
Journal of Scheduling (2019) 22:567–580

https://doi.org/10.1007/s10951-019-00599-6

Risk-averse single machine scheduling: complexity and approximation

Adam Kasperski1 · Paweł Zieliński2
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Abstract

In this paper, a class of single machine scheduling problems is considered. It is assumed that job processing times and due

dates can be uncertain and they are specified in the form of discrete scenario set. A probability distribution in the scenario

set is known. In order to choose a schedule, some risk criteria such as the value at risk and conditional value at risk are used.

Various positive and negative complexity results are provided for basic single machine scheduling problems. In this paper,

new complexity results are shown and some known complexity results are strengthened.

Keywords Single machine · Value at risk · Conditional value at risk · Computational complexity · Approximation algorithms ·

Robust scheduling

1 Introduction

Scheduling under risk and uncertainty has attracted consider-

able attention in the recent literature. In practical applications

of scheduling models, the exact values of input parame-

ters, such as job processing times or due dates, are often

unknown in advance. Hence, a solution must be computed,

before the true realization of the input data is revealed.

Typically, a scenario set U is a part of the input, which

contains all possible realizations of the problem parame-

ters, called scenarios. If the probability distribution in U is

unknown, then robust optimization framework can be applied

and solution performance in a worst case is optimized. First

robust scheduling problems have been discussed in Daniels

and Kouvelis (1995), Kouvelis and Yu (1997) and Yu and

Kouvelis (1993). Two uncertainty representations, namely

discrete and interval ones, were considered. In the former,

scenario set U contains a finite number of distinct scenar-

ios. In the latter, for each uncertain parameter an interval of
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its possible values is specified and U is the Cartesian prod-

uct of these intervals. In order to compute a solution, the

minmax and minmax regret criteria can be applied. Min-

max (regret) scheduling problems have various complexity

properties, depending on the cost function and the uncer-

tainty representation [see, e.g., Averbakh (2000), Lebedev

and Averbakh (2006), Kasperski (2005), Aissi et al. (2011)

and Drwal and Rischke (2016)]. For a survey of minmax

(regret) scheduling problems we refer the reader to Kasper-

ski and Zieliński (2014).

The robust scheduling models have well-known draw-

backs. Minimizing the maximum cost can lead to very

conservative solutions. The reason is that the probability

of occurrence of the worst scenario may be very small

and the information connected with the remaining scenar-

ios is ignored while computing a solution. One method

of overcoming this drawback was given in Kasperski and

Zieliński (2016), where the OWA criterion, proposed in

Yager (1988), was applied to compute an optimal schedule.

In this approach, a set of weights is specified by the decision

maker, which reflect his attitude toward a risk. The OWA

operator contains the maximum, average and Hurwicz crite-

ria as special cases. However, it does not take into account

a probabilistic information, which may be available for sce-

nario set U .

In the case, when a probability distribution in U is known,

the stochastic scheduling models are considered. The param-

eters of scheduling problem are then random variables with

known probability distributions. Under this assumption, the

expected solution performance is typically optimized [see,
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e.g., Möhring et al. (1999), Pinedo (2008), Skutella and Uetz

(2005) and Skutella et al. (2016)]. However, this criterion

assumes that the decision maker is risk neutral and leads to

solutions that guarantee an optimal long-run performance.

Such a solution may be questionable, for example, if it is

implemented only once [see, e.g., Kouvelis and Yu (1997)].

In this case, the decision-maker attitude toward a risk should

be taken into account.

In Krokhmal et al. (2002), a criterion called conditional

value at risk (CVaR) was applied to a stochastic portfolio

selection problem. Using this criterion, the decision maker

provides a parameter α ∈ [0, 1), which reflects his attitude

toward a risk. When α = 0, then CVaR becomes the expec-

tation. However, for greater value of α, more attention is

paid to the worst outcomes, which fits into the robust opti-

mization framework. The conditional value at risk is closely

connected with the value at risk (VaR) criterion [see, e.g.,

Pflug (2000)], which is just the α-quantile of a random out-

come. Both risk criteria have attracted considerable attention

in stochastic optimization [see, e.g., Natarajan et al. (2014),

Chang et al. (2017), Nikolova (2010) and Ogryczak (2012)].

This paper is motivated by the recent papers (Sarin et al.

2014; Atakan et al. 2017), in which the following stochastic

scheduling models were discussed. We are given a scheduling

problem with discrete scenario set U . Each scenario ξi ∈ U

is a realization of the problem parameters (for example, pro-

cessing times and due dates), which can occur with a known

positive probability Pr[ξi ]. The cost of a given schedule is

a discrete random variable with the probability distribution

induced by the probability distribution in U . The VaR and

CVaR criteria, with a fixed level α, are used to compute a

best solution.

In Sarin et al. (2014) and Atakan et al. (2017), solution

methods, based on mixed integer programming models, were

proposed to minimize VaR and CVaR in scheduling prob-

lems with the total weighted tardiness criterion. The aim of

this paper is to analyze the models discussed in Sarin et al.

(2014) and Atakan et al. (2017) from the complexity point of

view. We will consider the class of single machine schedul-

ing problems with basic cost functions, such as the maximum

tardiness, the total flow time, the total tardiness and the num-

ber of late jobs. We will discuss also the weighted versions of

these cost functions. We provide a picture of computational

complexity for all these problems by proving some posi-

tive and negative complexity results. Since VaR and CVaR

generalize the maximum criterion, we can use some results

known from robust minmax scheduling. The complexity

results for the minmax versions of single machine schedul-

ing problems under discrete scenario set were obtained in

Aissi et al. (2011), Aloulou and Croce (2008), Daniels and

Kouvelis (1995) and Mastrolilli et al. (2013). In this paper,

we will show that some of these results can be strength-

ened.

This paper is organized as follows. In Sect. 2, we recall

the definitions of the VaR and CVaR criteria and show their

properties, which will be used later on. In Sect. 3, the prob-

lems discussed in this paper are defined. In Sect. 4, some

general relationships between the problems with various risk

criteria are shown. Finally, Sects. 5 and 6 contain some new

negative and positive complexity results for the considered

problems. These results are summarized in the tables pre-

sented in Sect. 3.

2 The risk criteria

Let Y be a random variable. We will consider the following

risk criteria (Pflug 2000; Rockafellar and Uryasev 2000):

• Value at risk (α-quantile of Y ):

VaRα[Y ] = inf{t : Pr[Y ≤ t] ≥ α}, α ∈ (0, 1],

• Conditional value at risk:

CVaRα[Y ] = inf

{

γ +
1

1 − α
E[Y − γ ]+ : γ ∈ R

}

,

α ∈ [0, 1),

where [x]+ = max{0, x}. Assume that Y is a discrete ran-

dom variable taking nonnegative values b1, . . . , bK . Then,

VaRα[Y ] and CVaRα[Y ] can be computed by using the fol-

lowing programs, respectively [see, e.g., Atakan et al. (2017),

Ogryczak (2012) and Rockafellar and Uryasev (2000)]:

(a) min θ (b) min γ +
1

1 − α

∑

i∈[K ]

Pr[Y = bk ]uk

s.t. bk − θ ≤ Mβk , k ∈ [K ] s.t. γ + uk ≥ bk , k ∈ [K ]
∑

k∈[K ]

Pr[Y = bk ]βk ≤ 1 − α uk ≥ 0, k ∈ [K ]

βk ∈ {0, 1}, k ∈ [K ] (1)

where M ≥ max{b1, . . . , bK } and [K ] = {1, . . . , K }. Notice

that (1)b is a linear programming problem. In the following,

we will use the following dual to (1)b:

max
∑

k∈[K ]

bkrk

s.t.
∑

k∈[K ]

rk = 1

0 ≤ rk ≤ Pr[Y=bk ]
1−α

, k ∈ [K ]

(2)

The equality constraint in (2) follows from the fact that γ

is real-valued decision variable in (1)b. Substituting rk =
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Fig. 1 A computation of CVaR0.5[Y ] for Y taking the values of 13, 29,

33, 22 and 36 with the probabilities 0.3, 0.2, 0.1, 0.1, 0.3, respectively,

where Pr[Y = bk ] = pk . The value of CVaR0.5[Y ] is the gray area

divided by 1 − α = 0.5

qk/(1 − α) into (2), we get the following equivalent formu-

lation for CVaRα[Y ]:

max
1

1 − α

∑

k∈[K ]

bkqk

s.t.
∑

k∈[K ]

qk = 1 − α

0 ≤ qk ≤ Pr[Y = bk], k ∈ [K ]

(3)

Program (3) can be solved by using a greedy method, which

is illustrated in Fig. 1. Namely, we fix the optimal values of qk

by greedily distributing the amount 1 − α among the largest

values of bi . It is easy to see that CVaR0[Y ] = E[Y ] =
∑

k∈[K ] bkPr[Y = bk]. On the other hand, CVaR1−ǫ[Y ] =

VaR1[Y ] = Max[Y ] = maxk∈[K ] bk for sufficiently small

ǫ > 0 and any probability distribution.

