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Abstract

We analyze existence, uniqueness and properties of equilibria in
incompletely discriminating Tullock contests with logistic contest suc-
cess functions, when contestants are risk averse. We prove that a
Nash equilibrium for such a contest exists, but give an example of a
symmetric contest with both symmetric and asymmetric equilibria,
showing that risk aversion may lead to multiple equilibria. Symmet-
ric contests have unique symmetric equilibria but additional conditions
are necessary for general uniqueness. We also study the e¤ects on in-
cumbents of additional competitors entering the contest under these
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conditions and examine the e¤ects of risk aversion on rent dissipation
in symmetric and asymmetric contests.
Keywords: contest theory, aggregative noncooperative games, risk

aversion
JEL classi�cations: C72, D72
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1 Introduction

Incompletely discriminating contests are widely used to analyze the conse-
quences of rent-seeking behavior. In such a contest, contestants compete to
win an indivisible rent with a common value to all contestants. Competition
takes the form of choosing a level of expenditure and the pro�le of expendi-
ture levels determines the probabilities of winning through a contest success
function1. The payo¤ of the winner is the value of the rent to that contestant
net of the expenditure on rent seeking. The payo¤ of losers is the negative of
their expenditure. This results in a simultaneous-move game in which strate-
gies are expenditure levels, a player�s payo¤ is her expected utility and we
seek Nash equilibria. Such contests were introduced by Tullock [29] in part
as a response to the competitive approach to rent seeking, which concluded
that the whole value of the rent would be dissipated in rent-seeking activity.
In these contests, dissipation is reduced both through strategic e¤ects and as
a consequence of the technology implicit in the contest success function. The
study of such contests has blossomed into an extensive literature. Nitzan
[19] and, more recently, Konrad [15] o¤er valuable surveys.
Most of the contest literature assumes that contestants are risk neutral.

However, a number of authors have investigated the e¤ects of risk aversion.
Motivated partly by the dissipation research agenda, many of these papers
compare equilibria under risk aversion with the corresponding contest in
which players are risk neutral and investigate whether risk aversion reduces
total expenditure on rent seeking. An early example is Hillman and Katz
[11]. who work largely within the competitive paradigm characteristic of the
early literature but also discuss some strategic issues in an appendix. They
use a Taylor�s series expansion to derive an expression for limiting rent dis-
sipation in a symmetric contest when the rent is small, and adopt numerical
methods to obtain some extensions of this to larger rents. Long and Vousden
[16] discuss comparative statics and extensions to endogenous and divisible
rents. Millner and Pratt [17], focussing on symmetric two-player contests,
pointed out that risk-aversion need not reduce rent dissipation unless fur-
ther restrictions are imposed on utility functions. Konrad and Schlesinger
[14] show that this ambiguity extends to symmetric contests with any �nite
number of players and elucidate it by decomposing the risk e¤ects of an in-
crease in expenditure into a mean-preserving spread and contraction. These
observations are in line with discussions of the e¤ects of risk aversion on
strategic e¤ects in a wider class of games made by Skaperdas [24] and Grad-

1In an incompletely discriminating contest, this probability is less than one for the
contestant with the greatest level of expenditure. The terminology is due to Hillman and
Riley.
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stein [10]. Millner and Pratt also noted that, if the third derivative of the
utility function is positive2, risk aversion will reduce equilibrium rent-seeking
and carried out an experiment, the results of which were consistent with
such a reduction. Their theoretical result was extended to more than two
players in a recent note of Treich [28]. Existence of a Nash equilibrium was
investigated by Skaperdas and Gan [26], who derived necessary and su¢cient
conditions for an equilibrium in two-player contests with constant absolute
risk aversion and showed that, in some circumstances, risk aversion reduces
expenditure on rent seeking. Cornes and Hartley [4] established existence
and uniqueness of equilibrium in an asymmetric contest in which the coef-
�cient of absolute risk aversion of contestants was constant. Bozhinov [3]
extended this to constant relative risk aversion, but with a restriction on the
size of the ratio of the size of the rent to initial wealth3. Cornes and Hartley
also show that, given two otherwise identical contestants, the expenditure
of the less risk averse contestant is greater and that global reductions in
risk aversion increased aggregate lobbying. They also developed a formula
for rent dissipation in a large symmetric contest and pointed out that selec-
tion e¤ects in large contests may eliminate the more risk averse contestants,
thereby partially o¤setting the reduction in rent dissipation caused by risk
aversion. Münster [18] studied the e¤ects of risk aversion when contestants
do not know how many other potential contestants have entered the con-
test. This leads to a game of incomplete information. Here, we con�ne the
analysis to contests with complete information.
One focus of the general contest literature has been the existence and

uniqueness of a pure-strategy equilibrium [27], [5]. With the exception of
the special cases examined by Skaperdas and Gan [26], Cornes and Hartley [4]
and Bozhinov [3], little attention has been paid to existence and uniqueness
of equilibria in general contests with risk averse contestants. Indeed, most
articles consider only symmetric equilibria of symmetric contests. Existence
is complicated by inevitable discontinuities in payo¤s at the origin (zero
expenditure by all contestants.) Nevertheless, we show how other methods
can be used to prove existence of an equilibrium for a wide class of contest
success functions (those studied by Szidarowszky and Okuguchi [27]). If the
contest is symmetric, it will have a unique symmetric equilibrium. However,
we cannot rule out the possibility that such contests also have asymmetric

2This condition is now known as prudence [9], but Millner and Pratt�s paper antedates
this terminology.

3Since utility functions of contestants exhibiting constant relative risk aversion are only
de�ned for positive arguments, initial wealth must exceed the rent. However, Bozhinov�s
upper bound on the ratio of rent to initial wealth is strictly less than one and depends on
the coe¢cient of risk aversion.
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equilibria, nor of multiple equilibria of general contests. In particular, we
present a symmetric example with a �proportional� contest success function
(in which the probability that a contestant wins is equal to the ratio of the
expenditure of that contestant to total expenditure) which possesses both
symmetric and asymmetric equilibria. This shows that additional conditions
(which we call �regularity�) are needed to ensure uniqueness and a number
of such conditions are exhibited in the sequel. All these conditions impose
an upper bound on the curvature of the utility function and we show that
this bound is always satis�ed when the rent is small enough. In the case
of constant relative risk aversion, we can give an explicit value for the rent,
below which the contest admits a unique equilibrium. Cornes and Hartley
[4] show that constant absolute risk aversion is su¢cient for regularity and
here we show that this remains true if the coe¢cient of absolute risk aversion
is non-increasing provided this coe¢cient is not too large.
Comparative statics of contests have also been widely studied. For ex-

ample, Long and Vousden [16] investigate contests in which contestants are
risk averse and the rent is divisible. Nti [21] studies comparative statics
for symmetric contests with risk-neutral contestants. For reasons of space,
we restrict our analysis to the e¤ects of entry, but permit the contestants
to be risk-averse. In a symmetric contest, we show that, under the general
conditions discussed above, entry reduces expenditure of incumbents in the
symmetric equilibrium. In regular asymmetric contests, entry increases ag-
gregate lobbying and decreases the probability that incumbents win as well
as their payo¤s in equilibrium.
We can use these results to analyze the e¤ects of risk aversion on rent

dissipation. Study of this issue was initiated by Tullock [29], who observed
that strategic e¤ects in a symmetric contest with n contestants reduce the
proportion of the rent dissipated from 1 under competition to (at most)4

(n� 1) =n. A number of factors may further reduce rent dissipation, includ-
ing asymmetry and the technology embodied in the contest success function
[5]5. For asymmetric contests with risk-averse contestants, we consider the
case of contestants who are prudent and not too large (as measured by their
equilibrium probability of winning.) Aggregate lobbying e¤ort is smaller in
such a contest than in a second contest with the same contest success func-
tion but risk-neutral contestants. This extends the recent result of Treich
[28] for symmetric contests. When there are many contestants, the reduction

4The exact value depends on the contest success function and is equal to (n� 1) =n if
this is proportional.

