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Here the symbol
D
→ denotes convergence in distribution. By the Translation Equivari-

ance axiom

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
= −

1
n

n∑
j=1

E

[
Π j(x̂RN

j ,D j)
]

+ ρ[Zn − µ̄n].

At any other value of x, in particular, at a solution of problem (4.13), I have

ρ
[1
n

n∑
j=1

Π j(x j,D j)
]
≥ −

1
n

n∑
j=1

E

[
Π j(x j,D j)

]
≥ −

1
n

n∑
j=1

E

[
Π j(x̂RN

j ,D j)
]
.

because of (2.17) and because x̂RN
j maximizes E

[
Π j(x j,D j)

]
. Combining the last two

relations I conclude that

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n ≤ ρ[Zn − µ̄n].

Dividing both sides by s̄n and using the Positive Homogeneity axiom I obtain

1
s̄n

ρ[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n

 ≤ ρ [
Zn − µ̄n

s̄n

]
. (4.16)

Let Φn(·) be the cdf of (Zn − µ̄n)/s̄n. By (4.15), Φn → Φ pointwise, where Φ(·) is the

cdf of the standard normal distribution. As the risk measure ρ[·] is law-invariant and

the space is nonatomic, I have ρ
[
(Zn − µ̄n)/s̄n

]
= ρ

[
Φ−1

n (U )
]
, where U is a uniform

random variable on [0, 1]. By the continuity of ρ[·] in the space of integrable random

variables, the right-hand side of inequality (4.16) tends to ρ[N ] as n→ ∞. Passing to

the limit in (4.16), I obtain (4.14). �

Conditions (i) and (ii) imply that s̄n = O
(
1/
√

n
)
, and thus it follows from (4.14)

that

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
≤ min

x1,...,xn
ρ
[1
n

n∑
j=1

Π j(x j,D j)
]

+ O
( 1
√

n

)
.

Asymptotically, the difference between the optimal value of (4.13) and the value ob-

tained by using the risk-neutral solution disappears at the rate of 1/
√

n. For a firm

dealing with very many products having independent demands, the risk-neutral solu-

tion is a reasonable sub-optimal alternative to the risk-averse solution.
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4.4.2 Adjustments in Mean–Deviation from Quantile Models

When the number of products is moderately large, I develop close-form approximations

to the optimal risk-averse solution. My idea is to use the risk-neutral solution as the

starting point, and to calculate an appropriate correction to account for risk-aversion.

I first consider deviation from quantile as a measure of variability defined in (2.13).

Recall that the corresponding mean–risk model (4.6) is equivalent to the minimization

of a combination of the mean and the Conditional Value-at-Risk, as in (4.7). I then

consider a general coherent measure of risk in §4.4.3. I finally discuss several iterative

methods that are based on the approximations in §4.4.4.

Similarly to the previous subsection, I use the notation Zn
x = 1

n

∑n
j=1 r̄ j min(x j,D j)

(with x as a subscript to stress the dependence of Zn on x). Using (4.1)–(4.2), I can

calculate the average profit per product as follows:

Π̄(x,D) =
1
n

n∑
j=1

Π j(x j,D j) = −
1
n

n∑
j=1

c̄ jx j + Zn
x .

Thus,

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j +
(
−E[Zn

x] + λrβ(Zn
x)
)
.

=
1
n

n∑
j=1

c̄ jx j +
(
E[Zn

x](λβ − 1) − λβmax
η∈R

{
η −

1
β
E
[
(η − Zn

x)+

]})
.

(4.17)

Similarly to the proof of Proposition 4, let η̂ be the maximizer in (4.17), among η ∈ R,

at a fixed x. η̂ is the β-quantile of Zn
x . To take the partial derivative of ρ[Π̄(x,D)] with

respect to x j, I consider two cases similarly in single-product models at Chapter 3.

Case (i): η̂ < 1
n

∑n
j=1 r̄ jx j.

Assuming that the quantile η̂ is unique and differentiating the equation (4.17), I

observe again that

∂ρ[Π̄(x,D)]
∂x j

=
c̄ j

n
+

r̄ j(λβ − 1)
n

P[D j > x j] −
r̄ jλ

n
P
[
{Zn

x < η̂} ∩ {D j > x j}
]
. (4.18)
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Here I used Theorem 4.13 of Bonnans and Shapiro (2000) to avoid differentiating on

η̂.

Then let me analyze the last term on the right-hand side for j = 1, 2, . . . , n:

P
[
{Zn

x < η̂} ∩ {D j > x j}
]

= P
[
Zn

x < η̂|D j > x j
]
P[D j > x j].

= P
[1
n

n∑
k, j

r̄k min(xk,Dk) < η̂ −
r̄ jx j

n

]
· P[D j > x j].

(4.19)

Suppose x j ≥ xmin, j = 1, 2, . . . ,. Owing to conditions (i) and (ii), exactly as in §4.4.1,

for large n the random variable Zn
x is approximately normally distributed with the mean

µ̄n = 1
n

∑n
j=1 r̄ jµ j and the variance s̄2

n = 1
n2

∑n
j=1 r̄2

jσ
2
j , where µ j = E[min{x j,D j}] and

σ2
j = Var(min{x j,D j}). Under normal approximation, the β-quantile of Zn

x can be

approximated as follows: η̂ ' µ̄n + zβ s̄n, where zβ is the β-quantile of the standard

normal variable. Similarly, 1
n−1

∑n
k, j r̄k min(xk,Dk) is approximately normal with mean

1
n−1

∑n
k, j r̄kµk and variance 1

(n−1)2

∑n
k, j r̄2

kσ
2
k . Using these approximations and denoting

by N the standard normal random variable I obtain:

P
[1
n

n∑
k, j

r̄k min(xk,Dk) < η̂ −
r̄ jx j

n

]
' P

[
N <

−r̄ j(x j − µ j) + zβ
√∑n

k=1 r̄2
kσ

2
k√∑

k, j r̄2
kσ

2
k

]
.

= P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j

+ zβ

√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
.

(4.20)

where γn j =

√
1

n−1

∑
k, j r̄2

kσ
2
k . As r̄2

kσ
2
k is uniformly bounded from above and below

across all products, I conclude that γn j is bounded from above and below for all j and

n.

This estimate can be put into (4.19) and thus (4.18) can be approximated as follows:

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ jP[D j > x j]
n

λβ − 1 − λP
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j

+ zβ

√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

] .
(4.21)

My next step is to approximate the probability on the right-hand side of (4.21). To this
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end, I derive its limit and calculate a correction to this limit for a finite n. When n→ ∞

I have

P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j

+ zβ

√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
→ β. (4.22)

and thus
∂ρ[Π̄(x,D)]

∂x j
→

1
n

(c̄ j − r̄ jP[D j > x j]).

This means that the conditions of the risk-averse solution

∂ρ[Π̄(x,D)]
∂x j

= 0, j = 1, 2, . . . , n. (4.23)

approaches that of the risk-neutral solution (4.12). Thus the risk-neutral solution will

be used as the base value, to which corrections will be calculated.

I can estimate the difference between the probability in (4.22) and β for a large but

finite n, by assuming that x is close to x̂RN. Thus µ j is close to µRN
j = E[min{x̂RN

j ,D j}]

and σ j is close to σRN
j =

√
Var(min{x̂RN

j ,D j}). Considering only the leading term with

respect to 1/
√

n − 1, I obtain

P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j

+ zβ

√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
' P

[
N <

−r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

+ zβ

]
.

where γRN
n j =

√
1

n−1

∑
k, j r̄2

k (σRN
k )2. The last probability can be estimated by the linear

approximation derived at zβ. Observing that P[N < zβ] = β and that its derivative at

z = zβ is the standard normal density at zβ, I get

P
[
N <

−r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

+ zβ

]
' β − δRN

n j ,

with

δRN
n j =

e−z2
β/2

√
2π

r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

, j = 1, . . . , n. (4.24)

These estimates can be substituted to the formula (4.21) for the derivative and yield

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ j

n
(
− 1 + λδRN

n j
)
P[D j > x j]. (4.25)
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Using the above approximations of the derivatives in equations (4.23), I obtain the

first-order approximation of the risk-averse solution:

x̂RA
j ' F̄−1

D j

[
c̄ j

r̄ j(1 − λδRN
n j )

]
, j = 1, 2, . . . , n. (4.26)

Clearly, this approximation of x̂RA
j is increasing in n, decreasing in λ and tends to the

risk-neutral solution as n→ ∞.

Case (ii): η̂ = 1
n

∑n
j=1 r̄ jx j.

I have

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j +
(
E[Zn

x](λβ − 1) − λβ
{1
n

n∑
j=1

r̄ jx j −
1
β
E
[1
n

n∑
j=1

r̄ jx j − Zn
x
]})
.

Taking derivative with respect to x j yields,

∂ρ[Π̄(x,D)]
∂x j

=
c̄ j

n
+

r̄ j

n
(λβ − 1)P[D j > x j] −

r̄ jλβ

n

{
1 −

1
β

(
1 − P[D j > x j]

)}
.

=
1
n
[
c̄ j + r̄ jλ(1 − β) + r̄ jP[D j > x j]

(
λ(β − 1) − 1

)]
. (4.27)

Equating the right-hand side to zero, I get

x̂RA
j = F̄−1

D j

(
c̄ j + r̄ jλ(1 − β)
r̄ j(1 + λ(1 − β))

)
. (4.28)

Note that the solution in Case (ii) is a closed-form optimal solution, not an approxi-

mation. In addition, it does not depend on the number of products, n, nor any demand

dependence structure. Clearly, if λ = 0, x̂RA
j = x̂RN

j . As λ increases, x̂RA
j is decreasing.

For any 0 ≤ λ ≤ 1/β, x̂RA
j is well-defined.

It should be emphasized that Case (i) is more important, because for large n the

distribution of Zn
x is close to normal and for a small β, the β-quantile of Zn

x tends to be

smaller than 1
n

∑n
j=1 r̄ jx j, for the values of x of interest.

Consider the special case of identical products. With a slight abuse of notation, let

c j = c, r j = r and s j = s for all j = 1, 2, . . . , n. In Case (i), the first-order approximation

of the risk-averse solution yields:

dρ[Π̄(x,D)]
dx

' c̄ + r̄P[D1 > x](δRN
n λ − 1).
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with δRN
n = e−z2

β/2
√

2π
x̂RN − µRN

x√
n − 1σRN

x

where x̂RN, µRN
x and σRN

x are the counterparts of x̂RN
j , µRN

j

and σRN
j in the case of identical products, respectively. Equating the right-hand side to

zero, I obtain

x̂RA
j ' F̄−1

D j

(
c̄

r̄(1 − λδRN
n )

)
, j = 1, . . . , n. (4.29)

The equation (4.29) is similar to the equation (4.26) except that the terms c̄ j, r̄ j and δRN
n j

are now identical. In Case (ii), the equation (4.28) reduces to

x̂RA = F̄−1
D1

(
c̄ + r̄λ(1 − β)

r̄(1 + λ(1 − β))

)
. (4.30)

4.4.3 General Law-Invariant Coherent Measures of Risk

So far my analysis has focused on a special risk measure, weighted mean-deviation

from quantile, given in the equation (2.13). I now generalize the results to any law-

invariant coherent measure of risk ρ[·].

Consider problem (4.10) where κM [V] is given by (2.18). By Kusuoka theorem,

for nonatomic spaces, every law-invariant coherent measure of risk has such represen-

tation. The equation (4.17) can be replaced by

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j + sup
µ∈M

1∫
0

(
E[Zn

x](λβ − 1) − λβmax
η∈R

{
η −

1
β
E
[
(η − Zn

x)+

]})
µ(dβ).