We now show several properties of the risk measures

which will be used later on in this paper.

Lemma 1 Let Y be a discrete random variable which can take

K nonnegative values b1, . . . , bK . The following inequalities

hold for each α ∈ [0, 1):

E[Y ] ≤ CVaRα[Y ] ≤ min

{

1

Prmin
,

1

1 − α

}

E[Y ], (4)

where Prmin = mink∈[K ] Pr[Y = bk].

Proof Fix α ∈ [0, 1). The inequality E[Y ] ≤ CVaRα[Y ]

follows directly from the definition of the expected value

and the conditional value at risk. We now prove the second

inequality. Let r∗
1 , . . . r∗

k be the optimal values in (2). Then,

the inequality

CVaRα[Y ] =
∑

k∈[K ]

r∗
k bk ≤

∑

k∈[K ]

Pr[Y = bk]

(1 − α)
bk

=
1

1 − α
E[Y ]

holds. Since the value of CVaRα[Y ] is a convex combination

of b1, . . . , bk (see (2)), we have CVaRα[Y ] ≤ Max[Y ] =

bmax ≤
∑

k∈[K ]
Pr[Y=bk ]

Prmin
bk = 1

Prmin
E[Y ], and the lemma

follows. ⊓⊔

Lemma 2 Let X and Y be two discrete random vari-

ables taking nonnegative values a1, . . . , aK , and b1, . . . , bK ,

respectively, with Pr[X = ai ] = Pr[Y = bi ] and ai ≤

γ bi for each i ∈ [K ] and some fixed γ ≥ 0. Then

CVaRα[X ] ≤ γ CVaRα[Y ] for each α ∈ [0, 1) and

VaRα[X ] ≤ γ VaRα[Y ] for each α ∈ (0, 1].

Proof Let us compute CVaRα[X ] by using (2) and denote by

r∗
k , k ∈ [K ], the optimal values in (2). Then, CVaRα[X ] =

∑

k∈[K ] r∗
k ak ≤ γ

∑

k∈[K ] r∗
k bk ≤ γ CVaRα[Y ]. Let us com-

pute VaRα[Y ] by solving the problem (1)a. Let θ∗, β∗
k ,

k ∈ [K ], be an optimal solution to (1)a. Since γ ≥ 0, the

constraint γ bk − γ θ∗ ≤ γ Mβ∗
k holds for each k ∈ [K ]. By

ak ≤ γ bk for each k ∈ [K ], we get ak −γ θ∗ ≤ M ′β∗
k , where

M ′ = γ M ≥ max{a1, . . . , aK }, k ∈ [K ]. In consequence,

ak − γ θ∗ ≤ M ′β∗
k k ∈ [K ]

∑

k∈[K ]

Pr[X = ak] · β∗
k ≤ 1 − α (5)

and VaRα[X ] ≤ γ θ∗ = γ VaRα[Y ]. ⊓⊔

3 Problem formulations

We are given a set J of n jobs, which can be partially ordered

by some precedence constraints. Namely, i → j means that

job j cannot start before job i is completed. For each job

j ∈ J , a nonnegative processing time p j , a nonnegative due

date d j and a nonnegative weight w j can be specified. A

schedule π is a feasible (i.e., preserving the precedence con-

straints) permutation of the jobs and 	 is the set of all feasible

schedules. We will use C j (π) to denote the completion time

of job j in schedule π . Obeying the standard notation, we

will use T j (π) = [C j (π) − d j ]
+ to define the tardiness of j

in π , and U j (π) = 1 if C j (π) > d j (job j is late in π ) and

U j (π) = 0 (job j is on-time in π ), otherwise. In the deter-

ministic case, we seek a schedule π ∈ 	 that minimizes

a given cost function f (π). The basic cost functions are the

total flow time
∑

j∈J C j (π), the total tardiness
∑

j∈J T j (π),

the maximum tardiness max j∈J T j (π) and the total number

of late jobs
∑

j∈J U j (π). We can also consider the weighted

versions of these functions. Scheduling problems P will be
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Fig. 2 A sample scheduling

problem 1||
∑

C j with 5

processing time scenarios

denoted by means of the standard Graham’s notation [see,

e.g., Brucker (2007)].

In this paper, we assume that job processing times and

due dates can be uncertain. The uncertainty is modeled by a

discrete scenario set U = {ξ1, ξ2, . . . , ξK }. Each realization

of the parameters ξ ∈ U is called a scenario. For each sce-

nario ξ ∈ U , a probability Pr[ξ ] of its occurrence is known.

Without loss of generality, we can assume Pr[ξ ] > 0. We

will use p j (ξ) and d j (ξ) to denote the processing time and

due date of job j under scenario ξ ∈ U , respectively. We will

denote by C j (π, ξ), T j (π, ξ) and U j (π, ξ) the completion

time, tardiness and unit penalty of job π , respectively, under

scenario ξ ∈ U . Also, f (π, ξ) stands for the cost of schedule

π under scenario ξ ∈ U . Given a feasible schedule π ∈ 	,

we denote by F(π) a random cost of π . Notice that F(π) is

a discrete random variable with the probability distribution

induced by the probability distribution in U .

For a fixed value of α, we can compute a performance

measure of π , namely the expected cost E[F(π)], the max-

imum cost Max[F(π)], the value at risk VaRα[F(π)] and

the conditional value at risk CVaRα[F(π)]. A sample prob-

lem 1||
∑

C j with 4 jobs and 5 processing time scenarios is

shown in Fig. 2. Let π = (1, 2, 3, 4). It is easily seen that

E[F(π)] = 26, VaR0.5[F(π)] = 29, CVaR0.5[F(π)] = 34

and Max[F(π)] = 36.

In this paper, we will study the problems Min−VaRα P ,

Min−CVaRα P , Min−Exp P , and Min−Max P , in which

we minimize the corresponding performance measure for

a fixed α and a specific single machine scheduling prob-

lem P , under a given scenario set U . Notice that the

robust Min−Max P problem is a special case of both

Min−VaRα P and Min−CVaRα P . Also, Min−Exp P is

a special case of Min−CVaRα P .

In the next sections, we provide a number of new posi-

tive and negative complexity and approximation results for

basic single machine scheduling problems P . Tables 1, 2

and 3 summarize the known and new results. In Table 1,

the negative results for uncertain due dates and deterministic

processing times are shown. In Table 2, the negative results

for uncertain processing times and deterministic due dates

are presented. Finally, in Table 3, some positive results are

shown.

4 Some general properties

In this section, we will show some general relationships

between the problems with various performance criteria.

These properties will be used later to establish some posi-

tive and negative complexity results for particular problems.

Theorem 1 The following statements hold:

1. If Min−Exp P is approximable within σ > 1(for σ = 1

it is polynomially solvable), then Min−CVaRα P is

approximable within σρ, where ρ = min{ 1
Prmin

, 1
1−α

},

for each constant α ∈ [0, 1).

2.a If Min−Exp P with K -scenarios is (strongly) NP-hard,

then Min−CVaRα P with K + 1 scenarios is also

(strongly) NP-hard for each constant α ∈ [0, 1).

2.b If Min−Exp P with K -scenarios is hard to approximate

within ρ > 1, then Min−CVaRα P with K + 1 scenar-

ios is also hard to approximate within ρ > 1 for each

constant α ∈ [0, 1).