5Riley [22] discusses the role of asymmetry in reducing rent-seeking for completely
discriminating winner-takes-all contests, where the whole rent is dissipated even for �nitely
many contestants.
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in dissipation caused by strategic e¤ects vanishes ((n� 1) =n approaches 1)
and studying the limit n �! 1 allows us to focus directly on the impact
of risk aversion on rent dissipation. For symmetric contests, we derive an
expression for the limiting dissipation ratio (proportion of the rent dissipated
in equilibrium) in terms of the utility function. Special cases of this expres-
sion include the �small rent� formula of Hillman and Katz [11] as well as
the limiting dissipation ratio found by Cornes and Hartley for the case of
constant absolute risk aversion [4]. As in that paper, this limiting value is
equal to one under risk neutrality and is strictly less than one under strict
risk aversion. Furthermore, if two symmetric contests share the same contest
success function but contestants in the second are more risk averse (in the
Arrow-Pratt sense) than the �rst, then limiting rent dissipation is higher in
the �rst contest.
Cornes and Hartley also studied the interaction between asymmetry in

contests and risk aversion. Since asymmetry can also reduce rent dissipation,
it might be expected that the reductions due to risk aversion and asymmetry
will reinforce each other. However, the opposite will be true in large con-
tests. With the proportional contest success function and many contestants
exhibiting constant but di¤erent coe¢cients of risk aversion, competition
will drive the more risk averse contestants out of the contest, leaving only
the least risk averse contestants to participate actively in the contest. In
the limit, rent dissipation approaches that associated with the smallest co-
e¢cient of risk aversion. With a more general contest success function, the
story is a little more complicated: which contestants are inactive will depend
on the contest success function as well as attitudes to risk. However, qual-
itative conclusions are essentially unchanged. Selection e¤ects mean that,
typically, the active contestants in a large contest exhibit the same attitudes
to risk and success probability. This allows us to apply results derived for
symmetric contests to large asymmetric contests.
To obtain these results we need a tractable characterization of Nash

equilibria. The natural characterization is as a �xed point of the best-
response mapping, but this mapping is multi-dimensional, which makes it
hard to handle directly and for this reason, the existing literature on incom-
pletely discriminating contests with risk aversion, except [4], assumes either
symmetry or two contestants (or both). Instead, we use an alternative char-
acterization in terms of share correspondences. This methodology was �rst
discussed in [5], building on the share functions used in [4] to study con-
testants with constant absolute risk aversion and is ultimately derived from
an approach to Cournot equilibrium pioneered by Selten [23]. The advantage
of the approach is that much of the analysis is unidimensional. The method
works because the game is aggregative (payo¤s depend on own strategy and
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aggregate strategy) or, when contest success functions are not proportional,
the contest is strategically equivalent to an aggregative game. This approach
may have independent interest for other applications which can be modelled
as aggregative games, including a number of extensions of the basic contest
model.
The plan of the paper is as follows. In Section 2, we describe how

the contest may be modelled as a simultaneous-move game and present an
example which has a symmetric proportional contest success function and
identical risk averse contestants yet possesses multiple equilibria. In the
following section, we formally de�ne share correspondences, derive some of
their properties and establish existence of a Nash equilibrium. In Section
4, we �rst discuss uniqueness of symmetric equilibria of symmetric contests
and then turn to additional conditions for ensuring a unique equilibrium of
a general contest. In the following section, we study the e¤ects of entry
on equilibria, in both symmetric and asymmetric contests. In Section 6,
after a brief look at small contests, we go on to develop an expression for the
dissipation ratio for large symmetric contests and then extend this result to
asymmetric contests. Section 7 concludes and proofs postponed from the
main body of the text are given in the Appendix.

2 Setup and counterexample

We study a contest with n(� 2) contestants of whom contestant i chooses
to spend xi 2 R+ to in�uence the probability of winning an indivisible rent
of value R. The expenditure xi purchases lobbying e¤ort fi (xi) where fi
can be thought of as the production function of contestant i. We assume
that all production functions are increasing and that production exhibits
non-increasing returns.

A1 The production function fi is continuous, twice continuously di¤eren-
tiable in R+, and satis�es fi (0) = 0, f

0
i (x) > 0 for x � 0 and f

00
i (x) � 0

for x > 0.

It is convenient to write x 2 Rn+ for the strategy pro�le (x1; : : : ; xn) and
we study contests with a single winner, in which the probability pi (x) that
contestant i wins is proportional to lobbying e¤ort:

pi (x) =
fi (xi)Pn
j=1 fj (xj)

. (1)

This �logistic� contest success function is widely used in the study of contests
and was given an axiomatic foundation by Skaperdas [25]. If fi (xi) = xi
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for all i, we refer to the contest success function as proportional. In cases
where fi is not de�ned for negative arguments, we interpret derivatives at
the origin as one-sided and permit a limiting value of +1. This allows
us to incorporate production functions such as fi (x) = xr where 0 < r �
1, originally studied by Tullock [29] and in which the marginal product is
unbounded.
We also suppose that contestants are risk averse or risk neutral with

a concave Bernoulli utility function ui for contestant i, which satis�es the
following conditions.

A2 Contestant i has a utility function ui, which is continuously di¤erentiable
and satis�es u0i (c) > 0 and u

00
i (c) � 0 for c 2 R.

Given a strategy pro�le x 6= 0, contestant i faces a gamble: win R � xi
with probability pi, lose xi, otherwise. In this case, we take the payo¤ of
contestant i to be her expected utility:

e�i (x) =
fi (xi)Pn
j=1 fj (xj)

ui (R� xi) +

"
1�

fi (xi)Pn
j=1 fj (xj)

#
ui (�xi) .

If the pro�le is x = 0, we suppose that there is no winner and therefore take
e�i (0) = ui (0) for all i

6. This de�nes an n-player simultaneous-move game
in which player i has strategy set R+

7 and payo¤ e�i.
Note that e�i is discontinuous at the origin. Unfortunately, there is no way

to de�ne payo¤s for all contestants that is continuous or even upper semi-
continuous at the origin and that also respects the assumption that there is
at most one winner8. This discontinuity at the origin implies that at least

6A natural alternative assumption is that every contestant wins with probability 1=n
when x = 0. This makes no di¤erence to our results.

7Since strategies exceeding R are strictly dominated, we can take the strategy set to
be [0; R] without loss of generality. Indeed, there may be utility functions satisfying A2
only for c � �R, for which this may be the natural strategy set.

8The condition that there is at most one winner can be expressed as

nX

i=1

e�i (x)� ui (�xi)
ui (R� xi)� ui (�xi)

� 1.

Any attempt to de�ne payo¤s at the origin that are upper semi-continuous for all con-
testants and consistent with this inequality will encounter a contradiction. For, if xj = 0
for j 6= i, the payo¤ of contestant i is ui (R� xi) and this approaches ui (R) as xi �! 0.
Upper semi-continuity of e�i at 0 would dictate e�i (0) � ui (R) for all i, but this would
violate the displayed inequality at x = 0 (and introduce 0 as a spurious equilibrium).
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two contestants must be active (choose positive xi) in any Nash equilibrium.
Indeed, if only contestant i were active, we would have x�i = 0. But
then, argmaxxi e�i (xi;x�i) would be empty, contradicting the de�nition of
equilibrium. The discontinuity also prevents us from direct use of standard
existence theorems (e.g. the Debreu-Fan-Glicksberg pure-strategy existence
theorem [7]). The fact that payo¤s are not even upper semi-continuous
prevents direct application of pure-strategy existence theorems such as those
of Dasgupta and Maskin [6], which permit discontinuous payo¤s. We return
to this issue in the next section, where we prove that, nevertheless, A1 and
A2 are su¢cient to ensure existence of a Nash equilibrium.
When all players are risk neutral, this game is strategically equivalent

to Cournot oligopoly with unit elastic demand and non-decreasing marginal
costs. It is well known that such a game not only has a Nash equilibrium
but that the equilibrium is unique [27], [5]. However, as the following coun-
terexample shows, this result does not survive if risk neutrality is relaxed to
risk aversion.

Example 1 Consider the 10-player contest, in which, for all i, we have
fi (x) = x for x � 0 and ui satis�es

9

ui (c) = c� 0:45c2

for 0 � c � 1. Assumption A1 obviously holds for all contestants and sim-
ple computation shows that A2 is satis�ed with the displayed utility function.
Direct calculation can be used to verify that this symmetric contest has a sym-
metric Nash equilibrium in which xi = 0:0563 for all i. (Numerical values
throughout this example are given to three signi�cant �gures.) However, this
equilibrium is not unique. For example, there are also asymmetric equilibria
in which any three contestants choose xi = 0:184 and the remaining seven
contestants choose xi = 0.

For analytical purposes it is helpful to rewrite the game using lobbying
e¤ort as strategic variable. Since fi is strictly increasing, gi = f�1i exists, is
twice continuously di¤erentiable in R+ and satis�es gi (0) = 0 and g

0
i � 0 and

g00i � 0. Write yi = fi (xi) and Y =
Pn

j=1 yj for aggregate lobbying. Then
we can rewrite the payo¤ of contestant i as

�i (yi; Y ) = ui [�gi (yi)] +
yi
Y
Di (yi) (2)

9To make R+ the strategy set, it is necessary to extend the de�nition of ui to c � 1 in
such a way that ui is twice continuously di¤erentiable, concave and increasing. This can
easily be done without altering the set of equilibria.
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for 0 � yi � Y , where

Di (yi) = fui [R� gi (yi)]� ui [�gi (yi)]g > 0, (3)

provided Y > 0. Since x = 0 cannot be an equilibrium, Y is positive in all
equilibria. Note that the transformed game is aggregative: each contestant�s
payo¤ depends only on their own strategy and the sum of all strategies, a
fact we exploit throughout the development.

