
Citation: Li, Z.; Chen, P. Risk-Aware

Distributionally Robust Optimization

for Mobile Edge Computation Task

Offloading in the Space–Air–Ground

Integrated Network. Sensors 2023, 23,

5729. https://doi.org/10.3390/

s23125729

Academic Editors: Ali Kashif Bashir

and Syed Muslim Jameel

Received: 21 May 2023

Revised: 7 June 2023

Accepted: 12 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Risk-Aware Distributionally Robust Optimization for Mobile
Edge Computation Task Offloading in the Space–Air–Ground
Integrated Network
Zhiyuan Li 1,2,3,*,† and Pinrun Chen 1,†

1 School of Computer Science and Telecommunication Engineering, Jiangsu University,
Zhenjiang 212013, China; 2212108020@stmail.ujs.edu.cn

2 Jiangsu Provincial Key Laboratory of Industrial Network Security Technology, Zhenjiang 212013, China
3 Jiangsu Ubiquitous Data Intelligent Perception and Analysis Application Engineering Research Center,

Zhenjiang 212013, China
* Correspondence: lizhiyuan@ujs.edu.cn; Tel.: +86-187-9600-6616
† Current address: Jiangsu University, Zhenjiang 212013, China.

Abstract: As an emerging network paradigm, the space–air–ground integrated network (SAGIN) has
garnered attention from academia and industry. That is because SAGIN can implement seamless
global coverage and connections among electronic devices in space, air, and ground spaces. Ad-
ditionally, the shortage of computing and storage resources in mobile devices greatly impacts the
quality of experiences for intelligent applications. Hence, we plan to integrate SAGIN as an abundant
resource pool into mobile edge computing environments (MECs). To facilitate efficient processing,
we need to solve the optimal task offloading decisions. In contrast to existing MEC task offloading
solutions, we have to face some new challenges, such as the fluctuation of processing capabilities for
edge computing nodes, the uncertainty of transmission latency caused by heterogeneous network
protocols, the uncertain amount of uploaded tasks during a period, and so on. In this paper, we first
describe the task offloading decision problem in environments characterized by these new challenges.
However, we cannot use standard robust optimization and stochastic optimization methods to obtain
optimal results under uncertain network environments. In this paper, we propose the ‘condition
value at risk-aware distributionally robust optimization’ algorithm for task offloading, denoted as
RADROO, to solve the task offloading decision problem. RADROO combines the distributionally
robust optimization and the condition value at risk model to achieve optimal results. We evaluated
our approach in simulated SAGIN environments, considering confidence intervals, the number of
mobile task offloading instances, and various parameters. We compare our proposed RADROO
algorithm with state-of-the-art algorithms, such as the standard robust optimization algorithm, the
stochastic optimization algorithm, the DRO algorithm, and the Brute algorithm. The experimental
results show that RADROO can achieve a sub-optimal mobile task offloading decision. Overall,
RADROO is more robust than others to the new challenges mentioned above in SAGIN.

Keywords: space–air–ground integrated network; mobile edge task offloading; distributionally
robust optimization; conditional value at risk

1. Introduction

With the booming development of the Internet of Things (IoT) ecosystem, users have
higher expectations for quality experiences (QoE) across various IoT applications. Follow-
ing the official deployment and operation of the fifth-generation (5G) mobile system, the
sixth-generation (6G) mobile system has gradually come into the limelight. High-speed
communication technologies can provide a higher quality of service (QoS) for IoT appli-
cations, such as intelligent transportation, intelligent agriculture, maritime surveillance,
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smart cities, natural disaster relief, and so on. However, existing terrestrial communi-
cation networks cannot effectively provide QoS and QoE guarantees for intelligent and
low-latency IoT applications.

On the other hand, computing capacity and energy resources in edge nodes are
often insufficient to meet the demands of all edge tasks [1]. Task offloading decisions are
largely influenced by these factors. Some researchers have addressed these issues from the
perspective of an edge–cloud collaboration [2]. Researchers have also turned their attention
to the space–air–ground integrated network (SAGIN) to allocate more resources. SAGIN
is an integration of the space layer, aerial layer, and ground layer. As a multidimensional
network, SAGIN adopts different communication protocols in each segment or integrates
different segments to achieve high throughput and reliable data delivery [3].

