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Abstract

This paper compares risk-averse optimization methods to address the self-scheduling and market involvement
of a virtual power plant (VPP). The decision-making problem of the VPP involves uncertainty in the wind
speed and electricity price forecast. We focus on two methods: risk-averse two-stage stochastic programming
(SP) and two-stage adaptive robust optimization (ARO). We investigate both methods concerning formu-
lations, uncertainty and risk, decomposition algorithms, and their computational performance. To quantify
the risk in SP, we use the conditional value at risk (CVaR) because it can resemble a worst-case measure,
which naturally links to ARO. We use two efficient implementations of the decomposition algorithms for
SP and ARO, and we assess 1) the operational results regarding first-stage decision variables, estimate of
expected profit, and estimate of the CVaR of the profit; and 2) their performance taking into consideration
different sample sizes and risk management parameters. The results show that similar first-stage solutions
are obtained depending on the risk parameterizations used in each formulation. Computationally, we identi-
fied three cases: 1) SP with a sample of 500 elements is competitive with ARO; 2) SP performance degrades
comparing to the first case and ARO fails to converge in four out of five risk parameters; 3) SP fails to
converge, whereas ARO converges in three out of five risk parameters. Overall, these performance cases
depend on the combined effect of deterministic and uncertain data, and risk parameters.

Keywords: Stochastic programming, robust optimization, risk management, virtual power plant

1. Introduction

This work lies at the intersection of two subjects that have been receiving increasing attention in the
literature: the optimal operation of virtual power plants (VPPs) and optimization under uncertainty. One
of the first works to discuss the concept of VPP was the book edited by Awerbuch and Preston [1], where
several topics related with VPPs were addressed. Later, VPPs were discussed in Pudjianto et al. [2], where
a VPP is defined as an aggregation of distributed energy resources that aggregates capacity and creates a
single entity to participate in the electricity market, as well as to support transmission system management.

The considered VPP consists of a thermal plant, a pump-storage hydro plant, and a wind farm that
interacts with the electricity market as a single entity. The VPP aims to maximize its profit and faces
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two interrelated problems: 1) the self-scheduling of the pump-storage hydro and thermal plants; and 2) the
interaction of the VPP with the electricity market. The self-scheduling problem determines when the pump-
storage hydro plant generates or consumes power and the thermal plant power output for each period. The
electricity market interaction involves selecting forward contracts and the sale or purchase of electricity
in the hourly electricity pool. The detailed VPP problem statement and the underlying assumptions are
provided in Section 2.

Conceptually, the main advantages of VPPs are the following: a) mitigation of risk of low or negative
profits for small generators (when aggregated into a VPP) trading in the electricity market; b) increased
overall capacity of the aggregated generators, compared with the individual units, which leads to economies of
scale and allows small generators to participate in electricity markets with minimum capacity requirements;
¢) and an increase of efficiency of the overall power system; see Pudjianto et al. [2] for a discussion on
objectives and advantages of the concept of VPP. More specifically, Dietrich et al. [3] evaluated the impact
of VPPs in the Spanish power system and concluded that the VPPs did not have a relevant impact on the
generators of the system that were not part of VPPs. However, the aggregation into VPPs had a significant
impact on the generators that were aggregated, in terms of their benefits maximization.

The growing interest on VPPs is also motivated by the flexibility of the aggregation of renewable energy
sources (RES) and conventional sources and their complementarity [4]. The presence of RES in the compo-
sition of VPPs and the volatility of the electricity prices in the electricity market make uncertainty to play
a critical role in decision-making for VPPs.

Optimization problems with uncertain parameters have received increasing attention, mainly stochastic
programing (SP) formulations involving risk measures [5, 6, 7] and robust optimization [8, 9, 10, 11, 12].

In the next two sub-sections, we discuss some works that have proposed optimization models for VPP
problems.

1.1. Stochastic programming formulations for VPPs

Pandzi¢ et al. [13] was one of the first works to propose a SP formulation for an offering model for
a VPP (aggregating a wind power plant, a quick-response conventional power plant, and a pump-storage
hydro plant). They developed a two-stage SP formulation that maximizes the expected profit of a VPP,
and determines optimal offers to the day-ahead market and balancing market. Their solution approach is
based on the solution of the extensive formulation of the SP problem, and a risk measure was not used in
their formulation. Tajeddini et al. [14] have also considered the optimal operation of a VPP (aggregating a
wind power plant, a photovoltaic system, a micro turbine, a diesel generator, and a battery bank), which
participates in the day-ahead and balancing markets. They proposed a two-stage risk-averse SP formulation
using the conditional value at risk (CVaR) in the objective function to avoid the risk of low profits. The
resulting Mixed-Integer Linear Programming (MILP) problem was solved using an extensive formulation
and an MILP solver. Riveros et al. [15] addressed the optimal bidding strategies for a VPP (aggregating
combined heat and power based system for district heating and renewable energy generators) using a two-
stage risk-neutral SP formulation. They considered that the VPP bids in the day-ahead and balancing
markets, and compared alternative bidding strategies that differ on the re-scheduling and adaptiveness of
the bidding strategy as uncertainty is revealed. Kardakos et al. [16] studied a different offering problem for a
VPP (aggregating a wind power farm, consumers, and a battery storage system), which considered strategic
offering decisions to influence the prices and maximize a combination of expected profit and CVaR of the
profit. Their problem is modeled using a stochastic bi-level formulation, which compared with previous
works added a new uncertain parameter: the uncertain rivals’ offers to the day-ahead market. Dabbagh
and Sheikh-El-Eslami [17] conducted risk-averse studies for a VPP (aggregating a wind power farm, a non-
dispatchable load, a conventional power plant, a pumped hydro storage plant, and a flexible demand) using
a risk-averse SP formulation.

In these works, the length of the time horizon is, naturally, 24 hours; given that the decision-making
framework involves the participation in the day-ahead and balancing markets. Lima et al. [6] studied
two-stage risk-averse SP approaches and suitable decomposition algorithms to solve a VPP (aggregating a
thermal plant, a wind power farm, and a pumped-storage hydro plant) scheduling and electricity market



participation. They considered a time horizon of 168 hours and samples with sizes up to 25,000 elements.
Consequently, in contrast with the works mentioned above that considered shorter horizons and smaller
samples, they explored different decomposition algorithms to handle the CVaR in the objective function
and large size SP formulations. Lima et al. [6] also proposed a wind power forecast methodology based on
a wind speed ensemble obtained from a weather forecast model.

Recently, Castillo et al. [18] integrated a risk-averse SP formulation into a rolling horizon approach to
optimize the operations of a VPP (aggregating a battery energy storage system, a photovoltaic system,
a micro-grid, and a diesel generator). These authors concluded that for extreme weather conditions, the
risk-averse solutions increase the value to the VPP.

1.2. Robust optimization formulations for VPPs

Lima et al. [19] proposed an adaptive robust optimization (ARO) formulation for the optimal scheduling
of a VPP (aggregating a thermal plant, a wind power farm, and a pumped-storage hydro plant) consider-
ing a two-stage decision framework. Their model involves uncertainty in electricity prices and wind power
production, and the formulation requires a decomposition algorithm to handle the resulting two-stage for-
mulation. In that work, a detailed study on the computational performance of two decomposition algorithms
and the analysis of the impact of the risk parameters on the results were performed. Shabanzadeh et al.
[20] presented also a robust optimization formulation for a VPP, which considered the uncertainty on the
electricity prices in the objective function. Their robust optimization formulation does not consider the
two-stage framework as in Lima et al. [19], and therefore, it is solved directly as an MILP problem, without
requiring a decomposition algorithm. Rahimiyan and Baringo [21] addressed the strategic bidding for a
price-taker VPP (price-responsive demands, wind power plant, and an energy storage facility) in the day-
ahead and real-time markets. Their formulation considers uncertainty in the wind power production and
electricity prices. Compared to Lima et al. [19], they consider two types of markets, but do not consider the
decisions on the forward contracts. The time horizon considered is 24 hours and an out-of-sample analysis
is performed for seven consecutive days.

There is a recent line of research that encompasses in a single formulation the SP and ARO features,
whereby, some uncertain parameters are described by discrete distributions and other parameters by uncer-
tainty sets. For example, Baringo and Baringo [22] followed this approach for the offering strategy of a VPP
(aggregating a conventional power plant, a wind power unit, a storage unit, and a flexible demand), where
in their formulation the uncertainty in the wind power production is represented with uncertainty sets as
in a robust optimization approach, and the uncertainty in electricity prices using a sample with discrete
elements. As in Rahimiyan and Baringo [21], Baringo and Baringo [22] consider a time horizon of 24 hours
and an out-of-sample analysis for four consecutive days. In other studies related with power systems, Zhang
and Conejo [23] proposed a transmission expansion planning model that considers short-term and long-term
decisions, where the uncertainty description is selected as a function of its nature. The long-term uncer-
tainty parameters are described by robust uncertainty sets, whereas the short-term uncertainty parameters
are represented by discrete scenarios. Fanzeres et al. [24], in the context of an electricity market, proposed
a hybrid bi-level formulation with uncertainty sets for the electricity prices and a discrete distribution for
the renewable generation. Another example in the context of power systems is the formulation proposed by
Zhao and Guan [25], which merges an expectation and a worst-case measure in the objective function.

1.8. Comparison between risk-averse methodologies: SP vs ARO

One of the first comparisons between risk-averse SP and RO was made by Lagos et al. [26], involving
VaR and CVaR within SP, and RO models for an open pit-mining problem without recourse. In the context
of power systems, SP and ARO have been compared using unit commitment (UC) problems. For example,
Pandzic et al. [27] compared four UC formulations under wind uncertainty with a focus on reliability. Two
of these formulations are risk-neutral SP and ARO. They found that the ARO formulation leads to slightly
higher optimal objective function values than the SP formulation, but the ARO formulation is generally
computationally more efficient. [28] also contrasted four UC formulations under demand uncertainty: prob-
abilistically constrained optimization, RO, two-stage SP, and two-stage ARO on real-world instances. As
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the previous reference, a risk-neutral SP formulation is compared to an ARO formulation. Their results
show that the SP formulation leads to comparatively less robust results with higher computational cost.
Kazemzadeh et al. [29] focused on two UC formulations involving risk: a risk-averse SP formulation and an
ARO formulation. They built two types of uncertainty sets for ARO, one based on ranges and another one
that includes probabilities of scenarios together with ranges. They further analyze the trade-offs of cost vs.
risk in solutions of the SP formulation and ARO formulation and conclude that for high conservatism, ARO
leads to the best trade-off.

The three references above focus on a single problem, the UC, and two of them limit the comparisons
to risk-neutral SP vs. ARO formulations. These studies raise relevant questions: 1) Do the computational
trends remain valid for other problems? Are these trends general? 2) What is the difference in terms of
actual solutions between risk-averse SP and ARO? 3) How does the type of data, in terms of parameters
and uncertainty, affect the computational behavior and actual solutions?

We expand the conclusions of those works and answer the questions above by analyzing risk-averse SP and
ARO formulations applied to a VPP problem, and using a systematic approach. We adopt a sample average
approximation (SAA) methodology, and perform a comprehensive comparison that covers: a) computational
performance depending on sample sizes and risk parameters; b) assessing approximate first-stage optimal
solutions, obtained using the SAA methodology and using inference statistics on the expected profit and
CVaR; and c¢) analyzing impact of the uncertainty characterization on the computational efficiency and
results.

To make a fair comparison in terms of computational performance, the SP approach relies on an efficient
implementation of the L-Shaped method that handles a risk measure in the objective function, based on
[6] and the ARO approach relies on a tailored column and constraint generation (CCG) method, based on
[19]. Compared to Lima et al. [19], we implement a CCG method embodying new convergence acceleration
concepts. Therefore, adapting and extending previous contributions, the main contributions of this work
are twofold: 1) providing a comprehensive and systematic comparison between two-stage risk-averse SP and
two-stage ARO; and 2) deriving insights resulting from the analysis that, in particular for the case study
considered, indicate that SP and ARO can lead to similar solutions, depending on the risk parameterization
in each approach.

This paper is organized as follows: in Section 2, the VPP model and underlying assumptions are pre-
sented. In Section 3, a generic formulation of the VPP optimization problem under uncertainty is presented,
and is exploited to derive the SP formulation, the ARO formulation, and the associated uncertainty rep-
resentations. In Section 4, the two decomposition algorithms and the corresponding problem formulations
are described. The computational results and risk analyses are presented and discussed in Section 5. We
present the conclusions of the work in Section 6.

2. Problem statement

We address the self-scheduling and market involvement of a VPP using two alternative approaches: risk-
averse SP and ARO. The VPP problem is defined in a general two-stage decision framework that fits the
two approaches. The planning horizon considered is one week, divided in 168 time periods of one hour.
Figure 1 illustrates the context of this work, the decision framework, and the constitution of the VPP. The
VPP has been described in detail in Lima et al. [19] and Lima et al. [6]. The optimal management of the
VPP involves a self-scheduling problem and the interaction with the electricity market. The self-scheduling
problem determines the pump-storage hydro plant and thermal plant operation subject to their operational
constraints. This means determining for each period a) the power output/input from/to the pump-storage;
and b) the power output from the thermal plant. The electricity market interaction involves selecting forward
contracts to sell or buy electricity through one or two contracts and the corresponding fixed power. There
are two contracts offered to the VPP with a block structure, each block having a fixed price and power. In
addition, the interaction involves the prescription of the power to sell or buy from the electricity market
pool in each period.

We assume a two-stage decision framework. The first-stage decisions are made before the planning
horizon: the selection of the characteristics of the contract and the commitment of the thermal unit; these
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are the here-and-now decisions [30]. The second-stage decisions are made during the planning horizon:
the dispatch of the thermal and pump-storage hydro plants, and the purchasing and selling of power in
the electricity market in each period; these are the wait-and-see decisions. The first-stage decisions are
fixed during the planning horizon, whereas the second-stage decisions depend on the realization of the
uncertainty and are fixed in each period. The option to buy electricity from the pool implies that there are
always feasible second-stage decisions for any first-stage decisions (in terms of the contract setup and the
thermal commitment constraints).

The wind power profile and the electricity price profile are uncertain. The uncertainty in the wind power
is characterized by an ensemble of 51 members derived from a wind speed ensemble from a weather forecast
model; the forecast of the uncertain electricity prices uses a regression model. Based on these descriptions,
the uncertainty treatment is further adapted according to the selected optimization approach.

The objective of the VPP is to maximize the operating profit that results from selling electricity, by
forward contracts and in the electricity pool, minus the costs associated with the generation and purchases
of electricity through the contracts or in the pool. The profit is uncertain given that it depends on the
uncertain wind power and electricity prices. The full formulation of the deterministic problem and the
data of operation of the generation units and contracts are presented in Appendix Appendix A (online
supplemental material), and the uncertainty models of the wind power and electricity prices are outlined in
Appendix Appendix B (online supplemental material).

In the problem considered, three important components interact: the time horizon of 168 hours, the
risk-aversion level, and the use of forward contracts. On the one hand, the time horizon of 168 hours has
the advantage of reducing shortsighted effects at the end of a time horizon of 24 hours when dealing with
water storage and allows the pump-storage hydro unit to look forward to the full week. Therefore, the 168
hours enable better planning for using electricity and managing water. In addition, it allows a more effective
planning of minimum up and down time constraints, ramp rates limits, and startup costs of the thermal
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unit across the days of the week. On the other hand, the decision-makers need to comply with the contracts
established, but the thermal unit commitment decisions may only be implemented for the first day of the
week. Afterward, a similar model can be run during the week (on a rolling window) with updated forecasts
of the electricity prices and wind power outputs to determine daily commitments. This procedure does not
prevent the commitment decisions to be modeled as first-stage decisions to provide feedback information for
the contract decisions. One way to improve the model would be considering the commitment variables as
second-stage variables, or using a multi-stage decision framework.

The 168-hour time horizon allows considering weekly forward contracts. In general, these contracts can
be established via an organized futures market or via bilateral contracts [4]. A number of works in the
forward contracts literature identify weekly contracts as a tool to hedge against the volatility of electricity
markets; see for example [31], Deng and Oren [32], Kristiansen [33], Benth and Koekebakker [34], Benth et al.
[35], Botterud et al. [36], Kristiansen [33], and Weron and Zator [37], Aid [38]. Specifically, Hope et al. [31]
discussed the advantages of weekly contracts over yearly contracts, and Aid [38] described electricity markets
by country /region, including a reference to weekly contracts as an option in some markets. Considering daily
bidding without contract selection misses an important tool for risk management, whereas the integration
of weekly planning and contracts provides such a tool.

The proposed risk-aversion models provide instruments for decision-makers to mitigate low weekly prof-
its (or losses). These instruments are valuable in situations that require risk mitigation. Decision-makers
have different risk acceptance levels and may adopt different risk-averse approaches depending on their risk
perception. For example, after one week of low-profit, a risk-neutral decision maker may reduce the risk
acceptance level for the following week to mitigate a potential sequence of low profits. Therefore, in some
circumstances, low weekly profits might be undesirable, and we investigate two approaches to manage that
risk. The relevance of this argument increases if the planning horizon is increased from one week to one
month. In addition, comparing alternative risk-averse solutions with risk-neutral ones provides estimates of
expected profit reductions that can further support the decision-maker with risk acceptance levels. Addi-
tionally, an extreme risk-averse approach can be used in situations requiring only the minimization of risk
and quantifying the advantages or disadvantages of a worst-case solution, which we discuss in detail in this
work.

3. Risk-averse optimization models

In this section, we start by introducing a general and compact formulation for a stochastic optimization
formulation that captures the main structural properties of the VPP problem: a) the two-stage decision
process of the VPP; b) binary variables in the first-stage; ¢) uncertainty in the right-hand-side of constraints;
and d) uncertainty in the objective function. This formulation aims to introduce the methods applied to
the VPP problem rather than represent all the variables and constraints of the VPP problem. A detailed
deterministic model for the VPP problem is presented in Appendix Appendix A (online supplemental
material) and the corresponding stochastic model in Appendix Appendix C (online supplemental material).
The formulation is as follows

w* = max  P(z,z,y(0))
x,z,y(0)
st. Ar+Bz<b
Cz+Dy(0)<d, V9e®O (1)
Fy(0)+ Gz =h(9), VoecO
z e R}, 2z € B™, y(f) € R™,

where B := {0, 1}, z, z are deterministic vectors with dimensions n; and ns, repsectively, y(6) is a vector with
size n3, A € RM>m B e R™Mx*"2 (' ¢ RM2X"2 [ ¢ RM2X"s | ¢ R™M3%Ms (G € R™3*™ are deterministic
matrices with known coefficients, and b € R™, d € R™2 are deterministic vectors with known parameters.
The random event 6 belongs to the set © of future events. The vector y(6) is optimally determined for each
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event and the constraints are satisfied for any event. The objective function in (1) to be maximized is of
the form

V(z,2,y(0)) = pf(z,2,y(0),0)], (2)
where p is a functional (such as the CVaR or expectation) and f is defined as f(z, z,y(6),0) :== cTx +¢Tz +
eT(0)y(0), with ¢ € R™ and ¢ € R™ denoting deterministic vectors with known parameters.