Proof We first prove assertion 1. Let π∗ minimize the

expected cost and π ′ minimize the conditional value at risk

for a fixed α ∈ [0, 1). We will denote by π̂ a σ -approximation

schedule for Min−Exp P . Using Lemma 1 we get

CVaRα[F(π̂)] ≤ ρE[F(π̂)] ≤ σρE[F(π∗)]

≤ σρE[F(π ′)] ≤ σρCVaRα[F(π ′)],

and the assertion follows.
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Table 1 Complexity results for uncertain due dates (processing times are deterministic)

P Min−Exp P Min−VaRα P Min−CVaRα P Min−Max P

1|p j = 1| max T j Str. NP-hard not appr. within
7
6

− ǫ, ǫ > 0 (Kasperski and

Zieliński 2016)

Str. NP-hard not at all appr.

for any α ∈ (0, 1)

Str. NP-hard not appr.

within 7
6

− ǫ, ǫ > 0

for any α ∈ [0, 1)

Poly. sol. (Kasperski

and Zieliński 2016)

1|p j = 1|
∑

U j Poly sol. (assignment) Str. NP-hard not at all appr.

for any α ∈ (0, 1)

Str. NP-hard for any

α ∈ (0, 1)

Str. NP-hard not appr.

for any constant γ > 1

1||
∑

U j NP-hard As above As above As above

1|p j = 1|
∑

T j Poly sol. (assignment) Str. NP-hard not at all appr.

for any α ∈ (0, 1)

Str. NP-hard for any

α ∈ (0, 1)

Str. NP-hard not appr.

within 5
4

− ǫ, ǫ > 0

1||
∑

T j Str. NP-hard As above As above As above

Table 2 Complexity results for uncertain processing times (the due dates are deterministic)

P Min−Exp P Min−VaRα P Min−CVaRα P Min−Max P

1||
∑

C j Poly sol. Str. NP-hard not appr.

within 6
5

− ǫ, ǫ > 0

Str. NP-hard for

any α ∈ (0, 1)

Str. NP-hard not appr. within 6
5

− ǫ,

ǫ > 0 (Kouvelis and Yu 1997;

Mastrolilli et al. 2013)

1||
∑

U j Open Str. NP-hard for any

α ∈ (0, 1]

Str. NP-hard for

any α ∈ (0, 1)

Str. NP-hard

1||
∑

T j NP-hard (Lawler 1977) Str. NP-hard not appr.

within 6
5

− ǫ, ǫ > 0

Str. NP-hard for

any α ∈ (0, 1)

Str. NP-hard not appr. within 6
5

− ǫ,

ǫ > 0

Table 3 Positive complexity results

P Min−Exp P Min−VaRα P Min−CVaRα P Min−Max P

1|prec| max w j T j with d̃ j , p̃ j , w j O( f K
max K n2) FPTAS

for const. K

O( f K
max K n2) FPTAS

for const. K

O( f K
max K n2)

FPTAS for const.

K

O(K n2) (Kasperski and

Zieliński 2016)

1|prec|
∑

w j C j with p̃ j , w j As the determ. problem Appr. within 2 for const.

K

Appr. within 2 Appr. within 2 (Mastrolilli

et al. 2013)

1|prec∗|
∑

w j C j with p̃ j , w j Poly sol. Appr. within 2 for const.

K

Appr. within

min{ 1
1−α

, 2}

Appr. within 2 (Mastrolilli

et al. 2013)

1|p j = 1|
∑

w j U j with d̃ j , w j Poly sol. – Appr. within

min{ 1
Prmin

, 1
1−α

}
Appr. within K

1||
∑

w j U j with d̃ j , p j , w j Appr. within 4 + ǫ,

ǫ > 0

– Appr. within

min{ 4+ǫ
Prmin

, 4+ǫ
1−α

}

Appr. within (4 + ǫ)K ,

ǫ > 0

1|p j = 1|
∑

w j T j with d̃ j , w j Poly sol. – Appr. within

min{ 1
Prmin

, 1
1−α

}

Appr. within K

1||
∑

w j T j with d̃ j , p j , w j Appr. within 4 + ǫ,

ǫ > 0

– Appr. within

min{ 4+ǫ
Prmin

, 4+ǫ
1−α

}

Appr. within (4 + ǫ)K ,

ǫ > 0

d j (d̃ j ), p j ( p̃ j ) and w j stand for deterministic (uncertain) due dates, processing times and weights, respectively, in problem P; fmax is an upper bound

on the cost of any schedule under any scenario; prec∗ is a polynomially solvable structure of the precedence constraints; Prmin = mink∈[K ] Pr[ξk ]

In order to prove assertion 2, consider an instance of

Min−Exp P with U = {ξ1, . . . , ξK }. Fix α ∈ (0, 1) (the

statement trivially holds for α = 0) and add one additional

scenario ξ ′ under which the cost of each schedule is 0. (For

example, all job processing times are 0 under ξ ′.) We fix

Pr′[ξ ′] = α and Pr′[ξi ] = Pr[ξi ] · (1 − α) for each i ∈ [K ].

Denote by F′(π) the random cost of π under the new scenario

set U ′. For each schedule π , we get (see Fig. 3):

CVaRα[F′(π)] =
1

1 − α

∑

i∈[K ]

Pr′[ξi ] f (π, ξi )

=
∑

i∈[K ]

Pr[ξi ] f (π, ξi ) = E[F(π)].

Hence, there is a cost preserving reduction from Min−Exp P

with K scenarios to Min−CVaRα P with K + 1 scenarios

and the theorem follows. ⊓⊔
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Fig. 3 Illustration of the proof of Theorem 1

Theorem 2 Assume that w j = 1 for each job j ∈ J in

problem P . The following statements hold:

1.a If Min–Max P with K ≥ 2 scenarios is (strongly)

NP-hard, then Min−VaRα P with K + 1 scenarios is

(strongly) NP-hard for each constant α ∈ (0, 1].

1.b If Min–Max P with K ≥ 2 scenarios is hard to approx-

imate within ρ > 1, then Min−VaRα P with K + 1

scenarios is hard to approximate within ρ > 1 for each

constant α ∈ (0, 1].

2. If Min–Max P with K ≥ 2 scenarios is (strongly) NP-

hard, then Min−CVaRα P with K + 1 scenarios is

(strongly) NP-hard for each constant α ∈ (0, 1)

Proof Choose an instance of the Min−Max P problem with

U = {ξ1, . . . , ξK }, K ≥ 2. Fix α ∈ (0, 1) and create U ′

by adding to U a dummy scenario ξ ′ such that the cost of

each schedule under ξ ′ equals M and M ≥ f (π, ξi ) for each

i ∈ [K ] and each π ∈ 	. It is enough to fix p j (ξ
′) =

pmax and d j (ξ
′) = dmin for each job j ∈ J , where pmax =

max j∈J ,i∈[K ] p j (ξi ) is the maximum job processing time and

dmin = min j∈J ,i∈[K ] d j (ξi ) is the minimum due date over

all scenarios. For each of the two assertions, we define an

appropriate probability distribution in U ′. We will use F′(π)

to denote the random cost of π under U ′.

In order to prove statement 1, we fix Pr[ξ ′] = 1 − α and

Pr[ξi ] = α
K

for each i ∈ [K ] (see Fig. 4a). The equality

VaRα[F′(π)] = Max[F(π)] holds. Hence, there is a cost

preserving reduction from Min−Max P with K scenarios

to Min−VaRα P with K + 1 scenarios and the statement

follows. Note that statement 1 holds trivially for α = 1.

Let us now prove statement 2. Assume first that 1−α < 1
K

.

Define Pr[ξi ] = 1
K

for each i ∈ [K ] and Pr[ξ ′] = 0.

The dummy scenario is not used in this case. We get

CVaRα[F′(π)] = Max[F(π)] and the statement is true.

Consider the case, when 1 − α ≥ 1
K

. Fix Pr[ξ ′] = γ and

Pr[ξi ] = β for each i ∈ [K ], where γ and β satisfy the

following system of equations (see Fig. 4b):

{

β + γ = 1 − α

Kβ + γ = 1

In consequence, β = α
K−1

and γ = 1 − Kα
K−1

. Observe that

β > 1 as α ∈ (0, 1) and K ≥ 2, and γ ≥ 0, because
Kα

K−1
≤ 1.