However, we have to face some new challenges in SAGIN, such as computationally
intensive task offloading at the mobile edge and resource allocation in uncertain and hetero-
geneous network environments. The uncertain network parameters [4], such as uncertain
latency, the uncertain amount of arrival tasks [5], and uncertain computation resources,
may seriously impact the efficiency of edge task execution. The heterogeneous environment
necessitates considering additional factors, such as selecting suitable frequency bands for
task propagation and choosing different types of computing nodes. At the same time, the
fluctuating processing capabilities make it challenging to allocate appropriate computing
resources based on uncertain data when there is a surge of computational tasks. Nowadays,
stochastic optimization (SO) [6] and robust optimization (RO) [7–9] methods are proposed
to solve uncertainty problems. The SO method can use the probability distribution of
measuring parameters to predict the potential uncertainty and obtain the mathematical
expectation of the objective function. The RO method can directly solve the target value
under the worst-case conditions, and it does not need to obtain the probability distributions
of measuring parameters. Nonetheless, the results obtained from the SO algorithm may
not accurately reflect realistic worst-case scenarios, while the RO algorithm sacrifices a
significant amount of performance to obtain computation offloading decisions for worst-
case situations. Distributionally robust optimization (DRO) can be viewed as a unifying
framework for the SO and RO methods.

The DRO method can replace the probability distribution of uncertain measuring
parameters with a fuzzy set. [10]. Then it can choose the worst case in the fuzzy set to
obtain better robustness. Additionally, the authors of [11] proposed the conditional value at
risk (CVaR) aware DRO method, which can reflect the potential risks and improve stability.
In SAGIN environments, the number of tasks requiring offloading may vary, and the
availability of computational resources can fluctuate in real time. These uncertainties pose
challenges in making efficient task offloading decisions. The risk-aware distributionally
robust optimization task offloading (RaDROO) algorithm addresses these challenges by
incorporating robust optimization techniques and considering the uncertainties in both
the number of tasks and real-time computational resource availability. The two-stage
offloading decision process of the RaDROO algorithm enables it to dynamically determine
the most suitable task offloading targets. This process considers various factors, such as
task characteristics, resource availability, performance requirements, and uncertainties
associated with the number of tasks and computational resource availability.

There are two main technical challenges in solving the risk-aware two-stage DRO
problem. Firstly, it is difficult to solve the DRO problem due to the fuzzy sets. Secondly, the
first-stage offloading decision involves zero-one integer programming. The second stage
involves a resource allocation procedure for latency-insensitive and computation-intensive
tasks. However, in this paper, we have to solve the risk-aware two-stage DRO problem,
which brings new challenges. If we can solve the risk-aware two-stage DRO problem, we
can achieve improved revenue while considering uncertainties and ensuring QoS in the
SAGIN network architecture.

Our contributions are summarized as follows:
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• We investigate the task offloading decision model in the SAGIN environment. The task
offloading model consists of two stages: the first stage involves the task offloading
decision, while the second stage focuses on edge–cloud collaboration and cloud
resource allocation.

• A fuzzy set of computational resources for edge computing nodes was constructed,
considering CVaR. Then, based on the theory of Lagrange duality, the model is trans-
formed into a semidefinite programming form, and the RaDROO algorithm is pro-
posed to solve the task offloading problem with distributional robustness under risk
awareness.

• We conducted simulation experiments from two aspects. On one hand, we adjusted
certain parameters of the proposed model to obtain the optimal values for those
parameters. On the other hand, we fixed the parameters and compared them with the
state-of-the-art algorithms in different computation and network environments. The
experimental results demonstrate that our proposed model and algorithm have better
results than the state-of-the-art methods in terms of usability, robustness, and risk.

Table 1 shows the superiority of our algorithm compared with relevant literatures.

Table 1. Technical methods comparison in the relevant literatures.