To bridge the formulation in (1) with the VPP problem, we establish the connection between the variables
of both in the remaining of this paragraph. The function f represents the difference between the revenues
of selling electricity minus the costs of generation and buying electricity. The vector ¢T represents the prices
related with contracts, €T denotes the fixed costs related with the commitment of the considered thermal
unit, ¢T(0) captures the uncertain prices of the electricity in the pool market. The vectors  and z are the
first-stage variables, where x represents the power to sell or buy through contracts and z the binary variables
associated with the commitment of the thermal unit and the selection of the blocks of the contracts. The
vector y represents the second-stage variables, which stands for the output generation of the thermal unit,
the output generation and consumption of the pump-storage hydro plant and the corresponding volumes of
water in the reservoir and flows of water, and the energy to sell or buy in the electricity pool market. The
random vector h(f) represents the wind power.

The first set of constraints in Problem (1) captures the structure of the contracts and the constraints on
the commitment of the thermal unit. The second set of constraints represents the limits of operation of the
thermal unit (maximum and minimum power output and power output ramp rates limits), and the limits
of operation of the hydro plant (maximum and minimum power output and limits on the flows of water and
volume of water in the reservoir). The last constraint expresses the energy balance of the VPP.

The definition of the profit functional p and the treatment of the uncertainty differentiate SP and ARO
formulations, whose derivations are detailed in the next two subsections.

3.1. Risk-averse stochastic programming formulation

Problem (1) can be recast as a SP problem considering that 6 belongs to a probability space (0, F, P),
with © being the set of future events, F a o-algebra, and P a probability measure. We consider a risk-averse
SP formulation that incorporates an objective function involving the expectation of the profit and the CVaR
of the profit. The CVaR of the profit f pertaining to the (1 — «)-quantile is the conditional expectation
of f given that f does not exceed the value at risk (VAR) of f. The VaR of f for the (1 — «)-quantile is
defined as VaRi_,[f] = max{v|F;(v) <1 — a}, where Fy is the cumulative distribution function of f; and
the CVaR is defined as CVaR;_, [f] = E[f|f < VaRi_.[f]].

Denoting 7 = VaRi_,[f] and applying the CVaR to the profit function f, it can be shown that

1
maxXg z,y(0) {CvaRl—a[f(ma Z,y(e), 9)}} = IMaXg 2 y(0),n {E|:77 - m(ﬁ - f((E, Zay(e)a 0))+:| } These def-

initions are given for completeness and we refer to Pflug [39], Rockafellar and Uryasev [40], and Rockafellar
[41] for the properties of the CVaR and its reformulation used in stochastic programming.

Therefore, the SP formulation is driven by the maximization of a combination of the expectation and
the CVaR of the profit:

e 0172000 = wa TE[(1- 911G, 20000.0)+ 8 (- 20— S zw0).0)7 ) | b
2,2,(0) 2.2,y(0).n l-a

where 8 € [0, 1] defines the weights of the expectation and CVaR of f, a € [0,1] defines a quantile, and
()" represents max{-,0}. The resulting formulation of (1) with (3) can be recast into a canonical two-stage
formulation to fit the VPP two-stage decision process. The objective function in (3) is parameterized over
both f and a. These parameters translate the levels of risk that the decision-maker is willing to accept,
and thus, drive the formulation to more or less conservative solutions. The formulations defined with (3)
were studied in Lima et al. [6], where the focus was on the efficient solution of these formulations with an
adapted L-Shaped algorithm to handle the CVaR.

In comparing with the ARO approach, we focus on maximizing the CVaR of the profit in (3) with 8 = 1.
In this case, the CVaR of the first-stage profit is given by ¢Tx+¢7z due to the translation invariance property
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of CVaR [42, 39]. The objective function is re-written as ¢ (x, z,y()) := ¢Tx + ¢z + Q(x, z), where the

1

CVaR of the second-stage profit is given by Q(z, z) := CVaR1_,[Q(z, 2z,0)] = E|n— T a n—Q(x,z0)" } ,
-«

which leads to the two-stage canonical SP formulation:

w* :=max c'z+cTz+ CV&lea[Q(-ZV Z, 9)]

x,z

st. Arx+Bz<b (4)
zeRM, 2z € B,

with .
Qz,z,0) = max (0)y(0)
s.t. Dy(0) <d-C-z, (5)
Fy(6) = h(6) - Ga,
y(0) € R™3.

3.2. Robust optimization formulation

The conversion of Problem (1) into an ARO counterpart problem [12] is based on two ideas: 1) a
particular treatment of the support of the random vectors h and ¢ using uncertainty sets; and 2) finding
a robust solution for the first-stage variables x and z. It is called robust because it aims at maximizing f
in the “worst” random event in the support (range) of the random events. The objective function of the
ARO counterpart problem of (1) is ¥go (z,z,y(0)) := elggf(:r, z,9(0),0). It leads to the ARO counterpart
formulation:

* inf T =T cT(0 0
Wro mf?,%) 9129{6 z+cTz+e"(0)y(0)}

st. Ar+Bz<b
Cz+Dyd)<d, 6c© (6)
Fy(0)+ Gz =h(0), 0€0O
z e R}, 2z € B, y(f) € R™.

Problem (6) can be re-formulated into a two-stage decision process with first-stage variables « and z, and
second-stage variables y, by defining ¥go (z,2) := cTo +¢7z + eingQ(m, z,0) which leads to the following
€

two-stage ARO formulation:
Who :=max c'z+c'z+ inf Q(x,z,0)
T,z 0cO

st. Ar+Bz<b (7)
r e R}, 2z € B"2,

with Q(z, z,0) defined as in (5), but with a distinct support of . Formulations (4) and (7) represent the
two-stage decision process, where in the first stage the forward contracts and the thermal unit commitment
are derived to maximize the first-stage profit ¢cTx+¢7z. The second-stage decisions—dispatch of the thermal
unit and pump-storage hydro plant and interaction with the electricity market—are optimally selected to
maximize the CVaR of the second-stage profit ¢7(6)y(0) in (4) and the second-stage profit ¢7(6)y(6) for the
worst random event of the uncertain parameters in (7).

The definition and construction of uncertainty sets from data is a key research area in ARO. Advanced
approaches to define the uncertainty sets involve hypothesis testing or the utilization of risk measures [43, 44].
The uncertainty sets usually include at least two components: 1) the range of the random vectors; and 2)
a risk management approach. The first defines only the range of the random vectors without considering
any probability distribution over this range, whereas the risk management approach is used to avoid overly
conservative solutions due to the worst-case approach.



In this work, the support of h(#) and &(#), which in our problem represent the uncertainty of the wind
power and electricity prices, are specified using a discretization of convex uncertainty sets. For instance, the
uncertainty set for h is written as

Up == {h:h=h'+diag (u) h* — diag (u™) b\, u™,u” € B™}, (8)

where hf is the forecast value, h*, h! are upper and lower deviations, respectively, uT, u~ are binary random
vectors, and diag(u) is a diagonal matrix defined by the vector u. Therefore, the uncertainty sets are built
around forecast values h/ and & using bounded intervals. We refer the reader to Ben-Tal et al. [12] for
a detailed description on the construction of this type of uncertainty set using perturbation vectors and
parameterizations, as well as analysis on the tractability of robust counterpart problems that use convex
uncertainty sets.

The main difference here with the sets proposed in Ben-Tal et al. [12] is the introduction of the binary
variables in (8), which has the advantage of keeping the subproblem within the scope of the decomposition
algorithm used to solve the robust counterpart as an MILP problem; see Thiele et al. [45], Jiang et al. [46],
and Lima et al. [19].

The conservatism of an ARO formulation can be further controlled introducing a budget of uncertainty
constraint in the definition of the uncertainty sets [47]. The budget of uncertainty constraint limits the
deviations of the elements of the random vectors h and ¢ from their forecast values h/ and /. The uncertainty
set in (8) is augmented by introducing a budget of uncertainty constraint through eT (u™ +u~) < T, where
e is a vector with all entries equal to one, and I' > 0 is a known parameter defined by the decision-
maker, which represents the budget of uncertainty that the decision-maker is willing to account for. In this
work, I' controls the number of time periods where the uncertain prediction is allowed to depart from the
corresponding forecast values. Note that more general uncertainty budget constraints may be defined with
varying importance of the entries of u as suggested in Bertsimas and Sim [48]. Tuning I" appropriately allows
to control the deviations from the forecast value at the end of the time horizon. However, larger deviations
at the end of the time horizon can also be captured in the range of the random vectors. This is the case in
this work, where the variance of the wind power and electricity prices increases in time. With this setup,
the ARO formulation presented later with I' = 0 is equivalent to the expected value problem [30], where the
random vectors are replaced by their mean value; with I' = I';.x, where I'yax is the maximum number of
deviations, the ARO formulation recasts the conservative robust approach, where the worst random event
is considered.

In the literature, the uncertainty sets used in applications are usually defined in one of the following ways:
1) one interval range for each random component of the vectors and one budget of uncertainty constraint per
random component [8, 46, 19, 49, 50]; 2) one interval range for each random component and two budget of
uncertainty constraints per random component [51, 25]; 3) one interval range for each random component,
one budget constraint, and a correlation between random components [52]; or 4) one interval range for
each random component, one budget constraint, and additional constraints that limit the variations of the
random component between consecutive periods of time [24]. The limits of the interval range for the random
variable are usually defined as a percentage of the forecast value, or as a given percentile of the forecast
prediction [8, 25]. In addition, Lorca and Sun [53] proposed dynamic uncertainty sets to describe the wind
power uncertainty from wind farms.

The final formulations of the uncertainty sets for h and ¢ are the following

U, = {h :h=h' + diag (u+) h* — diag (u_) hl,eT (u+ + u_) <T,ut,u” € Bm?’} , (9)
and
Uz = {E e = + diag (u+) ¢t — diag (w_) & et (w"‘ + w_) <T,wh,w™ € IB%"3} . (10)
In Section 4, we provide more details on the ARO problem as well as on the solution method used.

3.3. The relation between the worst-case in SP and ARO

In the CVaR definition, for any well behaved f, we have two limiting cases [41]: 1) lim,—,0 CVaR;_,[f] =
E[f]; and 2) lim,—,; CVaR;_,[f] = infsco [f]. The first equation shows that for 8 = 1 and o — 0, we obtain
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the same solution as with 8 = 0. The second equation reveals a natural link between the SP objective
function with 8 =1, & — 1 and ¥ o (z, z,y(#)). Both objective functions aim for the maximization of the
worst-case profit. This interesting link between risk-averse SP and ARO was identified by [54].

As customary when dealing with finite numbers of samples, we shall refer by o = 1 the worst-case
approach, although in the computational implementation o = 1 corresponds to « = (N — 1)/N (which is
close but not exactly 1 for large N).

3.4. Comparing solutions from the SP and ARO

SP and ARO rely on fundamentally different representations of uncertainty, which favor one approach
vs. the other depending on the problem considered. If the probability distribution of the random variables
is not known, an ARO approach is the obvious choice. On the other hand, if a probability distribution
is available, then SP is the natural choice. We address a case study where both approaches can be used,
and provide insights on the overall comparison of risk-averse SP and ARO. Selecting the CVaR, as the risk
measure in SP is a natural choice due to its properties [40, 39, 41] and its direct link with ARO [54, 41].

The two approaches incorporate different objective functions, driven by different risk parameters: SP
uses 8 and «, while ARO uses I'. Therefore, the comparison of the optimal values of the objective function
of each formulation needs to take these parameters into account. The optimal objective function values of
the extreme risk-averse SP and ARO formulation correspond to the worst profit condition, and they do not
provide additional information regarding profit for other uncertainty realizations. Note that in practice,
the profit realization depends on the realization of the uncertain parameters and the optimal first-stage
variables.

To compare solutions obtained from different formulations and risk parameterizations, we compare first-
stage variables and estimates and confidence intervals of the expected profit and CVaR of the profit. These
estimates and confidence intervals are calculated using the bound estimation stage of the SAA methodology,
which it is applied to both the SP and ARO.

3.4.1. The SAA methodology.

To compute solutions of the SP problems and assess their quality, we use the SAA methodology developed
in Lima et al. [55]. For the sake of completeness, we briefly outline its main concepts below. In the SSA
methodology, estimates and confidence intervals for upper and lower bounds on the true optimal value are
calculated, as well as an estimate of an upper bound on the gap between the true optimal value and the
optimal value of each first-stage solution found.

The SP formulation with the objective functions defined in (3) fits the general formulation

W= max (B0 29(0),0)) )

where W := {z,2,y(0)|Ax + Bz < b;Cz + Dy(0) < d, 0 € ©;Fy(0) + Gz = h(h), 0 € ©;2x € R,z €

B™,y(0) € R}'}, with the optimal value w* and optimal solution z*, y*, z*. [56] proposed a solution
approach for Problem (11) using the approximation problem

1 N
wi =  max — xz,z,y", 0" }, 12
N z,2,y(0)EWN { Nn; d)( 4 ) ( )

for a sample set of random events 6". We refer to Problem (12) as the sample average approximation
problem. In (12), N denotes a sample with N = |A]| elements. The solution of Problem (11) is then
approximated by the optimal value and solution of Problem (12), namely w}, and x},, yx;, and z3.. SAA
involves two stages: an optimization stage and a bound estimation stage.

The optimization stage involves solving Problem (12) for independent samples with the same size, whereas
the bound estimation stage involves selecting and fixing a first-stage solution in Problem (12), that is x},
Zjr, and solving it for multiple samples with the same size. The bound estimation stage determines an
estimate with confidence interval for a lower bound on the optimal value. However, in the context of this
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work, we are interested in additional results associated with the lower bound on the true optimal solution.
More specifically, we seek estimates and confidence intervals on the expected profit and CVaR of the profit
of the VPP. We refer to Lima et al. [55] for further details on the implementation of the SAA methodology
adopted here. A central part of SAA is the solution of the Problem (12) for a given sample. In Section 4,
we describe the method used to solve this problem.

4. Solution methods

In this section, we provide additional details about the optimization formulations and the solution meth-
ods used in SP and ARO.

4.1. Stochastic programming decomposition algorithm

The SP formulation is solved with the L-Shaped algorithm [57]. In particular, to tackle the risk-averse
formulations, we use a single-cut version of an adapted L-Shaped algorithm; see Lima et al. [6]. In that
work, the superior performance of an adapted L-Shaped algorithm as compared with the solution of the
extensive formulation was demonstrated. The master problem is defined as

Wiy = Mmax  cTx+Clz+ (1 - B)wy + Bws

T,Z,wW1,w2

st. Ar+Bz<b

wi <Y palld=C2)Tpp + (hy — Gx)T AT, Vm e M
neN

wQS%p"(nm_liaU:ﬁ)’ YmeM, >0
ot > = [(d—C2)"ult + (hy — Gz)T NP, VYneN,YmeM, B >0
vt >0, YneN,VmeM,5>0
r€R™ 2B w € R, wy €R,

(13)

and the dual subproblem as

min  (d — C’zk)T tin + (B — ka)T An

HnsAn
st. DTu, +FTA, > ¢, VYn e N, (14)
pn € RN, € R™?

where p, and A, are the dual variables corresponding to n-th sample.

The adapted L-Shaped method relies on a master problem with one additional optimality cut, the third
constraint in (13), and one extra variable, ws, as compared to a traditional one. The master problem involves
only optimality cuts. This is so because, for the formulation considered, each first-stage solution leads to a
feasible second-stage solution. This means that the formulation has relatively complete recourse. The CVaR
definition involves two additional constraints per iteration and scenario (the fourth and fifth constraints)
and one new variable, v]*, per iteration and scenario as well. The new optimality cut outer-approximates
the entire CVaR term in the objective function, setting the VaR, denoted by i, as a second-stage variable.
The VaR is calculated at each iteration after the solution of the LP subproblems and is used in the CVaR
optimality cut and in the calculation of the lower bound. These details are presented in Algorithm 1.

4.2. Robust optimization decomposition algorithm

The ARO formulation cannot be solved directly due to its bilevel structure, and it requires a decompo-
sition algorithm. One approach is to use a Benders Decomposition based algorithm, such as described in
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Lima et al. [19]. In this algorithm, the master problem is defined as
Whom =max cTlz+eTz+§
st. Ar+Bz<b (15)
E<(d=C)Tu" + (h—Gz)TN", meM
reRY, zeB™, £ eR.

A careful inspection of the master problems associated with the risk-neutral SP and ARO, problems (13)
and (15), shows that the master problems resemble each other. There are similarities because they are
both derived based on the Benders Decomposition. The main difference between the two master problems
is that, in the SP master problem, the optimality cut is built over the dual variables of all subproblems,
whereas the optimality cut is only built over the dual variables of one subproblem in ARO. Therefore, in the
L-Shaped algorithm for the risk-neutral formulation only one constraint per iteration is added to the master
problem, but this constraint has a number of terms proportional to the sample size. The master problems
that consider the CVaR in the objective function require additional constraints and variables per iteration,
compared to the risk-neutral master problem (see Table 1), namely to outer-approximate the CVaR term
in the objective function. Note also that, due to the relatively complete recourse property of the VPP
formulation, problem (15) only incorporates optimality cuts.
In this work, we use a primal version of the master problem [8, 58]:

Who M = Ig‘cn?)g( cTx+ec'z2+&

sit. Ar+Bz<b
E<E™yYm, meM (16)
Cz<d—-Dy™, meM
Gr=h"—-Fy™, meM
r e R}, ze B,y e R, £ €R.

We rely on the primal variant because for the same ¢7™ and h™, the optimal value of the objective function

of (15) is an overestimation of that of (16) [58, Proposition 3]. Besides, the computational performance of
the primal version is better than or equal to the dual variant; see Zeng and Zhao [58], Lima et al. [19], and
a comparison for the case studies in this work in Appendix Appendix D (online supplemental material).
Note that a similar strategy can be implemented in the SP by transferring to the master problem some
constraints of the primal subproblems.
The dual subproblem in the ARO decomposition algorithm is given by
. T . + . -\ 11 KT
Mv)\,w+r717}11£l7u+7u_ (d - CZ ) H + (hf + dlag (u ) hu - dlag (U ) h - G.’L’ ) )\
st. DTp+ FTA> & + diag(wh)é — diag(w™)é

eT (u+ + u*) <T (17)

e"(wh+w™) <T

peRT Xe R™ wt w™ e B™, ut,u” € B,

Note that the problem (17) has two bilinear terms in the objective function: diag(u™)\ and diag (u™) \.
These specific bilinear terms involving a binary and a continuous variable result from using binary variables
in the definition of the uncertainty set. This type of bilinear terms can be linearized as described in Lima
et al. [19].