For each schedule π , we get

CVaRα[F′(π)] =
1

1 − α
(β · Max[F(π)] + γ M).

Hence, Min−Max P and the corresponding instance of

Min−CVaRα P have the same optimal solutions and the

theorem follows. ⊓⊔

5 Negative complexity results

In this section, we will prove some negative complexity

results for basic single machine scheduling problems. These

results are summarized in Tables 1 and 2.

5.1 Uncertain due dates

We first address the problem of minimizing the value at risk

criterion. The following theorem characterizes the complex-

ity of some basic problems:

Theorem 3 For each α ∈ (0, 1), Min−Varα P is strongly

NP-hard and not at all approximable, when P ∈ {1|p j =

1| max T j , 1|p j = 1|
∑

T j , 1|p j = 1|
∑

U j } and only due

dates are uncertain.

Proof Consider an instance of the following NP-hard Min

3- Sat problem (Kohli et al. 1994; Avidor and Zwick 2002).

We are given boolean variables x1, . . . , xn , a collection of

clauses C1, . . . Cm , where each clause is a disjunction of at

most 3 literals (variables or their negations), and we ask if

there is an assignment to the variables which satisfies at most

L < m clauses. We can ask equivalently, if there is an assign-

ment to the variables for which at least l = m − L clauses

are not satisfied.

Given an instance of Min 3- Sat, we create two jobs Jxi

and Jx i
for each variable xi , i ∈ [n]. A due date scenario ξi

corresponds to clause Ci = (l1 ∨ l2 ∨ l3) and is formed as

follows. For each q = 1, 2, 3, if lq = x j , then the due date

of Jx j
is 2 j −1 and the due date of Jx j

is 2 j ; if lq = x j , then

the due date of Jx j
is 2 j and the due date of Jx j

is 2 j − 1;

if neither x j nor x j appears in Ci , then the due dates of Jx j

and Jx j
are set to 2 j . An example is shown in Table 4.
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(a) (b)

Fig. 4 Illustration of the proof of Theorem 2

Table 4 The set of jobs and the

due date scenarios for the

formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨
x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

ξ1 ξ2 ξ3 ξ4 ξ5

Jx1 1 2 2 1 1

Jx1 2 2 1 2 2

Jx2 4 4 3 3 4

Jx2 3 3 4 4 4

Jx3 6 6 6 5 5

Jx3 5 5 6 6 6

Jx4 8 7 8 8 8

Jx4 8 8 7 8 7

Let us define a subset of the schedules 	′ ⊆ 	

such that each schedule π ∈ 	′ is of the form π =

(J1, J ′
1, J2, J ′

2, . . . , Jn, J ′
n), where J j , J ′

j ∈ {Jx j
, Jx j

} for

j ∈ [n]. Observe that 	′ contains exactly 2n schedules and

each such a schedule corresponds to the assignment to the

variables such that x j = 0 if Jx j
is processed before Jx j

and x j = 1 otherwise. Note that this correspondence is

one-to-one. In the following, we assume that f (π, ξi ) is the

maximum tardiness, or the total tardiness, or the sum of unit

penalties in π under ξi . The reasoning will be the same for

each of these cost functions. If π /∈ 	′, then f (π, ξi ) > 0

for each scenario ξi . Indeed, suppose that π /∈ 	′ and let

J j (J ′
j ) be the last job in π which is not placed properly,

i.e., J j , (J ′
j ) /∈ {Jx j

, Jx j
}. Then, J j (J ′

j ) is late under all sce-

narios. On the other hand, if π ∈ 	′, then the number of

scenarios under which no job is late is equal to the number

of unsatisfiable clauses for the assignment corresponding to

π . Fix α ∈ (0, 1). We will add to U one additional scenario

ξ ′ and define a probability distribution in U , depending on

the fixed α, so that the answer to Min 3- Sat is yes if and

only if there is schedule π for which VaRα[F(π)] ≤ 0. This

will prove the stated result. We consider two cases:

1. l/m ≥ α. We create dummy scenario ξ ′ under which

the due date of all jobs is equal to 0. The probability of

this scenario is equal to l−αm
l

. The probability of each

of the remaining scenarios is equal to 1
m

(1 − l−αm
l

) =
α
l
. Assume that the answer to Min 3- Sat is yes. So,

there is an assignment to the variables which satisfies at

most m − l clauses. By the above construction, there is

a schedule π ∈ 	′ whose cost is positive under at most

m − l scenarios plus the dummy one. It holds

Pr[F(π) > 0] ≤
l − αm

l
+ (m − l)

α

l
= 1 − α.

Hence, Pr[F(π) ≤ 0] ≥ α and VaRα[F(π)] ≤ 0.

Assume that the answer to Min 3- Sat is no. Then, for

every schedule π there are more than m − l scenarios

under which the cost of π is positive plus the dummy one.

Hence, Pr[F(π) > 0] > (1 − α) and Pr[F(π) ≤ 0] < α.

In consequence, VaRα[F(π)] > 0.

2. l/m < α. We create dummy scenario ξ ′ under which the

due date of each job equals 2n. The probability of the

dummy scenario is mα−l
m−l

. The probability of each of the

remaining scenarios is equal to 1
m

(1 − mα−l
m−l

) = 1−α
m−l

.

Assume that the answer to Min 3- Sat is yes. So, there

is an assignment to the variables which satisfies at most

m − l clauses. By the construction, there is a schedule

π whose cost is positive under at most m − l scenarios.

Hence,

Pr[F(π) ≤ 0] = 1 − Pr[F(π) > 0]

≥ 1 − (m − l)
1 − α

m − l
= α

and VaRα[F(π)] ≤ 0. Assume that the answer to Min

3- Sat is no. Then, for each assignment more than m − l

clauses are satisfied. By the construction, for every sched-

ule π there are more than m − l scenarios under which

the cost π is positive. Therefore, Pr[F(π) > 0] >

(m − l) 1−α
m−l

= (1 − α) and Pr[F(π) ≤ 0] < α, so

VaRα[F(π)] > 0. ⊓⊔

It follows from Theorem 3 that the problem Min−Varα 1

||
∑

w j T j , discussed in Atakan et al. (2017), is strongly
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Table 5 The set of jobs and the due date scenarios for the formula (x1 ∨

x2 ∨x3)∧(x2 ∨x3∨x4)∧(x1∨x2 ∨x4)∧(x1∨x2 ∨x3)∧(x1∨x3∨x4).

Schedule π = (Jx1 , Jx1 , Jx2 , Jx2 , Jx3 , Jx3 , Jx4 , Jx4 )) corresponds to a

truth assignment

ξ1 ξ2 ξ3 ξ4 ξ5 ξ ′
1 ξ ′

2 ξ ′
3 ξ ′

4

Jx1 1 2 2 1 1 1/2 8 8 8

Jx1 2 2 1 2 2 1/2 8 8 8

Jx2 4 4 3 3 4 8 2+1/2 8 8

Jx2 3 3 4 4 4 8 2 + 1/2 8 8

Jx3 6 6 6 5 5 8 8 4 + 1/2 8

Jx3 5 5 6 6 6 8 8 4+1/2 8

Jx4 8 7 8 8 8 8 8 8 6 + 1/2

Jx4 8 8 7 8 7 8 8 8 6 + 1/2

NP-hard and not at all approximable even in the restric-

tive case, in which all job processing times and weights

are equal to 1. This negative result is true for each fixed

α ∈ (0, 1). It was shown in Kasperski and Zieliński (2016)

that Min−Exp 1|p j = 1| max T j is strongly NP-hard and

hard to approximate within 7/6 − ǫ for any ǫ > 0. Hence,

we immediately get from Theorem 1 that for each constant

α ∈ [0, 1), Min−CVaRα 1|p j = 1| max T j is strongly NP-

hard and hard to approximate within 7/6 − ǫ for any ǫ > 0.