Suppose the maximum over M is attained at a unique measure µ̂ (this is certainly true

for spectral measures of risk, where the set M has just one element). Similarly to

(4.25),

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ j

n

−1 + λ

1∫
0

δn j(β) µ̂(dβ)

 P[D j > x j]. (4.31)

I denote here the quantity given in formula (4.24) by δRN
n j (β), to stress its dependence on

β. Let me approximate µ̂ by the measure µ̂RN, obtained for the risk-neutral solution x̂RN.
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Equating the approximate derivatives (4.31) to zero, I obtain an approximate solution:

x̂RA
j ' F̄−1

D j


c̄ j

r̄ j

(
1 − λ

∫ 1

0
δRN

n j (β) µ̂RN(dβ)
)
 , j = 1, 2, . . . , n. (4.32)

Again, δRN
n j (β) ↓ 0 as n → ∞, and thus x̂RA

j increases in n and approaches the risk-

neutral solution x̂RN
j . This is consistent with Proposition 6.

4.4.4 Iterative Methods

So far, I have discussed the approximations based on expansions about the risk-neutral

solution x̂RN. But exactly the same argument can be used to develop an iterative

method, in which the best approximation known so far is substituted for the risk-neutral

solution. I explain the simplest idea for the approximation developed in §4.4.2; an

identical extension can be done for Kusuoka measures discussed in §4.4.3.

The idea of the iterative method is to generate a sequence of approximations x̂(ν),

ν = 0, 1, 2, . . . . We set x̂(0) = x̂RN. Then I calculate x̂(1) by applying formula (4.26). In

the iteration ν = 1, 2, . . . , I use x̂(ν) instead of x̂RN in my approximation, calculating:

µ(ν)
j = E[min{x̂(ν)

j ,D j}], j = 1, . . . , n,

σ(ν)
j =

√
Var(min{x̂(ν)

j ,D j}), j = 1, . . . , n,

γ(ν)
n j =

√
1

n − 1

∑
k, j

r̄2
k (σ(ν)

k )
2
, j = 1, . . . , n,

δ(ν)
n j =

e−z2
β/2

√
2π

r̄ j(x̂(ν)
j − µ

(ν)
j )

√
n − 1γ(ν)

n j

, j = 1, . . . , n.

Finally, formula (4.26) is applied to generate the next approximate solution x̂(ν+1), and

the iteration continues.

The iterative method is efficient, if the initial approximation x̂(0) is sufficiently close

to the risk-averse solution. This is true, if the risk aversion coefficient κ = λβ is close

to zero, or when the number of products is very large. I must point out that my ap-

proximation given in the equation (4.26) may result in infeasible solution as the term
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c̄ j

r̄ j(1 − δ
(ν)
n j λ)

can be negative or greater than 1 (due to approximation). When this occurs

less likely, one can say that the approximation is more stable. Generally, the approx-

imation is more stable for larger number of products and smaller κ. For large κ and

a moderate number of products, the risk-neutral solution may not be a good starting

point for the iterative method. An alternative method is then the continuation method.

In this approach, I apply the iterative method for a small value of κ, starting from the

risk-neutral solution. Then I increase κ a little, and I apply the iterative method again,

but starting from the best solution found for the previous value of κ. In this way, I

gradually increase κ, until I recover optimal solutions for all values of the risk aversion

coefficient which are of interest for me (usually, between 0 and 1).

4.5 Impact of Dependent Demands

In this section, I provide analytical insights on the impact of dependent demand in the

multi-product risk-averse newsvendor model. Due to the significant analytical chal-

lenge, I focus on a two-product system and the mean–deviation from quantile measure

of variability defined in (2.13).

Under the risk-neutral measure, dependence of product demands has no impact

on the optimal order quantities. However, under risk-averse measures, it can greatly

affect the optimal order decisions for the newsvendor. Intuitively, positively (nega-

tively) dependent demand generates larger (smaller) variability and thus poses a larger

(smaller) risk than independent demand. Thus, one tends to decrease (increase) the

order quantity in case of positively (negatively) dependent demand relative to the case

of independent demand.

To characterize the impact of demand dependence on the optimal order quantity

under the coherent risk measure, I utilize the concept of “associated” random variables.

Consider random variables D1,D2, . . . ,Dn, denote vector D = (D1,D2, . . . ,Dn). The

following definition is due to Esary, Proschan and Walkup (1967); see Tong (1980) for
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a review.

Definition 1. The set of random variables {D1,D2, . . . ,Dn} is associated, or the ran-

dom variables D1,D2, . . . ,Dn are associated, if

Cov[ f (D), g(D)] ≥ 0, (4.33)

or, equivalently,

E[ f (D)g(D)] ≥ E[ f (D)]E[g(D)]. (4.34)

for all non-decreasing real functions f , g for whichE[ f (D)],E[g(D)] andE[ f (D)g(D)]

exist.

Lemma 4. Associated random variables have the following properties:

(i) Any subset of associated random variables is associated.

(ii) If two sets of associated random variables are independent of each other, their

union is a set of associated random variables.

(iii) Non-decreasing (or non-increasing) functions of associated random variables are

associated.

(iv) Let D1,D2, . . . ,Dn be associated random variables, then

P{D1 ≤ y1,D2 ≤ y2, . . . ,Dn ≤ yn} ≥ Πn
k=1P{Dk ≤ yk},

and

P{D1 ≥ y1,D2 ≥ y2, . . . ,Dn ≥ yn} ≥ Πn
k=1P{Dk ≥ yk},

for all (y1, y2, . . . , yn) ∈ Rn.

One refers to Tong (1980) for proofs. Intuitively, Part (iv) of Lemma 4 means that

associated random variables are dependent in such a way that they tend to “hang on”

together.

Association is closely related to correlation. By Tong (1980, pg. 99), a set of

multi-variate normal random variables is associated if their correlation matrix has the

structure l (Tong 1980, pg. 13) in which the correlation coefficient ρi j = γiγ j for all



67

i , j and 0 ≤ γi < 1 for all i. This means that I can represent the demands as having

one common factor:

Di = γiD0 + ∆i, i = 1, . . . , n,

where the factor D0 and ∆i, i = 1, . . . , n, are independent. A special case is the bi-

variate normal random variable with a positive correlation coefficient.

Consider a two-identical product system and its solution with equal coordinates.

Let Zx = min{x,D1} + min{x,D2}. Clearly, Π(x,D) = −2c̄x + r̄Zx and

ρ(Π(x,D)) = 2c̄x + r̄ρ(Zx). (4.35)

ρ(Zx) = E(Zx)(λβ − 1) − λβmax
η∈R

{
η −

1
β
E[(η − Zx)+]

}
. (4.36)

Let η̂ be the maximizer. If η̂ is not an atom of the distribution of Zx, similarly to Case

(i) of Proposition 4, I obtain

dρ(Zx)
dx

=
dE[Zx]

dx
(λβ − 1) + λ

dE[(η̂ − Zx)+]
dx

,

where η̂ is the β quantile of Zx and η̂ < 2x. Because the first term depends only on the

marginal distributions of the demands, I focus on the second term, which is affected by

the dependence of D1 and D2. I have

dE[(η̂ − Zx)+]
dx

= −

2∑
j=1

P
[
{Zx < η̂} ∩ {D j > x}

]
= −2P[min{x,D2} < η̂ − x,D1 > x].

(4.37)

Consider three cases of (D1,D2). Without changing the marginal distribution of D1

and D2, we let (D1,D2) be associated random variables in case 1 where η̂P denotes the

β quantile of the corresponding Zx; In case 2, (D1,D2) are independent with η̂I as the β

quantile of the Zx; In case 3, (D1,−D2) are associated random variables with η̂N as the

β quantile of the Zx. I also let x∗P, x∗I and x∗N be the optimal order quantity of problem

(4.8) for case 1, 2 and 3 respectively.

Proposition 7. If η̂P ≤ η̂I ≤ η̂N < 2x, then

x∗P ≤ x∗I ≤ x∗N . (4.38)



68

That is, positively (negatively) dependent (D1,D2) results in smaller (larger) optimal

order quantity than independent (D1,D2).

Proof. I first consider associated (D1,D2). I have

P[min{x,D2} < η̂P − x,D1 > x] = P[D2 < η̂P − x,D1 > x].

= P[D1 > x] − P[D2 ≥ η̂P − x,D1 > x] ≤ P[D1 > x] − P[D2 ≥ η̂P − x]P[D1 > x].

= P[D2 < η̂P − x]P[D1 > x] ≤ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 4 part (iv). The second inequality follows by

η̂P ≤ η̂I . Note that the last term corresponds to independent (D1,D2). Thus, by the

equation (4.37), associated (D1,D2) have the derivatives dρ(Zx)/dx at least as large as

independent (D1,D2), which implies that x∗P ≤ x∗I .

I then consider associated (D1,−D2). I obtain

P[D2 < η̂N − x,D1 > x] = P[−D2 > −η̂N + x,D1 > x] ≥ P[−D2 > −η̂N + x]P[D1 > x].

= P[D2 < η̂N − x]P[D1 > x] ≥ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 4 part (iv). The second inequality follows by

η̂I ≤ η̂N . Note that the last term corresponds to independent (D1,D2). Thus, by the

equation (4.37), associated (D1,−D2) have the derivatives dρ(Zx)/dx no larger than

independent (D1,D2), which implies that x∗I ≤ x∗N . �

The condition η̂P ≤ η̂I ≤ η̂N holds when Y1 = min{x,D1} and Y2 = min{x,D2}

follow bivariate normal distribution and β ≤ 0.5. One can approximate the joint dis-

tribution of Y1 and Y2 very closely by bivariate normal when (D1,D2) follow bivariate

normal and x is set to cover most of the demand, which is very likely in practice when

the underage cost r − c is much greater than the overage cost c − s.
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4.6 Special Cases with Dependent Demands

For independent demands and identical products case under coherent measures of risk,

risk aversion decreases optimal solutions monotonously and any risk-averse solution

is at most equal to the risk-neutral solution. However, for dependent demands case,

similar analysis is analytically challenging even if products are identical. In order to

see if a risk-averse solution is equal to, greater than or smaller than, I focus on two-

identical product systems with dependent demands in this section, which is followed

by the numerical examples at §6.3.2.

For simplicity, I assume that the marginal distribution of each demand follows a

uniform distribution from zero to ten with perfectly negative correlation. That is, the

correlation between the demands of product 1 and 2 is −1 and the relation between

the demands of product 1 and 2 is D1 + D2 = 10. Then I discuss three examples of

two-identical product systems as follows:

Case A: r1 = r2 = 2, c1 = c2 = 1, s1 = s2 = 0.

Case B: r1 = r2 = 2, c1 = c2 = 0.8, s1 = s2 = 0.

Case C: r1 = r2 = 2, c1 = c2 = 1.2, s1 = s2 = 0.

Again the case (i) solution is more important where the distribution of Zx does not

have an atom at the maximizer η̂. I study the case (ii) solution alternatively only if the

analysis of the case (i) solution is not enough to describe each example. Then,

dρ(Π(x,D))
dx

= 2c̄− 2r̄P(D1 > x)(1−λβ)− 2r̄λP[min{x,D2} < η̂− x,D1 > x]. (4.39)

1. Case A: r1 = r2 = 2, c1 = c2 = 1, s1 = s2 = 0.

In case A, the risk-neutral solution is 5 which is the median of each marginal dis-

tribution. This is the special case when r̄ = 2c̄. By applying the given parameters

at Case A into the equation (4.39), I obtain

dρ(Π(x,D))
dx

= 2− 4(1− λβ)P(D1 > x)− 4λP[min{x, 10−D1} < η̂− x,D1 > x].
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Thus, the key question is to compute P[min{x, 10 − D1} < η̂ − x,D1 > x] and,

specifically, η̂ which is the β-quantile of Zx = min(x,D1) + min(x,D2). Then I

divide the range of x into the two subcases when x ≤ 5 and x > 5.