4.8. An adaptive mazximum solution time to solve subproblems
The ARO algorithm involves the solution of two MILP problems on each iteration: the master problem
(16) and the subproblem (17), using a branch & cut method. Preliminary computational experiments
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Algorithm 1 L-Shaped algorithm adapted to handle the master problem (13).
Sets:= N - elements of one sample, K - iterations, M - optimality cuts.

1: Initialization: LB = —inf, UB = +inf, k:=0, m :=0, M =0
2: while |UB — LB| /|LB| > € do
3:  Solve the master problem, for £ = 0, set w1 =0
Problem (13)
4:  Let (2%, 2", w?, wh) be the optimal solution of the master problem
5:  Calculate the upper bound

UB:min{UB,chkJrETzk+(1fﬁ)wlf+ﬂw§} (18)
6:  Solve the N LP subproblems
Problem (14)
7: Let (AF, u*) be the optimal solution of the subproblem n
Add cuts to the master problem built from the dual variables
99 m:=m+1l, M =MUm

o

AT =X wneN, =k VneN (19)
10:  Calculate the n™ for the a-quantile of the distribution of @ (mk, 2", §n) ,VneN
11:  Add optimality cuts to the master problem
12:  Calculate the CVaR1", of the distribution of Q (xk, 2*, £n) ,VneN

! Z Pn (nm — [(d — Czk)TuZL + (hn — Gmk)T )\ZLD+ (20)

CVaR1L, =n"" —
1-a neN

o C%ﬁﬁﬁf{?g?ﬁcﬁd@Tz’“ +(1-8) gﬂ‘[ {pn [(d - Czk>T u 4 (hn - Ga:k>T A?] } n BCVaR;’La} (21)
14: end while

suggested that a) the master problem is relatively faster to solve than the subproblems; and b) in some
cases, the subproblem solution took practically the total computational time assigned to the algorithm,
which made the algorithm to terminate after a few iterations with a poor solution. These results indicate
that limiting the solution time of the subproblems during the early iterations might be advantageous.

To enable the algorithm to overcome the low performance of the subproblems in early iterations, we use
an adaptive maximum solution time strategy to solve the subproblems. The strategy is based on initially
allocating a small maximum computational time for the solution of the subproblems. Then if the ARO
algorithm does not improve the upper bound between two iterations, then the maximum time for the MILP
subproblem is increased. On the other hand, the termination of the subproblem solution due to a time limit
implies that the subproblem solution may be suboptimal. Therefore, to ensure the validity of the lower
bound of the algorithm, this bound is calculated using the final lower bound on the objective function of
the subproblem, obtained from the branch & cut method. Note that the computational performance of
the ARO algorithm using this strategy depends on the effort put on the solution of the subproblem. The
ARO algorithm’s performance is discussed in Appendix Appendix E (online supplemental material) and
additional performance results for alternative maximum computational times are discussed in Appendix
Appendix F (online supplemental material). Here, we implement Algorithm 2.

4.4. Sizes of the master problems and subproblems

In Table 1, we present the size of the master problems associated with the SP and ARO decomposition
methods, based on the compact and general formulation in (1). In SP, the size of the subproblems does not
change with the number of iterations, but the number of subproblems to solve depends on the sample size V.
In our SP setup, the subproblems are LP problems with ng constraints and msy + m3 continuous variables.
In ARO, there is only one subproblem to solve, but it is an MILP problem with ng + 2 constraints, mso + mg
continuous variables, and 2ng + 2mg binary variables. In our implementation of the L-Shaped method, the
algorithm deals with the solution of N LP problems in parallel, whereas in ARO, the algorithm deals with
one MILP, which in fact, involves the solution of a collection of LP problems within a branch & cut method.
Ultimately, both approaches solve a collection of LP problems.
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Algorithm 2 Primal constraint generation algorithm using the master problem (16).
Sets:= K - iterations, M - primal cuts

1: Initialization: LB = —o0, UB = 400, k := 0, M := @, T™2*CPU =1
2: while [UB — LB| /LB > ¢ do
3:  Solve the master problem, for k =0 set £ =0
Problem (16)
4:  Let (xk, 2k, §k) be the optimal solution of the master problem
5:  Calculate the upper bound
UB = min {UB7 Tz® ek 4 §k}
if UB=cTgF ' 4cT2F 1 + §k71 then
max CPU _ 712
end if
Solve MILP subproblem with a maximum time limit of 7™ PV
Problem (17)
10:  Let ()\k, ,uk, w® wF utk, ufk) be the optimal solution of the subproblem
11:  Let LB®? be the lower bound on the MILP subproblem objective function obtained from the branch & cut
method
12: Set m:=m+ 1, M := M Um and calculate h™ and ¢™ based on (9) and (10)
13:  Add the primal cuts to the master problem
14:  Calculate the lower bound

LB = max{LB,LB*"}
15: end while

Table 1: Number of variables and constraints added to the master problems per iteration. The master problem has ni
continuous variables, n1 binary variables, and m constraints, plus the numbers presented.

Formulation Master problem Variables Constraints
SP - 8 €]0.0,1.0[ (13) 2 4+ N/Iteration (2+ N)/Iteration
SP-5=0.0 (13) 1 1/Iteration
SP-35=1.0 (13) 1+ N/Iteration (14 N)/Iteration
ARO - Primal (16) 1+ ng/Iteration (1 4+ mso + m3)/Iteration
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5. Computational experiments

In this section, we address the VPP problem by applying the risk-averse SP and the ARO. Our primary
objective is to compare both approaches from the computational point of view and from the risk management
perspective. Based on previous studies [19, 6], we use two efficient implementations of the decomposition
algorithms for SP and ARO, and we assess their performance on two case studies taking into consideration
different sample sizes and different risk management parameters. The SP decomposition algorithm, as well
as the SAA methodology, rely on parallelization of the LP subproblems solution to reduce wall clock time.
From the risk management perspective, we emphasize the performance analysis of the two approaches for
the extreme risk-averse case, which establishes the link between risk-averse SP and ARO.

We consider a VPP consisting of a thermal unit, a wind farm, and a pump-storage hydro plant. Based
on these units, we define two case studies: Case 1 and Case 2. The two cases assume the same wind power
forecasts, same electricity price forecasts, and that the same contracts are offered to the VPP.

The main difference between Case 1 and Case 2 is the thermal unit, namely the performance character-
istics that define the maximum power output, minimum up and down times, limits on the ramp rates, and
the electricity generation costs. The thermal unit in Case 2 has lower maximum power output, minimum up
and down times, and the electricity generation costs are higher than the ones of the thermal unit in Case 1.
More specifically, the data for the thermal units are the following: the capacities (maximum power outputs)
are 455 MW and 55 MW, the fixed costs are 1000 €/h and 660 €/h, and the variable generation costs are
16.19 €/MWh and 25.92 €/MWh for Case 1 and 2, respectively. In Case 2, the variable generation costs are
higher, and the capacity is considerably lower than in Case 1, which leads to a ratio between the fixed cost
and the capacity of 12 €/(hMW) for the thermal unit in Case 2 vs. 2.20 €/(hMW) in Case 1. In the discus-
sion of the results, the term higher generation costs of the thermal unit in Case 2 takes also in consideration
the impact of the lower capacity, by comparison with Case 1. The data and performance equations that
characterize the region of operation of the generation units are described in detail in Appendix Appendix
A (online supplemental material).

5.1. Uncertainty characterization for wind power and electricity prices

The VPP optimization problem has two uncertain parameters across one week: the electricity price
profile and the wind power profile. For each case study, we consider two weeks of interest: Week 1 that
refers to the week of August 25-31, 2014; and Week 2 that refers to the week of November 14-30, 2014.
Appendix Appendix B describes the sources and sampling process to generate the uncertainty sets and
samples (see online supplemental material). These data are available online in [59].

In Figure 2, we provide the point forecast and bounds of the uncertainty set of the electricity prices for
the two weeks, and in Figure 3, we show two samples: one with 10 elements and another with 100 elements.

Regarding the wind power, we present the original wind power ensemble and the uncertainty set elements
In Figure 4, and in Figure 5, we show two samples: one with 10 elements and another with 100 elements.

5.2. Summary of case studies and risk parameterization

In the computational experiments regarding Case 1 and Case 2, we pursue to capture the influence of
the technical characteristics of the VPP, and with Week 1 and Week 2, the impact of the wind power and
electricity price uncertainty on the performance of the algorithms and the solutions. Overall, we solve two
VPP cases, each with two instances of the uncertain parameters.

Regarding the SP formulations presented in Section 3.1, they are parameterized over 5 and «, whereby
we consider the cases §=0; §=0.5 and a =0.9; and § =1 and a = {0.9; 0.95; 1}. The ARO formulation
is parameterized over the budget of uncertainty, namely T' = {0; 10; 50; 100; 150; 168}. Note that there is
an additional crucial parameter in the definition of the uncertainty set of the electricity prices: the forecast
prediction error level used to define the bounds of the set, which is set to 95%.
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Figure 2: Electricity prices point forecast and prediction confidence interval for the two weeks considered.
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(c) Week 2. Sample with N = 10.

(d) Week 2. Sample with N = 100.

Figure 3: Examples of two samples for Week 1 and Week 2 used in the SP approach. The sashed lines are the bounds of the
uncertainty sets in the ARO approach.

5.8. SAA methodology setup

The results for SP are obtained through an SAA methodology using sample sizes N =10, 50, 100, 500, and
5000. For each sample size, M = 30 optimization replications are performed. Each optimization replication
involves Algorithm 1 with a different sample. The lower bound on the true optimal objective function value
is estimated in two steps: 1) for each distinct first-stage solution obtained from the optimization replications,
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Figure 4: Wind power ensemble and uncertainty set defined by the average forecast and lower and upper bounds.

a lower bound is estimated using T' = 30 samples of size N’ = 25,000, and 2) the first-stage solution with
the best lower bound from the previous step is selected and a new lower bound is estimated using 7" = 30
samples of size N’ = 25,000. In the second step, estimates of the expected profit, and the CVaR of the
profit are also calculated. These samples are available online in [59].

In the ARO approach, the lower bound estimation stage requires only the second step, where estimates
of the expected profit and the CVaR of the profit associated with the first-stage variables are calculated.

5.4. Algorithms 1 and 2 setup

In Algorithms 1 and 2 the stopping criteria are a maximum wall-clock time of 10,800 s, a maximum gap
between the bounds of 1074%, and a maximum number of iterations of 5000.

The models and the algorithms were implemented in GAMS, and CPLEX 12.9.0 and GAMS/GRID/GUSS
[60] capabilities are used to distribute and solve in parallel the LP subproblems. All optimization runs were
performed in the KAUST Ibex computer cluster using exclusive nodes, each with 40 processors Intel Gold
6148 @ 2.6 GHz and 384 Gb of RAM.

5.5. Size of the problems

We provide statistics regarding the size of the problems involved in each decomposition algorithm for
different risk parameters values and sample sizes in Appendix Appendix G (online supplemental material).
The size of the master problem increases with the number of iterations, while the size of the subproblems
is constant in both approaches. In the first iteration of the decomposition algorithms, the size of the master
problem is the same in SP and ARO. However, in SP, depending on the sample size and risk parameters
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Figure 5: Wind power samples generated from the KLE. The dashed lines are the bounds of the uncertainty set.

values, at each iteration, the size of the master problem increases at a different rate. When the CVaR of the
profit is considered in the objective function (8 > 0), the number of new constraints and variables added to
the master problem at each iteration depends on the sample size. In contrast, for § = 0 there is only one
new constraint added, but with a number of terms that depends on the sample size. In ARO, the size of
the master problem increases by the number of primal constraints and variables added on each iteration.

5.6. Comparison of the SP and ARO performance

Detailed results and a discussion on the performance of the ARO decomposition and SP decomposition
algorithms are presented in Appendix Appendix E (online supplemental material). Overall, the results
show that the relative performance of the SP and ARO models depends on the deterministic and uncertain
parameters, sample size, and risk parameters. With all these components, the comparison is not straight-
forward, and it is challenging to obtain clear-cut conclusions. For simplicity, we focus first on the SP and
ARO performance without considering the worst-case in both approaches (3 =1, « = 1 and T = 168), in
subsections 5.6.1 and 5.6.2. Then, we analyze specific worst-case results.

5.6.1. Week 1.

In Case 1, the sample size N = 500 is a frontier for SP. All sample sizes N < 500 present lower
computational times than ARQO; see Figure S6a (online supplemental material). In Case 2, ARO with
I' = {50, 100, 150} does not converge, and thus requires higher computational times than all SP instances;
see Figure S6b (online supplemental material). Also, SP does not meet the gap stopping criterion for one
replication out of 30 with N =10, 8 = 1, and « = 0.90. However, for both Cases, SP with N = 500 meets
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the gap stopping criterion in all optimization replications of the five sets of risk parameters; see full results
in Appendix Appendix H (online supplemental material).

5.6.2. Week 2.

In Case 1 and for sample sizes N < 500, the computational times for SP are below 10 s, which are
lower than the times for the ARO with I" = {50, 100} and competitive with I = {10, 150}. For Case 2, the
SP fails to meet the gap stopping criterion in all sample sizes and risk parameters; see Figure S7b (online
supplemental material). The results show that for I' = {50, 100}, the ARO does not meet the gap stopping
criterion, but it does for I = {10, 150, 168}; see Table S11 (online supplemental material).

5.7. Comparison between risk-averse SP and ARO.

In this section, we contrast the maximization of the CVaR of the profit with maximization of the worst
profit in ARO. The comparison considers different risk levels for the SP: o = {0.90, 0.95, 1}; and the ARO:
I = {10, 50, 100, 150, 168}.

Figures 6 and 7 show the results for Cases 1 and 2 and Weeks 1 and 2 for M = 30 SP optimization repli-
cations with N = {10, 50, 100, 500, 5000}. For each case, there are three subfigures for o = {0.90, 0.95, 1}.

5.7.1. Week 1.

For Case 1, Figures 6a and 6¢ show that for a = 0.90 and a = 0.95 only the SP computational times
of N = 5000 are worse than the ARO ones. For @ = 1 the variance of the computational times with
N =500 and N = 5000 increases considerably; see Figure 6e. However, for N = {10, 50, 100}, most of the
computational times are below 10 s, which makes it competitive with the worst-case in ARO, I" = 168.

For Case 2, the variance of the computational times for the SP is larger than for Case 1. This variance
is clear for a = 0.90 for N = 10; see Figure 6b, and for all sample sizes for a > 0.95. For a = 1, all
sample sizes lead to significant variances between any two optimization replications; see Figure 6f. The
ARO with T' = {50, 100, 150, 168} performs worse than SP, but the SP for o = 1 leads to a non-predictable
computational time, which means that one simple optimization replication is not sufficient to compare with
the ARO computational time.

These results for Case 2, Week 1 show a link between the performance of SP and ARO when the worst-
case, or near worst-case, is considered. In both approaches, the computational times increase considerably.
This increment in the time as the risk-averse parameters are selected is clear in Table S9 (online supplemental
material). This contrasts with the risk-neutral SP, where the objective function accounts for the expected
profit, and therefore, the lower electricity prices and search for the worst profit do not drive the optimization.

5.7.2. Week 2.

The trend of the results in Case 1 is similar to Week 1. In Case 2, the ARO meets the gap stopping
criterion with T' = {10, 150, 168}, whereas, SP did not in most replications. The exceptions are some
replications with N = 10 and N = 50. Overall, the final gaps of SP are over 22% for 8 = 1, a = 1; see
Table S11 (online supplemental material).

5.8. Risk management analysis

The VPP problem is formulated as a two-stage decision framework, where the relevant part of the
optimal solutions is the first-stage solution. The first-stage solution is implemented before the planning
horizon, whereas the second-stage solution is just the optimal recourse solution for each element of the
sample in SP and the worst realization in the ARO. Therefore, we limit our discussion to the optimal
first-stage solutions and the estimates of the expected profit and CVaR of the profit.

In Figures 8 and 9, we present the estimates of the expected profit and CVaR of the profit obtained from
the bound estimation stage of the SAA methodology, for the first-stage solutions presented in Tables 2, 3,
4, and 5.  In these figures, we illustrate with arrows the price of robustness and the value of robustness
obtained with SP and ARO for multiple risk-aversion levels. The concept of “price of robustness” was
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Figure 6: Left: Case 1, Week 1; Right: Case 2, Week 1. Wall clock time for M = 30 risk-averse SP optimization replications
with 8 = 1, and ARO.

introduced by Bertsimas et al. [47] to measure the deviation between the objective function solutions from
a robust optimization problem and the corresponding deterministic problem. Similarly, Gregory et al. [61]
proposed two measures for the “cost of robustness” that measure the deviation between a non-robust solution
and a robust one, applied to portfolio return optimization problems. We define the price of robustness as
the deviation between the estimates of the expected profit for 5 =0 and S > 0 for SP:

Price of robustness(a, ) := E[Profit] ‘ﬁf- =0 E[Profit]| 5507 (22)
and between I' = 0 and I' > 0 for ARO:
Price of robustness(T") := E[Proﬁt”rf. =0 E[Proﬁt”r>0. (23)
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Figure 7: Left: Case 1, Week 2; Right: Case 2, Week 2. Wall clock time for M = 30 risk-averse SP optimization replications
with 8 = 1, and ARO.

We introduce the value of robustness to measure the deviation between the estimates of the worst profit for
B> 0and 8 =0 for SP:

Value of robustness(«, 3) := CVaR =1 [Profit) ’a 550~ CVaR/ =1 [Profit] |5f. =0 (24)
and between I' = 0 and I' > 0 for ARO:
Value of robustness(T") := CVaRale[Proﬁt]|F>0 — CVaR, -1 [Profit] |rf4 =0 (25)

In both SP and AROQO, the value of robustness is higher than the price of robustness for each set of risk
parameters. For example, for Case 1, Week 1, we obtain an expected price of robustness of 264,052 € and
a value of robustness of 1,436,451 €, with the solution from the SP model with g = 0.5, a = 0.9; see Figure
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8a. These values result from the first-stage decisions to buy electricity through forward contracts (see Table
2) to sell it in the pool (or used by the hydro-pumped storage unit and then sold at a lower electricity price).