We consider now the problem with the total tardiness cri-

terion. The deterministic 1||
∑

T j problem is known to be

NP-hard (Lawler 1977). However, 1|p j = 1|
∑

T j is poly-

nomially solvable [see, e.g., Brucker (2007)]. The following

result characterizes the complexity of the minmax version of

this problem:

Theorem 4 Min–Max 1|p j = 1|
∑

T j with uncertain due

dates is strongly NP-hard and not approximable within 5
4
−ǫ

for any ǫ > 0.

Proof We will show a reduction from the NP-complete 3-

Sat problem, in which we are given boolean variables

x1, . . . , xn , a collection of clauses C1, . . . Cm , where each

clause is a disjunction of at most 3 literals (variables or their

negations) and we ask if there is an assignment to the vari-

ables which satisfies all clauses [see, e.g., Garey and Johnson

(1979)]. Given an instance of 3- Sat, we create two jobs Jx j

and Jx j
for each variable x j , j ∈ [n], |J | = 2n. A due date

scenario ξi corresponding to clause Ci = (l1 ∨ l2 ∨ l3) is

created in the same way as in the proof of Theorem 3. Addi-

tionally, for each variable x j we create scenario ξ ′
j under

which the due dates of Jx j
and Jx j

are 2( j − 1) + 1
2

and the

due dates of the remaining jobs are set to 2n (see Table 5).

We first show that the answer to 3- Sat is yes if and only if

there is a schedule π such that maxξ∈U

∑

j∈J T j (π, ξ) ≤ 2.

Assume that the answer to 3- Sat is yes. Consider

schedule π = (J1, J ′
1, J2, J ′

2, . . . , Jn, J ′
n), where J j , J ′

j ∈

{Jx j
, Jx j

}. Furthermore, Jx j
is processed before Jx j

if and

only if x j = 1. Since in every clause at least one literal

is true, at most two jobs in π are late under each scenario

ξi ∈ U . The tardiness of each job in π under any ξi ∈ U is at

most 1. Furthermore, the total tardiness in π under any ξ ′
j is

exactly 2. In consequence, maxξ∈U

∑

j∈J T j (π, ξ) ≤ 2.

Assume that there is a scheduleπ , such that maxξ∈U

∑

j∈J

T j (π, ξ) ≤ 2. We claim thatπ = (J1, J ′
1, J2, J ′

2, . . . , Jn, J ′
n),

where J j , J ′
j ∈ {Jx j

, Jx j
}. Suppose that this is not the case,

and let Jk (J ′
k) be the last job in π which is not placed prop-

erly. The completion time of Jk (J ′
k) is at least 2k + 1. So, its

tardiness under ξ ′
k is at least 2k + 1 − (2k − 2 + 1

2
) = 2.5.

Let x j = 1 if and only if Jx j
is processed before Jx j

in π .

Since only two jobs can be late under any ξi , this assignment

satisfies all clauses and the answer to 3- Sat is yes.

In order to prove the lower approximation bound, it is

enough to observe that if the answer to 3- Sat is no, then

each schedule has the total tardiness 3 under some scenario

ξi or 2.5 under some scenario ξ ′
j , which gives a gap at least

5
4

. ⊓⊔

From the fact that 1||
∑

T j is weakly NP-hard [see Du

and Leung (1990)], we get immediately that more general

Min−Exp 1||
∑

T j problem with uncertain due dates is

weakly NP-hard as well. The next theorem strengthens this

result.

Theorem 5 Min−Exp 1||
∑

T j with uncertain due dates is

strongly NP-hard.

Proof We will show a polynomial time reduction from the

deterministic 1||
∑

w j T j problem, which is known to be

strongly NP-hard (Lawler 1977). Consider an instance of

1||
∑

w j T j . Let W =
∑

j∈J w j > 0 and P =
∑

j∈J p j .

We build an instance of Min−Exp 1||
∑

T j with the same

set of jobs J and job processing times p j , j ∈ J . We

create K = |J | = n due date scenarios as follows.

Under scenario ξ j , j ∈ [n], job j has due date equal to

d j and all the remaining jobs have due dates equal to P .

We also fix Pr[ξi ] = wi/W , i ∈ [n]. For any sched-

ule π , we get E[F(π)] =
∑

i∈[K ] Pr[ξi ]
∑

j∈J T j (π, ξi ) =
1
W

∑

i∈[n] wi

∑

j∈J T j (π, ξi ). By the construction, we get
∑

j∈J T j (π, ξi ) = [Ci (π) − di ]
+, so E[F(π)] = 1

W

∑

i∈[n]

wi [Ci (π)−di ]
+. In consequence 1||

∑

w j T j and Min−Exp 1

||
∑

T j have the same optimal solutions and the theorem fol-

lows. ⊓⊔

It was shown in Aissi et al. (2011) that Min–Max 1|p j =

1|
∑

U j with uncertain due dates is strongly NP-hard. The

following theorem strengthens this result:

Theorem 6 Min–Max 1|p j = 1|
∑

U j with uncertain due

dates is not approximable within any constant factor unless

P=NP.
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Proof Consider the following Min–Max 0–1 Selection

problem. We are given a set of items E = {e1, e2, . . . ,

en} and an integer q ∈ [n]. For each item e j , j ∈ [n],

there is a cost c j (ξi ) ∈ {0, 1} under scenario ξi , i ∈ [K ].

We seek a selection X ⊆ E of exactly q items, |X | = q,

which minimizes the maximum cost over all scenarios, i.e.,

the value of maxi∈[K ]

∑

e j ∈X c j (ξi ). This problem was dis-

cussed in Kasperski et al. (2013), where it was shown that it

is not approximable within any constant factor γ > 1. We

will show that there is a cost preserving reduction from Min–

Max 0–1 Selection to the considered scheduling problem,

which will imply the stated result.

Given an instance of Min–Max 0–1 Selection, we build

the corresponding instance of Min–Max 1|p j = 1|
∑

U j

as follows. We create a set of jobs J = E , |J | = n, with

deterministic unit processing times. For each i ∈ [K ], if

c j (ξi ) = 1 then d j (ξ
′
i ) = n − q, and if c j (ξi ) = 0, then

d j (ξ
′
i ) = n. So, we create K due date scenarios that corre-

spond to the cost scenarios of Min–Max 0–1 Selection.

Suppose that there is a solution X to Min–Max 0–1

Selection such that
∑

e j ∈X c j (ξi ) ≤ C for each i ∈ [K ].

Hence, X contains at most C items, C ≤ q, with the cost

equal to 1 under each scenario. In the corresponding sched-

ule π , we first process n − q jobs from J\X and then the

jobs in X in any order. It is easily seen that there are at most

C late jobs in π under each scenario ξ ′
i , and hence, the max-

imum cost of schedule π is at most C . Conversely, let π be

a schedule in which there are at most C late jobs under each

scenario ξ ′
i . Clearly C ≤ q since the first n−q jobs in π must

be on-time in all scenarios. Let us form solution X by choos-

ing the items corresponding to the last q jobs in π . Among

these jobs at most C are late under each scenario, and hence,

the cost of X is at most C under each scenario ξi . ⊓⊔

Thus, by Theorem 2, Min−CVaRα 1|p j = 1|
∑

U j is

strongly NP-hard for any α ∈ (0, 1). (Notice that pmax = 1

in the proof of Theorem 2 and in the new scenario set U ′ still

only due dates are uncertain.)

Theorem 7 Min−Exp 1||
∑

U j with uncertain due dates is

NP-hard.

Proof Consider the deterministic 1||
∑

w jU j problem,

which is known to be NP-hard (Karp 1972). The reduction

from this problem to Min−Exp 1||
∑

U j is the same as the

one in the proof of Theorem 5. ⊓⊔

It is worth noting that in the proof of Theorem 7 we require

an arbitrary probability distribution in the scenario set and

we have shown that the problem is only weakly NP-hard. Its

complexity for uniform probability distribution is open.