Literatures Game ML RO SO DRO Mean Risk-Aware SAGIN

[12] X
[4,7] X
[13] X
[11] X
[6] X

[14,15] X
[5] X X

RaDROO X X X

The remainder of this paper is organized as follows. Section 2 provides a brief intro-
duction to SAGIN and computational task offloading. Section 3 describes the network
architecture and proposes a computation task offloading model under uncertain compu-
tation environments. Section 4 presents the RaDROO algorithm for obtaining optimal
task offloading decisions and resource allocation strategies. Section 5 provides the perfor-
mance evaluation and analysis. Finally, Section 6 concludes the work and presents future
directions for research.

2. Related Work

In this section, we first introduce the SAGIN architecture. We then review the tradi-
tional computation task offloading, computation task offloading under uncertain network
and computation environments, and risk-aware computation offloading, respectively.

2.1. SAGIN Architecture

SAGIN refers to the integration and synergy of systems from multiple domains—space,
air, and ground—to form a wide coverage area and a high-speed network that enables
more efficient communication and data exchange. It is a proposed solution to address
the growing demand for enhanced communication and information-sharing capabilities.
SAGIN requires the use of various technical means, such as satellite communications,
unmanned aerial vehicles, and ground sensors, to enable collaborative operations and
data sharing between different platforms. By sharing data and information in real time,
situational awareness can be improved, decision-making can be optimized, and mission
effectiveness can be enhanced.

Over time, the SAGIN architecture has rapidly evolved, and various projects, such
as the global information grid (GIG), have been proposed and widely deployed [16]. Liu
et al. [3] described the communication network design and resource allocation algorithm
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of SAGIN in a high-dimensional network environment. Likewise, SAGIN can be invoked
in MEC environments and exhibits excellent performance in unique environments, includ-
ing deserts and disaster scenarios. Yu et al. [17] considered the fine-grained offloading
problem and caching problem and proposed the SAGIN framework, which supports edge
computing.

The impact of SAGIN on computing task offloading is multifaceted and can be sum-
marized as follows:

− Cross-platform efficiency: Through the integration and collaborative operations
achieved by SAGIN, different tasks can be offloaded and migrated between different
platforms, thereby improving the efficiency of task execution.

− Increased flexibility through edge–cloud collaboration: In the SAGIN network, tasks
can be dynamically allocated and scheduled, allowing them to be offloaded to the
most suitable platforms based on their computational requirements. This improves
resource utilization.

Overall, SAGIN has a positive impact on the field of task offloading, as it can improve
task execution efficiency, safety, flexibility, and coverage. An ECN built on the SAGIN
framework will be more able to fully exploit its capabilities by consolidating available
resources to provide computing resources for tasks within this network environment.

2.2. Traditional Computation Offloading

First of all, a class of existing task offloading optimization algorithms in practical
applications focuses on task dependency. Yuan et al. [18] focused on a dependent task
assignment problem over multiple mobile terminal devices (MTDs). In [19], an efficient
partitioned search method was implemented to obtain optimal solutions for task offload-
ing policies and resource allocation under task-dependent models. Moreover, without
considering task dependency, determining whether to offload tasks to edge computing
nodes (ECNs) and how to allocate computing resources in ECNs based on the performance
requirements for computing offloads are hot topics among current researchers. The three
mainstream research directions under this scope are as follows. The first one is to explore
task offloading decision schemes that minimize task execution delay [20,21]. Xiao et al. [22]
designed a heat prediction method to analyze the dynamics of urban heat zones, aided by
the design of a non-cooperative game-theoretic strategy selection based on regret-matching
to achieve the minimum time delay. Dai, Y. et al. [23] proposed a JSCO algorithm to search
for the solution to the optimization problem in a distributed manner with less overhead, us-
ing the integrated task processing delay as the performance metric. In [13], Farhangi, E.et al.
proposed a novel offload approach, OAMC, which takes into account the dynamic changes
of mobile applications. This approach aims to reduce the migration number and overall
data movement while minimizing the turnaround time of mobile applications. Secondly,
plenty of studies [24–27] focus on obtaining task offloading decisions in edge computing
networks that minimize energy consumption, which is affected by the amount of offloading
computations, the MTD-MEC distance, channel conditions, application type, compression
efficiency, etc. Hmimz et al. [26] jointly considered the priority of certain MTDs and aimed
to minimize overall power consumption. Third, the authors of [28,29] assumed that the
system can gain a certain amount of revenue by completing the task, and the goal is to
find the offloading decision that maximizes the revenue. Samanta et al. [30] synthetically
explored delay-sensitive and delay-tolerant edge services while ensuring the maximization
of quality of experience (QoE) over an extended period using the Lyapunov method.