Comparing SP and ARO results, the profiles of expected profit and CVaR, of profit have a similar trend
and some values in common. In Case 1, the profiles are similar because of a relevant insight: the SP and
ARO lead to the same first-stage solutions, which means that the same solution can be obtained in SP
and ARO depending on the risk parameterization. The the first-stage solutions are presented in Tables 2
and 3 for Weeks 1 and 2, respectively.  In these tables, we highlight similar solutions obtained with SP
and ARO, which lead to the same estimates for the expected profit and CVaR of the profit in the bound
estimation stage. In Case 2, Week 1, the first-stage solutions UT, SU, SD, and SC of the SP and ARO are
similar, but the variable BC is different; this leads to distinct estimates of the expected profit and CVaR of
the profit; see Table 4. In Case 2, Week 2, there are differences between the first-stage solutions of SP and
ARO; see Table 5. However, definite conclusions cannot be drawn because the decomposition algorithms
did not converge to small gaps. As the robustness increases, the confidence intervals become tighter for both
estimates: expectation and CVaR,; see the column labeled + in Tables 2 to 5. This reduction in the interval
occurs because as the robustness increases, the electricity to sell by contract increases, and therefore, it
reduces the uncertainty of the profit; see the column labeled SC in those tables.

The average, median, and standard deviation of the wall clock time required to calculate the estimates
and confidence intervals for one first-stage solution are 1329, 656, and 2315 seconds, respectively, based on
the wall clock times for the second step described in Section 5.3. The wall clock time for one first stage
solution depends mainly on the samples’ sizes and number of replications, which were N’ = 25,000, and
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Figure 8: Expected profit and CVaR of the profit as a function of the formulation and risk parameters. N = 500, M = 30,
{T, T'} = 30, N’ = 25,000.
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Figure 9: Expected profit and CVaR of the profit as a function of the formulation and risk parameters. N = 500, M = 30,
{T, T'} = 30, N’ = 25,000.

T’ = 30. That is the time to solve 30 times 25,000 LP problems, plus the time to calculate the estimates
for the expectation and CVaR. A comprehensive study on these computational times was reported in Lima
et al. [55]. We provide additional results obtained with the SAA methodology in Appendices Appendix
I and Appendix J (online supplemental material). Specifically, on the quality of the SP solutions using
confidence intervals and bounds on w*, and results from all optimization replications with N = 500.
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Table 2: Case 1, Week 1. First-stage solution, estimates, and confidence intervals. Similar solutions in SP and ARO are in

bold. N’ = 25,000, {T, T'} = 30.

Estimates and confidence intervals

SP First-stage solution CVaR/[Profit] (€)
B8 e uT SU SD SC BC  E[Profit] (€) + a=0.95 + a=1 +
0 - 100 0 0 0 160 3,188,599 2730 1,055,341 3875 -159,189 43,486
05 0.9 100 0 0 155 0 2,024,547 1365 1,865,146 1922 1,277,262 20,447
1 0.9 100 0 0 315 0 2,557,799 672 2,043,343 934 1,768,962 8995
1 0.95 100 0 0 315 0 2,557,799 672 2,043,343 934 1,768,962 8995
1 1 95.24 1 1 315 0 2,397,745 510 1,993,444 790 1,764,836 9268
RO
r
0 - 100 0 0 0 110 3,170,852 2513 1,208,071 3565 93,103 39,771
10 - 100 0 0 50 55 3,124,555 2058 1,519,757 2914 613,889 32,066
50 - 100 0 0 155 0 2,924,547 1365 1,865,146 1,922 1,277,262 20,447
100 - 100 0 0 315 0 2,557,799 672 2,043,343 934 1,768,962 8995
150 - 100 0 0 315 0 2,557,799 672 2,043,343 934 1,768,962 8995
168 - 100 0 0 315 0 2,557,799 672 2,043,343 934 1,768,962 8995

UT (%) - up-time of the thermal unit; SU - number of startups of the thermal unit; SD - number of shutdowns of the thermal
unit; SC (MW) - power sold through contract; BC (MW) - power bought through contract.

Table 3: Case 1, Week 2. First-stage solution, estimates, and confidence intervals. Similar solutions in SP and ARO are in

bold. N’ = 25,000, {T, T'} = 30.

Estimates and confidence intervals

SP First-stage solution CVaR|[Profit] (€)
Jé] e UuT SU SD SC  BC  E[Profit] (€) + a=0.95 + a=1 +
0 - 100 0 0 0 160 2,675,583 1,658 1,312,720 2,986 366,264 41,289
0.5 0.9 100 0 0 50 55 2,611,946 1,265 1,573,094 2,278 855,899 31,207
1 0.9 100 0 0 155 0 2,420,072 862 1,714,915 1,548 1,234,206 20,671
1 0.95 100 0 0 210 0 2,313,649 724 1,722,800 1,298 1,323,457 17,216
1 1 100 0 0 315 0 2,061,459 464 1,687,431 837 1,440,562 10,633
RO
r
0 - 100 0 0 0 110 2,655,396 1,531 1,397,100 2,758 524,552 38,019
10 - 100 0 0 50 55 2,611,946 1,265 1,573,094 2,278 855,809 31,207
50 - 100 0 0 155 0 2,420,072 862 1,714,915 1,548 1,234,206 20,671
100 - 100 0 0 315 0 2,061,459 464 1,687,431 837 1,440,562 10,633
150 - 100 0 0 315 0 2,061,459 464 1,687,431 837 1,440,562 10,633
168 - 100 0 0 315 ) 2,061,459 464 1,687,431 837 1,440,562 10,633

UT (%) - up-time of the thermal unit; SU - number of startups of the thermal unit; SD - number of shutdowns of the thermal
unit; SC (MW) - power sold through contract; BC (MW) - power bought through contract.
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Table 4: Case 2, Week 1. First-stage solution, estimates, and confidence intervals. N’ = 25,000, {T, 7'} = 30.

Estimates and confidence intervals

SP First-stage solution CVaR/[Profit] (€)
B8 o uT SU SD SC BC E[Profit] (€) + a = 0.95 + a=1 +
0 - 100 1 0 0 160.0 418,652 996 -348,002 1370 -761,885 15,169
0.5 0.9 100 1 0 100 52.0 291,036 108 222,394 129 190,888 1320
1 0.9 100 1 0 100 38.6 274,003 65 236,094 74 217,293 733
1 0.95 100 1 0 100 38.3 273,523 64 236,112 72 217,366 753
1 1 100 1 0 100 38.0 273,237 64 236,106 71 217,387 769
RO
r
0 - 100 1 0 0 110.0 400,905 780 -195,529 1,062 -510,493 11,416
10 - 100 1 0 50 55.0 354,608 327 114,289 423 1,790 3,820
50 - 100 1 0 100 44.7 281,773 82 232,175 98 209,002 981
100 - 100 1 0 100 42.7 279,164 76 234,112 90 212,975 886
150 - 100 1 0 100 42.2 278,492 75 234,523 88 213,881 867
168 - 100 1 0 100 42.2 278,503 75 234,517 88 213,866 868

UT (%) - up-time of the thermal unit; SU - number of startups of the thermal unit; SD - number of shutdowns of the thermal
unit; SC (MW) - power sold through contract; BC (MW) - power bought through contract.

Table 5: Case 2, Week 2. First-stage solution, estimates, and confidence intervals. N’ = 25,000, {7, T'} = 30.

Estimates and confidence intervals

SP First-stage solution CVaR/[Profit] (€)
Jé] @ UT SU SD SC BC E[Profit] (€) + a=0.95 + a=1 +
0 - 97.02 3 2 0 160 469,302 646 -54,611 1,151 -404,614 14,623
0.5 0.9 83.33 10 9 57.2 0 314,255 141 227,195 144 184,731 1,969
1 0.9 80.95 10 9 50.0 0 322,659 148 229,509 158 186,025 1,881
1 0.95 80.95 8 7 59.1 0 314,158 142 228,916 134 185,681 1,897
1 1 76.19 8 7 70.1 0 297,171 132 212,157 198 150,244 3,003
RO
r
0 - 89.88 2 1 0 110 451,526 518 33,832 920 -240,902 11,595
10 - 89.88 2 1 50 55 408,076 269 202,229 443 78,897 5,089
50 - 97.62 1 0 58.1 0 332,841 157 235,824 172 192,975 1,898
100 - 98.21 1 0 65.6 0 323,572 148 235,754 136 198,186 1,573
150 - 100 1 0 66.0 0 321,970 147 234,460 135 197,047 1,571
168 - 100 1 0 66.0 0 321,986 147 234,461 135 197,043 1,571

UT (%) - up-time of the thermal unit; SU - number of startups of the thermal unit; SD - number of shutdowns of the thermal
unit; SC (MW) - power sold through contract; BC (MW) - power bought through contract.
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6. Conclusions

This work presented a comparison between two-stage risk-averse SP and two-stage ARO applied to the
optimal scheduling problem of a VPP. We conducted an extensive analysis. We presented in detail the
formulations used in both approaches and discussed algorithmic details, including the type of cuts and size
of the master problems in the decomposition algorithms. The decomposition algorithm implemented for
the SP uses an efficient parallel solution of the LP subproblems, whereas the ARO decomposition algorithm
solves an MILP subproblem. Fundamentally, they both rely on solving LP problems at the subproblem
level.

Regarding the analysis of the computational performance trends, we covered different parameterizations
of the risk in the SP approach, distinct values for the budget of uncertainty parameter in the ARO approach,
and multiple samples and sample sizes in the SP.

The relative performance of the two approaches falls in three cases. In the first case, both approaches
are competitive. If the sample size N < 500, then the SP model is in general faster. This indicates that if
both approaches solve the problem to meet the gap criterion, then the relative performance of SP and ARO
depends on the efficiency to solve N LP subproblems in parallel in SP vs. solving the MILP subproblem
in ARO. However, the extreme SP risk-averse formulation is less efficient, and requires a smaller sample
size to be comparable to ARO. This occurs in Case 1, Week 1 and Week 2. In the second case, the SP
approach is comparatively less effective than in the first case, but it still converges in most of the replications,
whereas the ARO does not meet the gap stopping criterion in four out of five sets of risk parameters. The
performance of the extreme SP risk-averse formulations is inferior to those of the other SP formulations,
which is aligned with the difficulties of the ARO. This case occurs in Case 2, Week 1. In the third case, the
SP approach fails to meet the gap stopping criterion independently of the sample size, whereas the ARO
meets the gap stopping criterion in three out of five sets of risk parameters. Here, even using a sample
size N = 10, SP cannot meet the gap stopping criterion. Therefore, this SP performance is an indicator of
ARO superiority in this case. This case occurs in Case 2, Week 2. In general, if the problem is amenable
to be solved by both approaches, then the SP is generally more efficient below a sample size threshold. On
the other hand, if the SP formulation is difficult to solve with smaller sample sizes, ARO is generally more
efficient. These computational results suggest that the relative performance of both approaches depends on:
a) the combined effect of the VPP data and the uncertainty data; and b) the risk parameter values.

A relevant conclusion is that similar results were obtained with the SP and ARO approaches. The results
show that by adjusting the risk parameters in both approaches, it is possible to obtain similar first-stage
optimal solutions and estimates of the expected value and CVaR, of the profit. This conclusion is evident
in Case 1. For Case 2, there is a subset of variables of the first-stage solution that is similar in the SP and
ARO approaches, but there is a difference in one variable of the first-stage solution. However, a clear-cut
conclusion cannot be drawn when the decomposition algorithms did not meet the gap stopping criterion.

The results indicate that both approaches are suitable to determine risk-averse solutions. Overall, the
choice of one approach over the other should first be based on the selected representation of the uncertainty,
given that both approaches can be competitive depending on the problem data (deterministic and uncertain),
sample size, and risk-aversion level.
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Appendix A. VPP deterministic model

In this appendix, the deterministic model of the VPP and its data are presented. The goal of the problem
is to maximize the operational profit defined as

P= maxzz [(A“” sell _ \bu g b“y) D,} v Z [ ( sell _ b“y)} — cop, (Appendix A1)
Z Dit + Z ptb; ¢ + ptuy + Z Z fbuy +wg = Z ppie + pietl 4 Z Z fejl, Vt, (Appendix A2)

i€ETH i€EHY i€HY
f}’“y < Fb“y Yf, 7, (Appendix A3a)
fse” < F“” Yf, 7, (Appendix A3b)
Z fb“y < ZFb“yy?“y vf, (Appendix A3c)
Z fbell < ZFaell sell Vf, (Appendlx A3d)
56” + y;’c“y <1 Vi, (Appendix A3e)
Z u;', S ui¢ Vit > LM; +1, (Appendix A4)
t>t—UT;+1,tt<t
Ut + Z ug dn <1 Vi, t>FM; +1, (Appendix Ab5)
tt>t—DT;+1,tt<t
P-lui ¢ <piy < Plu;y VieTH,t, (Appendix A6)
it < P0; + RU;UO; + SU; u?‘? Vie TH,t =1, (Appendix A7)
pit — Pit—1 < RUu; 1 + SU; u;‘f VieTH,t>1, (Appendix AS)
Pit—1 — Pit < RDju; ¢ + SD,; ult Vie TH,t>1, (Appendix A9)
cop = Z Z cu; + Ajgp + Bipi ¢ + cdi g, (Appendix A10)
i€ETH ¢
cdiy > DC; (1 —u;y) Vit =1,T] >0, (Appendix A11)
cdip > ui’,}DCi Vi, t > 2, (Appendix A12)
cuiy > utHS;, Vit (Appendix A13)
t—1
ClUj > (ui,t — Z ui,tt> cS; Vi,t>TD;+ 17, (Appendix A14)
tt>t—(DT;+TE+1)

Cujt 2> (Uz‘,t - Z Uzytt) CS;, Vi, T} <0, (TD; + Tf + T + 1) <t<(TD; +Tf), (Appendix A15)
tt<t
1=y +ufh —ufy =0, Vit=1T">0,
—uig U —uly =0, Vi,t=1,T" <0,
Ui t—1 — um-&-u” —u =0, Vi,t>1,

( )

( )

( )

vig — G(=qit +qpir) = V0; + GQ" Yie HY,t =1, (Appendix A19)
Vit — Vit—1 — G(—qit + qpit) = GQ™ Yiec HY,t > 1, (Appendix A20)
pthiy — KlqisH; =0 Vi€ HYt, (Appendix A21)

ppit — KPqpitH; =0 Vi€ HY,t, (Appendix A22)

gt < Qf Vi€ HY t, (Appendix A23)

qpix < Qi Vi€ HYt, (Appendix A24)

Vil,t <w <V Vie HYt, (Appendix A25)
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viy >VE Vi€ HY,t =tf, )

i 03t = 0. Y, 7)
y?ell7ybuy c {O7 1}’ Vf, 8)
)

( A26
( A2
( A2
ui’t,qu,uﬁ’t‘ €{0,1}, VieTH,t, (Appendix A29
( A3
( A3

pit >0, VieTH,t, 0)
pfell7pi)uy > 0, Vt, 1)
ptbit, pPits Qits qPit, Vit > 0, Vi€ HY, L. (Appendix A32)
The contracts in (Appendix A3a) to (Appendix A3e) are modeled based on Conejo et al. [62]. The thermal
unit considers: a) minimum up and down-time limits, (Appendix A4) and (Appendix A5); b) bounds on
the minimum and maximum power output, (Appendix A6) to (Appendix A9); ¢) fixed and variable costs of
power generation, startups, and shutdowns, (Appendix A10) to (Appendix A15); and d) logical relations
between the binary variables that define the states of the unit, (Appendix A1l6) to (Appendix AlR).
LM; = min{|T|,U;}, U; is the number of hours the thermal unit ¢ needs to be On at the beginning of the
time horizon, FM; = min{|T|, DMi}, DM; is the number of hours the thermal unit needs to be Off at the
beginning of the time horizon. The pumped-storage hydro plant model considers: a) water mass balances
for the reservoir at the end of each period, (Appendix A19), and (Appendix A20); and b) power generation
and consumption functions, (Appendix A21), and (Appendix A22). The parameters of the thermal unit,
pump-storage hydro plant and contracts are shown in the Tables S1, S2, and S3.

Table S1: Base data for the thermal generators.

PE PY ur bpr T°¢ T' SU/SD RU/RD A; B, HS; CS;
Case  (MW) (MW) (h) (h) (h) (h) (MW/h) (MW/h) (€/h) (€/MWh) (€/h) (€/h)
1 150 455 8 8 5 8 150 91 1000 16.19 4500 9000
2 10 55 1 1 0 -1 10 11 660 25.92 30 60

Table S2: Data for the hydro plant.

Case H, K? K] i Q: Vo, v V!

(m) (MWs/m?) (MWs/m?) (m?/s) (m?/s) (Hm®) (Hm?®) (Hm®)
land2 113 0.99 1 0.1 46.5 84 560 10
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Table S3: Price of the energy (€/MWh) for two contracts for each week.

Sell blocks Buy blocks

Week Contract Block Size 3 2 1 1 2 3

1 1 50 64.77 59.77 54.77 54.77 49.77 44.77

1 2 55 58.29 53.79 49.29 49.29 44.79 40.29
Nomenclature

Sets

F Forward contracts

HY Hydro pump-storage generation units

J Blocks of the forward contracts

I Generating units

T Time periods

TH Thermal generation units

Parameters

A;, B; Production cost function coefficients for unit ¢ (€/h), (€/MWh)

Cs; Cold start-up cost of unit i (€/h)

DM, Number of periods unit ¢ must be off at the beginning of the time horizon

Dy Time periods spanned by contract f

DC; Shut-down cost (€)

DT; Minimum down-time of unit ¢ (h)

FM; Minimum number of periods a unit ¢ must be off at the beginning of the time horizon

HS; Hot start cost of unit ¢ (€/h)

LM; Minimum number of periods a unit ¢ must be on at the beginning of the time horizon

P! Minimum power output of unit i (MW)

P Maximum power output of unit i (MW)

PO; Power produced at t=0 by unit i (MW)

RD; Maximum ramp-down rate of unit ¢ (MW)

RU; Maximum ramp-up rate of unit ¢ (MW)

SD; Maximum shutdown rate of unit ¢ (MW)

SR, Spinning reserve for period ¢t (MW)

SU; Maximum start-up rate of unit ¢ (MW)

U; Number of periods unit 4 must be on at the beginning of the time horizon

Uo; Initial state of unit ¢ {on,off}={1,0}

UT; Minimum up-time of unit ¢ (h)

T? Cold start hours of unit ¢ (h)

Tf Initial status of unit ¢ (h)

G Conversion factor between Hm? and m?/s in one hour

H; Water head in plant ¢ (m)

K? Power consumption factor

K] Power generation factor

n Natural inflow of water for plant i (m3/s)
v Maximum turbined and pumped flow of water for plant i (m?/s)

v Maximum volume of water in the reservoir of plant i (Hm?)

v} Minimum volume of water in the reservoir of plant i (Hm?)

vE Minimum volume of water in the reservoir of plant i at the end of the horizon (Hm?)