3 Share correspondences

Our analysis is rooted in the notion of a share correspondence. It extends
the ��tting-in function� used by Selten [23], Bamón and Frayssé [1], Novshek
[20] and others to study Cournot equilibrium and other aggregative games.
The share correspondence of contestant i, denoted Si, is a mapping from
R++ to subsets of [0; 1]. Fix the payo¤ of contestant i to be �i (yi; Y )
and consider all aggregative games in which i is a player. Consider further,
all equilibrium strategy pro�les of such a game in which aggregate lobbying
e¤ort is Y . Let Si (Y ) denote the set of probabilities that contestant i wins
in such an equilibrium:

Si (Y ) =

(
yi
Y
: y is a Nash equilibrium with

nX

j=1

yj = Y

)
. (4)

Share correspondences can be used to study equilibria using the readily-

proved fact that by is a Nash equilibrium if and only if byi=bY 2 Si

�
bY
�
for

all i, where bY =
Pn

j=1 byj. Equivalently, a necessary and su¢cient condition
(using standard set addition) for bY to be an equilibrium value of aggregate
lobbying in the contest is

1 2

nX

j=1

Sj

�
bY
�
. (5)

If this holds and �i 2 Si

�
bY
�
for all i satisfy

Pn
j=1 �j = 1, then by =

�
�1bY ; : : : ; �nbY

�
is a Nash equilibrium.

Share correspondences can be characterized in terms of best-response
mappings: Since the best response of contestant i to the strategy pro�le y�i
depends only on Y�i =

P
j 6=i yj, we can write the best-response correspon-

dence as
Bi (Y�i) = argmax

y
�i (y; y + Y�i) ,

10



for any Y�i � 0. The share correspondence satis�es

� 2 Si (Y )() �Y 2 Bi ((1� �)Y ) .

We can use �rst-order conditions to rewrite this characterization since
payo¤s are quasi-concave functions of yi for �xed Y�i � 0. (The proof is in
the appendix.)

Lemma 3.1 If A1 and A2 hold for contestant i, then �i (y; y + Y�i) is a
quasi-concave function of y � 0 for any Y�i � 0.

From (2), the marginal payo¤ can be written:

@

@y
�i (y; y + Y�i) = Ai

�
yi;

yi
yi + Y�i

�
+

Y�i

(yi + Y�i)
2Di (yi) , (6)

where

Ai (y; �) = �g
0
i (y) f�u

0
i [R� gi (y)] + (1� �) u0i [�gi (y)]g . (7)

It follows from Lemma 3.1 that yi 2 Bi (Y�i) if and only if the right hand
side of (6) is non-positive and equal to zero if yi > 0. Hence,

Si (Y ) = f� : 0 � � < 1; �i (Y; �) � 0; ��i (Y; �) = 0g , (8)

where �i is the marginal payo¤ expressed in terms of aggregate lobbying and
share:

�i (Y; �) = Ai (�Y; �) +
1� �

Y
Di (�Y ) . (9)

Note that �i (Y; 1) < 0 for any Y > 0. If �i (Y; 0) � 0, then 0 2 Si (Y ).
Alternatively, if �i (Y; 0) > 0, continuity implies that �i (Y; �) = 0 for at
least one � 2 (0; 1) and this puts � 2 Si (Y ). We conclude that share
correspondences are non-empty for all Y > 0. The following lemma, proved
in the appendix, gives more information on these correspondences.

Lemma 3.2 Assume A1 and A2 hold for contestant i and � 2 Si (Y ) for
some Y > 0. Then

1. �Y � fi (R),

2. 0 2 Si (Y ) if and only if

Y � Y i =
f 0i (0) fui (R)� ui (0)g

u0i (0)
, (10)
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3. if (10) does not hold, 1� � � KiY , where

Ki =
u0i (�R)

f 0i (R) fui (R)� ui (0)g
.

We refer to Y i as the dropout value of contestant i. Note that, if f
0
i (0) =

1, the dropout value is in�nite and the second part of the lemma has the
following corollary.

Corollary 3.1 Assume A1 and A2 hold for contestant i and f 0i (0) = 1.
Then 0 =2 Si (Y ) for all Y > 0.

Corollary 3.1 applies, for example, to all contestants in a Tullock contest
in which fi (x) = xr for all i, for some 0 < r < 1. With this contest success
function, every contestant will be active in equilibrium.
We can also use Lemma 3.2 to deduce properties of Si (Y ) for small and

large Y which will be useful in the sequel. In particular, the correspondence
�approaches 1� as Y �! 0 and �approaches 0� as Y �! 1, in the sense of
the following corollary, which follows directly from the �rst and third parts
of the lemma.

Corollary 3.2 Assume A1 and A2 hold for contestant i. For any " > 0,
there exist Y � and Y + such that (i) if � 2 Si (Y ) and 0 < Y < Y �, then
� > 1� " and (ii) if � 2 Si (Y ) and Y > Y +, then � < ".

It follows that all values in the image of the aggregate correspondencePn
j=1 Sj exceed 1 for small enough Y and fall below 1 for all large enough

Y . Existence turns on whether there is an intermediate value of Y at which
(5) holds and therefore an equilibrium exists. The proof of the following
theorem may be found in the appendix.

Theorem 3.1 A contest in which A1 and A2 hold for all contestants has
an equilibrium.

It is instructive to compare this theorem with the existence results of
Skaperdas and Gan [26]. These authors consider contests with more general
contest success functions than ours but with only two contestants, both ex-
hibiting constant absolute risk aversion. With our contest success function,
Skaperdas and Gan�s su¢cient conditions for existence are a special case of
Theorem 3.1. In particular, constant absolute risk aversion can be relaxed
to simple risk aversion.
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4 Uniqueness

Example 1 shows that A1 and A2 are insu¢cient on their own to exclude
the possibility of multiple equilibria. In this section, we explore additional
conditions for uniqueness.

4.1 Symmetric contests

We �rst consider symmetric equilibria of symmetric contests, noting that such
equilibria are widely studied in the literature on contests. All contestants
must be active in a symmetric equilibrium and win with probability 1=n, so a

necessary and su¢cient condition for bY to be the value of aggregate lobbying
in a symmetric equilibrium is that 1=n 2 S

�
bY
�
, where S is the common

share correspondence of all contestants. In the Appendix, we use the �rst
order conditions to show that this occurs for exactly one value of bY .

Theorem 4.1 A symmetric contest in which A1 and A2 hold for all con-
testants has a unique symmetric equilibrium.

The applicability of this result is limited. Firstly, the contest must
be symmetric. Even then, Example 1 shows that the contest may have
multiple equilibria and a selection argument is needed to justify choosing
the symmetric equilibrium, noting that every contestant may prefer some
asymmetric equilibrium10. For this reason, we now relax the restriction to
symmetric equilibria.

4.2 General contests

Multiple equilibria can arise in two ways. Firstly, there can be several
equilibria sharing a common value of Y . This is always the case where a
symmetric contest has asymmetric equilibria as in Example 1. The second
possibility, also illustrated by Example 1, is that di¤erent equilibria corre-
spond to di¤erent values of Y . However, if Si (Y ) is a singleton for all positive
Y , multiple equilibria of the �rst type are obviously ruled out. In such a
case, the correspondence de�nes a share function si, where Si (Y ) = fsi (Y )g

for all Y > 0 and (5) implies that bY is an equilibrium value of aggregate

10It is straightforward to verify numerically that the payo¤ to an active player in the
asymmetric equilibrium described in Example 1 is higher than that in the symmetric
equilibrium.

13



lobbying if and only if
nX

j=1

sj

�
bY
�
= 1. (11)

This entails a unique equilibrium pro�le:
�
s1

�
bY
�
bY ; : : : ; sn

�
bY
�
bY
�
. In

a general aggregative game, multiple equilibria of the second type are still
possible, but in contests with risk-averse (or risk-neutral) contestants, this
cannot happen. This is a consequence of the following lemma, character-
izing a number of useful properties of the share function and proved in the
Appendix.

Lemma 4.1 Assume that A1 and A2 hold for contestant i and Si (Y ) is a
singleton fsi (Y )g for all Y > 0. Then

1. si is a continuous function;

2. si is strictly decreasing where positive;

3. si (Y ) �! 1 as Y �! 0.

4. If f 0i (0) is �nite, si (Y ) = 0 if and only if Y � Y i. If f
0
i (0) =1, then

si (Y ) > 0 for all Y > 0 and si (Y ) �! 0 as Y �!1.