5.2 Uncertain processing times

In this section, we characterize the complexity of the prob-

lems under consideration when only processing times are

uncertain. It has been shown in Kouvelis and Yu (1997)

that Min−Max 1||
∑

C j is strongly NP-hard. Furthermore,

this problem is also hard to approximate within 6
5

− ǫ for

any ǫ > 0 (Mastrolilli et al. 2013). Using Theorem 2,

we can immediately conclude that the same negative result

holds for Min−VaRα 1||
∑

C j for any α ∈ (0, 1]. Also,

strong NP-hardness of the min–max problem implies that

Min−CVaRα 1||
∑

C j is strongly NP-hard for each fixed

α ∈ (0, 1). Observe that the boundary case α = 0 (i.e.,

Min−Exp 1||
∑

C j ) is polynomially solvable, as it eas-

ily reduces to the deterministic 1||
∑

C j problem. Since

1||
∑

C j is a special case of 1||
∑

T j , with d j = 0 for

each j ∈ J , the same negative results are true for the prob-

lem with the total tardiness criterion. Observe, however, that

Min−Exp 1||
∑

T j is also NP-hard, since the deterministic

1||
∑

T j problem is known to be weakly NP-hard (Du and

Leung 1990).

It has been shown in Aloulou and Croce (2008) that

Min–Max 1||
∑

U j with uncertain processing times and

deterministic due dates is NP-hard. The following theorem

strengthens this result:

Theorem 8 Min–Max 1||
∑

U j with uncertain processing

times is strongly NP-hard. This assertion remains true even

when all the jobs have a common deterministic due date.

Proof We show a polynomial time reduction from the 3- Sat

problem (see the proof of Theorem 4). Given an instance of

3- Sat, we create an instance of Min–Max 1||
∑

U j in the

following way. For each variable xi , we create two jobs Jxi

and Jx i
, so J contains 2n jobs. The due dates of all these jobs

are the same under each scenario and equal 2. For each clause

C j = (l1, l2, l3), we construct processing time scenario ξi ,

under which the jobs Jl1
, Jl2

, Jl3
have processing time equal

to 1 and all the remaining jobs have processing times equal to

0. Then, for each pair of jobs Jxi
, Jx i

we construct scenario ξ ′
i

under which the processing times of Jxi
, Jx i

are 2 and all the

remaining jobs have processing times equal to 0. A sample

reduction is shown in Table 6. We will show that the answer

to 3- Sat is yes if and only if there is a schedule π such that

maxξ∈U

∑

j∈J U (π, ξ) ≤ n.

Assume that the answer to 3- Sat is yes. Then, there exists

a truth assignment to the variables which satisfies all the

clauses. Let us form schedule π by processing first the jobs

corresponding to true literals in any order and processing

then the remaining jobs in any order. From the construction

of the scenario set, it follows that the completion time of

the nth job in π under each scenario is not greater than 2. In

consequence, at most n jobs in π are late under each scenario

and maxξ∈U

∑

j∈J U (π, ξ) ≤ n.
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Table 6 Processing time scenarios for the formula (x1 ∨ x2 ∨ x3) ∧

(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

Schedule π = (Jx1 , Jx2 , Jx3 , Jx4 |Jx1 , Jx2 , Jx3 , Jx4 ) corresponds to a

satisfying truth assignment

ξ1 ξ2 ξ3 ξ4 ξ5 ξ ′
1 ξ ′

2 ξ ′
3 ξ ′

4 di

Jx1 0 0 1 0 0 2 0 0 0 2

Jx1 1 0 0 1 1 2 0 0 0 2

Jx2 1 1 0 0 0 0 2 0 0 2

Jx2 0 0 1 1 0 0 2 0 0 2

Jx3 1 1 0 0 0 0 0 2 0 2

Jx3 0 0 0 1 1 0 0 2 0 2

Jx4 0 0 1 0 1 0 0 0 2 2

Jx4 0 1 0 0 0 0 0 0 2 2

Assume that there is a schedule π such that
∑

j∈J U (π, ξ)

≤ n for each ξ ∈ U , which means that at most n jobs in π are

late under each scenario. Observe first that Jxi
and Jx i

cannot

appear among the first n jobs in π for any i ∈ [n]; otherwise,

more than n jobs would be late in π under ξ ′
i . Hence, the first

n jobs in π correspond to a truth assignment to the variables

x1, . . . , xn , i.e., when Jl is among the first n jobs, then the

literal l is true. Since f (π, ξi ) ≤ n, the completion time of

the n-th job in π under ξi is not greater than 2. We conclude

that at most two jobs among the first n job have processing

time equal to 1 under ξi , so there are at most two false literals

for each clause and the answer to 3- Sat is yes. ⊓⊔

We thus get from Theorems 2 and 8 that Min−VaRα 1||
∑

U j is strongly NP-hard for any α ∈ (0, 1] and Min−

CVaRα 1||
∑

U j is strongly NP-hard for any α ∈ (0, 1).

The boundary case with α = 0 (i.e., Min–Exp 1||
∑

U j with

uncertain processing times) is an interesting open problem.

6 Positive complexity results

In this section we establish some positive complexity results.

Namely, we provide several polynomial and approximation

algorithms for particular problems. A summary of the results

can be found in Table 3.

6.1 Problems with uncertain due dates

Consider the Min−Exp 1|p j = 1|
∑

w jU j problem with

uncertain due dates. We introduce variables xi j ∈ {0, 1},

i ∈ [n], j ∈ [n], where xi j = 1 if j ∈ [n] is the i th job

in the schedule constructed. The variables satisfy the assign-

ment constraints, i.e.,
∑

i∈[n] xi j = 1 for each j ∈ [n] and
∑

j∈[n] xi j = 1 for each i ∈ [n]. If xi j = 1, then the comple-

tion time of job j equals i . Define ci jk = w j if i > d j (ξk)

and ci jk = 0 otherwise, for each i, j ∈ [n] and k ∈ [K ]. If

the variables xi j describe π , then

E[F(π)] =
∑

k∈[K ]

∑

i∈[n]

∑

j∈[n]

Pr[ξk]ci jk xi j =
∑

i∈[n]

∑

j∈[n]

c∗
i j xi j ,

where c∗
i j =

∑

k∈[K ] Pr[ξk]ci jk . Hence, the problem is equiv-

alent to the Minimum Assignment with the cost matrix c∗
i j .

The same result holds for Min−Exp 1|p j = 1|
∑

w j T j . It

is enough to define ci jk = w j [i − d j (ξk)]
+ for i, j ∈ [n],

k ∈ [K ]. We thus get the following results:

Theorem 9 Min−Exp P with uncertain due dates is poly-

nomially solvable, when P ∈ {1|p j = 1|
∑

w jU j , 1|p j =

1|
∑

w j T j }

From Theorems 9 and 1, we immediately get the following

approximation result:

Theorem 10 Min−CVaRα P with uncertain due dates is

approximable within ρ = min{ 1
Prmin

, 1
1−α

}, when P ∈

{1|p j = 1|
∑

w jU j , 1|p j = 1|
∑

w j T j }.

Since Min−Max 1|p j = 1|
∑

w jU j and Min−Max 1|p j

= 1|
∑

w j T j are special cases of the min–max ver-

sion of Minimum Assignment, which is approximable

within K [see, e.g., Aissi et al. (2009)], both problems are

approximable within K as well.

We now study the Min−Exp 1||
∑

w j T j problem with

uncertain due dates and deterministic processing times.

This problem is strongly NP-hard since 1||
∑

w j T j is

strongly NP-hard. The expected cost of π can be rewrit-

ten as E[F(π)] =
∑

j∈J

∑

i∈[K ] Pr[ξi ][C j (π) − d j (ξi )]
+.

We thus get a single machine scheduling problem 1||
∑

f j

with job-dependent cost functions of form f j (C j (π)) =
∑

i∈[K ] Pr[ξi ][C j (π) − d j (ξi )]
+, j ∈ J . Note also that

these functions are nonnegative and nondecreasing with

respect to C j (π). The same analysis can be done for the

Min−Exp 1||
∑

w jU j problem with uncertain due dates and

deterministic processing times. Hence and from Cheung et al.

(2017), where a (4 + ǫ)-approximation algorithm, for any

ǫ > 0, for this class of problems was provided, we get the

following result (see also Theorem 1).