)\l}?’ Energy price of buying block j of forward contract f (€/MWh)
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/\}Pj” Energy price of selling block j of forward contract f (€/MWh)
Continuous variables

cdi Shut-down cost of unit 4 in period ¢ (€)
cop Total startup, shutdown, production, and online cost of unit i (€)
cp Total startup, shutdown and online cost of unit i (€)
Cui ¢ Startup cost of unit ¢ in period ¢ (€)
ffbj}y Power bought through block j of forward contract f (MW)
f;fj” Power sold through block j of forward contract f (MW)
Operational profit of the producer per week (€)
Dit Power output of unit ¢ in period ¢ (MW)
ps”éy Power bought in the pool in period ¢ (MW)
pielt Power sold in the pool in period ¢ (MW)
ptb; ¢ Power output of the pump-storage hydro plant ¢ in period ¢ (MW)
DPit Power consumption of the pumped-storage hydro plant ¢ in period ¢t (MW)
Qi t Turbined flow of water in plant 4 in period ¢ (m?/s)
qpi,t Pumped flow of water in plant i in period ¢ (m3/s)
Vit Volume of water stored in the reservoir of plant i (Hm?)
Binary variables
Us ¢ On/off status of unit ¢ in period ¢
u;y Startup status of unit ¢ in period ¢
ugy Shutdown status of unit ¢ in period ¢
buy Selection of forward contract f to buy energy
yjsce” Selection of forward contract f to sell energy
Random variables
Wy Wind power output in period ¢ (MW)
At Pool price in period ¢ (€/MWh)
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Appendix B. Uncertainty characterization for wind power and electricity prices.

The samples of the electricity price forecast are generated using an Auto-Regressive Integrated Moving
Average model [63]. Considering the specific weeks of interest, we use the previous 12 weeks of historical
time series of the electricity prices from the Iberian Electricity Market [64] to fit the ARIMA model. Then,
we generate samples of the electricity forecast by sampling the error term of the ARIMA model for the 168
hours of interest. The structure of the ARIMA model is described in detail in Lima et al. [6], and additional
information about these models applied to electricity prices can be found in Conejo et al. [65] and Weron
[66].

To generate the wind power samples, we start with a wind speed ensemble forecast, with 51 members,
for 168 hours for the location of the wind farm, obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF); see Lima et al. [6] for further details on the wind ensemble generation. The
wind speed is converted to wind power using a wind-power curve for a turbine with a rated power of 2.35
MW. Based on the wind ensemble and a truncated Karhunen-Loeve Expansion (KLE), we generate the
samples of the wind power; see Le Maitre and Knio [67, Section 2.1] for a presentation of the KLE and Lima
et al. [55] for the description of the application of the KLE to the wind ensemble.

Concerning the ARO, the uncertainty sets are built using the same underlying data that are used to
generate the samples for the SP. The uncertainty set for the electricity prices is also based on the ARIMA
model, namely the point forecast of the ARIMA model is the forecast value, & in (8), and the upper and
lower bounds of the uncertainty set are based on the 95% forecast prediction error of the ARIMA model.
In Figure 2, we provide the point forecast and bounds of the uncertainty set of the electricity prices for the
two weeks, and in Figure 3, we show two samples: one with 10 elements and another with 100 elements.

The uncertainty set for the wind power is defined as the envelope that encompasses all the forecasts in
the wind power ensemble that is used to build the KLE. In Figure 4, we present the original wind power
ensemble and the uncertainty set elements, and in Figure 5, we show two samples: one with 10 elements
and another with 100 elements. An important remark is that the uncertainty sets cut-off extreme points of
the wind power and electricity price forecasts. These uncertainty sets constructions based on the ARIMA
forecast errors and wind envelopes are more elaborated than the ones proposed in Lima et al. [19].

For Week 1, the electricity price and wind power forecast variability increase with time, which it is
reflected in the range of the uncertainty sets, see Figures 2a and 4a. For Week 2, the electricity price
forecast variability does not increase with time, see Figures 2b, while the wind power forecast variability
increases significantly after 48 hours, see Figure 4c.

In the sampling generation and construction of the uncertainty sets, we do not consider a correlation
between the electricity prices and the wind speed explicitly at the specific wind farm location because of
the small capacity of the VPP compared with the power system where it is integrated. The study of this
specificity is not the main purpose of this work. However, the models and methods proposed here can be
valuable tools to analyze the impact of assumptions on potential correlations.
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Appendix C. Stochastic model

In this appendix, we present a general stochastic formulation that captures the main characteristics of
the VPP model presented in Appendix Appendix A:

max zt 7, 2,y (0),y7(9),s(6),0
zt, = ,v,2,yt(0),y=(0),s(0),r(0) ¢ [f( y ( ) y ( ) ( ) )]

st. Atat+ A 2=+ Bv<b
Ez<g
Cz+Ds(0)<d, 60€©
s@)—yT @) +y () +r(0)—e'zT +e'z” +h(0)=0, O
Jr0)<j, §eo

at 2T eRY v e B™, 2 € B2yt (0),y7 (), s(0) € RY2,r(0) € R™,
(Appendix C1)
with the function f representing the random profit defined as

flat a2yt (0),y7(0),5(0),0) := (") Tat + () Ta™ +eTz+ & (0)y*(0) =" (O)y ™ (0) +cs(0),

(Appendix C2)
where B := {0, 1}, v represents the binary variables associated with the blocks in the contracts, h(6) € R™
symbolizes the uncertain wind power, AT, A~ € R™>X™ B ¢ R™m>Xm (¢ R™2Xn2 D ¢ R™2X™2 F ¢
R™sxn2 - J € R™4*"2 are matrices with known parameters, and b € R™, d € R™2, e € R™, g € R™3,
j € R™+ are vectors with known parameters. In (Appendix C1), ¥, 27, v, z repesent the first-stage
variables denoting the power to sell by contract, the power to buy by contract, the binary variables associated
with the contracts, and the binary variables associated with the thermal unit commitment, respectively.
These variables correspond to f})’“jy, ]%3”, Wigs i, udy, yfc"y, y}ie” used in the deterministic model. The
second-stage variables are y*(6), y~(6), s(6), and r(6), which stand for the power to sell in the electricity
market pool, the power to buy in the electricity market pool, the variables related with power produced by
the thermal unit, and the variables related with the pump-storage hydro plant. These variables correspond
to pf}éy, psell, Dit, Dthit, PPit, Git, qDit, Vit used in the deterministic model. The first constraint in
(Appendix C1) models the forward contracts setup, the second the logic constraints defined by the binary
variables related with the thermal unit commitment, the third establishes the relationship between the
binary variables and continuous variables used to model the commitment of the thermal unit, the fourth
the energy balance, and the fifth captures the relations between the variables that model the operation of
the pump-storage hydro plant. The formulation described here is the basis for the compact formulation
introduced in Section 3.
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Appendix D. Comparison between the dual and primal variants of the ARO decomposition
algorithm

In Case 1 (Week 1 and Week 2), both variants of the ARO decomposition algorithm have a similar
performance; see the Tables S4 and S6. However, in Case 2, Week 1, for I' = 10 there is a clear difference
between the computational time required by the dual and the primal variants: 1039 s vs. 235 s; see Table
S5. For the remaining values of I', the gap between the bounds is reduced faster with the primal variant. We
show and example of these faster reductions in Figures S1 and S2. Also, in Case 2, Week 2, the performance
of the primal is also superior for I' = 10. The primal version requires 30 s to achieve a gap of 0.00, whereas
the dual terminates with a gap of 11.75% after 10,929 s. In addition, the primal version achieves a gap
of 0.00 for I' = 150 and I' = 168 in 1820 s and 1,079 s, respectively. For the same valus of I', the dual
variant terminates with a gap of 77.47% and 33.81%, in more than 10,800 s. In Figures S3 and S4, the faster
evolution of the bounds of the primal variant is contrasted with the stagnant bounds of the dual variant,
for Case 2, Week 2, and I' = 168.

Table S4: Case 1, Week 1. Performance of the ARO decomposition algorithm with three versions of the master problem: D -
optimality cut with dual variables; D+P - optimality cut with dual variables plus primal constraints and variables; P - primal
constraints and variables.

LB ITER GAP (%) Time (s)

r D P D+P D P D+P D P D+4P D P D+P
0 2,937,740 2,937,740 2,937,740 2 2 2 0.00  0.00 0.00 1 1 1
10 2,789,821 2,789,821 2,789,821 3 3 3 000 0.00 0.00 6 6 6
50 2,372,466 2,372,466 2,372,466 4 4 4 000 0.0 0.00 25 26 26
100 2,103,834 2,103,834 2,103,834 4 4 4 000  0.00 0.00 46 46 47
150 1,953,777 1,953,777 1,953,777 4 4 4 000  0.00 0.00 13 16 12
168 1,912,678 1,912,678 1,912,678 3 3 3 000  0.00 0.00 2 2 3

Table S5: Case 2, Week 1. Performance of the ARO decomposition algorithm with three versions of the master problem: D -
optimality cut with dual variables; D4+P - optimality cut with dual variables plus primal constraints and variables; P - primal
constraints and variables.

LB ITER GAP (%) Time (s)

r D P D+P D P D+P D P  D+P D P D+P
0 309,568 309,568 309,568 7 2 2000 0.00 0.00 3 1 3
10 277,168 277,168 277,168 22 5 5 000 0.00 0.00 1,039 235 235
50 220,130 220,225 220,316 106 36 30 124 121 116 11,147 10,822 10,938
100 210,219 211,019 210,480 70 29 30 141 1.02 129 11,111 10,884 10,939
150 208,918 209,426 208,815 38 29 29 129 105 134 10,825 10,892 10,875
168 208,787 209,377 208,995 39 28 28 133 104 123 10,881 11,269 11,267

Table S6: Case 1, Week 2. Performance of the ARO decomposition algorithm with three versions of the master problem: D -
optimality cut with dual variables; D+P - optimality cut with dual variables plus primal constraints and variables; P - primal
constraints and variables.

LB ITER GAP (%) Time (s)
I D P D+P D P D+P D P D+P D P D+P
0 2,381,565 2,381,565 2,381,565 2 2 2 0.00 0.00 0.00 2 1 3
10 2,207,579 2,207,579 2,207,579 4 4 4 0.00 0.00 0.00 4 5 5
50 1,745,062 1,745,062 1,745,062 3 3 3000  0.00 0.00 9 10 10
100 1,452,951 1,452,951 1,452,951 4 4 4 0.00 0.00 0.00 42 43 44
150 1,332,694 1,332,694 1,332,694 4 4 4 000  0.00 0.00 6 3 3
168 1,318,392 1,318,392 1,318,392 6 5 5 0.00 0.00 0.00 3 4 4
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Table S7: Case 2, Week 2. Performance of the ARO decomposition algorithm with three versions of the master problem: D -
optimality cut with dual variables; D+P - optimality cut with dual variables plus primal constraints and variables; P - primal
constraints and variables.

LB ITER GAP (%) Time (s)
I D P D+P D P D+P D P D+P D P D+P
0 333,371 340,353 340,353 266 2 2 4.84 0.00 0.00 10,832 1 5
10 276,609 285,064 285,064 104 4 4 11.75 0.00 0.00 10,929 30 30
50 111,136 184,801 184,875 19 30 30 111.15 2.46 2.41 12,429 11,288 11,257
100 18,621 155,500 155,470 36 31 31 1,003.44 0.15 0.17 12,017 11,138 11,110
150 108,257 151,925 151,925 147 17 13 77.47 0.00 0.00 10,832 1,820 1,889
168 136,363 151,821 151,821 242 11 13 33.81 0.00 0.00 10,851 1,079 1,179
500,000
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Figure S1: Case 2, Week 1. Profile of the upper and lower bounds on the optimal value of the original problem obtained with
the dual and primal variants of the master problem within the ARO decomposition algorithm. T" = 50.
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Figure S2: Case 2, Week 1. Zoom in of Figure S1.
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Figure S3: Case 2, Week 2. Profile of the upper and lower bounds on the optimal value of the original problem obtained with
the dual and primal variants of the master problem within the ARO decomposition algorithm. I" = 168.
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Figure S4: Case 2, Week 2. Zoom in of Figure S3.
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Appendix E. Detailed results and discussion on the adaptive robust optimization and stochas-
tic programming performance

Appendiz E.1. Adaptive robust optimization performance.

We analyze the performance of the ARO decomposition algorithm based on each case and week, and the
budget of uncertainty parameter, I'. The computational times reported in the following subsections refer
to one optimization run without including the computational time required by the bound estimation stage.
We start by dividing the results by week, and then for each week we analyze each case. For the sake of
compactness, we use ARO as an alias for ARO decomposition algorithm.

Appendiz E.1.1. Week 1.

Figure Sha shows that Case 1 leads to a better performance of the ARO than Case 2. Also, the results
of Case 1 show that the performance depends on T'.

More specifically, in Case 1, the ARO is relatively fast with I' = 168, requiring 3 s to meet the gap
stopping criterion, whereas with I' = 100, it requires 47 s.

In Case 2, the ARO can only meet the gap stopping criterion for I' = 10. However, it requires 235 s,
against the 6 s in Case 1. Consequently, the final number of iterations is higher in Case 2 than in Case 1;
see Tables S8 and S9.

Appendiz E.1.2. Week 2.

In Case 1, the performance of ARO has a similar trend compared to Week 1; see Figures SHa and S5b,
and Tables S8 and S10. Also, the performance of the ARO with Case 1 is better than with Case 2. Figure
S5b and Table S11 show that in Case 2 with T' = {150, 168}, the gap stopping criterion is met on 1,889 s
and 1,179 s, which does not occur for these I' in Week 1. But still, these computational times are three
orders of magnitude higher than in Case 1; see Figure S5b.

Appendiz E.1.8. Discussion on the ARO performance.

Overall, the technical characteristics of the thermal unit induce a clear-cut difference in the performance
of the ARO for the same uncertainty data. This is supported by the differences between the results of Case
1 and Case 2, for the same week. The value of I" also influences the results, with the extremes of I" leading
to more manageable problems.

A detailed analysis of the performance of the ARO model reveals that the MILP solver does not close
the optimality gap for some MILP subproblems. Therefore, based on the adaptive maximum time strategy,
the maximum time for the MILP solver is increased from 50 s to 500 s because the upper bound does not
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MRO -Case 2 MRO -Case 2
10,000 | 10,000
I I
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=] =]
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= 10 + = 10 -
1 1
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(a) Week 1. (b) Week 2

Figure S5: Wall clock time for the ARO as a function of the budget of uncertainty parameter.
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Table S8: Case 1. Week 1. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 4
5000 30 2.0 0.0000 43
SP B =1, a=0.95 50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 49
SP =1, a=1 10 30 2.1 0.0000 1
50 30 2.3 0.0000 2
100 30 2.7 0.0000 5
500 30 5.7 0.0000 31
5000 26 9.3 0.0530 2,556
RO I
0 - 1 2 0.0000 1
10 - 1 3 0.0000 6
50 - 1 4 0.0000 26
100 - 1 4 0.0000 47
150 - 1 4 0.0000 12
168 - 1 3 0.0000 3

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - average gap between the
lower bound and upper bound of the decomposition algorithms; Time - average wall clock time.

Table S9: Case 2. Week 1. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 30 6.3 0.0000 3
50 30 6.0 0.0000 5
100 30 6.0 0.0000 9
500 30 6.0 0.0000 17
5000 30 6.0 0.0000 180
SP =1 a=0.95 50 30 20.5 0.0000 60
100 30 9.0 0.0000 22
500 30 6.0 0.0000 26
5000 30 6.0 0.0000 294
SP B=1a=1 10 29 103.2 0.1279 1,399
50 30 39.8 0.0000 206
100 30 30.4 0.0000 230
500 30 18.6 0.0000 461
5000 28 11.9 0.0263 2,006
RO r
0 - 1 2 0.0000 3
10 - 1 5 0.0000 235
50 - 0 30 1.1588 10,938
100 - 0 30 1.2893 10,939
150 - 0 29 1.3357 10,875
168 - 0 28 1.2290 11,267
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Table S10: Case 1. Week 2. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 44
SP =1 a=0.95 50 30 2.3 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 111
SP =1, a=1 10 30 3.8 0.0000 2
50 30 3.3 0.0000 3
100 30 5.8 0.0000 13
500 30 4.4 0.0000 22
5000 30 5.5 0.0000 906
RO r
0 - 1 2 0.0000 3
10 - 1 4 0.0000 5
50 - 1 3 0.0000 10
100 - 1 4 0.0000 44
150 - 1 4 0.0000 3
168 - 1 5 0.0000 4

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - average gap between the
lower bound and upper bound of the decomposition algorithms; Time - average wall clock time.

Table S11: Case 2. Week 2. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 0 373.9 2.8711 10,849
50 0 335.6 2.4068 10,838
100 0 308.1 2.6011 10,851
500 0 212.3 3.3464 10,849
5000 0 65.8 5.6553 10,933
SP B=1a=0095 50 0 30.6 29.9756 11,354
100 0 28.2 32.9694 11,322
500 0 23.1 35.9119 11,408
5000 0 10.5 20.5594 15,658
SP B=1a=1 10 6 53.6 22.3870 9,741
50 3 27.9 29.0440 10,376
100 0 27.1 35.4289 11,364
500 0 20.4 40.2817 11,587
5000 0 8.5 37.8558 15,415
RO r
0 - 1 2 0.0000 5
10 - 1 4 0.0000 30
50 - 0 30 2.4146 11,257
100 - 0 31 0.1739 11,110
150 - 1 13 0.0000 1,889
168 - 1 13 0.0000 1,179
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move between iterations. However, even with 500 s, the MILP solver does not close the gap of the MILP
subproblems.

These results motivated an additional set of experiments with the ARO, where the maximum time for
the MILP solver is increased to 5000 s, and the maximum time for the ARO is extended to 18,000 s. The
solution approach described in Section 4.3 leads to a faster gap reduction, whereas the one with extended
times leads to better final gaps in some cases. For additional results, we refer the reader to Appendix
Appendix F.

Appendiz E.2. Stochastic programming performance

We analyze the performance of the SP decomposition algorithm based on M = 30 optimization replica-
tions and over different sample sizes and risk parameters. The computational times reported in the following
subsections do not include the computational time required by the bound estimation stage. For the sake of
compactness, we use SP as an alias for SP decomposition algorithm.

Appendiz E.2.1. Week 1.