When a share function si exists for every contestant, it follows from the
�rst and second parts of the lemma that the aggregate share function

Pn
j=1 sj

is a continuous function that is strictly decreasing where positive. Further-
more, the third and fourth parts imply that it approaches n as Y �! 0 and
approaches or is equal to zero as Y �! 1. We may conclude that (11)

holds for exactly one value of bY and therefore the contest has a unique Nash
equilibrium.

Theorem 4.2 A contest in which A1 and A2 hold and Si (Y ) is a singleton
for all i and all Y > 0 has a unique equilibrium.

We shall call contestant i regular, if A1 and A2 are satis�ed and, for all
Y > 0, there is a unique � 2 [0; 1] satisfying �i (Y; �) � 0 and ��i (Y; �) = 0,
so Si (Y ) has one member. If all contestants are regular, we shall call the
contest regular. Restating Theorem 4.2, a regular contest has a unique
equilibrium. Example 1 shows that A1 and A2 alone are insu¢cient to
ensure regularity.
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Example 2 (Example 1 revisited) In the contest discussed in Example
1, we can calculate �i using ui (c) = c� 0:45c2, to �nd

�i (Y; �) = �1 + 0:9� (1� Y ) +
1� �

Y
(0:55 + 0:9�Y ) .

It can be veri�ed that �i (0:563; 0) < 0 and �i (0:563; 0:1) = 0 for all i which
means that no contestant is regular.

4.3 Regularity

In this subsection, we present su¢cient conditions for regularity. Rather than
impose additional restrictions on production functions, we focus on attitudes
to risk and seek conditions on ui that ensure regularity for all production
functions satisfying A1. In [4], Cornes and Hartley show that a contestant
whose preferences are characterized by constant absolute risk aversion is reg-
ular. Bozhinov [3] extends this result to contests in which players exhibit
constant relative risk aversion, but at the cost of imposing restrictions on
initial wealth and the size of the rent. In Example 1, contestants are not
regular, but exhibit increasing absolute risk aversion. These results suggest
that non-increasing absolute risk aversion may be su¢cient for regularity,
but this conjecture remains to be settled. Note that prudence [9] (convex
marginal utility), whilst implied by decreasing absolute risk aversion, is not
itself su¢cient for regularity. Indeed, the marginal utility in Example 1 is
(weakly) convex. Furthermore, it is straightforward to perturb the utility
function slightly in this example to construct a contest with multiple equi-
libria and strictly prudent contestants.
In the remainder of this section, we present a su¢cient condition for

regularity and then show that it is satis�ed for constant relative risk aversion,
provided the rent satis�es an upper bound and for decreasing absolute risk
aversion provided that the coe¢cient of risk aversion is not too large.
Our principal su¢cient condition imposes a restriction on the curvature

of the utility function over the interval (0; R). The proof may be found in
the appendix.

Lemma 4.2 If A1 and A2 hold for contestant i and

di (x) = 2u
0
i (R� x)� u0i (�x) � 0

for all x 2 (0; R), contestant i is regular.

15



To illustrate the application of this lemma, we consider the case of con-
stant relative risk aversion:

ui (c) =
(Ii + c)1��i

1� �i
where �i > 0 and �i 6= 1. (12)

Here, Ii is the initial wealth of contestant i. If �i = 1, we take ui = ln (Ii + c).
We assume Ii > R and restrict strategies to [0; R], ensuring that Ii � xi > 0
for all non-dominated strategies.
In this case,

di (x) = 2 (Ii +R� x)��i � (Ii � x)��i

and we look for the minimizer of di in [0; R]. Firstly, we note that di is a
quasi-concave function of x for x � Ii. This follows from the observation
that, if

d0i (x) = �i
�
2 (Ii +R� x)��i�1 � (Ii � x)��i�1

�
= 0,

then

d00i (x) = �i (�i + 1)
�
2 (Ii +R� x)��i�2 � (Ii � x)��i�2

�

= �i (�i + 1)
�
2�1=(�i+1) � 1

�
(Ii � x)��i�2 < 0.

We deduce that di is minimized in [0; R] at x = 0 or x = R, so the condition in
Lemma 4.2 holds if di (0) � 0 and di (R) � 0. The �rst of these inequalities
can be re-arranged to

R �
�
21=�i � 1

�
Ii. (13)

Similarly, di (R) � 0 gives

R �
�
1� 2�1=�i

�
Ii <

�
21=�i � 1

�
Ii,

where the second inequality can be justi�ed by rearranging

2�1=�i
�
21=�i � 1

�2
> 0.

The following corollary summarizes this conclusion.

Corollary 4.1 If A1 and A2 hold for contestant i and ui is given by (12),

where Ii � R
�
1� 2�1=�i

��1
, then contestant i is regular.

This result shows that, if the size of the rent is not too large, the contest
will have a unique Nash equilibrium. Such a result is true for more general
utility functions, though we may not always be able to give an explicit formula
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for the bound on R. To support this claim, suppose that ui (c) = hi (Ii + c),
where hi is concave and continuously di¤erentiable for positive arguments.
Since u0i is continuous,

min
x2[0;Ii]

f2u0i (R� x)� u0i (�x)g

is a continuous function of R. It is also positive for R = 0 and therefore
for all su¢ciently small R < Ii. It follows that the condition in Lemma 4.2
holds for such R.

Corollary 4.2 Suppose that A1 and A2 hold for contestant i and ui (z) =
hi (Ii + z), where Ii > 0 and hi is concave and continuously di¤erentiable
for positive arguments. Then there is R 2 (0; Ii) such that contestant i is
regular for all R < R.

The intuition behind this corollary is that risk-neutral contestants are
regular and behavior for small gambles is approximately risk neutral. The
corollary provides a formal demonstration of the smoothness implicit in this
argument. Additionally, if the form of hi is known, it may be possible to
use Lemma 4.2 to derive an explicit expression for R.
We conclude this section with another corollary of Lemma 4.2.

Corollary 4.3 If A1 and A2 hold for prudent contestant i and the coe¢-
cient of absolute risk aversion of this contestant does not exceed 1=2R for
any wealth level between �R and R, contestant i is regular.

Recall prudence means marginal utility is convex and therefore u00i (c1) �
u00i (c2) whenever c1 � c2. Hence, for any x 2 (0; R),

2u0i (R� x)� 2u0i (�x) = 2

Z R�x

�x

u00i (t) dt � 2Ru
00
i (�x) � �u

0
i (�x) ,

using the bound on the coe¢cient of risk aversion for the �nal inequality.
Regularity follows from Lemma 4.2.
The fact that no upper bound is necessary when the coe¢cient of risk

aversion is constant [4], suggest that the bound is not the best possible.

5 Entry

The approach used to study equilibrium existence and uniqueness can be
adapted to analyze comparative statics, particularly with respect to the num-
ber of contestants. In this section, we discuss the e¤ects on the equilibrium
of adding and removing contestants.
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5.1 Symmetric contests

We �rst consider symmetric equilibria of symmetric contests. A general
investigation of comparative statics for such equilibria has been conducted
by Nti [21] for contests with risk neutral players. Nti considers changing the
size of the rent as well as the number of contestants. For reasons of space,
we concentrate on the latter here.
Let Y n denote the level of aggregate lobbying in the symmetric equilib-

rium, when the common production function f and utility function u satisfy
assumptions A1 and A2, respectively. If a share function s exists, Y n

satis�es n s (Y n) = 1. Since s is strictly decreasing where positive, Y n is
increasing in n. If f (x) = x, then expenditure and lobbying are identical,
so aggregate expenditure increases with n.
If no share function exists, Y n is uniquely determined by the consistency

requirement 1=n 2 S (Y n). In contests where S need not be single-valued,
this condition does not determine the ordering of Y m and Y n for m < n. If
Y m � Y n, the lobbying e¤ort of individuals falls as the size of the contest
increases:

ym =
Y m

m
>
Y n

n
= yn,

where ym is individual equilibrium lobbying. However, if Y m < Y n both
numerator and denominator are ordered in the same way, so we need a deeper
analysis to compare ym and yn. Nevertheless, a careful examination of the
optimality conditions, conducted in the appendix, shows that we still have
ym > yn in the (unique) symmetric equilibrium. Since f is strictly increasing
by A1, we also have xm > xn.

Proposition 5.1 If A1 and A2 hold for all contestants in a symmetric
contest, individual expenditures in the symmetric equilibrium decrease with
the number of contestants. If, in addition, contestants are regular, aggregate
lobbying increases and if, further, the contest success function is proportional,
aggregate expenditure also increases.