• Case A-1: if x ≤ 5

Because Zx = min(x,D1) + min(x, 10 − D1), Zx can be represented as a

function of D1, a random outcome.

Zx =


D1 + x, if 0 ≤ D1 ≤ x.

2x, if x ≤ D1 ≤ 10 − x.

10 + x − D1, if 10 − x ≤ D1 ≤ 10.

Then, I obtain

η̂ =


x + 5β, if 0 < β ≤ 2x/10.

2x, if β > 2x/10.

When η̂ = 2x, η̂ has an atom at this point and it is equivalent to 0 ≤ x < 5β.

Thus, I focus on the case when η̂ = x+5βwhich is equivalent to 5β ≤ x ≤ 5.

When 5β ≤ x ≤ 5,

dρ(Π(x,D))
dx

= 2 − 4P(D1 > x)(1 − λβ) − 4λ · 1/2β

= 2(1 − λβ)(1 − 2P(D1 > x)) ≤ 0.

where the equality only holds when x = 5 which is equal to the risk-neutral

solution and the median of the demand distribution.

• Case A-2: if x > 5

Zx can be also represented as a function of D1, a random outcome.

Zx =


D1 + x, if 0 ≤ D1 ≤ 10 − x.

10, if 10 − x ≤ D1 ≤ x.

10 + x − D1, if x ≤ D1 ≤ 10.

Similar to case A-1, I obtain

η̂ =


x + 5β, if 0 < β ≤ 2(1 − x/10).

10, if β > 2(1 − x/10).
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When η̂ = 10, η̂ has an atom at this point and it is equivalent to 10 − 5β <

x ≤ 10. Thus, I also focus on the case when η̂ = x + 5β which is equivalent

to 5 < x ≤ 10 − 5β. When 5 < x ≤ 10 − 5β,

dρ(Π(x,D))
dx

= 2 − 4P(D1 > x)(1 − λβ) − 4λ · 1/2β

= 2(1 − λβ)(1 − 2P(D1 > x)) > 0.

In summary, dρ(Π(x,D))
dx is only equal to zero when x = 5 and negative value

with x < 5 and positive value with x > 5. Therefore, x̂RA = 5 is the unique

risk-averse solution and it is exactly the same as the risk-neutral solution.

Next, I consider two more cases, c1 = c2 = 0.8 and c1 = c2 = 1.2 in Case

B and C. All other conditions are the same as above. This means that when

c1 = c2 = 0.8, r̄ > 2c̄ and the risk-neutral solution is 6 which is higher than the

median of the demand distribution. On the other hand, in case C, the risk-neutral

solution is 4 and it is lower than the median of the demand distribution. Similar

to Case A, I divide the range of x into two subcases when x ≤ 5 and x > 5 (x ≥ 5

and x < 5) in Case B (Case C).

2. Case B: r1 = r2 = 2, c1 = c2 = 0.8, s1 = s2 = 0.

• Case B-1: if x ≤ 5

Zx can be represented as a function of D1 as follows:

Zx =


D1 + x, if 0 ≤ D1 ≤ x.

2x, if x ≤ D1 ≤ 10 − x.

10 + x − D1, if 10 − x ≤ D1 ≤ 10.

This is the same as in the case A-1. Thus, when β ≤ 2x/10 ⇔ 5β ≤ x ≤ 5,

I obtain

P[min{x, 10 − D1} < η̂ − x,D1 > x]

=P[min{x, 10 − D1} < x + 5β − x,D1 > x] = 1/2β.
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Because P(D1 > x) ≥ 0.5, then

dρ(Π(x,D))
dx

= 1.6 − 4P(D1 > x)(1 − λβ) − 4λ · 1/2β

≤ 1.6 − 4 · 0.5(1 − λβ) − 2λβ = −0.4 < 0.

• Case B-2: if x > 5

Zx can be represented as a function of D1 as follows:

Zx =


D1 + x, if 0 ≤ D1 ≤ 10 − x.

10, if 10 − x ≤ D1 ≤ x.

10 + x − D1, if x ≤ D1 ≤ 10.

This is also the same as in the case A-2. Thus, when η̂ = x + 5β ⇔ β ≤

2(1 − x/10), then 5 < x ≤ 10 − 5β and I obtain

P[min{x, 10 − D1} < η̂ − x,D1 > x]

=P[min{x, 10 − D1} < x + 5β − x,D1 > x] = 1/2β.

Thus,

dρ(Π(x,D))
dx

= 1.6 − 4P(D1 > x)(1 − λβ) − 2λβ.

= 1.6 − 4(1 − λβ)(1 − x/10) − 2λβ.

= 0.4x(1 − λβ) + 2λβ − 2.4.

Equating the right-hand side, I obtain

x̂RA =

(
6 − 5λβ
1 − λβ

)
= 6 +

(
λβ

1 − λβ

)
> 6. (4.40)

Thus, this solution at (4.40) is clearly higher than the risk-neutral solution,

but there is no guarantee that this solution belongs to (5, 10 − 5β]. When

the solution at (4.40) is higher than 10−5β, I consider the case where η̂ has

an atom at 10. Then I obtain

P[min{x, 10 − D1} < η̂ − x,D1 > x]

=P[min{x, 10 − D1} < 10 − x,D1 > x] = P(D1 > 10 − x).



73

Thus,

dρ(Π(x,D))
dx

= 1.6 − 4P(D1 > x)(1 − λβ) − 4λ ·P(D1 > 10 − x)

= 1.6 − 4(1 − x/10)(1 − λβ) − 4λx/10

= 0.4x(1 − λβ − λ) + 1.6 − 4(1 − λβ).

Equating the right-hand side, I also obtain

x̂RA =

(
6 − 10λβ

1 − λβ − λ

)
. (4.41)

It should be emphasized that the solution at (4.41) is also higher than the

risk-neutral solution because this solution is always higher than 10−5β and

10 − 5β > 6 with β ∈ (0, 0.5].

Therefore, considering the solutions at (4.40) and (4.41), I obtain

x̂RA =


6−5λβ
1−λβ , if 6−5λβ

1−λβ ≤ 10 − 5β.
6−10λβ
1−λβ−λ , if 6−5λβ

1−λβ > 10 − 5β & 6−10λβ
1−λβ−λ < 10.

10, if 6−5λβ
1−λβ > 10 − 5β & 6−10λβ

1−λβ−λ ≥ 10.

Thus, in case B, the risk-averse solution is higher than the risk-neutral so-

lution and can be located at (6, 10] depending on the values of λ and β.

Then the newsvendor profits under risk-neutrality and risk-aversion can be

represented as follows:

ΠRN(x = x̂RN = 6|D1)

=(2 − 0.8) · 6 + (2 − 0.8) · 6 − 2(6 − D1)+ − 2(6 − D2)+

=1.2 · 6 + 1.2 · 6 − 2(6 − D1)+ − 2(6 − (10 − D1))+

=14.4 − 2(6 − D1)+ − 2(−4 + D1)+.

ΠRA(x = x̂RA = 6 + v|D1)

=(2 − 0.8) · (6 + v) + (2 − 0.8) · (6 + v) − 2(6 + v − D1)+ − 2(6 + v − D2)+

=1.2 · (6 + v) + 1.2 · (6 + v) − 2(6 + v − D1)+ − 2(6 + v − (10 − D1))+

=14.4 + 2.4v − 2(6 + v − D1)+ − 2(−4 + v + D1)+.
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where 0 ≤ D1 ≤ 10 and 0 < v < 4 whatever solution I need to choose.

Then,

ΠRN(D1) − ΠRA(D1) =



−0.4v, if 0 ≤ D1 ≤ 4 − v.

1.6v + 2D1 − 8, if 4 − v ≤ D1 ≤ 4.

1.6v, if 4 ≤ D1 ≤ 6.

12 + 1.6v − 2D1, if 6 ≤ D1 ≤ 6 + v.

−0.4v, if 6 + v ≤ D1 ≤ 10.

Thus,

E

[
ΠRN − ΠRA

]
=

∫ 4−v

0
−0.4v ·

1
10

dD1 +

∫ 4

4−v
(1.6v + 2D1 − 8) ·

1
10

dD1

+

∫ 6

4
1.6v ·

1
10

dD1 +

∫ 6+v

6
(12 + 1.6v − 2D1) ·

1
10

dD1

+

∫ 10

6+v
−0.4v ·

1
10

dD1

=
1
5

v2 > 0

In summary, the profit under the risk-neutral solution does not outperform that

under risk-averse solution in any event, even though the expected profit under

the risk-neutral solution outperforms that under risk-averse solution (obviously)

regardless of the value of 0 < v < 4.

3. Case C: r1 = r2 = 2, c1 = c2 = 1.2, s1 = s2 = 0.

• Case C-1: if x ≥ 5

Here Zx is defined the same in case B. If β ≤ 2(1−x/10)⇔ 5 ≤ x ≤ 10−5β,

then I obtain

dρ(Π(x,D))
dx

=2.4 − 4P(D1 > x)(1 − λβ) − 4λP[min{x, 10 − D1} < η̂ − x,D1 > x]

=2.4 − 4(1 − x/10)(1 − λβ) − 2λβ > 0.
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• Case C-2: if x < 5

If β ≤ 2x/10⇔ 5β ≤ x < 5, then

dρ(Π(x,D))
dx

=2.4 − 4P(D1 > x)(1 − λβ) − 4λP[min{x, 10 − D1} < η̂ − x,D1 > x]

=2.4 − 4(1 − x/10)(1 − λβ) − 4λ · 1/2β

=0.4x(1 − λβ) − 1.6 + 2λβ.

Equating the right-hand side, I obtain

x̂RA =

(
4 − 5λβ
1 − λβ

)
= 4 −

(
λβ

1 − λβ

)
< 4. (4.42)

Similar to case B, this solution at (4.42) is clearly lower than the risk-neutral

solution, but there is no guarantee that this solution belongs to [5β, 5).

When the solution (4.42) is lower than 5β, I consider the case when η̂ has

an atom at 2x. Then I obtain

P[min{x, 10 − D1} < η̂ − x,D1 > x]

=P[min{x, 10 − D1} < 2x − x,D1 > x] = P(D1 > 10 − x).

Thus,

dρ(Π(x,D))
dx

= 2.4 − 4(1 − x/10)(1 − λβ) − 4λx/10

= 0.4x(1 − λβ − λ) + 4λβ − 1.6.

Equating the right-hand side, I obtain

x̂RA =

(
4 − 10λβ

1 − λβ − λ

)
. (4.43)

Similar to Case B-2, the solution at (4.43) is also lower than the risk-neutral

solution because this solution is always higher than 5β and 5β < 4 with

β ∈ (0, 0.5].
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Therefore, considering the solutions at (4.42) and (4.43), I obtain

x̂RA =


4−5λβ
1−λβ , if 4−5λβ

1−λβ ≥ 5β.
4−10λβ
1−λβ−λ , if 4−5λβ

1−λβ < 5β & 4−10λβ
1−λβ−λ > 0.

0, if 4−5λβ
1−λβ < 5β & 4−10λβ

1−λβ−λ ≤ 0.

Thus, similar to Case B, the risk-averse solution is lower than the risk-

neutral solution in Case C and can be located at [0, 4) depending on the

values of λ and β. Then the newsvendor profits under risk-neutrality and

risk-aversion can be represented as follows:

ΠRN(x = x̂RN = 4|D1)

=(2 − 1.2) · 4 + (2 − 1.2) · 4 − 2(4 − D1)+ − 2(4 − D2)+

=0.8 · 4 + 0.8 · 4 − 2(4 − D1)+ − 2(4 − (10 − D1))+

=6.4 − 2(4 − D1)+ − 2(−6 + D1)+

ΠRA(x = x̂RA = 4 − v|D1)

=(2 − 1.2) · (4 − v) + (2 − 1.2) · (4 − v) − 2(4 − v − D1)+ − 2(4 − v − D2)+

=0.8 · (4 − v) + 0.8 · (4 − v) − 2(4 − v − D1)+ − 2(4 − v − (10 − D1))+

=6.4 − 1.6v − 2(4 − v − D1)+ − 2(−6 − v + D1)+

where 0 ≤ D1 ≤ 10 and 0 < v < 4 in the case C. Then,

ΠRN(D1) − ΠRA(D1) =



−0.4v, if 0 ≤ D1 ≤ 4 − v.