In addition to the challenges commonly addressed by traditional optimization meth-
ods, some researchers [31] have chosen to apply intelligent optimization algorithms to
determine the optimal unloading decision. In [27], the authors developed a new adaptive
inertia weight-based particle swarm optimization (NAIWPSO) algorithm to minimize the
energy consumption of MTDs while considering the channel constraint conditions during
task offloading. Li et al. [32] proposed an algorithm, named EIPSO, which is based on a
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particle swarm optimization-based algorithm. Tout et al. [33] designed a multi-objective
intelligent optimization algorithm based on the genetic algorithm.

Machine learning and deep learning algorithms are now extraordinarily prevalent in
the research field. Maleki, E. F. et al. [13] applied a machine learning (ML) algorithm called
matrix complementation to develop two novel offloading methods, S-OAMC and G-OAMC,
which enhance scalability and identify offloading decisions with low turnaround times.
In [34], various machine learning techniques for communication, network, and security
components of future 6G environments in vehicular networks were profiled, and methods
and directions for implementing artificial intelligence in future 6G vehicular networks
were envisioned. However, machine learning algorithms typically require significant
amounts of training data and cannot be directly computed. They rely on training with large
datasets to learn patterns and make predictions. Additionally, machine learning algorithms
are sensitive to changes in the environment and may require retraining or adaptation to
maintain their performance.

2.3. Uncertain-Aware Computation Offloading

The above research scenarios assume that controllers have access to accurate comput-
ing resources and channel information, either statically or dynamically. Nevertheless, in
application environments, MECNs are transient, which can considerably impact resource
utilization and user QoE. In [4,7], the authors investigated robust task offloading that is
tolerant to failures in offloading scenarios and can effectively overcome this. In [8], the
offloading of robust tasks that can tolerate server failures was considered to achieve im-
proved application responsiveness. To counter the inaccuracy of channel measurements,
the authors of [9] designed a robust offloading strategy for channel information estimation
errors. Facing the connection instability between MTDs and small clouds, the authors of [7]
proposed a robust computation offloading strategy with failure recovery.

In contrast to the mentioned robust optimization approach, which trades off significant
device performance to ensure robustness, stochastic optimization (SO) is employed. SO
studies in mobile edge computing (MEC) take into account the probability distributions of
channel resources and the random variations of computational resources in edge computing
nodes (ECNs). The authors of [6] proposed a two-stage SO to tackle the challenge of
uncertain dynamic environments.

2.4. Risk-Aware Computation Offloading

Unlike the uncertain or undefined parameter scenarios described above, risk consider-
ations refer to unexpected conditions that occur during system operation. Bai et al. [12]
solved the risk-aware computation offloading (RCO) problem by considering the use of
the Bayesian Stackelberg game to rationally disperse the nodes for task offloading when
the server was attacked by outside miscreants. Apostolopoulos et al. [35] considered
the uncertainty in MEC server computational resources as well as storage space under
heterogeneous networks. Schultz, R.et al. [15] explained the risk consideration in stochastic
programming, i.e., the mean risk, and also gave the expression formula for CVaR. With
CVaR, Pan et al. [36] considered the availability of the MEC system in the case of a possible
link failure. Mean-CVaR is commonly deployed in finance. Zhang et al. [14] studied
portfolio selections under return fuzzy set conditions, considering a downside risk measure
to reduce investment risk.