5.2 General contests

In this subsection, we turn to asymmetric contests and assume throughout
that all contestants are regular, so equilibria are unique. If an extra con-
testant enters such a contest, the aggregate share function increases. This
increase is strict for values of Y smaller than the entrant�s dropout value.
If bY , the pre-entry equilibrium value of Y , exceeds this dropout value, the
entrant will be inactive and incumbents� equilibrium strategies will be un-
changed. Otherwise, the new aggregate share function will exceed one at
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Y = bY . Since this function is strictly decreasing where positive, the new
equilibrium value of Y exceeds bY . Because individual share functions are
non-increasing, the value of every share function decreases, strictly where
positive. This implies that the probability that an active incumbent wins
the contest falls and inactive incumbents remain inactive. In general, we
cannot conclude from the increase in Y that aggregate expenditure on rent-
seeking: X =

Pn
j=1 xj also increases because there is no direct relationship

between Y and X. Of course, if the contest success function is proportional,
then X = Y , so X increases even if contestants di¤er in their attitudes to
risk.
No direct conclusion can be drawn about the e¤ect of an increase in Y

on equilibrium strategies of individual contestants in asymmetric contests.
This is because yi = Y si (Y ) and si decreases with Y so Y si (Y ) need not
be a monotonic function of Y . However, this does not prevent us from
drawing conclusions about equilibrium payo¤s as shown by the following
lemma, proved in the appendix.

Lemma 5.1 Suppose A1 and A2 hold for contestant i and this contestant

is regular. If eY > Y > 0, then �i (Y si (Y ) ; Y ) � �i

�
eY si

�
eY
�
; eY
�
and this

inequality is strict if si (Y ) > 0.

It follows that an increase in Y resulting from entry reduces the payo¤s
of active incumbents. The following result summarizes our discussion.

Proposition 5.2 Suppose that a regular contestant enters a regular contest
and is active in the new equilibrium.

1. Aggregate lobbying strictly increases.

2. If the contest success function is proportional, aggregate expenditure
strictly increases.

3. For any incumbent, the probability of winning and the payo¤ fall. This
fall is strict for an incumbent that was active before entry.

6 Dissipation

The standard Tullock [29] rent-seeking contest was devised to study how
strategy a¤ects the proportion of the rent R dissipated in attempts to win
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the rent. Speci�cally, for any equilibrium bx of the contest, we de�ne the
dissipation ratio

� =
1

R

nX

j=1

bxj.

In a competitive free-entry model, the whole rent will be dissipated. In this
section, we investigate the e¤ect of risk aversion on �.
Konrad and Schlesinger [14] �nd that the dissipation ratio � in a sym-

metric contest with risk-averse contestants need not be smaller than that in
the corresponding contest in which contestants are risk-neutral. However,
a recent note by Treich [28] shows that � is indeed smaller if contestants in
the former contest are also prudent (u0i is convex). Here, we extend Treich�s
result to asymmetric contests.
If Si is the share correspondence of regular contestant i, we write s

N
i

for the share function of a risk-neutral contestant with the same production
function11. It follows from the �rst-order conditions de�ning si that, in
an obvious modi�cation of the notation in (3) and (7), DN

i (y) = R and
ANi (y; �) = �g

0
i (y). Hence, the marginal payo¤ of this contestant is

�Ni (Y; �) = �g
0
i (�Y ) +

1� �

Y
R.

Comparing �i and �
N
i allows us to compare Si and s

N
i . The following lemma,

proved in the appendix, gives the result.

Lemma 6.1 If A1 and A2 hold for prudent contestant i and � 2 Si (Y )
satis�es � � 1=2 for some Y > 0, then � � sNi (Y ). If this contestant is
strictly risk averse and 0 < � < 1=2, then � < sNi (Y ).

We can use the lemma to compare a contest with the corresponding con-
test in which all players are risk neutral. If by is an equilibrium pro�le

of the former contest and bY =
P

j byj, then b�i = byi=bY 2 Si

�
bY
�
for all

i and
P

j b�j = 1. It follows from the lemma that, if all b�i � 1=2, then
P

j s
N
j

�
bY
�
� 1. Consequently, bY N the equilibrium lobbying aggregate of

the latter contest, satis�es bY N � bY . Risk aversion reduces lobbying e¤ort.

Proposition 6.1 Consider two contests with the same set of contestants and
the same contest success function satisfying A2 for all contestants. Suppose
all contestants satisfy A1 and are prudent in the �rst and risk neutral in the
second.
11A risk-neutral contestant for which A1 holds is regular by Corollary 4.3 and therefore

has a share function. A direct proof may be found in Cornes and Hartley[5].
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1. If no contestant wins the �rst contest with probability greater than 1=2,
equilibrium aggregate lobbying e¤ort is greater in the second contest.

2. If, in addition, the contest success function is proportional, aggregate
expenditure is greater in the latter contest.

3. If the contest is symmetric, individual and aggregate expenditures are
greater in the latter contest [28].

The condition that b�i � 1=2 for all i holds in all equilibria of a contest in
which there are at least two copies of each type of contestant and a fortiori
in a symmetric contest. If contestants are strictly risk averse and winning
probabilities are strictly less than 1=2, the comparisons in the proposition
are strict.
A �ne-grained analysis of the e¤ects of risk aversion is possible in large

contests and, in the remainder of this section, we study such contests. For
ease of exposition, we assume throughout the remainder of this section that
f 0i (0) is �nite

12 for all i.

6.1 Symmetric contests

In a regular symmetric contest with n contestants, it follows from Lemma
4.1 that the common share function, s (Y ), is continuous, decreases strictly
to 0 at the common dropout value:

Y =
u (R)� u (0)

u0 (0)
f 0 (0) (14)

and is equal to zero for Y > Y . The aggregate share function ns (Y )

inherits these properties. Since bY n, the equilibrium value of Y , satis�es

s
�
bY n
�
= 1=n, we conclude that bY n �! Y as n �!1. The corresponding

dissipation ratio satis�es

�n =
bXn

R
=
nbxn
R

=
ng (byn)
R

,

where bxn and bXn are individual and aggregate expenditure and byn is indi-
vidual lobbying (in equilibrium). Since byn = bY n=n �! 0, we have

g (byn)� g (0)

byn �! g0 (0) (15)

12Note that, if f 0i (0) = 1, an arbitrarily small perturbation of fi will have �nite slope

at the origin. Speci�cally, efi (x) = fi (x+ ") satis�es ef 0i (0) <1 for any " > 0.
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as n �! 1. Using g (0) = 0 and g0 (0) = [f 0 (0)]�1, we deduce that
�n �! e� [u] as n �!1, where

e� [u] = u (R)� u (0)

Ru0 (0)
. (16)

A somewhat more involved argument, given in the appendix, shows that
the latter conclusion is true even if contestants are not regular. Such contests
may have multiple equilibria and therefore multiple values of the dissipation
ratio. Nevertheless, if we select any one value for each n, the selected
sequence tends to e� [u].

Lemma 6.2 Let �n denote the dissipation ratio of an equilibrium of a sym-
metric contest in which the common production function f satis�es A1 and
f 0 (0) < 1 and the common utility function u satis�es A2. Then �n �!
e� [u] as n �!1.

The limiting dissipation ratio e� [u] is a measure of the curvature of the
utility function. It can be viewed as the ratio of slope of the utility function
between R and 0 to the slope at the origin. Concavity of u implies that e� [u]
increases to 1 (strictly if u is strictly concave) as R decreases to 0. This
is consistent with the conclusions of Hillman and Katz [11] for competitive
rent-seeking13. Indeed, if we plug a third-order Taylor�s series expansion for
u (R) into (16), we obtain

e� [u] = 1 + Ru00 (0)

2 u0 (0)
+
R2 u000

�
bR
�

6 u0 (0)
,

for some bR 2 (0; R). This agrees (with appropriate change of notation)
with the expression found by Hillman and Katz. These authors go on to
conduct a numerical investigation of rent dissipation in both competitive and
strategic models. It can be con�rmed that e� [u] agrees with the values that
they �nd in both competitive and large strategic cases.
We have e� [u] = 1 under risk neutrality and e� [u] < 1 if u is strictly

concave. Indeed, more risk averse behavior (in the Arrow-Pratt sense) re-
sults in less of the rent being dissipated. Speci�cally, suppose that there is
a di¤erentiable, strictly increasing, strictly concave14 function  such that
u� (z) =  [u (z)] for all z. Strict concavity of  implies

 [u (R)] <  [u (0)] +  0 [u (0)] [u (R)� u (0)] .

13It also agrees with their strategic analysis, which assumes a proportional contest suc-
cess function.
14This can be weakened to concave and nonlinear in [0; R].
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It follows that

u� (R)� u� (0)

Ru�0 (0)
=
 [u (R)]�  [u (0)]

R 0 [u (0)] u0 (0)
<
u (R)� u (0)

Ru0 (0)
,

so e� [u�] < e� [u].

Corollary 6.1 For n = 2; 3; : : : let �n denote a dissipation ratio of a sym-
metric contest Cn satisfying the assumptions of Lemma 6.2. Let ��n denote
a dissipation ratio of a symmetric contest with the same contest success func-
tion as Cn and in which the utility function satis�es A2 and represents more
risk averse behavior than in Cn. Then, ��n < �n for all large enough n.