1.6v + 2D1 − 8, if 4 − v ≤ D1 ≤ 4.

1.6v, if 4 ≤ D1 ≤ 6.

12 + 1.6v − 2D1, if 6 ≤ D1 ≤ 6 + v.

−0.4v, if 6 + v ≤ D1 ≤ 10.

Thus, ΠRN(D1) − ΠRA(D1) is exactly the same as in case B for all possible

0 ≤ D1 ≤ 10 andE
[
ΠRN−ΠRA

]
= 1

5v2 > 0. Therefore, the same conclusion

can be drawn here as Case B.
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Chapter 5

Multi-Product Newsvendor Model - Exponential Utility
Function

The work in this chapter was constructed by a working paper, ”A multi-product risk-

averse newsvendor with exponential utility function” by S. Choi and A. Ruszczyński

(2009).

In this chapter, I focus on the exponential utility function of the profit per product

to model risk aversion in the multi-product newsvendor problem. Exponential utility

function is a particular form of a nondecreasing and concave utility function. It is

also the unique function to satisfy constant absolute risk aversion (CARA) property.

By those reasons, exponential utility function has been used frequently in finance and

also in the supply chain management literature such as Bouakiz and Sobel (1992) and

Chen et al. (2007). Lastly, I should also point out that in most industrial examples

companies have a large number of products. The exponential utility of the total profit

becomes very flat when the number of products increases. From that perspective, it is

more appropriate to consider average profit per product instead of total profit.

This paper contributes to literature in the following ways. In §5.2.1 I establish two

basic analytical results for the model when the product demands are independent: the

convexity of the model and monotonicity of the impact of risk aversion on the solution.

I then consider the model with respect to the ratio of the degree of risk aversion to the

number of products for independent demands case. When this ratio is sufficiently small

but not zero, a closed-form approximation is obtained which is as easy to compute as

the risk-neutral solution. I also show the asymptotic behaviors of the solution when
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this ratio converges to zero or infinity.

When product demands are dependent, the model becomes to be more complicated

than with independent demands. Similar to the model under coherent measures of risk,

but without the assumptions of identical products in two-product systems, I prove the

same proposition of the impact of demand correlation under risk aversion for a system

with any number of products. Then I study the impact of risk aversion with dependent

demands. For a comparison purpose between risk-neutral and risk-averse solutions, I

re-analyze in §5.4 the exactly same two-identical product cases of perfectly negative

correlations discussed at §4.6. Then I show that when product demands have a perfectly

negative correlation, risk-averse solutions can be equal to, higher than or lower than

risk-neutral solutions depending on the degree of risk aversion. These analytical results

can be also extended to general uniform distribution and other symmetric marginal

distribution cases.

5.1 Problem Formulation

Again, given products j = 1, . . . , n, let x = (x1, . . . , xn) be the vector of ordering

quantities and let D = (D1, . . . ,Dn) be the demand vector. I also define r = (r1, . . . , rn)

to be the price vector, c = (c1, . . . , cn) to be the cost vector, and s = (s1, . . . , sn) to be

the vector of salvage values. Finally, let fD j(·) and FD j(·) be the marginal probability

density function (pdf), if it exists, and the marginal cumulative distribution function

(cdf) of D j, respectively. Denote F̄D j(ξ) = 1 − FD j(ξ).

Setting c̄ j = c j − s j and r̄ j = r j − s j, I can write the profit function as follows:

Π̄(x,D) =
1
n

n∑
j=1

Π j(x j,D j).

where
Π j(x j,D j) = −c̄ jx j + r̄ j min{x j,D j}

= (r j − c j)x j − (r j − s j)(x j − D j)+, j = 1, . . . , n.
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I assume that the demand vector D is random and nonnegative. Thus, for every x ≥ 0

the profit Π(x,D) is a real bounded random variable. Here these definitions of param-

eters, decision variables and profit functions are exactly same as those under coherent

measures of risk.

The risk-neutral multi-product newsvendor optimization problem is to maximize

the expected average profit per product:

max
x≥0

E[Π̄(x,D)]. (5.1)

Again the optimal solution of the problem (5.1) is the same as given at the equation

(4.4).

The exponential utility function of a profit z ∈ R is defined as follows:

u(z) = −e−λz.

It is nondecreasing and concave. Here, λ is a positive degree of risk aversion. The

expected utility of a random profit Z is defined as follows:

U(Z) = E
[
− e−λZ

]
.

Setting Z = Π̄(x,D), I obtain the expected utility in the newsvendor problem,

U(Π̄(x,D)) = E
[
− e−λΠ̄(x,D)

]
.

Thus, the problem to maximize the expected utility can be represented equivalently as

follows:

min
x≥0
E

[
e−λΠ̄(x,D)

]
. (5.2)

Here it should be emphasized that the optimization model (5.2) cannot be defined when

λ is equal to zero. Instead, I will show the asymptotic behavior of the solution when λ

converges to zero in the following section.
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5.2 Analytical Results for Independent Demands

5.2.1 Basic Analytical Results

In this subsection, I provide two analytical results for the multi-product newsvendor

model under the exponential utility function. These results lay the theoretical founda-

tion for the paper.

Proposition 8. E
[
e−λΠ̄(x,D)

]
is a convex function of x.

Proof. I first note that Π̄(x,D) = 1
n

∑n
j=1 Π j(x j,D j) is concave of x. Then, −λΠ̄(x,D)

is a convex function of x. Because the function et is increasing and convex of t, the

composition is convex as well. �

Lemma 5. Assume that all products have independent demands. Let x̂RA1 be the so-

lution of problem (5.2) for λ = λ1 > 0. If λ2 ≥ λ1 then there exists a solution x̂RA2 of

problem (5.2) for λ = λ2 such that x̂RA2
j ≤ x̂RA1

j , j = 1, . . . , n.

Proof. Because all products have independent demands, the problem (5.2) is separable

into each product. The result follows by Eeckhoudt, Gollier and Schlesinger (1995).

�

5.2.2 Asymptotic Analysis and Closed-Form Approximations

In this subsection, I first consider the asymptotic results with respect to the ratio of the

number of products to the degree of risk aversion
(
λ
n

)
. Then I develop a closed-form

approximation to the optimal solution for a sufficiently low
(
λ
n

)
.

Due to the independence of demands, the problem is decomposable to each prod-

uct:

E
[
e−λΠ̄(x,D)

]
= E

[
e−λ·

1
n
∑n

j=1 Π j(x j,D j)
]

= E
[
e−

λ
nΠ1(x1,D1)

]
· E

[
e−

λ
nΠ2(x2,D2)

]
· · ·E

[
e−

λ
nΠn(xn,Dn)

]
.
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It implies that one can optimize each E
[
e−

λ
nΠ j(x j,D j)

]
separately. Consider product j =

1, 2, . . . , n. Interchanging the differentiation and expectation operations, I obtain

∂

∂x j

(
E
[
e−

λ
nΠ j

])
= E

[
∂

∂x j

(
e−

λ
nΠ j

) ]
= E

[
−
λ

n
e−

λ
nΠ j ·

∂Π j

∂x j

]
= E

[
−
λ

n
e−

λ
nΠ j ·

(
{r j − c j} − {r j − s j} · 1{D j<x j}

) ]
= −

λ

n
e−

λ
n (r j−c j)x j · E

[
e
λ
n {r j−s j}{x j−D j}+ ·

(
{r j − c j} − {r j − s j} · 1{D j<x j}

) ]
.

The derivative is zero if the following equation is satisfied:

E
[
e
λ
n {r j−s j}{x j−D j}+ ·

(
{r j − c j} − {r j − s j} · 1{D j<x j}

) ]
= 0. (5.3)

Then I consider three cases.

Case 1: The degree of risk aversion, λ, converges to zero or the number of products, n,

goes to infinity.

The solution x∗j of (5.3) satisfies the equation,∫ x∗j

0
e
λ
n (r j−s j)(x j−ξ) · (c j − s j) f j(ξ)dξ =

∫ ∞

x∗j

(r j − c j) f j(ξ)dξ = (r j − c j)F̄ j(x∗j). (5.4)

If λ/n → 0, then e
λ
n (r j−s j)(x j−ξ) → 1. It follows that the optimal solution x∗j converges to

the risk-neutral solution at (4.4). The economic implication is the same as the asymp-

totic behavior under coherent measures of risk when the number of products goes to

infinity at §4.4.1.

Case 2: The degree of risk aversion to the number of products, λ, goes to infinity.

In this case, e
λ
n (r j−s j)(x j−ξ) goes to infinity. Then, the resulting optimal solution x∗j by the

equation (5.4) converges to be zero.

Case 3: The ratio of the degree of risk aversion to the number of products
(
λ
n

)
is suffi-

ciently small, but not zero.

In this case, I can use the following approximation:

e
λ
n (r j−s j)(x j−D j) ' 1 +

λ

n
(r j − s j)(x j − D j). (5.5)
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Then, substituting (5.5) into (5.4), I obtain:

(c j − s j)F j(x j) +
λ

n
(r j − s j)(c j − s j)E[x j − D j]+ = (r j − c j)F̄ j(x j). (5.6)

The risk-averse solution x̂RA
j is very close to x̂RN

j by Case 1. Therefore, I can use the

following first-order approximation:

E
[
x̂RA

j − D j

]
+
' E

[
x̂RN

j − D j

]
+
. (5.7)

Substituting (5.7) into (5.6), I get the following closed-form approximation of the risk-

averse solution:

x̂RA
j ' F̄−1

j

(
c j − s j

r j − s j
+
λ

n
· (c j − s j) · E

[
x̂RN

j − D j

]
+

)
, j = 1, . . . , n. (5.8)

From the analytical results obtained in this subsection, it can be said that the im-

pacts of the number of products and the degree of risk aversion are combined as λ
n .

More specifically, the n-product model with a degree of risk aversion λ is equivalent to

the single-product counterpart with the new degree of risk aversion λ1 = λ
n .

5.2.3 Iterative Methods

I cannot expect the approximation obtained in the equation (5.8) to be very accurate

unless λ
n is sufficiently small. In order to make the error rates smaller, the idea of the

iterative method is to generate a sequence of approximations x̂(ν)
j , ν = 0, 1, 2, . . . At

first, x̂(0)
j = x̂RN

j . Then I calculate x̂(1)
j by applying the equation (5.8). In the iteration

ν = 1, 2, . . ., I use x̂(ν−1)
j instead of x̂RN

j in our approximation, calculating

x̂(ν)
j ' F̄−1

j

(
c j − s j

r j − s j
+
λ

n
· (c j − s j) ·E

[
x̂(ν−1)

j − D j

]
+

)
, j = 1, . . . , n. (5.9)

If λ
n is sufficiently small, the iterative method is efficient because the initial approx-

imation x̂(0) is sufficiently close to the risk-averse solution. Otherwise, the risk-neutral

solution may not be a good starting point for this method. Similar to the multi-product
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model under general coherent measures of risk, I apply for a straightforward iterative

method starting from the risk-neutral solution and continuation method for exponential

utility functions. Again I must point out that my approximation given at the equa-

tion (5.8) does not guarantee a feasible solution because the term c j−s j

r j−s j
+ λ

n · (c j − s j) ·

E

[
x̂RN

j −D j

]
+

might be negative or greater than 1 (due to approximation). Correspond-

ingly to the case with coherent measures of risk, the approximation method is generally

more stable for smaller values of λ
n . The same reasons and implications with coherent

measures of risk can be also applied. In addition, another reason is that in the approx-

imation with exponential utility function, I multiply E
[
x̂RN

j − D j

]
+

by λ
n , which makes

the risk-neutral solution further from the risk-averse solution.