Theorem 11 If P ∈ {1||
∑

w jU j , 1||
∑

w j T j }, then Min−

Exp P with uncertain due dates is approximable within 4+ǫ

and Min−CVaRα P is approximable within min{ 4+ǫ
Prmin

, 4+ǫ
1−α

},

ǫ > 0, for any ǫ > 0 and each constant α ∈ [0, 1).

When the probability distribution in U is uniform, then

the approximation ratio in Theorem 1 can be improved

to min{(4 + ǫ)K , 4+ǫ
1−α

}. Since Min–Max P is a special

case of Min−CVarα P with uniform probability distri-

bution and α sufficiently large, we get that Min−Max P ,

P ∈ {1||
∑

w jU j , 1||
∑

w j T j }, is approximable within

(4 + ǫ)K for any ǫ > 0.
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6.2 The total weighted flow time criterion

In this section, we focus on the problems with the total

weighted flow time criterion. We start by recalling a well-

known property [see, e.g., Mastrolilli et al. (2013)], which

states that every such a problem with uncertain processing

times and deterministic weights can be transformed into an

equivalent problem with uncertain weights and determinis-

tic processing times. This transformation goes as follows.

For each processing time scenario ξi , i ∈ [K ], we invert the

role of processing times and weights obtaining the weight

scenario ξ ′
i . Formally, p j = w j and w j (ξ

′
i ) = p j (ξi ) for

each i ∈ [K ]. The new scenario set U ′ contains scenario

ξ ′
i with Pr[ξ ′

i ] = Pr[ξi ] for each i ∈ [K ]. We also invert

the precedence constraints, i.e., if i → j in the original

problem, then j → i in the new one. Given a feasible

schedule π = (π(1), . . . , π(n)), let π ′ = (π(n), . . . , π(1))

be the corresponding inverted schedule. Of course, sched-

ule π ′ is feasible for the inverted precedence constraints.

It is easy to verify that f (π, ξi ) = f (π ′, ξ ′
i ) for each

i ∈ [K ]. In consequence CVaRα[F(π)] = CVarα[F′(π ′)]

and VaRα[F(π)] = VaRα[F′(π ′)], where F′(π ′) is the ran-

dom cost of π ′ for scenario set U ′. Hence, the original

problem with uncertain processing times and the new one

with uncertain weights have the optimal solutions with the

same performance measure.

From now on we make the assumption that the jobs have

deterministic processing times p j , j ∈ J and w j (ξi ) is the

weight of job j under scenario ξi , i ∈ [K ]. The value of

CVaRα[F(π)], for a fixed schedule π , can be computed by

solving the following optimization problem (see the formu-

lation (1)b):

min γ +
1

1 − α

∑

i∈[K ]

Pr[ξk]uk

s.t. γ + uk ≥
∑

j∈J

w j (ξk)C j (π) k ∈ [K ]

uk ≥ 0 k ∈ [K ]

(6)

Let δi j ∈ {0, 1}, i, j ∈ [n], be binary variables such that

δi j = 1 if job i is processed before job j in a schedule

constructed. The vectors of all feasible job completion times

(C1, . . . , Cn) can be described by the following system of

constraints (Potts 1980):

V C : C j = p j +
∑

i∈J\{ j} δi j pi j ∈ J

δi j + δ j i = 1 i, j ∈ J , i 
= j

δi j + δ jk + δki ≥ 1 i, j, k ∈ J

δi j = 1 i → j

δi j ∈ {0, 1} i, j ∈ J

(7)

Let us denote by V C ′ the relaxation of V C , in which the

constraints δi j ∈ {0, 1} are relaxed with 0 ≤ δi j ≤ 1. It

has been proved in Schulz (1996) and Hall et al. (1997) that

each vector (C1, . . . , Cn) that satisfies V C ′ also satisfies the

following inequalities:

∑

j∈I

p j C j ≥
1

2

⎛

⎜

⎝

⎛

⎝

∑

j∈I

p j

⎞

⎠

2

+
∑

j∈I

p2
j

⎞

⎟

⎠
for all I ⊆ J .

(8)

The formulations (7) and (6) lead to the following mixed inte-

ger programming model for Min−CVaRα 1|prec|
∑

w j C j

with uncertain weights:

min γ +
1

1 − α

∑

i∈[K ]

Pr[ξk]uk

s.t. γ + uk ≥
∑

j∈J w j (ξk)C j k ∈ [K ]

Constraints VC

uk ≥ 0 k ∈ [K ]

(9)

We now solve the relaxation of (9), in which V C is

replaced with V C ′. Let (C∗
1 , . . . , C∗

n ) be the relaxed opti-

mal job completion times and z∗ be the optimal value of the

relaxation. Consider discrete random variable Y , which takes

the value
∑

j∈J w j (ξi )C
∗
j with probability Pr[ξi ], i ∈ [K ].

The equality z∗ = CVaRα[Y ] holds. We relabel the jobs

so that C∗
1 ≤ C∗

2 ≤ · · · ≤ C∗
n and form schedule

π = (1, 2, . . . , n) in nondecreasing order of C∗
j . Since the

vector (C∗
j ) satisfies V C ′, it must also satisfy (8). Hence,

setting I = {1, . . . , j}, we get

j
∑

i=1

pi C
∗
i ≥

1

2

⎛

⎜

⎝

⎛

⎝

j
∑

i=1

pi

⎞

⎠

2

+

j
∑

i=1

p2
i

⎞

⎟

⎠
≥

1

2

⎛

⎜

⎝

⎛

⎝

j
∑

i=1

pi

⎞

⎠

2
⎞

⎟

⎠
.

Since C∗
j ≥ C∗

i for each i ∈ {1 . . . j}, we get C∗
j

∑ j
i=1 pi ≥

∑ j
i=1 pi C

∗
i ≥ 1

2
(
∑ j

i=1 pi )
2 and, finally C j =

∑ j
i=1 p j ≤

2C∗
j for each j ∈ J—this reasoning is the same as in Schulz

(1996).

For each scenario ξi ∈ U , the inequality f (π, ξi ) =
∑

j∈J w j (ξi )C j ≤ 2
∑

j∈J w j (ξi )C
∗
j holds. By Lemma 2,

we have CVaRα[F(π)] ≤ 2 · CVaRα[Y ] = 2z∗. Since z∗

is a lower bound on the value of an optimal solution, π is

a 2-approximate schedule. Let us summarize the obtained

result.

Theorem 12 Min−CVaRα 1|prec|
∑

w j C j with uncertain

processing times is approximable within 2 for each α ∈

[0, 1).

This result can be refined when the deterministic 1|prec|
∑

w j C j problem is polynomially solvable [for example, when

the precedence constraints form an sp-graph, see, e.g.,
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Brucker (2007)]. In this case Min−Exp 1|prec|
∑

w j C j is

polynomially solvable, and we can also apply Theorem 1,

which leads to the following result.

Theorem 13 If 1|prec|
∑

w j C j is polynomially solvable,

then Min−CVaRα 1|prec|
∑

w j C j with uncertain pro-

cessing times is approximable within min{ 1
1−α

, 2} for each

α ∈ [0, 1).

Observe that 1
1−α

< 2 for each α < 0.5. Let us con-

sider Min−VaRα 1|prec|
∑

w j C j problem. The value of

VaRα[F(π)], for a fixed schedule π , can be computed by

solving the following MIP problem (see (1)a):

min θ

s.t.
∑

j∈J

w j (ξk)C j (π) − θ ≤ Mkβk k ∈ [K ]

∑

k∈[K ]

Pr[ξi ]βk ≤ 1 − α

βk ∈ {0, 1} k ∈ [K ]

(10)

where Mk is an upper bound on the schedule cost under sce-

nario ξk , k ∈ [K ]. Using the formulation (7) together with (1),

we can get a mixed integer programming formulation for

Min−VaRα 1|prec|
∑

w j C j . By replacing the constraints

V C with relaxed V C ′ in the constructed model, we get a

mixed integer problem with K binary variables. This prob-

lem can be solved in polynomial time when K is a constant.

The same analysis as for Min−CVaRα 1|prec|
∑

w j C j (we

also use Lemma 2) leads to the following result:

Theorem 14 If the number of scenarios is constant, then

Min−VaRα 1|prec|
∑

w j C j with uncertain processing

times is approximable within 2 for each α ∈ (0, 1].