6.2 General contests

In a large asymmetric contest, Lemma 6.2 might suggest that dissipation
would be an average of e� [u] over all utility functions represented in the
contest. However, there is an additional e¤ect to consider. Increasing the size
of the contest has a selection e¤ect: contestants with smaller dropout values
may be driven into inactivity. Hence, the limiting dissipation ratio need not
be an average of e� [u] over all utility functions in the contest. Rather, as the
number of contestants increases, the selection e¤ect biases the distribution
towards contestants with larger dropout values.
We illustrate the point by considering a �nite set of production functions:

f(1); : : : ; f(T ) satisfying A1 and f
0
(t) (0) < 1 for all t and utility functions:

u(1); : : : ; u(T ) satisfying A2. We study a sequence of contests: eCn for n =
2; 3; : : : in each of which f i = f(t), u i = u(t) (contestant i is of type t) for
some t for each contestant i. We nest the contests by assuming that there are
mt (n) contestants of type t in eCn, where mt (n+ 1) � mt (n) for t = 1; : : : ; T
and

PT
t=1mt (n) = n.

Without loss of generality, we can label the types so that Y (t) � Y (T ) for
t = 1; : : : ; T � 1, where

Y (t) =
u(t) (R)� u(t) (0)

u0(t) (0)
f 0(t) (0) .

Contestants of type t, satisfying Y (t) < Y (T ), are inactive in eCn once there
are enough contestants of type T . To see this when a share function exists
for all types, note that the share function for type T is strictly positive at

Y = Y (t) and, if m(T ) (n) >
�
s(T )

�
Y (t)

���1
, the aggregate share function

exceeds one at Y (t). Since share functions are strictly decreasing where
positive, the equilibrium value of Y exceeds Y (t), so contestants of type t
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are inactive. Even if share correspondences are multi-valued, we can modify
this argument along the lines of the proof of Lemma 9.2 in the Appendix,
to deduce that there is a positive constant � > 0 such that � � � for all
� 2 S(T )

�
Y (t)

�
. This implies that contestants of type t are inactive if

m(T ) (n) > 1=�. We conclude that, if Y (t) < Y (T ) for t = 1; : : : ; T � 1, only
contestants of type T are active once they are su¢ciently numerous. We
can therefore apply the results for symmetric contests to deduce that, the
dissipation ratio approaches e�

�
u(T )

�
in this limit.

A complication with this argument arises if Y (t) = Y (T ) for some t 6= T ,
for then the dropout value Y (t) depends on the marginal product f

0
(t) (0) as

well as the limiting dissipation ratio. As a result, if e�
�
u(t)
�
6= e�

�
u(T )

�
, a

mixture of types t and T will remain active in the limit and the mix of types
will a¤ect the limiting dissipation ratio. For simplicity of exposition, we
ignore these complications by making the following assumption.

A3 Types are labelled so that for t = 1; : : : ; T � 1, either Y (t) < Y (T ), or
both Y (t) = Y (T ) and f

0
(t) (0) = f 0(T ) (0).

Type labels can always be chosen so that this assumption holds if all
production functions are identical (symmetric contest success function) or if
all utility functions are identical. Generically, A3 can always be satis�ed:
if f 0(t) (0) and e�

�
u(t)
�
are random draws from continuous distributions, the

required labelling can be achieved with probability one.
Assuming A3 holds let T be the set of types satisfying Y (t) = Y (T ). If

m(T ) (n) �! 1 as n �! 1, the equilibrium value of Y approaches Y (T ).
This allows us to determine the limiting dissipation ratio, for if m(T ) (n) is
su¢ciently large that all types t =2 T are inactive, the dissipation ratio is

1

R

X

t2T

m(t) (n) g(t)

�
s(t)

�
bY n
�
bY n
�

=
bY n

R

X

t2T

m(t) (n) s(t)

�
bY n
� g(t)

�
s(t)

�
bY n
�
bY n
�

s(t)

�
bY n
�
bY n

,

where bY n is the equilibrium value of Y in eCn. Since bY n �! Y (T ) = Y (t) for

all t 2 T we deduce that s(t)

�
bY n
�
bY n �! 0 as n �! 1. The equilibrium

condition
P

t2T m(t) (n) s(t)

�
bY
�
= 1 shows that the sum on the right hand

side is a convex combination of terms each of which approaches g0(T ) (0) as

n �!1. (These limits are a consequence of (15) for each type in T .) We
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may deduce that the dissipation ratio approaches Y (T ) g
0
(T ) (0) =R = e�

�
u(T )

�

as n �! 1. Although we have assumed regularity in this argument, it is
readily modi�ed to allow for irregular contestants and share correspondences.

Proposition 6.2 Suppose f(t) satis�es f
0
(t) (0) < 1 and A1, u(t) satis�es

A2 for t = 1; : : : ; T , A3 holds and m(T ) (n) �! 1. If �n is a dissipation

ratio of the contest eCn, for n = 2; 3; : : :, then �n �! e�(T )
�
u(T )

�
as n �!1.

If f(t) = f(t0) for all t; t
0, contest success functions of eCn are symmetric

and the ordering of dropout values is the same as that of limiting dissipation
ratios15. If one type of contestant is more risk averse than another, the former
will have a smaller dissipation ratio and therefore smaller dropout value.
Hence, they will be inactive for all large enough n. For example, if the risk
attitudes of all contestants in a large contest with symmetric contest success
function can be ordered in the Arrow-Pratt sense, dissipation ratios approach
the dissipation ratio of the least risk averse contestant. This generalizes a
result previously obtained for contestants with constant absolute risk aversion
[4].

7 Conclusion

We have o¤ered a general treatment of common-value, incompletely discrim-
inating contests in which contestants are risk averse. In particular, we
show that, with risk averse contestants and production functions with non-
increasing returns, such contests have a Nash equilibrium. We also show that
additional conditions are required to ensure that this equilibrium is unique
and present several su¢cient conditions for uniqueness. We study the ef-
fects of entry on aggregate lobbying and on incumbent contestants. Finally,
we show that, in large contests, risk aversion reduces rent-seeking activity
in both symmetric and asymmetric contests, though, in the latter, the ef-
fect may be o¤set by selection of active players in favor of less risk averse
contestants. Similar conclusions may hold in smaller contests if we make
additional assumptions: prudence and no contestant too large in equilibrium.
The techniques we have used above exploit the aggregative nature of the

contest. A number of variations on the basic model also share this aggrega-
tive structure or are strategically equivalent to an aggregative game and can
therefore potentially be addressed by the similar techniques. For example,
Nti [21] introduces a �discount factor� in the form of an additive constant

15In fact, we only need f 0(t) (0) = f
0

(t0) (0) for all t; t
0.
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in the denominator of the contest success function (1): Baye and Hoppe [2]
observe that certain patent races are strategically equivalent to this form by
interpreting hazard rates as production functions. If lobbying e¤ort is used as
the strategic variable, we still �nd that payo¤s depend only on own strategy
and aggregate strategy. Skaperdas and Gan [26] allow for limited liability
which has the e¤ect of making the payo¤ for losers independent of expendi-
ture. This does not change the aggregative nature of the game. Konrad
and Schlesinger [14] examine games in which the probability of winning is
�xed but the size of the prize is a function of the expenditure pro�le. If
this function takes a form similar to (1), the game is aggregative and may
remain so when winning probabilities also depend on the expenditure pro�le,
at least for some functional forms. The application of share correspondences
and functions to such games awaits further investigation.
In Section 4, we presented a number of conditions ensuring uniqueness of

equilibrium in contests with risk averse contestants and production functions
satisfying A1. These appear to be some way from best possible. Cornes
and Hartley [4] show that the equilibrium is unique if all contestants exhibit
constant absolute risk aversion. The counterexample shows that this need
no longer hold if the coe¢cient of risk aversion is increasing. This suggests
the conjecture that contests in which all contestants exhibit non-increasing
absolute risk aversion have a unique equilibrium. It follows from the analysis
above that, if, for each i and Y > 0, the marginal payo¤ �i considered
as a function of share � has at most one zero for � 2 [0; 1], contestant
i is regular. Since �i is negative at � = 1, this holds if �i is a quasi-
convex function of �. Numerical simulations for the case of constant relative
risk aversion and covering a wide range of parameter values have all been
consistent with quasi-convexity, even when the rent exceeds the bound in
Corollary 4.1. However, we have not found a proof for this case, let alone
the more general case of decreasing absolute risk aversion. To the best of our
knowledge, the conjecture remains open.
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9 Appendix

In this appendix, we give proofs postponed from above. The following ex-
pression for the derivative of Ai, de�ned in (7), is used in several of these
proofs and is recorded here for convenience:

Ai1 (y; �) =
@Ai
@y

(y; �)