5.3 Impact of Dependent Demands

Under risk-averse performance measures, dependence of product demands can greatly

affect the optimal solutions. The joint distribution function is not decomposable and it

makes this problem analytically very challenging.

In this section, I provide analytical insights on the impact of dependent demand

under exponential utility function and consider three cases of (D1,D2, . . . ,Dn). Sim-

ilar to the multi-product model under general coherent measures of risk, an intuitive

and appealing property is that positively (or negatively) dependent demands generate

larger (or smaller) variability and thus poses a larger (or smaller) risk than independent

demands.

To characterize the impact of demand dependence on the optimal order quantity

under the coherent risk measure, I also utilize the concept of “associated” random vari-

ables defined and explained at Definition 1 and Lemma (iv). Then I similarly catego-

rize into the three cases as follows: In case 1, (D1,D2, . . . ,Dn) are positively associated

random variables and x̂P,λ
j is the optimal solution for product j = 1, 2, . . . , n when the

degree of risk aversion is λ; In case 2, (D1,D2, . . . ,Dn) are independent and x̂I,λ
j is
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the optimal solution for product j = 1, 2, . . . , n when the degree of risk aversion is λ;

In case 3, (D1,D2, . . . ,Dn) are negatively associated random variables and x̂N,λ
j is the

optimal solution for product j = 1, 2, . . . , n when the degree of risk aversion is λ;

Proposition 9. x̂P,λ
j ≤ x̂I,λ

j ≤ x̂N,λ
j , j = 1, 2, . . . , n.

Proof. Let’s start considering positively associated random variables (D1,D2, . . . ,Dn).

Differentiating E
[
e−λΠ̄

]
with respect to x1, I obtain:

∂

∂x1

(
E

[
e−λΠ̄

])
=

∂

∂x1
E

[
e−

λ
nΠ1 · e−

λ
n (Π2+···+Πn)

]
= E

[
∂

∂x1
e−

λ
nΠ1 · e−

λ
n (Π2+···+Πn)

]
.

Then I have

e−
λ
n (Π2+···+Πn) = e−

λ
n
∑n

j=2((r j−c j)x j−(r j−s j)(x j−D j)+)

and

∂

∂x1

(
e−

λ
nΠ1

)
=


λ
n (c1 − s1)e−

λ
n (r1−c1)x1+ λ

n (r1−s1)(x1−D1), if D1 < x1,

−λn (r1 − c1)e−
λ
n (r1−c1)x1 , if D1 ≥ x1.

Thus, e−
λ
n (Π2+···+Πn) is a nonincreasing and positive function of D2, . . . ,Dn. Also,

∂
∂x1

(
e−

λ
nΠ1

)
is a nonincreasing and positive function of D1 if D1 < x1. If D1 ≥ x1, then

∂
∂x1

(
e−

λ
nΠ1

)
does not depend on D1. As D1,D2, . . . ,Dn are positively associated, I obtain

the inequality
∂

∂x1

(
E

[
e−λΠ̄

])
≥ E

[
∂

∂x1
e−

λ
nΠ1

]
·E

[
e−

λ
n (Π2+···+Πn)

]
.

Thus,
∂

∂x1

(
E

[
e−λΠ̄

]){
x1=x̂I,λ

j

} ≥ E[
∂

∂x1
e−

λ
nΠ1

]
{
x1=x̂I,λ

j

} ·E[
e−

λ
n (Π2+···+Πn)

]
= 0.

This implies that x̂P,λ
1 ≤ x̂I,λ

1 . Similarly, x̂P,λ
j ≤ x̂I,λ

j , j = 2, . . . , n.

Consider negatively associated random variables (D1,D2, · · · ,Dn). Then, arguing
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as before, I obtain the inequality

∂

∂x1

(
E

[
e−λΠ̄

])
=

∂

∂x1
E

[
e−

λ
nΠ1 · e−

λ
n (Π2+···+Πn)

]
= E

[
∂

∂x1
e−

λ
nΠ1 · e−

λ
n (Π2+···+Πn)

]
≤ E

[
∂

∂x1
e−

λ
nΠ1

]
·E

[
e−

λ
n (Π2+···+Πn)

]
.

Thus, the inequality direction is reversed as follows:

∂

∂x1

(
E

[
e−λΠ̄

]){
x1=x̂I,λ

j

} ≤ E[
∂

∂x1
e−

λ
nΠ1

]
{
x1=x̂I,λ

j

} ·E[
e−

λ
n (Π2+···+Πn)

]
= 0.

Consequently, x̂I,λ
1 ≤ x̂N,λ

1 . Similarly, x̂I,λ
j ≤ x̂N,λ

j , j = 2, . . . , n. �

5.4 Special Cases with Dependent Demands

For independent product demands case under an exponential utility function, a risk-

averse solution is smaller than a risk-neutral solutions by Lemma 5. As the degree of

risk aversion increases, the risk-averse solution decreases monotonously and it con-

verges to zero in the limit of the degree of risk aversion, infinity. It implies that, for

independent demands case, any risk-averse solution under exponential utility function

is located between zero and the corresponding risk-neutral solution. However, for de-

pendent product demands case under an exponential utility function, similar analysis is

analytically very challenging. Thus, I consider in this section the exactly same special

examples of two-identical product systems analyzed at §4.6.

Let’s recall Proposition 3. The same proposition can be also proved similarly under

exponential utility functions as follows:

Proposition 10. Assume that all products are identical, i.e., prices, ordering costs and

salvage values are the same across all products. Further, let the joint probability distri-

bution of the demand be symmetric, that is, invariant with respect to permutations of

the demand vector. Then, for the exponential utility function, one of optimal solutions

of problem (5.2) is a vector with equal coordinates, x̂RA
1 = x̂RA

2 = · · · = x̂RA
n .
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Proof. Let me consider an arbitrary order vector x = (x1, . . . , xn) and let P be an n × n

permutation matrix. Then, the distribution of profit associated with Px is the same as

that associated with x. There are n! different permutations of x and let us denote them

x1, . . . , xn!. Consider the point

y =
1
n!

n!∑
i=1

xi.

It has all coordinates equal to the average of the coordinates x j. As the joint probability

distribution of D1,D2, . . . ,Dn is symmetric, the distribution of Π̄(xi) is the same for

each i. By Proposition 8, I obtain

E

[
e−λΠ̄(y,D)

]
≤

1
n!

n!∑
i=1

E

[
e−λΠ̄(xi,D)

]
= E

[
e−λΠ̄(x,D)

]
.

This means that for every plan x, the corresponding plan y with equal orders is at least

as good. As an optimal plan exists, there is an optimal plan with equal orders. �

1. Case A: r1 = r2 = 2, c1 = c2 = 1, s1 = s2 = 0.

In this case, the risk-neutral solutions for product 1 and 2 are both 5, which are

the medians of each marginal demand distribution, respectively. Then,

E[e−λΠ̄] = E
[
e−

λ
2 (Π1+Π2)

]
, where Π j = (r̄ j−c̄ j)x j−r̄ j(x j−D j)+, with ∀ j = 1, 2.

Thus,

U[Π(x,D)] = E
[
e−λ(r̄−c̄)x+ λ

2 r̄(x−D1)++ λ
2 r̄(x−D2)+

]
= E

[
e−λx+λ(x−D1)++λ(x−D2)+

]
.

= E
[
e−λx+λ(x−D1)++λ(x−10+D1)+

]
.

because the optimal solutions of product 1 and 2 are always same by Proposition

10. Then,

dU[Π(x,D)]
dx

= λE
[ (
−1 + 1{D1≤x} + 1{D1>10−x}

)
· e−λx+λ(x−D1)++λ(x−10+D1)+

]
.
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• Case A-1: if x > 5, then

dU[Π(x,D)]
dx

= λE
[
− e−λx+λ(x−D1)++λ(x−10+D1)+

]
+ λE

[
1{D1≤x} · e−λx+λ(x−D1)++λ(x−10+D1)+

]
+ λE

[
1{D1>10−x} · e−λx+λ(x−D1)++λ(x−10+D1)+

]
.

= λ

∫ 10−x

0
−e−λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
−e−λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
−e−λx+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10−x

0
e−λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
e−λx+λ(x−10+D1) ·

1
10

dD1.

= λ

∫ x

10−x
e−λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1 > 0.

• Case A-2: if x ≤ 5, then

dU[Π(x,D)]
dx

= λ

∫ x

0
−e−λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ 10−x

x
−e−λx ·

1
10

dD1

+ λ

∫ 10

10−x
−e−λx+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ x

0
e−λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ 10

10−x
e−λx+λ(x−10+D1) ·

1
10

dD1

= λ

∫ 10−x

x
−e−λx ·

1
10

dD1 ≤ 0.

Therefore, x̂RA
1 = x̂RA

2 = x̂RN
1 = x̂RN

2 = 5.

2. Case B: r1 = r2 = 2, c1 = c2 = 0.8, s1 = s2 = 0 with all the same other conditions.
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In this case, the risk-neutral solutions for product 1 and 2 are both 6, which are

2−0.8
2 = 0.6-quantile of each marginal demand distribution, respectively. Then,

• Case B-1: if x ≤ 5, then

U[Π(x,D)] = E
[
e−1.2λx+λ(x−D1)++λ(x−10+D1)+

]
.

Then,

dU[Π(x,D)]
dx

=λE
[ (
−1.2 + 1{D1≤x} + 1{D1>10−x}

)
· e−1.2λx+λ(x−D1)++λ(x−10+D1)+

]
.

=λ

∫ x

0
−1.2e−1.2λx+λ(x−D1) ·

1
10

dD1

+λ

∫ 10−x

x
−1.2e−1.2λx ·

1
10

dD1

+λ

∫ 10

10−x
−1.2e−1.2λx+λ(x−10+D1) ·

1
10

dD1

+λ

∫ x

0
e−1.2λx+λ(x−D1) ·

1
10

dD1

+λ

∫ 10

10−x
e−1.2λx+λ(x−10+D1) ·

1
10

dD1.

= − 0.2λ
∫ x

0
e−1.2λx+λ(x−D1) ·

1
10

dD1

− 0.2λ
∫ 10

10−x
e−1.2λx+λ(x−10+D1) ·

1
10

dD1

− 1.2λ
∫ 10−x

x
e−1.2λx ·

1
10

dD1 < 0.
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• Case B-2: if x > 5, then

dU[Π(x,D)]
dx

= λ

∫ 10−x

0
−1.2e−1.2λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
−1.2e−1.2λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
−1.2e−1.2λx+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10−x

0
e−1.2λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−1.2λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−1.2λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
e−1.2λx+λ(x−10+D1) ·

1
10

dD1.

= − 0.2λ
∫ 10−x

0
e−1.2λx+λ(x−D1) ·

1
10

dD1

− 0.2λ
∫ 10

x
e−1.2λx+λ(x−10+D1) ·

1
10

dD1

+ 0.8λ
∫ x

10−x
e−1.2λx+λ(x−D1)++λ(x−10+D1)+ ·

1
10

dD1.

=
0.2
10

e0.8λx−10λ −
0.2
10

e−0.2λx −
0.2
10

e−0.2λx +
0.2
10

e0.8λx−10λ

+
0.8
10

e0.8λx−10λ · (2x − 10).

= 0.04e−0.2λx
(
(4x − 19)eλx−10λ − 1

)
.