In Case 1, computational times increase with sample size; see Figure S6a. However, the increment
between N = 10 and N = 500 is only three seconds, for 5 = 0, and between N = 50 and N = 500, it is
also three seconds, for f = 1, a = 0.95. From another perspective, analyzing the computational times for
N = 5000, we observe a steep increase from =0 to 8 =1, o = 1; see Figure S6a.

In Case 2, computational times do not increase monotonically with sample size, as in Case 1; see Figure
S6b. For example for 8 = 0.5, a = 0.9, the average computational time for N = 10 is greater than for
N =50 and N = 100. Also, the computational time for § = 1, & = 1 is independent of the sample size.
Overall, the SP model requires higher computational times in Case 2 than in Case 1.

Appendiz E.2.2. Week 2.

In Case 1, the performance of the SP shows a similar trend to Week 1; see Figure S7a. However, in Case
2, the SP reaches the maximum time in most optimization replications without meeting the gap stopping
criterion; see Figure S7b. There are only nine successful optimization replications out of 720 optimization
runs (30 optimization replications times five sample sizes times five sets of risk parameters). The final gaps
and iterations are presented in Table S11.

Appendiz E.2.3. Discussion on the SP performance.

As discussed in the ARO section, the performance of the SP model is also sensitive to the technical
characteristics of the thermal unit. Overall, the performance in Case 2 is worse than that in Case 1, within
each week considered.
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Figure S6: Week 1. Average wall clock time of M = 30 optimization replications of SP, and ARO.
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The main difference between Case 1 and Case 2 is generation cost. In Case 2, generation costs are closer
to electricity prices than in Case 1. Also, they are closer in Week 2 than in Week 1. These differences force
the decomposition algorithm to perform more iterations in Case 2 than in Case 1 to find an optimal solution
regarding the contract values and commitment of the thermal unit.

The results also indicate that risk-averse parameters lead to more involved problems. In Case 1, we
observe that as the sample size increases, the problems with § = 1, « = 1 require increasing time to solve.
In Case 2, Week 1, the performance of the SP model for the extreme risk-averse parameters, 8 =1, a = 1,
is independent of the sample size. In Week 2, the SP exhibits difficulties for all risk parameters and sample
sizes.
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Figure S7: Week 2. Average wall clock time of M = 30 optimization replications of SP, and ARO.
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Appendix F. Analysis of the relationship between the maximum time to solve the subproblem
and the performance of the ARO decomposition algorithm

The performance of the ARO decomposition algorithm for Case 2, described in Section Appendix E.1,
motivated a new set of experiments with the ARO decomposition algorithm, where the maximum time for
the MILP solver to solve the MILP subproblem is increased to 5000 s and the maximum time for the ARO
decomposition algorithm is extended to 18,000 s. For this set of experiments, the profile of the gap between
the upper and lower bounds of the ARO decomposition algorithm is shown in Figures S8 and S9, for Week
1 and 2, respectively. These profiles are contrasted with the profiles from the original stopping criteria.
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Figure S8: Week 1. Profile of the gap in the ARO decomposition algorithm with the initial stopping criteria and with an
extended time for the solution of the MILP subproblem and for the ARO decomposition algorithm.

These results provide the following insights: 1) the original stopping criteria lead to a faster reduction of the
gap, whereas the new experiments lead to better final gaps; 2) some MILP subproblems are difficult to solve,
by comparison with Case 1, requiring computational times above 5000 s to be solved to optimality; and 3)
smaller gaps from the solution of the MILP subproblem lead to better bounds in the ARO decomposition
algorithm.

We tested a number of strategies to improve the convergence of the ARO decomposition algorithm,
namely, solving the relaxation of the master problem for some initial iterations, use different initial starting
points, and a trust region method. However, a significant improvement was not achieved, which suggests
that the master problem is not the limiting step, since these strategies are mainly related to this problem.

The results discussed using the two alternatives for the stopping criteria open the doors for research on
more involved strategies to balance the time to solve the MILP subproblem.
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Figure S9: Week 2. Profile of the gap in the ARO decomposition algorithm with the initial stopping criteria and with an
extended time for the solution of the MILP subproblem and for the ARO decomposition algorithm.

Appendix G. Size of the master and subproblems

Table S12: Size of the master and subproblems for the first iteration and the increment per iteration.

B a N CONST VAR  0-1 VAR  ACONST/I AVAR/I

SP Extensive 0 - 10 21,346 14,298 508 - -
Extensive 0 - 5,000 10,081,186 6,720,858 508 - -
Extensive 1 1 5,000 10,086,186 6,725,859 508 - -

Master 0 - 10 1,186 858 508 1 1
problems 0 - 5000 1,186 858 508 1 1

0.5 0.90 10 1,186 858 508 12 13

1 0.90 10 1,186 858 508 11 12

1 0.95 5000 1,186 858 508 5,001 5,002

1 1 5000 1,186 858 508 5,001 5,002

Subproblemst 1,345 2,353 0 0 0

RO Master - - - 1,186 858 508 2,017 1,513
Subproblem? . . . 2,355 3,025 672 0 0

t - The size presented is from the dual of the subproblem. N - sample size; CONST - number of constraints; VAR - number of
total variables; 0-1 VAR - number of binary variables; ACONST/I - increment of number of constraints per iteration;
AVAR/I - increment of number of variables per iteration.
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Appendix H. Extended versions of Tables S8, S10, S9, and S11.

For the sake of completeness, this appendix contains results obtained with the SP approach with the risk
parameters = 0.5, « = 0.9 and 8 =1, a = 0.9, which are not presented in Tables S8, S10, S9, and S11.

Table S13: Case 1. Week 1. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 4
5000 30 2.0 0.0000 43
SP B =0.5 aa=0.9 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 50
SP =1, a=09 10 30 2.1 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 51
SP B=1,a=0.95 50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 49
SP B=1,a=1 10 30 2.1 0.0000 1
50 30 2.3 0.0000 2
100 30 2.7 0.0000 5
500 30 5.7 0.0000 31
5000 26 9.3 0.0530 2,556
RO r
0 - 1 2 0.0000 1
10 - 1 3 0.0000 6
50 - 1 4 0.0000 26
100 - 1 4 0.0000 47
150 - 1 4 0.0000 12
168 - 1 3 0.0000 3

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - gap between the lower
bound and upper bound of the decomposition algorithms; Time - wall clock time.
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Table S14: Case 2. Week 1. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B8=0 10 30 6.3 0.0000 3
50 30 6.0 0.0000 5
100 30 6.0 0.0000 9
500 30 6.0 0.0000 17
5000 30 6.0 0.0000 180
SP B =0.5,a=0.9 10 30 22.0 0.0000 26
50 30 6.9 0.0000 10
100 30 6.2 0.0000 13
500 30 6.1 0.0000 30
5000 30 6.1 0.0000 357
SP =1, a=09 10 29 103.2 0.1279 1,396
50 30 10.7 0.0000 18
100 30 6.7 0.0000 14
500 30 6.0 0.0000 26
5000 30 6.0 0.0000 298
SP B=1,a=0.95 50 30 20.5 0.0000 60
100 30 9.0 0.0000 22
500 30 6.0 0.0000 26
5000 30 6.0 0.0000 294
SP =1, a=1 10 29 103.2 0.1279 1,399
50 30 39.8 0.0000 206
100 30 30.4 0.0000 230
500 30 18.6 0.0000 461
5000 28 11.9 0.0263 2,006
RO T
0 - 1 2 0.0000 3
10 - 1 5 0.0000 235
50 - 0 30 1.1588 10,938
100 - 0 30 1.2893 10,939
150 - 0 29 1.3357 10,875
168 - 0 28 1.2290 11,267

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - gap between the lower
bound and upper bound of the decomposition algorithms; Time - wall clock time.
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Table S15: Case 1. Week 2. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B8=0 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 44
SP B =0.5,a=0.9 10 30 2.0 0.0000 1
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 52
SP =1, a=09 10 30 3.8 0.0000 2
50 30 2.0 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 51
SP B=1,a=0.95 50 30 2.3 0.0000 2
100 30 2.0 0.0000 3
500 30 2.0 0.0000 5
5000 30 2.0 0.0000 111
SP =1, a=1 10 30 3.8 0.0000 2
50 30 3.3 0.0000 3
100 30 5.8 0.0000 13
500 30 4.4 0.0000 22
5000 30 5.5 0.0000 906
RO T
0 - 1 2 0.0000 3
10 - 1 4 0.0000 5
50 - 1 3 0.0000 10
100 - 1 4 0.0000 44
150 - 1 4 0.0000 3
168 - 1 5 0.0000 4

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - gap between the lower
bound and upper bound of the decomposition algorithms; Time - wall clock time.
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Table S16: Case 2. Week 2. Performance of the decomposition algorithms averaged over M = 30 optimization replicas.

Risk parameters N SR ITER GAP (%) Time (s)
SP B=0 10 0 373.9 2.8711 10,849
50 0 335.6 2.4068 10,838
100 0 308.1 2.6011 10,851
500 0 212.3 3.3464 10,849
5000 0 65.8 5.6553 10,933
SP B=0.5 a=0.9 10 0 75.8 13.0774 11,168
50 0 50.0 13.3963 11,132
100 0 40.2 13.1323 11,487
500 0 27.6 13.2862 11,390
5000 0 11.0 16.9155 15,062
SP =1, a=09 10 6 53.7 22.3828 9,746
50 0 32.4 21.8588 11,323
100 0 28.5 25.3924 11,297
500 0 23.7 29.2133 11,535
5000 0 10.4 19.1446 16,210
SP B=1a=095 50 0 30.6 29.9756 11,354
100 0 28.2 32.9694 11,322
500 0 23.1 35.9119 11,408
5000 0 10.5 20.5594 15,658
SP B=1a=1 10 6 53.6 22.3870 9,741
50 3 27.9 29.0440 10,376
100 0 27.1 35.4289 11,364
500 0 20.4 40.2817 11,587
5000 0 8.5 37.8558 15,415
RO r
0 - 1 2 0.0000 5
10 - 1 4 0.0000 30
50 - 0 30 2.4146 11,257
100 - 0 31 0.1739 11,110
150 - 1 13 0.0000 1,889
168 - 1 13 0.0000 1,179

N - sample size used in each optimization replica; SR - number of successful optimization replications that meet the gap stop
criterion (out of 30); ITER - average number of iterations of the decomposition algorithm; GAP - gap between the lower
bound and upper bound of the decomposition algorithms; Time - wall clock time.
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Appendix I. Assessment of the SP solutions

To assess the quality of the SP solutions, we rely on the SAA methodology to provide bounds on the
optimal value of the original problem for each set of risk parameters. Specifically, we determine a confidence
interval defined by the upper limit of the confidence interval of the estimate of the upper bound on w* and
the lower limit of the confidence interval of the estimate of the lower bound on w*. Figures S10a and S10b
show the confidence intervals for Case 1 and Case 2, respectively, for Week 1. These results indicate that for
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(a) Case 1. The relative gaps between the bounds are 1.2%, 0.7%, (b) Case 2. The relative gaps between the bounds are 3.4%, 0.4%
0.5%, 0.6%, and 8.4%; from left to right. 0.3%, 0.3%, and 5.6%; from left to right.

Figure S10: Week 1. Bounds for the true optimal value w* for each set of risk parameters for a 95% confidence interval.
N =500, M = 30, {T, T'} = 30, N’ = 25,000.

a 95% confidence level, the solutions obtained are close to the true optimal values, which is demonstrated
by the relative gaps between the bounds.

For 8 =0 and 5 = 1, a = 1, the values of the objective function correspond to the expected profit
and CVaR of the profit, whereas the intermediate values of 8 and « correspond to objective functions with
a combination of expected profit and CVaR of the profit. This correspondence explains the trend of the
bounds from the left to the right.

For the risk-averse case, § =1 and a = 1, the gap between the bounds is larger because of two reasons:
1) the gap between the estimates of the lower and upper bounds is larger; and 2) the confidence interval
of the estimate of the upper bound is larger than the confidence intervals from the other risk parameters.
The larger confidence interval of the estimate of the upper bound is associated with a larger variability on
the first-stage solutions obtained in M = 30 optimization replications for 8 = 1 and a = 1, whereas, for
example, for 8 = 0 the M = 30 optimization replications converged to a single solution in Case 1 and 2, for
N = 500; see the supplementary results in Appendix Appendix D.

The results obtained with Week 2 are presented in Figures S1la and S11b. The results obtained for
Case 1 exhibit a similar trend to the ones for Week 1, however, in Case 2 the gap between bounds increased

substantially. These results for Case 2 are due to the poor convergence of the L-Shaped method for Case 2,
Week 2.
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(a) Case 1. The relative gaps between the bounds are 0.9%, 0.9%, (b) Case 2. The relative gaps between the bounds are 2.0%,
1.0%, 1.0%, and 10.4%; from left to right. 37.3% 71.0%, 90.8%, and 209.7%; from left to right.

Figure S11: Week 2. Bounds for the true optimal value w* for each set of risk parameters for a 95% confidence interval.
N =500, M =30, {T, T"} = 30, N’ = 25,000.

Appendix J. Results obtained with the SAA methodology

Appendiz J.1. Results from the SP approach with N = 500 and M = 30.
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Table S17: Case 1, Week 1. Optimization results for the formulation with 8 = 0. The results are ordered by the value of the
objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT (%) SUP  SD  SELLC (MW)  BUYC (MW)

m Dn.m (€) ITER  GAP (%) T (

©n

7 3,078,288 2 0.00 4 100 0 0 0 160
11 3,100,959 2 0.00 4 100 0 0 0 160
24 3,117,824 2 0.00 4 100 0 0 0 160
17 3,119,255 2 0.00 4 100 0 0 0 160
4 3,126,409 2 0.00 4 100 0 0 0 160
20 3,131,796 2 0.00 4 100 0 0 0 160
2 3,135,036 2 0.00 4 100 0 0 0 160
16 3,142,733 2 0.00 4 100 0 0 0 160
14 3,147,039 2 0.00 5 100 0 0 0 160
3 3,148,372 2 0.00 5 100 0 0 0 160
28 3,153,705 2 0.00 4 100 0 0 0 160
15 3,170,306 2 0.00 4 100 0 0 0 160
21 3,173,875 2 0.00 4 100 0 0 0 160
8 3,196,010 2 0.00 4 100 0 0 0 160
13 3,196,956 2 0.00 4 100 0 0 0 160
19 3,199,746 2 0.00 4 100 0 0 0 160
30 3,199,782 2 0.00 4 100 0 0 0 160
1 3,201,385 2 0.00 5 100 0 0 0 160
27 3,203,544 2 0.00 4 100 0 0 0 160
23 3,206,883 2 0.00 4 100 0 0 0 160
12 3,209,838 2 0.00 4 100 0 0 0 160
6 3,214,778 2 0.00 5 100 0 0 0 160
10 3,218,465 2 0.00 4 100 0 0 0 160
29 3,223,671 2 0.00 4 100 0 0 0 160
26 3,237,840 2 0.00 4 100 0 0 0 160
5 3,244,176 2 0.00 4 100 0 0 0 160
18 3,255,876 2 0.00 4 100 0 0 0 160
22 3,259,409 2 0.00 4 100 0 0 0 160
9 3,261,767 2 0.00 4 100 0 0 0 160
25 3,274,831 2 0.00 4 100 0 0 0 160

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S18: Case 1, Week 1. Optimization results for the formulation with § = 0.5, @« = 0.9. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT(%) SUP  SD  SELLC (MW)  BUYC (MW

©n

~

m Dn.m (€) ITER  GAP (%) T (
7

2,410,710 2 0.00 5 100 0 0 155 0
4 2,427,801 2 0.00 5 100 0 0 155 0
17 2,428,278 2 0.00 5 100 0 0 155 0
24 2,428,434 2 0.00 5 100 0 0 155 0
28 2,429,364 2 0.00 5 100 0 0 155 0
2 2,430,276 2 0.00 5 100 0 0 155 0
11 2,430,487 2 0.00 5 100 0 0 155 0
20 2,433,149 2 0.00 5 100 0 0 155 0
19 2,433,720 2 0.00 5 100 0 0 155 0
16 2,433,992 2 0.00 5 100 0 0 155 0
3 2,434,610 2 0.00 5 100 0 0 155 0
15 2,435,269 2 0.00 5 100 0 0 155 0
14 2,437,368 2 0.00 5 100 0 0 155 0
23 2,438,664 2 0.00 5 100 0 0 155 0
13 2,438,807 2 0.00 5 100 0 0 155 0
27 2,440,667 2 0.00 5 100 0 0 155 0
6 2,445,214 2 0.00 5 100 0 0 155 0
12 2,447,029 2 0.00 5 100 0 0 155 0
8 2,449,900 2 0.00 5 100 0 0 155 0
5 2,457,695 2 0.00 5 100 0 0 155 0
30 2,465,297 2 0.00 5 100 0 0 155 0
26 2,467,644 2 0.00 5 100 0 0 155 0
21 2,469,491 2 0.00 5 100 0 0 155 0
29 2,470,247 2 0.00 5 100 0 0 155 0
10 2,471,431 2 0.00 5 100 0 0 155 0
18 2,474,108 2 0.00 5 100 0 0 155 0
9 2,476,679 2 0.00 5 100 0 0 155 0
25 2,482,562 2 0.00 5 100 0 0 155 0
22 2,486,921 2 0.00 5 100 0 0 155 0
1 2,505,719 2 0.00 5 100 0 0 155 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S19: Case 1, Week 1. Optimization results for the formulation with 8 = 1, a = 0.9. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT(%) SUP  SD  SELLC (MW)  BUYC (MW

m Dn.m (€) ITER  GAP (%) T (

©n

~

19 2,076,627 2 0.00 5 100 0 0 315 0
23 2,081,075 2 0.00 6 100 0 0 315 0
27 2,082,524 2 0.00 5 100 0 0 315 0
28 2,083,189 2 0.00 5 100 0 0 315 0
7 2,084,137 2 0.00 5 100 0 0 315 0
13 2,084,321 2 0.00 5 100 0 0 315 0
15 2,086,117 2 0.00 5 100 0 0 315 0
12 2,086,933 2 0.00 5 100 0 0 315 0
6 2,087,087 2 0.00 5 100 0 0 315 0
2 2,089,828 2 0.00 5 100 0 0 315 0
4 2,089,874 2 0.00 5 100 0 0 315 0
3 2,090,717 2 0.00 5 100 0 0 315 0
16 2,090,795 2 0.00 5 100 0 0 315 0
5 2,091,541 2 0.00 5 100 0 0 315 0
20 2,092,448 2 0.00 5 100 0 0 315 0
14 2,093,098 2 0.00 5 100 0 0 315 0
24 2,093,149 2 0.00 5 100 0 0 315 0
17 2,093,348 2 0.00 5 100 0 0 315 0
8 2,094,830 2 0.00 5 100 0 0 315 0
11 2,099,166 2 0.00 5 100 0 0 315 0
26 2,100,608 2 0.00 5 100 0 0 315 0
18 2,104,783 2 0.00 5 100 0 0 315 0
25 2,104,902 2 0.00 5 100 0 0 315 0
9 2,105,156 2 0.00 5 100 0 0 315 0
29 2,105,663 2 0.00 5 100 0 0 315 0
10 2,109,383 2 0.00 5 100 0 0 315 0
30 2,109,423 2 0.00 5 100 0 0 315 0
22 2,113,984 2 0.00 5 100 0 0 315 0
21 2,118,535 2 0.00 5 100 0 0 315 0
1 2,150,135 2 0.00 5 100 0 0 260 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S20: Case 1, Week 1. Optimization results for the formulation with 8 = 1, & = 0.95. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT(%) SUP  SD  SELLC (MW)  BUYC (MW