= �D00
i (y)� g00i (y) u

0
i [�gi (y)] + [g

0
i (y)]

2
u00i [�gi (y)]

= �g00i (y) f�u
0
i [R� gi (y)] + (1� �) u0i [�gi (y)]g

+ [g0i (y)]
2
f�u00i [R� gi (y)] + (1� �) u00i [�gi (y)]g . (17)

Under assumptions A1 and A2, we deduce that

Ai1 (y; �) � 0. (18)

Proof of Lemma 3.1. It follows from (6) that

@

@y
�i (y; y + Y�i) = �g

0
i (y) u

0
i [�gi (y)] +

Y�i

(y + Y�i)
2Di (y) +

y

y + Y�i
D0
i (y) ,

where Ai (y; �) and Di (y) are given in the expressions (7) and (3). Hence,

@2

@y2
�i (y; y + Y�i)

= �g00 (y) u0 [�g (y)] + [g0 (y)]
2
u00 [�g (y)]

�
2Y�i

(y + Y�i)
3Di (y) +

2Y�i

(y + Y�i)
2D

0
i (y) +

y

y + Y�i
D00
i (y)

= Ai1

�
y;

y

y + Y�i

�
�

2Y�i

(y + Y�i)
3Di (y) +

2Y�i

(y + Y�i)
2D

0
i (y) ,

using (17) to obtain the second equality.
When @�i=@y = 0, the second derivative simpli�es to

@2

@y2
�i (y; y + Y�i) = Ai1

�
y;

y

y + Y�i

�
�
2g0i (y)

y + Y�i
u0i [R� gi (y)]

and we can use (18) to conclude that @2�i=@y
2 � 0. So �i is quasi-concave.
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Proof of Lemma 3.2. It is straightforward to verify that any strategy yi
satisfying gi (yi) > R is strictly dominated by yi = 0. If follows that, if yi is
a best response to any Y�i � 0, then yi � g�1i (R) = fi (R). The �rst part
follows from the fact that � 2 Si (Y ) only if �Y is a best response.
The second part is a rearrangement of �i (Y; 0) � 0, a necessary and

su¢cient condition for 0 2 Si (Y ). It uses the fact that f
0
i (0) = [g

0
i (0)]

�1.
To prove the �nal part we start by observing that D0

i (y) � 0, which
implies

Di (�Y ) � Di (0) =
1� �

Y
fui (R)� ui (0)g .

From (18), Ai1 � 0, which gives the �rst inequality below

Ai (�Y; �) � Ai (fi (R) ; �)

= �g0i (fi (R)) f�u
0
i [R� gi (fi (R))] + (1� �) u0i [�gi (fi (R))]g

= �f�u0i (0) + (1� �) u0i (�R)g =f
0
i (R)

� �u0i (�R) =f
0
i (R) ;

in the remaining lines we have used (7) for the �rst equality, gi (fi (R)) = R
and g0i (fi (R)) = 1=f

0
i (R) for the second equality as well as u

0
i (0) � u0i (�R)

(a consequence of A2) for the third inequality. If (10) does not hold, � > 0
and so �i (Y; �) = 0. Hence, using (3) and the concavity of u, we have

�
u0i (�R)

f 0i (R)
+
1� �

Y
fui (R)� ui (0)g � Ai (�Y; �) +

1� �

Y
Di (�Y ) = 0.

This can be rearranged to give the inequality in the Lemma.

Proof of Theorem 3.1. Consider a sequence of numbers "m 2 (0; fi (R))
satisfying "m �! 0 as m �! 1. We start by modifying the contest by
restricting the strategies of contestant i to satisfy " � yi � fi (R). Since
payo¤s are continuous in all strategies and quasi-concave by Lemma 3.1,
we can apply a standard existence theorem [7] to deduce that there exists

an equilibrium strategy pro�le bym for each m and write bY m for
P

j bymj .
Since the corresponding sequence of share pro�les (�m1 ; : : : ; �

m
n ) lies in the

(compact) n-simplex, we can assume without loss of generality that there is
some (��1; : : : ; �

�
n) in the simplex, such that �

m
i �! �0i as m �! 1. The

�rst-order conditions for the mth contest imply

�i

�
bY m; �mi

�
� 0 and

�
bY m�mi � "m

�
�i

�
bY m; �mi

�
= 0 for i = 1; : : : ; n.

(19)
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Since 0 � bY m �
Pm

j=1 fj (R), we can deduce, by restricting to a subsequence

if necessary, the existence of bY � � 0 such that bY m �! bY � as m �! 1. If
bY � > 0, we can take the limitm �!1 and use the continuity of �i to deduce

that the �rst-order conditions for ��i 2 Si

�
bY �
�
hold for i = 1; : : : ;m. Since

we also have
Pm

j=1 �
�
j = 1, the equilibrium condition is satis�ed and existence

of an equilibrium is established. The proof is completed by showing that we
cannot have bY � = 0.
We shall show that bY m �! 0 leads to a contradiction. To see this, note

�rst that
Pn

j=1 �
�
j = 1 implies that �

�
{̂ < 1 for some contestant {̂ and therefore

�m{̂ < 1 for all large enough m. Then,

�{̂

�
bY m; �m{̂

�
= A{̂

�
�m{̂
bY m; �m{̂

�
+
1� �m{̂
bY m

D{̂

�
�m{̂
bY m
�
.

Since A{̂

�
�m{̂
bY m; �m{̂

�
has a �nite limit and D{̂

�
�m{̂
bY m
�
�! D{̂ (0) > 0 as

m �! 1, we deduce that �{̂

�
bY m; �m{̂

�
> 0 for all large enough m. This

contradicts (19).

The proof of Theorem 4.1 uses the following lemma, which is also used
to establish Lemma 4.1.

Lemma 9.1 If A1 and A2 hold for contestant i and �i (Y; �) = 0, then
@�i (Y; �) =@Y < 0.

Proof. Using Di as de�ned in (3) and Ai1 in (17), we have

@�i (Y; �)

@Y
= �Ai1 (�Y; �) + �

1� �

Y
D0
i (�Y )�

1� �

Y 2
Di (�Y ) .

If �i (Y; �) = 0, then

@�i (Y; �)

@Y
= �Ai1 (�Y; �) + �

1� �

Y
D0
i (�Y ) +

Ai (�Y; �)

Y
.

Using (18): Ai1 � 0, we �nd, after some rearrangement,

@�i (Y; �)

@Y
� �

g0i (�Y )

Y

�
� (2� �) u0i [R� gi (�Y )] + (1� �)2 u0i [�gi (�Y )]

	
.

For 0 < � � 1, we have � (2� �) > 0, so @�i (Y; �) =@Y < 0.

Proof of Theorem 4.1. Since all contestants are active in a symmetric

equilibrium, any equilibrium value of Y must satisfy �1

�
bY ; 1=n

�
= 0. Since,
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�1 (Y; 1=n) is a continuous function, it follows immediately from Lemma 9.1

that �1

�
bY ; 1=n

�
= 0 has at most one solution. By Theorem 3.1, there is

exactly one solution and there is a unique equilibrium in which yi = bY =n for
all i.

Proof of Lemma 4.1. Continuity of si for positive Y follows by a standard
compactness argument utilizing the fact that � = si (Y ) if and only if (Y; �)
satis�es

�i (Y; �) � 0 and ��i (Y; �) = 0. (20)

(Suppose Y n �! Y 0 as n �!1 and consider a subsequence of the sequence
fsi (Y

n)g convergent to some �0 2 [0; 1]. Using the facts that (Y n; si (Y
n))

satis�es (20) for all n and that �i (Y; �) is continuous for 0 � � � 1 and
Y > 0, we can take limits in (20) on the subsequence to deduce that (Y 0; �0)
satis�es (20). Hence, �0 = si (Y

0). Since si (Y
n) lies in the compact set

[0; 1] for all n, we may conclude that si (Y
n) �! si (Y

0) as n �!1.
The limits of si as Y �! 0 and Y �!1 are immediate consequences of

Corollary 3.2.
That the share function is zero if and only if Y � Y i holds is a simple

restatement of the second part of Lemma 3.2 for a singleton-valued share
correspondence. The assertion for the case f 0i (0) =1 is a direct consequence
of the �rst and second parts of the lemma.
It remains to establish that si is strictly decreasing where positive and,

since si is a continuous function, it is enough to show that, if si (Y ) > 0,
there is a Y 0 > Y such that si (Y

00) < si (Y ) for all Y
00 2 (Y; Y 0). To do

this, note that �i (Y; si (Y )) = 0 and therefore Lemma 9.1 implies there is
a Y 0 > Y such that, if Y < Y 00 < Y 0, then �i (Y

00; si (Y )) < 0. There are
now two possibilities. One possibility is that �i (Y

00; 0) � 0, in which case
si (Y

00) = 0 < si (Y ). Alternatively, we must have �i (Y
00; 0) > 0, in which

case, since �i (Y
00; si (Y )) < 0 and �i (Y

00; �) = 0 for a unique � = si (Y
00), we

must have si (Y
00) < si (Y ). This completes the proof.