Thus, I cannot solve the risk-averse solution in a closed-form. Instead, I

will check if the risk-averse solution is higher or lower than the risk-neutral

solution.

dU[Π(x,D)]
dx

(
x = x̂RN = 6

)
= 0.04e−1.2λ

(
5e−4λ − 1

)
.

Therefore,

x̂RA =


5 < x̂RA ≤ x̂RN = 6, if λ ≤ 1

4 log 5.

6 = x̂RN < x̂RA ≤ 10, if λ > 1
4 log 5.

Thus, depending on the value of λ, the risk-averse solution may be equal

to, higher than or lower than the risk-neutral solution.
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3. Case C: r1 = r2 = 2, c1 = c2 = 1.2, s1 = s2 = 0 with all the same other conditions.

In this case, the risk-neutral solutions for product 1 and 2 are both 4, which are

2−1.2
2 = 0.4-quantile of each marginal demand distribution, respectively. Then,

• Case C-1: if x ≥ 5, then

U[Π(x,D)] = E
[
e−0.8λx+λ(x−D1)++λ(x−10+D1)+

]
.

Then,

dU[Π(x,D)]
dx

= λE
[ (
−0.8 + 1{D1≤x} + 1{D1>10−x}

)
· e−0.8λx+λ(x−D1)++λ(x−10+D1)+

]
.

= λ

∫ 10−x

0
−0.8e−0.8λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
−0.8e−0.8λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
−0.8e−0.8λx+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10−x

0
e−0.8λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−0.8λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ x

10−x
e−0.8λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ 10

x
e−0.8λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1.

= 0.2λ
∫ 10−x

0
e−0.8λx+λ(x−D1) ·

1
10

dD1

+ 0.2λ
∫ 10

x
e−0.8λx+λ(x−10+D1) ·

1
10

dD1

+ 1.2λ
∫ x

10−x
e−0.8λx+λ(x−D1)+λ(x−10+D1) ·

1
10

dD1 > 0.
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• Case C-2: if x < 5, then

dU[Π(x,D)]
dx

= λ

∫ x

0
−0.8e−0.8λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ x

10−x
−0.8e−0.8λx ·

1
10

dD1

+ λ

∫ 10

10−x
−0.8e−0.8λx+λ(x−10+D1) ·

1
10

dD1

+ λ

∫ x

0
e−0.8λx+λ(x−D1) ·

1
10

dD1

+ λ

∫ 10

10−x
0.2e−0.8λx+λ(x−10+D1) ·

1
10

dD1.

= 0.2λ
∫ x

0
e−0.8λx+λ(x−D1) ·

1
10

dD1

+ 0.2λ
∫ 10

10−x
e−0.8λx+λ(x−10+D1) ·

1
10

dD1

− 0.8λ
∫ 10−x

x
e−0.8λx ·

1
10

dD1.

= −2 ·
0.2
10

e−0.8λx + 2 ·
0.2
10

e0.2λx −
0.8
10

e−0.8λx · (10 − 2x).

= 0.04e−0.8λx
(
eλx + (4x − 21)

)
.

Thus, a risk-averse solution cannot be solved in a closed-form similarly

done in Case B. Instead, I will check if the risk-averse solution is higher or

lower than the risk-neutral solution.

dU[Π(x,D)]
dx

(
x = x̂RN = 4

)
= 0.04e−3.2λ

(
e4λ − 5

)
.

Therefore,

x̂RA =


4 = x̂RN < x̂RA < 5, if λ < 1

4 log 5.

0 ≤ x̂RA ≤ x̂RN = 4, if λ ≥ 1
4 log 5.

Similarly, depending on the value of λ, the risk-averse solution may be also

equal to, higher than or lower than the risk-neutral solution.
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Chapter 6

Computational Study

6.1 Sample-based Optimization

Sample-based optimization has been applied to solve large-scale stochastic program-

ming problems using Monte Carlo sampling method and the theory and detailed proce-

dure are summarized in Shapiro (2003 and 2008). However, the technique is developed

mostly for expected value (risk-neutral) models and thus the usage has been limited

mainly to expected value models.

Recently, Ruszczyński and Vanderbei (2003) propose solvable mean-risk models

by applying Monte Carlo method. Thus, I follow their method in this chapter, which

can be summarized as follows:

Step 1: Generating N uniform random numbers and transforming it properly to

another random variable with a certain probability distribution;

Step 2: Calculating statistic such as expectation and measure of risk;

Step 3: Solving the particular optimization model;

In step 1, each sample is iid and randomly chosen scenario outside the optimization

model and it has a probability of 1/N. As the number of samples increases to infinity,

each statistic from the samples converges to the true value with probability one by the

Law of Large Numbers. Finally, uncertainty is removed in the optimization model and

one can solve it deterministically. However, the resulting models are still large-scale

and difficult to solve.
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6.2 Numerical Analysis for Single-Product Models

The objective of this section is as follows: I consider the three risk measures at single-

product models - mean-semideviation with the degree one, mean-deviation from quan-

tile and mean-worst scaled average deviation from quantile. I solve the linear program-

ming problems obtained by sample-based optimization and tabulate and illustrate the

impact of the degree of risk aversion on optimal solutions. Then I confirm previous

analytical results by numerical examples.

I randomly generate a large sample from the demand distribution: Dk, k = 1, . . . ,N.

Then I solve the mean–risk model with the empirical distribution of D, by treating

sampled values Dk as equally likely scenarios (with probabilities pk = 1/N).

In the case of a semideviation σ1[·], the mean-risk model (3.7) is equivalent to the

following linear programming problem:

max µ − λ
∑N

k=1 pkrk

subject to µ =
∑N

k=1 pkΠk,

Πk ≤ −c̄x + r̄Dk, k = 1, . . . ,N,

Πk ≤ −c̄x + r̄x, k = 1, . . . ,N,

rk ≥ µ − Πk, k = 1, . . . ,N,

x ≥ 0 and rk ≥ 0, k = 1, . . . ,N.
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where Πk and rk are the profit generated and the risk calculated from kth sample de-

mand, k = 1, . . . ,N. The equivalent linear programming problem for the mean-

deviation from a quantile is:

max
∑N

k=1 pkΠk − λ
∑N

k=1 pk
[
(1 − β)uk + βvk

]
subject to Πk = η + vk − uk, k = 1, . . . ,N,

Πk ≤ −c̄x + r̄Dk, k = 1, . . . ,N,

Πk ≤ −c̄x + r̄x, k = 1, . . . ,N,

x ≥ 0, uk ≥ 0, vk ≥ 0, k = 1, . . . ,N.

The last model may also serve as a building block for the mean–risk model associ-

ated with a general law-invariant measure of risk, given by a convex set of probability

measures M on [0, 1] in (2.18). I approximate M by a convex set of probability mea-

sures Q supported on the points βi = i/n, i = 1, . . . ,N. I obtain the semi-infinite linear

programming problem:

max
∑N

k=1 pkΠk − λκ

subject to κ ≥
∑N

i=1qiκiN/i, for all q ∈ Q,

κi ≥
∑N

k=1 pk
[(

1 − i
N

)
uik + i

N vik
]
, i = 1, . . . ,N,

Πk = ηi + vik − uik, i = 1, . . . ,N, k = 1, . . . ,N,

Πk ≤ −c̄x + r̄Dk, k = 1, . . . ,N,

Πk ≤ −c̄x + r̄x, k = 1, . . . ,N,

x ≥ 0 and uik ≥ 0, vik ≥ 0, i = 1, . . . ,N, k = 1, . . . ,N.

If the set Q is a polyhedron, it is sufficient to satisfy the semi-infinite constraint only

for the vertices q̂ j of Q. For example, in the mean–risk model with the risk functional

(2.19), I can calculate imin = bβminNc, imax = dβmaxNe (the round-down and the roundup)

and consider only atomic measures q̂ j, j = imin, . . . , imax, with q̂ j
i = 1, if i = j, and

q̂ j
i = 0, if i , j. The semi-infinite constraint becomes:

κ ≥ κiN/i, i = imin, . . . , imax.
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Semideviation Deviation from Median Worst Scaled Deviation

λ x̂RA
E[Π(x̂RA)] r[Π(x̂RA)] x̂RA

E[Π(x̂RA)] r[Π(x̂RA)] x̂RA
E[Π(x̂RA)] r[Π(x̂RA)]

0 63.22 157.70 74.41 63.22 157.70 76.46 63.04 157.70 346.63
0.2 58.66 157.15 68.40 58.93 157.22 76.13 53.68 154.56 298.38
0.4 55.55 155.78 64.08 56.46 156.21 73.21 38.62 134.24 232.89
0.6 52.09 153.27 59.07 53.14 154.14 68.96 6.10 28.84 29.91
0.8 48.38 149.45 53.63 48.24 149.29 62.05 3.37 16.33 10.29
1.0 44.25 143.95 47.50 42.09 140.56 52.39 2.73 13.29 6.82

Table 6.1: Solutions for Different Levels of Risk Aversion with Uniform Demand
Distribution.

It should be stressed that the representation of all law-invariant coherent measures of

risk by Kusuoka theorem holds true in nonatomic spaces, in general. In a space with

atoms, the mean–risk model with the risk term given by (2.18) still defines a coherent

measure of risk, but it may not be possible to construct any law-invariant coherent

measure of risk this way. Also, the issues of convergence of discrete approximations

call for precise analysis.

In order to illustrate the results of this note, I consider the problem with r = 15, c =

10, s = 7. I consider two distributions of the demand: uniform in [0, 100] and log-

normal. The parameters of the lognormal distribution are chosen such that the mean

and variance of both distributions are same. The risk-neutral solution x̂RN equals 62.5

(51.37) for the uniform (lognormal) distribution. Therefore, there are six numerical

examples by the combination of three risk measures and two demand distributions.

In mean-deviation from quantile models, I use β = 0.5. For each of the six models,

λ = 0, 0.2, 0.4, 0.6, 0.8, 1.

To find risk-averse solutions, I generate a sample of size N = 1000 and solve the re-

sulting linear programming models by the way described in section 6.1. The results are

summarized in Tables 6.1 and 6.2, and illustrated in Figure 6.1. My numerical solutions

monotonously decrease as λ increases through the whole range of λ with different de-

mand distributions and risk measures, which confirms Proposition 1 in single-product

models.
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Semideviation Deviation from Median Worst Scaled Deviation

λ x̂RA
E[Π(x̂RA)] r[Π(x̂RA)] x̂RA

E[Π(x̂RA)] r[Π(x̂RA)] x̂RA
E[Π(x̂RA)] r[Π(x̂RA)]

0 50.86 163.39 42.14 50.86 163.39 40.12 50.86 163.39 267.25
0.2 48.15 163.00 38.48 47.70 162.86 36.33 45.01 161.44 181.09
0.4 46.04 162.12 35.52 45.01 161.44 31.59 36.28 149.75 143.21
0.6 44.03 160.64 32.58 41.67 158.21 25.07 18.54 91.02 31.26
0.8 41.41 157.91 28.69 39.79 155.76 21.58 16.50 81.63 16.71
1.0 39.49 155.33 25.81 38.17 153.24 18.80 15.84 78.50 13.33

Table 6.2: Solutions for Different Levels of Risk Aversion with Lognormal Demand
Distribution.

Figure 6.1 shows the empirical cumulative distribution function for the net profit

with different λ, at the optimal solutions of the problem with the lognormal distribution.

The most distinguishing features are that there is a jump of each curve (corresponding

to the mass probability at x̂RA) and that the curves with larger λ have a thinner left tail,

which reflects risk aversion.

6.3 Numerical Analysis for the Multi-Product Model under Coher-

ent Measures of Risk

The objective of this section is two-fold. First, I study the accuracy and convergence

rates of the approximations. Second, I provide insights (in addition to the analyzes in

§§4.3-4.5) on the impact of demand dependence and risk aversion.