m Dn.m (€) ITER  GAP (%) T (

©n

~

23 2,014,825 2 0.00 5 100 0 0 315 0
27 2,020,095 2 0.00 5 100 0 0 315 0
13 2,020,441 2 0.00 5 100 0 0 315 0
19 2,020,864 2 0.00 5 100 0 0 315 0
6 2,024,452 2 0.00 5 100 0 0 315 0
15 2,025,682 2 0.00 5 100 0 0 315 0
7 2,025,891 2 0.00 5 100 0 0 315 0
12 2,026,929 2 0.00 5 100 0 0 315 0
14 2,027,748 2 0.00 5 100 0 0 315 0
28 2,028,724 2 0.00 5 100 0 0 315 0
20 2,030,155 2 0.00 5 100 0 0 315 0
24 2,030,421 2 0.00 5 100 0 0 315 0
4 2,030,831 2 0.00 5 100 0 0 315 0
17 2,031,583 2 0.00 5 100 0 0 315 0
2 2,034,728 2 0.00 5 100 0 0 315 0
16 2,035,310 2 0.00 5 100 0 0 315 0
3 2,036,698 2 0.00 5 100 0 0 315 0
11 2,036,764 2 0.00 5 100 0 0 315 0
5 2,039,686 2 0.00 5 100 0 0 315 0
8 2,040,642 2 0.00 5 100 0 0 315 0
29 2,042,294 2 0.00 5 100 0 0 315 0
26 2,045,748 2 0.00 5 100 0 0 315 0
18 2,047,730 2 0.00 5 100 0 0 315 0
9 2,048,174 2 0.00 5 100 0 0 315 0
25 2,050,981 2 0.00 5 100 0 0 315 0
10 2,054,624 2 0.00 5 100 0 0 315 0
30 2,055,874 2 0.00 5 100 0 0 315 0
22 2,058,026 2 0.00 5 100 0 0 315 0
21 2,067,284 2 0.00 5 100 0 0 315 0
1 2,087,359 2 0.00 5 100 0 0 315 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S21: Case 1, Week 1. Optimization results for the formulation with 8 = 1, « = 1. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€ ITER  GAP (%) T(s) UT (%) SUP SD  SELLC (MW)  BUYC (MW

~

12 1,783,267 10 0.00 54 86.9 0 1 315 0
11 1,806,987 2 0.00 5 100 0 0 315 0
26 1,814,875 3 0.00 8 100 0 0 315 0
19 1,824,992 12 0.00 96 92.26 1 1 315 0
15 1,848,261 14 0.00 116 96.43 0 1 315 0
30 1,848,979 15 0.00 148 88.69 0 1 315 0
23 1,849,213 10 0.00 73 91.07 0 1 315 0
4 1,858,044 11 0.00 61 100 0 0 315 0
27 1,870,761 11 0.00 63 95.24 1 1 315 0
3 1,876,680 2 0.00 5 100 0 0 315 0
5 1,878,092 2 0.00 5 100 0 0 315 0
22 1,889,387 6 0.00 22 95.83 0 1 315 0
20 1,890,822 3 0.00 8 100 0 0 315 0
9 1,892,352 2 0.00 5 100 0 0 315 0
28 1,893,542 14 0.00 95 92.26 1 1 315 0
25 1,894,784 8 0.00 34 100 0 0 315 0
13 1,898,621 7 0.00 29 98.21 0 1 315 0
24 1,903,589 3 0.00 8 100 0 0 315 0
6 1,906,827 2 0.00 5 100 0 0 315 0
10 1,910,613 2 0.00 5 100 0 0 315 0
8 1,910,617 2 0.00 5 100 0 0 315 0
16 1,911,058 3 0.00 8 100 0 0 315 0
21 1,914,069 3 0.00 8 100 0 0 315 0
2 1,918,108 2 0.00 5 100 0 0 315 0
17 1,918,410 6 0.00 22 100 0 0 315 0
7 1,920,187 4 0.00 13 100 0 0 315 0
29 1,922,000 3 0.00 8 100 0 0 315 0
18 1,934,331 3 0.00 8 100 0 0 315 0
14 1,937,937 3 0.00 8 100 0 0 315 0
1 1,968,190 2 0.00 5 100 0 0 315 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S22: Case 2, Week 1. Optimization results for the formulation with 8 = 0. The results are ordered by the value of the
objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)

7 379,038 6 0.00 17 100 1 0 0 160
11 386,098 6 0.00 17 100 1 0 0 160
24 393,393 6 0.00 17 100 1 0 0 160
17 394,248 6 0.00 17 100 1 0 0 160
4 396,543 6 0.00 17 100 1 0 0 160
20 397,845 6 0.00 17 100 1 0 0 160
2 398,937 6 0.00 17 100 1 0 0 160
16 402,244 6 0.00 17 100 1 0 0 160
14 402,376 6 0.00 17 100 1 0 0 160
3 404,888 6 0.00 16 100 1 0 0 160
28 405,871 6 0.00 17 100 1 0 0 160
15 412,871 6 0.00 17 100 1 0 0 160
21 414,024 6 0.00 17 100 1 0 0 160
8 421,739 6 0.00 17 100 1 0 0 160
13 422,243 6 0.00 17 100 1 0 0 160
1 422,718 7 0.00 20 100 1 0 0 160
30 423,331 6 0.00 17 100 1 0 0 160
19 424,465 6 0.00 17 100 1 0 0 160
27 424,567 6 0.00 17 100 1 0 0 160
23 425,526 6 0.00 17 100 1 0 0 160
12 425,587 6 0.00 17 100 1 0 0 160
6 427,701 6 0.00 17 100 1 0 0 160
10 429,332 6 0.00 17 100 1 0 0 160
29 431,214 6 0.00 17 100 1 0 0 160
26 435,081 6 0.00 16 100 1 0 0 160
5 438,943 6 0.00 17 100 1 0 0 160
18 441,966 6 0.00 17 100 1 0 0 160
22 445,356 6 0.00 17 100 1 0 0 160
9 445,841 6 0.00 17 100 1 0 0 160
25 450,188 6 0.00 17 100 1 0 0 160

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S23: Case 2, Week 1. Optimization results for the formulation with § = 0.5, @« = 0.9. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)

20 257,748 6 0.00 31 100 1 0 100 49.67
14 257,981 6 0.00 30 100 1 0 100 47.57
16 258,025 6 0.00 31 100 1 0 100 46.9
11 258,245 6 0.00 30 100 1 0 100 47.78
12 258,349 6 0.00 30 100 1 0 100 49.43
28 258,411 6 0.00 30 100 1 0 100 48.6
7 258,778 7 0.00 39 100 1 0 100 45.11
2 258,898 6 0.00 30 100 1 0 100 48.54
26 259,360 6 0.00 30 100 1 0 100 55
24 259,594 6 0.00 30 100 1 0 100 51.1
4 259,682 6 0.00 30 100 1 0 100 48.31
17 259,779 6 0.00 29 100 1 0 100 49.86
29 259,965 6 0.00 30 100 1 0 100 53.95
15 260,170 6 0.00 31 100 1 0 100 50.39
10 260,267 6 0.00 29 100 1 0 100 55
3 260,293 6 0.00 29 100 1 0 100 49.55
27 260,300 6 0.00 29 100 1 0 100 48.91
23 260,378 6 0.00 30 100 1 0 100 52
1 260,427 7 0.00 36 100 1 0 100 55
25 260,772 6 0.00 30 100 1 0 100 55
21 260,784 6 0.00 28 100 1 0 100 54.36
6 260,793 6 0.00 30 100 1 0 100 52.16
19 260,803 6 0.00 31 100 1 0 100 49.61
8 260,918 6 0.00 30 100 1 0 100 54.74
5 261,027 6 0.00 30 100 1 0 100 53.54
18 261,690 6 0.00 29 100 1 0 100 55
13 261,790 6 0.00 29 100 1 0 100 50.38
30 261,802 6 0.00 30 100 1 0 100 55
9 262,194 6 0.00 29 100 1 0 100 55
22 263,220 6 0.00 29 100 1 0 100 55

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S24: Case 2, Week 1. Optimization results for the formulation with 8 = 1, a = 0.9. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)

20 238,248 6 0.00 26 100 1 0 100 38.27
12 238,967 6 0.00 26 100 1 0 100 38.58
10 239,050 6 0.00 25 100 1 0 100 38.48
29 239,153 6 0.00 25 100 1 0 100 38.32
30 239,174 6 0.00 25 100 1 0 100 39.59
24 239,257 6 0.00 26 100 1 0 100 39.65
14 239,289 6 0.00 26 100 1 0 100 38.59
28 239,433 6 0.00 26 100 1 0 100 37.52
16 239,469 6 0.00 26 100 1 0 100 37.98
11 239,732 6 0.00 26 100 1 0 100 39.15
17 239,767 6 0.00 25 100 1 0 100 39.15
27 239,796 6 0.00 25 100 1 0 100 38.8
9 239,806 6 0.00 25 100 1 0 100 38.76
8 239,847 6 0.00 26 100 1 0 100 39.13
23 239,886 6 0.00 26 100 1 0 100 37.97
3 239,897 6 0.00 26 100 1 0 100 38.67
25 239,928 6 0.00 29 100 1 0 100 38.06
21 240,030 6 0.00 26 100 1 0 100 38.64
26 240,099 6 0.00 26 100 1 0 100 38.67
19 240,265 6 0.00 26 100 1 0 100 37.53
1 240,586 7 0.00 33 100 1 0 100 38.58
5 240,662 6 0.00 26 100 1 0 100 38.72
4 240,815 6 0.00 26 100 1 0 100 37.84
2 240,869 6 0.00 25 100 1 0 100 38.52
7 240,941 6 0.00 26 100 1 0 100 39.18
15 240,967 6 0.00 25 100 1 0 100 38.09
18 241,011 6 0.00 26 100 1 0 100 39.85
22 241,191 6 0.00 26 100 1 0 100 39.25
6 241,577 6 0.00 26 100 1 0 100 39.17
13 242,038 6 0.00 25 100 1 0 100 38.82

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S25: Case 2, Week 1. Optimization results for the formulation with 8 = 1, & = 0.95. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)

20 234,465 6 0.00 26 100 1 0 100 38.44
30 234,721 6 0.00 25 100 1 0 100 39.28
10 234,727 6 0.00 26 100 1 0 100 38.92
12 234,846 6 0.00 25 100 1 0 100 37.74
24 235,168 6 0.00 25 100 1 0 100 39.71
8 235,489 6 0.00 26 100 1 0 100 39.11
21 235,548 6 0.00 26 100 1 0 100 38.17
14 235,640 6 0.00 25 100 1 0 100 37.47
25 235,774 6 0.00 25 100 1 0 100 37.36
27 235,791 6 0.00 25 100 1 0 100 38.4
29 235,932 6 0.00 26 100 1 0 100 38.22
3 235,974 6 0.00 25 100 1 0 100 37.48
23 236,122 6 0.00 25 100 1 0 100 37.04
28 236,150 6 0.00 25 100 1 0 100 36.33
11 236,219 6 0.00 25 100 1 0 100 38.89
26 236,223 6 0.00 25 100 1 0 100 37.58
17 236,303 6 0.00 24 100 1 0 100 38.27
16 236,338 6 0.00 26 100 1 0 100 36.19
19 236,426 6 0.00 25 100 1 0 100 38.3
5 236,484 6 0.00 26 100 1 0 100 39.47
9 236,626 6 0.00 25 100 1 0 100 37.39
7 237,146 6 0.00 24 100 1 0 100 39.49
18 237,207 6 0.00 25 100 1 0 100 39.38
22 237,237 6 0.00 26 100 1 0 100 38.39
15 237,293 6 0.00 26 100 1 0 100 37.45
2 237,322 6 0.00 25 100 1 0 100 38.52
1 237,420 7 0.00 30 100 1 0 100 37.8
6 237,454 6 0.00 26 100 1 0 100 39.42
4 237,530 6 0.00 25 100 1 0 100 37.38
13 237,836 6 0.00 25 100 1 0 100 38.02

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S26: Case 2, Week 1. Optimization results for the formulation with 8 = 1, « = 1. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€ ITER  GAP (%) T(s) UT (%) SUP  SD  SELLC (MW)  BUYC (MW)

12 218,757 6 0.00 24 100 1 0 100 43.36
30 220,833 9 0.00 47 100 1 0 100 37.83
20 222,004 6 0.00 24 100 1 0 100 34.84
24 223,950 19 0.00 199 100 1 0 100 36.27
10 224,680 26 0.00 407 100 1 0 100 44.26
13 225,354 15 0.00 129 100 1 0 100 44.65
14 225,985 15 0.00 133 100 1 0 100 33.17
8 226,144 24 0.00 332 100 1 0 100 43.19
6 226,291 6 0.00 25 100 1 0 100 40.97
5 226,837 7 0.00 32 100 1 0 100 38.08
9 227,104 12 0.00 80 100 1 0 100 36.91
29 227,114 19 0.00 215 100 1 0 100 41.73
27 227,267 37 0.00 819 100 1 0 100 36.07
21 227,566 6 0.00 24 100 1 0 100 36.37
25 228,217 36 0.00 943 100 1 0 100 37.87
4 228,328 47 0.00 1,826 100 1 0 100 38.04
7 228,755 6 0.00 24 100 1 0 100 38.58
22 228,859 74 0.00 6,095 100 1 0 100 34.6
16 228,926 6 0.00 25 100 1 0 100 36.9
26 229,088 32 0.00 685 100 1 0 100 36.73
28 229,236 9 0.00 53 100 1 0 100 33.84
19 229,549 32 0.00 652 100 1 0 100 36.78
1 229,644 20 0.00 231 100 1 0 100 35.86
3 229,761 13 0.00 104 100 1 0 100 37.3
17 230,121 9 0.00 49 100 1 0 100 41.82
15 230,258 19 0.00 244 100 1 0 100 34.53
11 230,308 19 0.00 198 100 1 0 100 39.65
2 230,839 6 0.00 26 100 1 0 100 40.5
18 231,640 18 0.00 173 100 1 0 100 37.02
23 232,142 6 0.00 24 100 1 0 100 36.72

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S27: Case 1, Week 2. Optimization results for the formulation with 8 = 0. The results are ordered by the value of the
objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT (%) SUP  SD  SELLC (MW)  BUYC (MW)

m Dn.m (€) ITER  GAP (%) T (

©n

7 2,604,233 2 0.00 4 100 0 0 0 160
17 2,620,361 2 0.00 4 100 0 0 0 160
11 2,626,283 2 0.00 4 100 0 0 0 160
24 2,631,787 2 0.00 4 100 0 0 0 160
3 2,632,211 2 0.00 4 100 0 0 0 160
2 2,643,010 2 0.00 4 100 0 0 0 160
16 2,647,354 2 0.00 4 100 0 0 0 160
15 2,648,129 2 0.00 4 100 0 0 0 160
21 2,648,863 2 0.00 4 100 0 0 0 160
28 2,650,303 2 0.00 7 100 0 0 0 160
20 2,653,771 2 0.00 4 100 0 0 0 160
19 2,657,708 2 0.00 4 100 0 0 0 160
4 2,661,912 2 0.00 4 100 0 0 0 160
14 2,664,349 2 0.00 4 100 0 0 0 160
30 2,669,870 2 0.00 4 100 0 0 0 160
13 2,671,769 2 0.00 4 100 0 0 0 160
27 2,672,568 2 0.00 4 100 0 0 0 160
8 2,681,209 2 0.00 4 100 0 0 0 160
12 2,685,021 2 0.00 4 100 0 0 0 160
23 2,686,597 2 0.00 4 100 0 0 0 160
6 2,690,264 2 0.00 4 100 0 0 0 160
5 2,696,082 2 0.00 4 100 0 0 0 160
29 2,702,453 2 0.00 4 100 0 0 0 160
1 2,705,720 3 0.00 8 100 0 0 0 160
9 2,711,809 2 0.00 4 100 0 0 0 160
18 2,714,041 2 0.00 4 100 0 0 0 160
10 2,714,877 2 0.00 4 100 0 0 0 160
26 2,717,774 2 0.00 4 100 0 0 0 160
25 2,721,459 2 0.00 4 100 0 0 0 160
22 2,725,259 2 0.00 4 100 0 0 0 160

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S28: Case 1, Week 2. Optimization results for the formulation with § = 0.5, @« = 0.9. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT (%) SUP  SD  SELLC (MW)  BUYC (MW)

©n

m Dn.m (€) ITER  GAP (%) T (
3

2,117,817 2 0.00 5 100 0 0 50 55
24 2,119,738 2 0.00 5 100 0 0 50 55
7 2,119,850 2 0.00 5 100 0 0 50 55
19 2,122,621 2 0.00 5 100 0 0 50 55
17 2,123,902 2 0.00 5 100 0 0 50 55
11 2,127,937 2 0.00 5 100 0 0 50 55
6 2,131,610 2 0.00 5 100 0 0 50 55
28 2,133,940 2 0.00 5 100 0 0 50 55
2 2,137,153 2 0.00 5 100 0 0 50 55
16 2,137,512 2 0.00 5 100 0 0 50 55
5 2,140,159 2 0.00 5 100 0 0 50 55
15 2,140,742 2 0.00 5 100 0 0 50 55
20 2,143,321 2 0.00 5 100 0 0 50 55
4 2,145,341 2 0.00 5 100 0 0 50 55
21 2,145,784 2 0.00 5 100 0 0 50 55
13 2,145,998 2 0.00 5 100 0 0 50 55
27 2,146,332 2 0.00 5 100 0 0 50 55
23 2,149,386 2 0.00 5 100 0 0 50 55
9 2,155,694 2 0.00 5 100 0 0 50 55
30 2,160,677 2 0.00 5 100 0 0 50 55
8 2,160,755 2 0.00 5 100 0 0 50 55
18 2,163,509 2 0.00 6 100 0 0 50 55
14 2,165,378 2 0.00 5 100 0 0 50 55
12 2,168,133 2 0.00 5 100 0 0 50 55
25 2,186,320 2 0.00 5 100 0 0 50 55
26 2,187,711 2 0.00 5 100 0 0 50 55
22 2,189,910 2 0.00 5 100 0 0 50 55
29 2,193,321 2 0.00 5 100 0 0 50 55
10 2,201,951 2 0.00 5 100 0 0 50 55
1 2,216,005 3 0.00 9 100 0 0 50 55