6.3 The bottleneck objective

In this section, we address a class of single machine schedul-

ing problems with a bottleneck objective, i.e., in which

f (π) = max j∈J f j (C j (π)), where f j (t) is the cost of com-

pleting job j at time t . An important and well-known example

is 1|prec| max w j T j , in which the maximum weighted tar-

diness is minimized. This problem can be solved in O(n2)

time by Lawler’s algorithm (Lawler 1973). We will use the

fact that the minmax versions of the bottleneck problems

are polynomially solvable for a wide class of cost functions

(Brauner et al. 2016; Kasperski and Zieliński 2016). In partic-

ular, the minmax version of 1|prec| max w j T j with uncertain

processing times and uncertain due dates can be solved in

O(K n2) time by using the algorithm constructed in Kasper-

ski and Zieliński (2016). In the following, we will assume that

f (π, ξ) = max j∈J w j T j (π, ξ) for a given scenario ξ ∈ U .

We also assume that job processing times and due dates are

nonnegative integers under all scenarios and job weights are

positive integers. In consequence, the value of f (π, ξ) is a

nonnegative integer for each ξ .

Let fmax be an upper bound on the schedule cost over

all scenarios. Let h : QK
+ → Q+ be a nondecreasing func-

tion with respect to QK
+ , i.e., for any ttt, ttt ′ ∈ QK

+ if t ′i ≤ ti
for each i ∈ [K ], then h(t ′1, . . . , t ′K ) ≤ h(t1, . . . , tK ). Sup-

pose that h can be evaluated in g(K ) time for a given vector

ttt = (t1, . . . , tK ) ∈ ZK
+ . Consider the corresponding schedul-

ing problem PS , in which we seek a feasible schedule π ∈ 	

minimizing H(π) = h( f (π, ξ1), . . . , f (π, ξK )). We can

find such a schedule by solving a number of the follow-

ing auxiliary problems: given a vector ttt ∈ ZK
+ , check if

	(ttt) = {π ∈ 	 : f (π, ξi ) ≤ ti , i ∈ [K ]} is nonempty,

and if so, return any schedule πttt ∈ 	(ttt). From the mono-

tonicity of the function h, it follows that for each π ∈ 	(ttt)

the inequality h( f (π, ξ1), . . . , f (π, ξK )) ≤ h(ttt) is true.

Thus, in order to solve the problem PS, it suffices to enu-

merate all possible integral vectors ttt = (t1, . . . , tK ), where

ti ∈ {0, 1, . . . , fmax}, i ∈ [K ], and compute πttt ∈ 	(ttt) if

	(ttt) is nonempty. The number of such vectors is ( fmax+1)K .

A schedule πttt with the minimum value of H(πttt ) is returned.

The crucial step in this method is solving the auxiliary

problem. We now show that this can be done in polynomial

time for the bottleneck problem with the maximum weighted

tardiness criterion. Given any ttt ∈ ZK
+ , we first form scenario

set U ′ by specifying the following parameters for each ξi ∈ U

and j ∈ J :

p j (ξ
′
i ) = p j (ξi ), w′

j = 1,

d j (ξ
′
i ) = max{C ≥ 0 : w j (C − d j (ξi ))≤ti }

= ti/w j + d j (ξi ).

The scenario set U ′ can be built in O(K n) time. We then

solve the minmax problem with scenario set U ′, which can

be done in O(K n2) time by using the algorithm constructed

in Kasperski and Zieliński (2016). If the maximum cost of

the schedule π returned is 0, then πttt = π ; otherwise, 	(ttt) is

empty. Since all the risk criteria considered in this paper are

nondecreasing functions with respect to schedule costs over

scenarios (see Lemma 2 for γ = 1) and g(K ) is negligible

in comparison with K n2, we get the following result.

Theorem 15 Min−ExpP , Min−VaRα P and Min−CVaRα

P with uncertain processing times and uncertain due dates

are solvable in O(( fmax + 1)K K n2) time, when P is

1|prec| max w j T j .

The above running time is pseudopolynomial if K is con-

stant. Notice that the special cases, when P is 1|prec, p j =

1| max T j are solvable in O(K (n + 1)K+2) time, which is

polynomial if K is constant (as we can fix fmax = n).

We now show that the problems admit an FPTAS if K

is a constant and h(γ ttt) ≤ γ h(ttt), for any ttt ∈ QK
+ , γ ≥ 0.
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First we partition the interval [0, fmax] into geometrically

increasing subintervals: [0, 1)∪
⋃

ℓ∈[η][(1+ǫ)ℓ−1, (1+ǫ)ℓ),

where η = ⌈log1+ǫ fmax⌉ and ǫ ∈ (0, 1). Then, we enu-

merate all possible vectors ttt = (t1, . . . , tK ), where ti ∈

{0, 1} ∪
⋃

ℓ∈[η]{(1 + ǫ)ℓ}, i ∈ [K ], and find πttt ∈ 	(ttt)

if 	(ttt) 
= ∅. Finally, we output a schedule πt̂tt that minimizes

value of H(πttt ) over the nonempty subsets of schedules.

Obviously, the running time is O((log1+ǫ fmax)
K (K n2 +

g(K ))) = O((ǫ−1 log fmax)
K (K n2 + g(K ))). Let π∗ be an

optimal schedule. Fix ℓi ∈ {0, 1, . . . , η} for each i ∈ [K ],

such that (1 + ǫ)ℓi −1 ≤ f (π∗, ξi ) < (1 + ǫ)ℓi , where we

assume that (1 + ǫ)ℓi −1 = 0 for ℓi = 0. This clearly forces

	((1 + ǫ)ℓ1 , . . . , (1 + ǫ)ℓK ) 
= ∅. Moreover, (1 + ǫ)ℓi ≤

(1 + ǫ) f (π∗, ξi ) for ℓi , i ∈ [K ]. By the definition of πt̂tt ,

we get H(πt̂tt ) ≤ h((1 + ǫ)ℓ1 , . . . , (1 + ǫ)ℓK ). Since h

is a nondecreasing function and h(γ ttt) ≤ γ h(ttt), h((1 +

ǫ)ℓ1 , . . . , (1+ǫ)ℓK ) ≤ (1+ǫ)h( f (π∗, ξ1), . . . , f (π∗, ξK )).

Hence, H(πt̂tt ) ≤ (1 + ǫ)H(π∗). By Lemma 2, the risk cri-

teria satisfy the additional assumption on the function h(ttt).

This leads to the following theorem:

Theorem 16 Min−ExpP , Min−VaRα P and Min−CVaRα

P with uncertain processing times and uncertain due dates

admit an FPTAS, when P is 1|prec| max w j T j and the num-

ber of scenarios is constant.

It is worth pointing out that the problems from Theorem 16

are strongly NP-hard when the number of scenarios is a part

of the input (see Sect. 5.1). If the number of scenarios is con-

stant, then proving their weak NP-hardness is an interesting

open problem.

7 Conclusions and open problems

In this paper, we have discussed a wide class of single

machine scheduling problems with uncertain job processing

times and due dates. This uncertainty is modeled by a dis-

crete scenario set with a known probability distribution. In

order to compute a solution, we have applied the risk criteria,

namely the value at risk and conditional value at risk. The

expectation and the maximum criteria are special cases of

these risk measures. We have provided a number of negative

and positive complexity results for problems with basic cost

functions. Moreover, we have sharpened some negative ones

obtained in Aissi et al. (2011) and Aloulou and Croce (2008).

The picture of the complexity is presented in Tables 1, 2 and 3.

Obviously, the negative results obtained remain true for more

general cases, for instance, for the problems with more than

one machine.

There is still a number of interesting open problems on

the models discussed. The negative results for uncertain due

dates assume that the number of due dates scenarios is a part

of input. The complexity status of the problems when the

number of due date scenarios is fixed (in particular, equals 2)

is open. For uncertain processing times, an interesting open

problem is Min−Exp 1||
∑

U j (see Table 2). There is still a

gap between the positive and negative results; in particular,

we conjecture that the negative results for Min−Var P for

uncertain processing times (see Table 2) can be strengthened.

Now they are just the same as for the Min−Max P .
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