In all examples considered I apply sample-based optimization to solve the resulting

stochastic programming problems. I generate a sample D1,D2, . . . ,DT of the demand

vector, where

Dt = (d1t, d2t, . . . , dnt), t = 1, . . . ,T.

Then I replace the original demand distribution by the empirical distribution based on

the sample, that is, I assign to each of the sample points the probability pt = 1/T . It

is known that when T → ∞, the optimal value of the sample problem approaches the

optimal value of the original problem (see Shapiro (2008)). In all our examples I used
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Figure 6.1: Cumulative Distribution Functions of Profit for Different Levels of Risk
Aversion in the Problem with Lognormal Distribution. Mean-Deviation from Median
is used as the Risk Functional.

T = 10, 000.

For the empirical distribution, the corresponding optimization problem (4.8) has an

equivalent linear programming formulation. For each j = 1, . . . , n and t = 1, . . . ,T we

introduce the variable w jt to represent the salvaged number of product j in scenario t.

The variable ut represents the shortfall of the profit in scenario t to the quantile η. It is

also convenient to introduce the parameter κ = λβ to represent the relative risk aversion
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(0 ≤ κ ≤ 1). I obtain the formulation

max (1 − κ)
n∑

j=1

[
(r j − c j)x j − (r j − s j)

T∑
t=1

ptw jt

]
+ κ

(
η −

1
β

T∑
t=1

ptut

)
(6.1)

subject to
n∑

j=1

[
(r j − c j)x j − (r j − s j)w jt

]
+ ut ≥ η, t = 1, . . . ,T,

x j − d jt ≤ w jt, j = 1, . . . , n; t = 1, . . . ,T,

w jt ≥ 0, j = 1, . . . , n; t = 1, . . . ,T,

ut ≥ 0, t = 1, . . . ,T,

x j ≥ 0, j = 1, . . . , n.

Indeed, suppose the order quantities x j are fixed. Then w jt = (x j − d jt)+ and ut =

(η−Π(x,Dt))+ are optimal, and I maximize with respect to η the last term in (6.2), that

is,

max
η

{
η −

1
β
E
[
(η − Π(x,D))+

]}
= −AVaRβ

[
Π(x,D)

]
.

In the last expression I used (2.14). Therefore, (6.2) equals (1 − κ)E
[
Π(x,D)

]
−

κAVaRβ

[
Π(x,D)

]
.

6.3.1 Accuracy of Approximations

In this subsection, I assess the accuracy of the closed-form approximations of §4.4.2. I

first consider identical products, then non-identical products.

For identical products, I assume that all products have identical cost structure and

identical and independent demands. I set r = 15, c = 10, s = 7. I also set the demand

distribution of each product to be lognormal with µ = 3 and σ = 0.4724 (to achieve the

desirable coefficient of variance (CV) of 0.5). Thus, the mean and standard deviation

of each demand are eµ+σ2/2 = 22.46 and eµ+σ2/2 ·
√

(eσ2
− 1) = 11.23. Because the joint

demand distribution is invariant with respect to the permutations of the demand vector,

there exists an order vector with equal coordinates, which is optimal for the model.
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I use β = 0.5, that is, I am concerned with the expected shortfall below the median

as the risk measure. Then I choose the number of products, n, to be 1, 3, 10 and 30, and

I study the impact of the number of products on the gap between the sample-based LP

solutions and the approximate solutions (generated by the iterative method with ν = 3,

see §4.4.4). While the sample-based LP solutions can take hours to solve, especially

for large n and T (by CPLEX 9.0 at Intel Pentium IV PC with CPU 2.0 GHz and 1

GB RAM), the approximate solution can be obtained instantly, which is 1 or 2 seconds

when n = 30.

Number of Products Identical Products Heterogenous Products
3 232 337
10 3572 9006
30 32607 50889

Table 6.3: Comparison of CPU Running Time between Identical and Heterogenous
Products Model with respect to Number of Products – Time unit: second.

In my numerical study, the optimal order quantities of different products are very

close to each other but not necessarily identical due to the random sample error, which

confirms Proposition 3. Thus, I obtain the numerical solution by taking the average of

all products’ numerical solutions. The corresponding results are illustrated in Figure

6.2, where on the horizontal axis I display the degree of relative risk aversion parameter

κ = λβ. The term “exact”, “numerical” and “approximation” represent the solution

obtained by exact calculation, sample-based LP, and a closed-form approximation by

the continuation method, respectively.

Figure 6.2 shows that my analytical solution is very close to the numerical solution

when n = 1. This is obvious, because the solution is exact for the single-product case

(in this problem the case η̂ = r̄x is valid). In the case of 3 products, the approximation

does not work well, which is quite understandable as the approximation is based on

the Central Limit Theorem. As the number of products further increases, my approx-

imations become more accurate and the gap becomes negligible when n ≥ 10. The
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Figure 6.2: Identical Products with Independent Demands – Approximate or exact
solution vs. sample-based LP solutions.

numerical study also shows that the order quantities should decrease as the degree of

risk-aversion increases, which confirms Proposition 4. Also, I notice that as the number

of products increases, the error of the risk neutral solution decreases.

For independent but heterogenous products, I tested the accuracy of the approx-

imations on 30 randomly generated problems, 10 for each number of products n =

3, 10, 30. For each problem, I calculated the sample-based LP solution and an ap-

proximate solution by the continuation method (see §4.4.4). At each value of κ =

0.2, 0.4, 0.6, 0.8, 1, I made just one step of the iterative method.

Table 6.4 shows that the continuation method is much more stable and accurate than

the straightforward approximation starting from the risk-neutral solution (the iterative

method with ν = 1), especially for smaller numbers of products, when the difference

between risk-neutral solution and risk-averse solution is larger (e.g., κ is larger). For

n = 30 both methods work very well.

For each instance that the continuation method can generate a feasible solution,
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Number of Products
λ 3 10 30

Straightforward Continuation Straightforward Continuation Straightforward Continuation
0.2 1 1 0 0 0 0
0.4 2 1 0 0 0 0
0.6 5 2 0 0 0 0
0.8 10 2 1 0 0 0
1 10 3 5 0 0 0

Table 6.4: Comparison of the Degree of Stability between Straightforward and Con-
tinuation Methods with respect to Number of Products and Degree of Risk Aversion.

I compute the absolute percentage error of the approximate solution relative to the

sample-based LP solution, which is defined by the absolute difference between the

approximate solution and the sample-based LP solution over the sample-based LP so-

lution. For comparison purposes, I also compute the absolute percentage error of the

risk-neutral solution relative to the sample-based LP solution. Then for each value of

n and κ, I compute the average and maximum percentage error over all the solutions

generated. The average (and maximum) percentage errors of the risk-neutral solutions

and of the solutions obtained by the continuation method are displayed in Figure 6.3

(Figure 6.4, respectively).

By Figures 6.3 and 6.4, I first see that in all cases and both in terms of the average

errors and maximum errors, my approximations outperform the risk-neutral solutions.

Furthermore, in most cases, the improvements brought by my approximations are sig-

nificant. Indeed, the approximations cut the errors of the risk-neutral solutions often

by 3 to 6 times, although only one step of the continuation method was made at each

κ. Second, I observe that the approximations are quite accurate for all cases of n = 10

and n = 30. However, the approximations do not work well at n = 3, which is similar

to what I observed in the identical products case. Finally, I observe that the average

and maximum errors of the risk-neutral solutions are decreasing in n which confirms

with Proposition 6.
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Figure 6.3: Heterogeneous Products with Independent Demands – Average percentage
error of approximate solutions and risk-neutral solutions.

6.3.2 Impact of Dependent Demands under Risk Aversion

The objective of this subsection is to study the impact of demand dependence on the

optimal order quantity under risk aversion. For this purpose, I first consider a simple

system with two-identical products, then a system with two heterogenous products.

The numerical results here are obtained by sample-based LP.

I choose the following cost parameters for the system with two identical products:

r1 = r2 = 15, c1 = c2 = 10 and s1 = s2 = 7. I assume that demand follows bivari-

ate lognormal distribution, which is generated by exponentiating a bivariate normal

with the parameters µ1 = µ2 = 3, σ1 = σ2 = 0.4724 and a correlation coefficient

of −1,−0.8,−0.6, ..., 1. Thus, the mean and standard deviation of each marginal dis-

tribution are 22.46 and 11.23 respectively, with CV = 0.5. The numerical results are

summarized in Figure 6.5.

I draw the following insights by Figure 6.5: First, the numerical study confirms
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Figure 6.4: Heterogeneous Products with Independent Demands – Maximum percent-
age error of approximate solutions and risk-neutral solutions.

that demand dependence has no impact on the optimal order quantity for the risk-

neutral newsvendor. Second, consistent with our analysis in §4.3, risk aversion reduces

the optimal order quantity for independent demands. This is also true for positively

correlated demands. But interestingly, this may not be true for strongly negatively

correlated demands, where an increased risk aversion can result in a greater optimal

order quantity. In order to explain the intuition behind these counterexamples, let’s

consider two-identical products with perfectly negatively correlated demands, D1 and

D2: A larger order quantity, Q, can increase the strength of the negative correlation

between the sales quantities of min(D1,Q1) and min(D2,Q2), and thus leads to smaller

variability of the total sales, min(D1,Q1) + min(D2,Q2). This intuition is implemented

by my analysis of Case B at §4.6 when the risk-neutral solution for each product is

higher than the median of marginal demand distribution, r̄ > 2c̄. Third, consistent

to our analysis in §4.5, negatively correlated demands result in higher optimal order

quantities than independent demands under risk aversion, while positively correlated
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demand leads to lower optimal order quantity under risk aversion. Finally, the impact

of demand correlation is almost monotonic with small deviations generated by random

sample errors.

Economically, these observations imply that if the firm is risk-averse, then demand

dependence/correlation can have a significant impact on its optimal order quantities.

These observations confirm with the intuition that stronger positively (negatively) cor-

related demands indicate higher (lower) risk, and therefore lead to lower (higher) order

quantities.

For heterogenous products, I consider a simple system with two products and the

following parameters: r1 = 15, c1 = 10, s1 = 7 and r2 = 30, c2 = 10, s2 = 4. The

demand follows bivariate lognormal which is generated by exponentiating a bivariate

normal with µ1 = µ2 = 3, σ1 = 0.4724, σ2 = 1.26864 and a correlation coefficient

of −1,−0.8,−0.6, ..., 1. The marginal demand distribution of product 1 (2) has a mean

22.46 (44.913), a standard deviation 11.23 (89.826), and a cv 0.5 (2). Thus, product 1

is less risky and also less profitable than product 2.
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My numerical study shows that for product 1 with low risk and low profit, the

impact of demand correlation is similar to that for identical products; see Figure 6.6.

However, for product 2 with high risk and high profit, the optimal ordering quantity

always decreases in κ, but not in correlation except minor random sample errors; see

Figure 6.6.

The economic implication is that for heterogenous products, the impact of demand

correlation under risk aversion can be product-specific. Specifically, as the firm be-

comes more risk-averse, it should always order less for the more risky and more prof-

itable products (due to its high risk). However, for the less risky and less profitable

products, while it should order less when demands are positively correlated, it may

order more when demands are strongly negatively correlated.
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6.4 Numerical Analysis for the Multi-Product Model under Expo-

nential Utility Function

The objective of this section is two-fold. First, I demonstrate the accuracy and the con-

vergence rate of the approximations. Second, I confirm the Proposition 9 and provide

additional insights on the interplay between demand dependence and risk aversion.