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S29: Case 1, Week 2. Optimization results for the formulation with 8 =1, a = 0.9. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m Dn.m (€) ITER  GAP (%) T (s) UT (%) SUP  SD  SELLC (MW) BUYC (MW)
19 1,765,064 2 0.00 5 100 0 0 155 0
6 1,765,595 2 0.00 5 100 0 0 210 0
5 1,769,182 2 0.00 5 100 0 0 155 0
3 1,773,377 2 0.00 5 100 0 0 155 0
24 1,773,951 2 0.00 5 100 0 0 155 0
9 1,781,951 2 0.00 5 100 0 0 155 0
28 1,785,166 2 0.00 5 100 0 0 155 0
23 1,785,309 2 0.00 5 100 0 0 155 0
7 1,786,598 2 0.00 5 100 0 0 155 0
27 1,787,206 2 0.00 5 100 0 0 155 0
17 1,788,645 2 0.00 5 100 0 0 155 0
18 1,789,648 2 0.00 5 100 0 0 155 0
16 1,789,841 2 0.00 5 100 0 0 155 0
13 1,790,073 2 0.00 5 100 0 0 155 0
11 1,790,082 2 0.00 5 100 0 0 155 0
2 1,791,606 2 0.00 5 100 0 0 155 0
4 1,792,455 2 0.00 5 100 0 0 155 0
20 1,794,615 2 0.00 5 100 0 0 155 0
15 1,795,002 2 0.00 5 100 0 0 155 0
21 1,799,752 2 0.00 5 100 0 0 155 0
8 1,806,422 2 0.00 5 100 0 0 155 0
30 1,808,593 2 0.00 5 100 0 0 155 0
12 1,814,114 2 0.00 5 100 0 0 155 0
25 1,814,197 2 0.00 5 100 0 0 155 0
14 1,818,975 2 0.00 5 100 0 0 155 0
22 1,819,699 2 0.00 5 100 0 0 155 0
26 1,823,726 2 0.00 5 100 0 0 155 0
29 1,837,284 2 0.00 5 100 0 0 155 0
10 1,843,654 2 0.00 5 100 0 0 155 0
1 1,865,242 3 0.00 8 100 0 0 155 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S30: Case 1, Week 2. Optimization results for the formulation with 8 = 1, & = 0.95. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
)  UT(%) SUP  SD  SELLC (MW)  BUYC (MW

©n

~

m Dn.m (€) ITER  GAP (%) T (
5

1,683,761 2 0.00 5 100 0 0 260 0
6 1,687,531 2 0.00 5 100 0 0 260 0
23 1,692,596 2 0.00 5 100 0 0 260 0
19 1,699,717 2 0.00 5 100 0 0 260 0
24 1,700,288 2 0.00 5 100 0 0 260 0
27 1,701,354 2 0.00 5 100 0 0 260 0
9 1,701,612 2 0.00 5 100 0 0 260 0
28 1,705,078 2 0.00 5 100 0 0 260 0
16 1,707,270 2 0.00 5 100 0 0 260 0
7 1,711,544 2 0.00 5 100 0 0 210 0
18 1,713,376 2 0.00 5 100 0 0 260 0
13 1,714,584 2 0.00 5 100 0 0 260 0
3 1,715,365 2 0.00 5 100 0 0 260 0
20 1,715,568 2 0.00 5 100 0 0 260 0
11 1,716,144 2 0.00 5 100 0 0 260 0
30 1,716,702 2 0.00 5 100 0 0 260 0
2 1,717,297 2 0.00 5 100 0 0 210 0
4 1,719,527 2 0.00 5 100 0 0 210 0
15 1,721,245 2 0.00 5 100 0 0 260 0
17 1,722,128 2 0.00 5 100 0 0 260 0
8 1,727,201 2 0.00 5 100 0 0 260 0
25 1,728,304 2 0.00 5 100 0 0 210 0
21 1,730,942 2 0.00 5 100 0 0 210 0
26 1,739,322 2 0.00 5 100 0 0 210 0
14 1,742,210 2 0.00 5 100 0 0 210 0
12 1,742,756 2 0.00 5 100 0 0 210 0
22 1,744,431 2 0.00 5 100 0 0 210 0
29 1,748,966 2 0.00 5 100 0 0 210 0
10 1,756,191 2 0.00 5 100 0 0 210 0
1 1,794,332 3 0.00 9 100 0 0 155 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S31: Case 1, Week 2. Optimization results for the formulation with 8 =1, « = 1. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)
m  ym (€ ITER  GAP (%) T(s) UT (%) SUP SD  SELLC (MW)  BUYC (MW

~

19 1,454,470 4 0.00 21 100 0 0 315 0
25 1,510,987 11 0.00 62 95.24 1 1 315 0
28 1,519,704 3 0.00 9 100 0 0 315 0
17 1,520,896 12 0.00 100 100 0 0 315 0
27 1,522,801 7 0.00 32 100 0 0 315 0
5 1,524,831 2 0.00 8 100 0 0 315 0
13 1,527,372 2 0.00 6 100 0 0 315 0
7 1,528,090 3 0.00 10 100 0 0 315 0
30 1,528,516 5 0.00 18 100 0 0 315 0
3 1,537,998 2 0.00 9 100 0 0 315 0
22 1,543,869 7 0.00 30 100 0 0 315 0
8 1,544,393 2 0.00 5 100 0 0 315 0
6 1,547,296 9 0.00 50 100 0 0 315 0
12 1,548,427 13 0.00 102 100 0 0 315 0
24 1,561,759 2 0.00 6 100 0 0 260 0
4 1,565,939 2 0.00 7 100 0 0 315 0
23 1,566,855 2 0.00 6 100 0 0 315 0
26 1,568,833 6 0.00 30 100 0 0 260 0
9 1,581,039 4 0.00 16 100 0 0 260 0
16 1,581,480 3 0.00 10 100 0 0 260 0
15 1,587,210 4 0.00 13 100 0 0 260 0
2 1,589,208 2 0.00 6 100 0 0 260 0
11 1,597,446 2 0.00 5 100 0 0 260 0
20 1,601,428 2 0.00 6 100 0 0 294.72 0
29 1,602,649 9 0.00 49 100 0 0 260 0
14 1,609,729 2 0.00 7 100 0 0 260 0
21 1,610,322 2 0.00 13 100 0 0 260 0
18 1,619,745 2 0.00 5 100 0 0 260 0
1 1,632,789 3 0.00 20 100 0 0 260 0
10 1,656,466 2 0.00 6 100 0 0 260 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S32: Case 2, Week 2. Optimization results for the formulation with 8 = 0. The results are ordered by the value of the
objective function. M = 30, N = 500.

First-stage variables (aggregated)

m  dnm (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)
7 440,469 204 3.88 10,821 93.45 6 5 0 160
17 447,766 211 3.70 10,887 93.45 6 5 0 160
3 451,901 175 3.91 10,900 94.64 6 5 0 160
11 452,428 209 3.65 10,814 93.45 6 5 0 160
24 455,163 208 3.50 10,888 93.45 6 5 0 160
15 457,008 210 3.58 10,822 93.45 6 5 0 160
21 457,148 214 352 10,830 93.45 6 5 0 160
16 457,890 214 3.20 10,892 93.45 6 5 0 160
2 458,906 205 2.67 10,852 97.02 3 2 0 160
28 461,131 213 348 10,812 93.45 6 5 0 160
19 461,467 215 3.42 10,837 93.45 6 5 0 160
20 461,631 210 3.59 10,819 93.45 6 5 0 160
14 464,045 213 349 10,806 93.45 6 5 0 160
4 465,105 195 3.59 10,845 93.45 6 5 0 160
13 465,180 217 3.34 10,837 93.45 6 5 0 160
27 466,933 218 3.33 10,888 93.45 6 5 0 160
30 467,315 216 3.35 10,827 93.45 6 5 0 160
8 471,506 211 344 10,851 93.45 6 5 0 160
12 473,450 218 3.14 10,839 93.45 6 5 0 160
23 473,626 218 310 10,825 93.45 6 5 0 160
5 473,841 218 3.14 10,850 93.45 6 5 0 160
6 475,196 217 3.26 10,889 93.45 6 5 0 160
1 477,630 221 2.73 10,894 88.69 5 4 0 160
29 479,837 217 3.24 10,871 93.45 6 5 0 160
9 482,099 218 3.28 10,849 93.45 6 5 0 160
18 482,565 219 3.22 10,805 93.45 6 5 0 160
26 484,549 217 2.94 10,890 93.45 6 5 0 160
25 484,963 217 3.25 10,819 93.45 6 5 0 160
10 487,219 215 317 10,861 93.45 6 5 0 160
22 488,866 215 319 10,841 93.45 6 5 0 160

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S33: Case 2, Week 2. Optimization results for the formulation with § = 0.5, @« = 0.9. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m  dnm (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)
1 345,172 35 1235 11,615 83.33 10 9 57.23 0
7 367,665 30 1310 11,413 87.5 13 12 61.11 0
13 367,704 31 1255 11,181 80.36 24 23 60.03 0
12 370,471 30 1320 10,831 85.12 16 15 61.15 0
30 371,740 30 13.14 11,094 83.33 17 16 61.05 0
15 372,266 21 13.01 11,389 79.76 22 21 60.59 0
21 372,748 29 12.83 11,128 85.71 14 13 61.56 0
25 372,900 34 1455 10,863 89.29 10 9 62.13 0
2 372,907 28 13.35 11,487 85.71 15 14 61.59 0
9 373,356 29 1323 11,255 88.1 11 10 62.02 0
16 373,650 28 1326 11,235 86.31 14 13 61.78 0
3 373,857 26 1349 10,940 88.1 17 16 62.11 0
29 374,809 25 1278 12,359 85.71 16 15 61.87 0
6 374,869 27 1324 11,558 87.5 12 11 62.14 0
24 374,997 25 13.66 11,731 86.31 14 13 61.98 0
27 375,017 31 13.65 11,167 87.5 12 11 62.16 0
23 376,148 30 1322 11,130 88.69 11 10 62.51 0
4 376,921 27 13.93 11,245 84.52 16 15 61.99 0
18 376,963 21 12,70 11,531 82.14 14 13 61.61 0
19 377,155 25 1372 12,014 85.71 13 12 62.19 0
8 377,445 24 13.23 10,952 85.12 14 13 62.15 0
14 378,806 30 1372 11,388 87.5 13 12 62.71 0
5 378,881 25 1294 11,292 80.36 22 21 61.62 0
11 379,064 23 1293 11,876 87.5 11 10 62.74 0
26 379,120 23 1332 11,927 86.31 13 12 62.56 0
17 379,123 27 1236 11,479 85.12 15 14 62.39 0
28 379,248 31 13.93 11,334 86.31 16 15 62.59 0
20 382,229 24 13.07 11,985 86.31 18 17 63.03 0
10 383,043 25 13.06 10,983 88.69 13 12 63.5 0
22 383,885 33 1508 11,318 87.5 12 11 63.43 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S34: Case 2, Week 2. Optimization results for the formulation with 8 = 1, a = 0.9. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m  dnm (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)
1 297,409 29 11.81 11,086 80.95 10 9 50 0
12 354,620 24 20.86 11,085 82.74 17 16 58.51 0
14 366,625 28 25.25 11,157 87.5 14 13 60.97 0
26 366,778 29 23.27 11,349 81.55 19 18 60.08 0
8 374,727 26 23.63 10,907 86.9 11 10 62.03 0
10 375,532 18 23.30 11,969 83.33 17 16 61.6 0
28 380,086 20 26.55 11,970 86.9 14 13 62.8 0
17 382,957 23 27.03 11,714 85.12 18 17 62.94 0
23 383,571 27 25.80 11,033 85.12 16 15 63.03 0
22 385,449 30 26.86 11,149 84.52 15 14 63.2 0
18 385,910 31 27.59 11,891 85.71 16 15 63.46 0
29 387,198 25 27.02 11,125 85.12 14 13 63.54 0
2 387,878 27 28.10 10,873 85.71 16 15 63.74 0
15 397,085 20 29.29 11,963 86.31 15 14 65.15 0
6 402,478 24 29.64 10,926 82.74 12 11 65.35 0
21 406,058 21 31.28 11,023 79.76 20 19 65.42 0
3 406,490 19 31.46 12,560 87.5 14 13 66.69 0
11 408,433 24 31.25 11,647 85.71 16 15 66.7 0
16 411,015 28 33.22 11,034 84.52 18 17 66.88 0
13 412,305 23 31.50 10,999 81.55 16 15 66.59 0
27 413,760 21 32.68 11,497 87.5 14 13 67.73 0
20 415,762 21 32.51 11,793 85.71 15 14 67.73 0
24 416,083 19 32.31 10,924 86.31 15 14 67.87 0
30 416,444 21 34.67 14,381 88.69 12 11 68.29 0
9 422,391 19 33.96 11,442 86.9 14 13 68.87 0
4 423,943 21 3419 13,142 83.33 16 15 68.54 0
25 425,058 23 35.32 11,147 85.12 16 15 68.97 0
19 427,808 21 34.43 11,185 86.9 17 16 69.65 0
5 436,887 28 35.55 11,536 83.33 18 17 70.39 0
7 439,296 20 36.06 11,555 86.31 13 12 71.2 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S35: Case 2, Week 2. Optimization results for the formulation with 8 = 1, a = 0.95. The results are ordered by the
value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m  dnm (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)
1 361,069 31 30.39 10,887 80.95 8 7 59.12 0
10 370,700 19 23.88 12,257 82.14 14 13 60.71 0
26 393,178 18 29.06 12,224 82.74 22 21 64.05 0
8 403,750 20 3217 11,512 83.33 21 20 65.66 0
23 404,095 20 32.66 12,250 86.9 17 16 66.25 0
30 407,101 29 33.36 10,818 83.33 14 13 66.12 0
27 410,304 27 34.90 10,966 83.93 14 13 66.67 0
3 411,401 30 3314 11,194 85.71 14 13 67.11 0
17 412,959 21 32.37 11,457 79.17 17 16 66.31 0
2 413,221 28 34.36 10,882 82.14 20 19 66.83 0
18 414,767 27 34.37 11,521 83.33 18 17 67.23 0
28 416,113 23 35.43 11,839 84.52 17 16 67.61 0
15 420,685 17 34.09 11,004 80.95 18 17 67.69 0
11 421,465 26 33.57 11,185 83.93 16 15 68.27 0
20 424,252 21 3471 11,287 85.12 16 15 68.86 0
21 426,683 29 35.59 11,301 82.14 15 14 68.74 0
22 429,372 29 38.08 11,209 85.71 16 15 69.69 0
4 430,262 19 36.63 11,258 86.31 13 12 69.9 0
7 431,025 17 3821 11,162 82.14 20 19 69.38 0
29 431,517 15 35.59 13,246 79.76 25 24 69.1 0
16 438,651 20 39.58 11,392 84.52 17 16 70.84 0
12 443,088 26 38.93 11,489 88.69 11 10 72.1 0
14 444,535 26 38.87 10,949 87.5 16 15 72.14 0
19 446,983 22 37.94 11,190 83.93 13 12 71.92 0
5 453,358 24 40.26 10,829 83.33 13 12 72.74 0
9 455,013 23 39.36 11,722 87.5 15 14 73.64 0
6 455,990 28 40.78 11,030 88.69 10 9 73.95 0
13 466,253 22 41.84 11,130 86.9 18 17 75.17 0
24 472,608 13 42,03 12,084 83.93 22 21 75.63 0
25 481,095 22 45.18 10,954 82.74 19 18 76.65 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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Table S36: Case 2, Week 2. Optimization results for the formulation with 8 = 1, « = 1. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m  dnm (€) ITER  GAP (%) T(s) UT(%) SUP SD  SELLC (MW)  BUYC (MW)
12 341,646 21 25.84 11,405 73.81 22 21 55.26 0
26 353,082 26 26.08 11,380 71.43 22 21 56.53 0
8 355,955 22 2581 10,985 75 18 18 57.49 0
28 407,904 18 38.64 11,533 71.43 20 20 64.37 0
29 412,031 14 34.82 13,690 76.79 14 13 65.79 0
17 415,133 25 33.47 11,235 76.19 20 19 66.15 0
20 416,103 23 37.51 11,243 76.79 19 18 66.38 0
4 420,918 18 37.16 11,080 79.76 15 14 67.54 0
18 421,309 24 37.22 11,211 78.57 17 16 67.41 0
23 427,581 21 38.22 11,408 74.4 15 14 67.65 0
15 434,127 18 38.10 11,620 76.79 16 15 68.97 0
1 443,200 39 48.86 11,158 76.19 8 7 70.14 0
10 443,821 20 40.27 11,569 76.19 13 12 70.24 0
13 446,807 18 43.56 10,853 72.02 14 13 70.02 0
11 447,129 24 4110 11,377 77.98 17 17 71.02 0
25 448,386 14 4420 12,157 72.02 21 20 70.27 0
27 448,950 16 40.65 11,337 75.6 21 20 70.92 0
9 454,789 13 41.73 16,898 79.17 19 18 72.32 0
24 455,693 24 41.88 11,066 77.38 16 15 72.15 0
30 457,360 12 41.81 11,967 73.21 25 24 71.77 0
6 458,802 23 41.69 11,364 76.19 12 11 72.38 0
19 462,397 17 4317 11,760 79.17 17 16 73.39 0
7 468,938 21 44.76 10,940 80.36 15 15 74.51 0
3 470,288 19 43.05 10,843 74.4 25 24 73.81 0
2 470,688 17 4316 11,752 81.55 21 20 74.97 0
22 473,381 18 48.31 10,989 75.6 16 15 74.4 0
14 477,908 23 4418 11,498 83.93 13 12 76.36 0
5 495,176 23 48.67 11,315 82.14 16 15 78.56 0
21 497,313 18 46.75 11,139 76.19 21 20 77.95 0
16 506,892 22 4779 10,852 80.95 17 16 80.06 0

m - Optimization replication number, Wy ,, - objective function value for optimization replication m, ITER - number of
iterations of the L-Shaped method, GAP - gap between the upper and lower bound withing the L-Shaped method, T -
elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number of startups of the thermal unit, SD -
number of shutdowns of the thermal unit, SELLC - power sold through contract, BUYC - power bought through contract.
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