Proof of Lemma 4.2. It is clear that contestant i will be regular if
�i (Y; �) is a strictly decreasing function of � 2 (0; 1) where it crosses the
axis: �i (Y; �) = 0. To prove that this is the case, use (7) to eliminate Ai
from the expression for �i and di¤erentiate with respect to �, holding Y �xed
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to get,

@�i
@�

= �Y g00i (�Y ) u
0
i [�gi (�Y )] + Y [g0i (�Y )]

2
u00i [�gi (�Y )]

+�Y D00
i (�Y )�

1

Y
Di (�Y ) + (2� �)D0

i (�Y ) ,

= Y Ai1 (�Y; �)�
1

Y
Di (�Y ) + (2� �)D0

i (�Y ) ,

where the �nal line uses the second equality in (17). Substituting for Di,
using �i = 0, and rearranging gives

@�i
@�

����
�
i
=0

= Y Ai1 (�Y; �)�
g0i (�Y )'i (Y; �)

1� �
,

where

'i (Y; �) =
�
2� 2� + �2

�
u0i [R� gi (�Y )]� (1� �)2u0i [�gi (�Y )]

= � (2� �) u0i [R� gi (�Y )] + (1� �)2di (�Y ) .

Since � (2� �) > 0 for � 2 (0; 1) and di � 0, we must have 'i > 0 if � > 0.
Using (18), we can deduce that @�i=@� < 0 when �i = 0, completing the
proof.

Proof of Proposition 5.1. The equilibrium condition 1=n 2 S (Y n) is
equivalent to � (nyn; 1=n) = 0, where yn = Y n=n and

�
�y
�
; �
�
= A (y; �) +

(1� �) �

y
D (y) ,

from the de�nition in (9). (We drop subscripts throughout this proof.)
Hence,

�
@

@�
�
�y
�
; �
�
= �

@

@�
A (y; �) +

� (1� 2�)

y
D (y)

= A (y; �) + g0 (y) u0i [�gi (y)] +
� (1� 2�)

y
D (y) .

If � (y=�; �) = 0, we �nd, with some manipulation,

(1� �) �
@

@�
�
�y
�
; �
�

= ��2g0 (y) fu0 [R� g (y)]� u0 [�g (y)]g+ (1� 2�) g0 (y) u0 [�g (y)] .
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Concavity of the utility function implies that the term in braces is non-
positive. So, considered as a function of �, � (y=�; �) crosses the axis in the
interval [0; 1=2] at most once and from below.
Since � (nyn; 1=n) = 0, we have � ((n+ 1) yn; 1= (n+ 1)) < 0. Also,

�

�
(n+ 1) yn+1;

1

n+ 1

�
= 0,

so Lemma 9.1 implies that yn > yn+1.

Proof of Lemma 5.1. Under the assumptions of the lemma, contestant
i has a share function si, which satis�es the properties set out in Lemma

4.1. Indeed, if si (Y ) = 0, then si

�
eY
�
= 0 and the conclusion of the lemma

follows trivially.
For the case when si (Y ) > 0, we �rst observe that si is strictly decreasing

where positive, so

Y [1� si (Y )] < eY
h
1� si

�
eY
�i
.

The de�nition of a share functions says that Y si (Y ) is a best response to
Y�i = Y � Y si (Y ). Hence,

�i (Y si (Y ) ; Y ) = max
y�0

�i (y; Y � Y si (Y ) + y)

> max
y�0

�i

�
y; eY � eY si

�
eY
�
+ y
�

= �i

�
eY si

�
eY
�
; eY
�
.

The inequality in the second line follows from the fact that �i (y; Y ) is a
strictly decreasing function of Y for any y > 0.

Proof of Lemma 6.1. Since u0i is convex, the area under its graph is
smaller than the area under the chord from �g (y) to R � g (y), giving the
inequality [9]:

1

2
u0i [R� g (y)] +

1

2
u0i [�g (y)] �

ui [R� g (y)]� ui [�g (y)]

R
,

for any y � 0. Since u0i is decreasing, we deduce that, if � � 1=2, then
Ai (y; �) � �g

0
i (y)Di (y) =R. It follows from (9) that

�i (Y; �) �
Di (�Y )

R
�Ni (Y; �) . (21)
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Since � 2 Si (Y ) implies �i (Y; �) = 0 if � < 1 (the case � = 0 is trivial),
we conclude that �Ni (Y; �) � 0. Since �

N
i

�
Y; sNi (Y )

�
= 0 and �Ni is strictly

decreasing (since risk neutrality implies regularity), we have sNi (Y ) � �.
If contestant i is also strictly risk averse, then u0i [R� g (y)] > u0i [�g (y)]

for all y. If � < 1=2, (21) holds strictly and �i (Y; �) = 0, then �
N
i (Y; �) > 0

and the �nal assertion of the lemma follows directly.

The proof of Lemma 6.2 exploits the following lemma, which can also be
used to establish Proposition 6.2 when contestants are not regular.

Lemma 9.2 Suppose the production function f satis�es A1 and f 0 (0) <1
and the utility function u satis�es A2. Let S be the corresponding share
correspondence. For any Y 0 2

�
0; Y

�
, there is a � (Y 0) > 0, such that

� � � (Y 0) for any � 2 S (Y ) and any Y 2 (0; Y 0].

When regularity holds, there will be a share function s and the lemma is
trivial: by Lemma 4.1, the share function is positive and strictly decreasing in�
0; Y

�
and we only have to take � (Y 0) = s (Y 0). The proof is slightly more

intricate with a share correspondence, since this is not necessarily decreasing.

Proof of Lemma 9.2. Part 3 of Lemma 3.2 implies that there is a
Y � 2

�
0; Y

�
such that � > 1=2 for all Y 2 (0; Y �). Now de�ne

�
�
Y 0
�
= inf

�
� : � 2 S (Y ) ; Y 2

�
Y �; Y 0

�	

= inf
�
� : �i (Y; �) = 0; Y 2

�
Y �; Y 0

�	
.

Since Y 0 < Y , the equivalence of the two de�nitions is a direct consequence
of Part 2 of Lemma 3.2 and the �rst-order conditions characterizing S. Since

�i is continuous in both arguments, the in�mum is achieved at
�
eY ; e�

�
, say

and e� 2 S
�
eY
�
, so e� > 0, by Lemma 3.2. By construction, if Y 2 [Y �; Y 0]

and � 2 S (Y ), then � � e�.
To complete the proof, note that, if Y 0 � Y �, the lemma holds with

� (Y 0) = 1=2. If Y 0 > Y �, the lemma holds with � (Y 0) = min f1=2; e�g.

Proof of Lemma 6.2. For each n, we let bY n be an equilibrium value of Y
in Cn and �rst show that bY n �! Y as n �!1. Part 2 of Lemma 3.2 implies
that bY n < Y . If Y 0 2

�
0; Y

�
, it follows from Lemma 9.2 that, if n > 1=� (Y 0)

and �i 2 S (Y ) for all i, where Y < Y 0, then
Pn

j=1 �j > 1. Therefore there

cannot be an equilibrium value of Y 2 (0; Y 0]. Hence bY n > Y 0 for all large
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enough n, as claimed. For all Y > 0, de�ne � (Y ) = maxS (Y ). Part 2 of
Lemma 3.2, implies that � (Y ) �! 0 as Y �! Y and therefore

�
�
bY n
�
�! 0 as n �!1. (22)

To complete the proof, note that the dissipation ratio corresponding to
the equilibrium byn is

�n =
1

R

nX

j=1

g
�
b�nj bY n

�
,

where b�ni = byni =bY n for all i. By the Intermediate Value Theorem, there is
�ni 2 [0; 1] for each i such that

g
�
b�ni bY n

�
= g (0) + b�ni bY ng0

�
�ni b�ni bY n

�

for all n and i. Since g (0) = 0 and g0 is a non-decreasing function,

�n �
1

R

nX

j=1

b�nj bY ng0 (0) =
bY n

R
g0 (0) ,

using the equilibrium condition
Pn

j=1 b�
n
j = 1, and

�n =
1

R

nX

j=1

b�nj bY ng0
�
�nj b�ni bY n

�

�
1

R

nX

j=1

b�nj bY ng0
�
�
�
bY n
�
bY n
�

=
bY n

R
g0
�
�
�
bY n
�
bY n
�
,

where the inequality uses �nj �
n
j � �nj � �

�
bY n
�
. We can deduce that

�n �! g0 (0)Y =R = e� [u] as n �!1 from bY n �! Y and (22).
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