In all examples considered I also apply sample-based optimization to solve the

resulting stochastic programming problems similar to §6.3. In all our examples I used

T = 1, 000. For the empirical distribution, the corresponding optimization problem

(5.2) has an equivalent nonlinear programming formulation. For each j = 1, . . . , n and

t = 1, . . . ,T , I introduce the variable u jt to represent the salvaged number of product j
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Figure 6.8: Independent Products – Average and maximum percentage errors of ap-
proximate solutions and risk-neutral solutions.

in scenario t. Then I obtain the formulation as follows:

max
1
T

T∑
t=1

[
e−

λ
n
∑n

j=1 Π jt
]

(6.2)

subject to Π jt = (r j − c j)x j − (r j − s j)u jt, j = 1, . . . , n; t = 1, . . . ,T,

x j − d jt ≤ u jt, j = 1, . . . , n; t = 1, . . . ,T,

u jt ≥ 0, j = 1, . . . , n; t = 1, . . . ,T,

x j ≥ 0, j = 1, . . . , n.

6.4.1 Accuracy of Approximation

In this subsection, I test the accuracy of the closed-form approximations of §5.2.2 on

ten randomly selected problems. For each problem, I calculated sample-based nonlin-

ear programming solution by CPLEX and an approximation solution by the continua-

tion method at §5.2.3. At each value of λ
n = 0.005, 0.01, 0.015, 0.02, 0.025, I made just

one step of the straightforward approximation starting from the risk-neutral solution

and continuation method. Similar to the results §6.3.1, the continuation method is also
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Figure 6.9: Impact of Demand Correlation under Risk Aversion for the Product with
Low Risk and Low Profit.

much more stable and accurate than the straightforward approximation method starting

from the risk-neutral solution especially for lower values of λ
n .

For each instance, I compute the average and maximum percentage errors of the

approximate solution relative to the sample-based nonlinear programming solution for

each value of λ
n . Then, for comparison purposes, I also compute the average and max-

imum percentage errors of the risk-neutral solution relative to the sample-based non-

linear programming solution. These errors are displayed in Figure 6.8. I see that for

both of the average and maximum percentage errors, my approximations outperform

the risk-neutral solutions by 3 to 5 times in all cases of the ratio. Then I observe that

the average and maximum errors of risk-neutral solution and my approximation are

decreasing in λ
n . These results are well in harmony with those at the case with coherent

measures of risk.
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6.4.2 Impact of Dependent Demands under Risk Aversion

The objective of this section is to study the impact of demand correlation on the opti-

mal ordering amount under risk aversion. For this purpose, I consider a two-product

system and the numerical results are obtained by the sample nonlinear programming

problem. I choose the following parameters for the system: r1 = 15, c1 = 10, s1 = 7

and r2 = 30, c2 = 10, s2 = 4 with λ = 0.02, 0.04, 0.06, 0.08, 0.1. I also assume that

demand follows bivariate lognormal distribution, which is generated by exponentiating

a bivariate normal with the parameters µ1 = µ2 = 3 and σ1 = 0.4724, σ2 = 1.2684

to achieve the desirable coefficients of variance (CV) of 0.5 and 2. From this setting,

product 1 (product 2) represents less (more) profitable and less (more) risky. The nu-

merical results are summarized in Figures 6.9 and 6.10 and I can draw the following

insights.

First, consistent with my analysis, risk aversion reduces the optimal order quantity
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for independent demands. This is also true for positively correlated demands. How-

ever, this may not be true for strongly negatively correlated demands, which is consis-

tent with the intuition provided at section §6.3.2 and my analysis of the special cases

at section §5.4. Second, consistent to my analysis, negatively correlated demands re-

sult in higher optimal order quantities than independent demands under risk aversion,

while positively correlated demands lead to lower optimal order quantities under risk

aversion. Third, for heterogenous products, the impact of demand correlation under

risk aversion can be very different depending on the product heterogeneity. Forth, the

impact of demand correlation is almost monotone with small deviations due to random

sample errors. Last, all the above insights and economic implications are very similar

to those with coherent measures of risk. One reason is that, in problem formulation the

two models at Chapter 4 and 5 are only different from the risk measures used and the

two risk measures share Convexity and Monotonicity axioms. Although many proper-

ties are alike and overlapped, the two models have similarities and differences, which

are summarized at Chapter 7.
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Chapter 7

Conclusion

I study single- and multi-product risk-averse newsvendor models under two risk mea-

sures, general coherent measures of risk and exponential utility function.

I formulate single-product models with the two risk measures, respectively. I study

the impact of risk aversion on the optimal ordering quantity. Then I obtain closed-form

optimal solutions under general coherent measures of risk and closed-form approxima-

tion under an exponential utility function. For the impact of risk aversion, the optimal

ordering quantity decreases as the degree of risk aversion increases under both the two

risk measures. This phenomenon can be explained that big ordering amount may in-

crease the chance of getting higher revenue, but also increase the risk of being left

as salvage items. Such trade-off relationship is very natural and the latter effect be-

comes more important as a newsvendor becomes more risk-averse. Thus, the more

risk-averse newsvendor is, the less the optimal ordering quantity is, consequently. This

is well consistent with our insights and typical findings from literature.

The multi-product newsvendor problem with coherent measures of risk does not

decompose into independent problems, one for each product. The portfolio of products

has to be considered as a whole. My analytical results focus on the impacts of risk aver-

sion and demand dependence on the optimal order quantity. When product demands

are independent, I analyze the asymptotic behavior of the optimal risk-averse solution

with respect to the number of products and simple and accurate approximations of the

optimal order quantities for a large number of products. For dependent demands case, I
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derive analytical and numerical insights how risk aversion and demand dependence in-

teract to each other and affect to the optimal solution. My numerical examples confirm

the accuracy of these approximations and enriches our understanding of the interplay

of demand dependence and risk aversion.

The multi-product newsvendor with exponential utility function can be decom-

posable if the product demands are independent, otherwise not decomposable. When

product demands are independent, I obtain closed-form approximations for sufficiently

small ratios of the number of products to the degree of risk aversion and prove asymp-

totic behaviors of the solution with respect to the ratio of the degree of risk aversion to

the number of products. For dependent demands case, I study the exponential utility

function model by the similar way done with coherent measures of risk. My numerical

examples also confirm the accuracy of the approximations and add understanding the

interplay of demand dependence and risk aversion in a similar way done with coherent

measures of risk. These results are in harmony with chapter 4 where coherent measures

of risk are used.

1. Product Decomposability

Under coherent measures of risk, the multi-product problem is not decomposable

to each product, even if product demands are independent. For exponential util-

ity function, when product demands are independent, the multi-product model

can be separated into each single-product model and is equivalent to multiple

individual single-product models.

2. The Monotonicity of the Impact of Risk Aversion

Under coherent measures of risk, the monotonicity of the impact of risk aver-

sion is proved only under the assumptions of independent demands and identical

products. However, under exponential utility function, the same proposition is

proved under the assumption of independent demands, even if the products con-

sidered are heterogenous.
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3. Asymptotic Behaviors

When the degree of risk aversion is zero, the exponential utility function ap-

proach does not work. However, when the degree of risk aversion converges to

zero, the corresponding risk-neutral solution asymptotically optimal. In another

extreme case, when the degree of risk aversion goes to infinity, the optimal so-

lution converges to zero in the exponential utility function. On the other hand,

under coherent measures of risk, the multi-product model is always defined at

the zero degree of risk aversion where the corresponding risk-neutral solution is

optimal regardless of demand dependency. For coherent measures of risk, the

degree of risk aversion always has a finite value because it is defined only in a

limited range to satisfy all the four axioms.

4. Closed-Form Approximations

In the exponential utility function, the degree of risk aversion and the number

of products are not considered separately, but affect the solution via the ratio

of the degree of risk aversion to the number of products
(
λ
n

)
. Then, I obtain a

closed-form approximation for sufficiently small
(
λ
n

)
. On the other hand, under

coherent measures of risk, these two factors are clearly separated. Thus, a closed-

form approximation is always obtained for sufficiently large number of products

regardless of the degree of risk aversion. This is also consistent with that, under

coherent measures of risk, the degree of risk aversion is only defined at a certain

limited range of finite values.

5. Dependent Demands Case

When product demands are dependent, the multi-product models are not gener-

ally decomposable under both models and demand dependence has significant

impacts on optimal order quantities. For the impact of demand correlation under

risk aversion, I am able to prove that one tends to decrease (or increase) the order

quantity in case of positively (or negatively) dependent demands relative to the
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case of independent demands with exponential utility function. However, with

coherent measures of risk, the same proposition is proved only in two-identical

product systems. In addition, the impact of demand correlation under risk aver-

sion can be very different in both models when the heterogeneity increases be-

tween products. For the impact of risk aversion, the optimal order quantity de-

creases in risk aversion for both models with independent or positively correlated

demands cases. When the demand has highly negative correlations, risk-averse

solutions may be equal to, higher than or lower than risk-neutral solution in both

models. In §4.6 and §5.4, I discuss three special cases of perfectly negative de-

mand correlation in two-identical product systems with each risk measure.

It is appropriate to conclude my dissertation by comparing the multi-product risk-

averse newsvendors to the risk-averse portfolio optimization problem. In a portfolio

problem, there are n assets with random returns R1, . . . ,Rn and the objective is to

determine optimal investment quantities x1, . . . , xn to obtain the best desirable char-

acteristics of the total portfolio return P(x,R) = R1x1 + · · · + Rnxn. In the classical

mean–variance approach of Markowitz (1952 and 1959), the mean of the return and

its variance are used to find efficient portfolio allocations. See also Elton, Gruber,

Brown and Goetzmann (2006). In more modern approaches (refer to Konno and Ya-

mazaki (1991), Mansini, Ogryczak and Speranza (2003), Ruszczyński and Vander-

bei (2003) and Miller and Ruszczyński (2008)) more general mean–risk models and

coherent measures of risk are used, similarly to problem (5.2). There are, however,

fundamental structural differences which make the multi-product newsvendor problem

significantly different from the financial portfolio problem.

The most important difference is that the portfolio return P(x,R) is linear with

respect to the decision vector x, while the newsvendor profit Π(x,D) is concave and

nonlinear with respect to the order quantities x. This leads to the following different

properties of the problems.
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• The risk-neutral portfolio problem has no solution, unless the total amount in-

vested is restricted (e.g., to 1), in which case the optimal solution is to invest

everything in the asset(s) having highest expected returns. On the contrary, the

risk-neutral newsvendor problem always has a solution because of natural limi-

tations of the demand only except the trivial case of zero degree of risk aversion

with exponential utility function.

• The effect of using risk measures in the portfolio problem is a diversification of

the solution, which otherwise would remain completely non-diversified. In the

newsvendor problems the use of risk measures results in changes of the already

diversified risk-neutral solution, by ordering more of products having less vari-

able or negatively correlated demands and less of products having more variable

or positively correlated demands. The optimal order quantity for each product is

unlikely to be zero due to risk aversion, because very small amounts will almost

always be sold and thus they introduce very little risk.

• In the portfolio problem, independently of the number of assets considered, the

risk-neutral solution remains structurally different from the risk-averse solution.

On the contrary, in the newsvendor models, the number of products affects to the

optimal order quantity with coherent measures of risk. For exponential utility

function, the number of products affects to the optimal solution via the form of(
λ
n

)
. For the asymptotic behaviors with coherent measures of risk, the risk-neutral

solution converges to the optimal solution under risk aversion as the number of

products goes to infinity. On the other hand, when
(
λ
n

)
converges to zero, the risk-

neutral solution is asymptotically optimal under risk aversion with exponential

utility function.

Finally it is worth stressing that the nonlinearity of the newsvendor profit Π(x,D) is

the source of formidable technical difficulties in the analysis of the composite functions

(4.5), which involves two nondifferentiable functions.
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[21] Choi, S., A. Ruszczyński and Y. Zhao (2009). A Multi-Product Risk-Averse
Newsvendor with Law Invariant Coherent Measures of Risk. Working Paper, Rut-
gers University.
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