3. Network Architecture and System Model

In this section, we elaborate on the SAGIN architecture and channel models. Based
on the compute, caching, and communication (3C) requirements, we developed an opti-
mization model for making computing offload decisions with the objective of minimizing
costs.
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3.1. SAGIN Architecture and Channel Models

SAGIN is a novel network structure that integrates multiple dimensions. It adopts
different protocols and occupies different frequency bands for establishing communications
between different dimensions [3]. We selected the rational frequency band for commu-
nications by taking into account the distance between ECNs, the influence of current
environmental factors on the link, the free-space path loss, tropospheric attenuation, and
other factors.

In the study, tasks were uploaded to the nearest BSs from MTDs by default. As
shown in Figure 1, the SAGIN architecture consists of five components: the MTD segment,
ground segment, satellite segment, aerial segment, and cloud data center (CDC) segment.
Let B = {1, 2, · · · , B} be used as the set of BSs. Furthermore, UAVs are deployed as an
extension of the ground BS process, serving as representatives of the aerial segments.
The set of UAVs is denoted by U = {1, 2, · · · , U}. The satellite segment consists of LEO
satellites. Due to the utilization of higher communication frequency bands, satellites possess
lower propagation delay and free-space attenuation [37]. We consider the displacement of
satellites relative to the ground during the task processing time slots to be negligible.

The SAGIN system provides three task offload strategies based on the task information
uploaded by MTDs: Firstly, selecting a BS that possesses sufficient computing resources to
calculate the task; secondly, applying for a UAV offload and computing the task; thirdly,
selecting a UAV as an intermediary and applying an LEO satellite to offload and compute
the task. As a multi-dimensional 6G network, SAGIN integrates several network segments
and uses communication protocols to achieve high reliability and high-throughput data
transmission [38].

The maximum achievable transmission rate K [bits/s] for the tasks in the channel can
be expressed as follows: K = Blog2(1 +

P×10−[LP/10]

Noise ),

Lp = 32.45 + 20 lg d(km) + 20 lg f (MHz).
(1)

Within the above equation, B(HZ), P, and Noise represent the channel bandwidth,
average signal power, and noise power; Lp, d, and f represent the propagation loss in free
space, the distance between ECNs, and the signal frequency, respectively.

Figure 1. SAGIN model.



Sensors 2023, 23, 5729 7 of 22

3.2. Computation Task Offloading Model

We assume that there are n latency-sensitivity and computation-intensive tasks of-
floaded to nearby BSs, where the set of tasks is denoted as N = {1, 2, · · · , N}. Moreover,
each task is characterized by certain parameters, denoted as

(
nup

i , ncomp
i , ndown

i

)
, i ∈ N ,

where nup denotes the size of the input and uploaded data; ncomp denotes the number
of CPU cycles required to process the data; ndown denotes the size of the processed and
downloaded data. In this research, the objective was to study the 3C and total costs of tasks
while maintaining the atomicity of the tasks, i.e., each task could only be served by one
processing ECN.

In our proposed SAGIN system, there are four offload destinations: BSs, UAVs, LEO
satellites, and CDC. We assume that xBS, xUAV , and xLEO are three binary parameters,
where xBS

ib denotes whether task i selects BS b as the offload target, xUAV
iu denotes whether

task i selects UAV u as the offload target, and xLEO
is denotes whether task i selects the LEO

satellite s as the offload target.

∑B
b=1 xBS

ib + ∑U
u=1 xUAV

iu + ∑S
s=1 xLEO

is = 1, ∀i ∈ N (2)

xBS
ib , xUAV

iu , xLEO
is ∈ {0, 1}, b ∈ B, u ∈ U , s ∈ S (3)

The above equation indicates that each task would be offloaded to one ECN in the
SAGIN architecture. xBS

ib = 1 if task ni is offloaded to BS b and xBS
ib = 0 otherwise; xUAV

iu = 1
if task ni is offloaded to UAV u and xUAV

iu = 0 otherwise; moreover, xLEO
is = 1 if task ni is

offloaded to LEO satellite s and xLEO
is = 0 otherwise. These three different computing units

own different computing power and storage resources. f BS
ib , f UAV

iu , and f SAT
is denote the

number of computing resources requested by task i per second from BSs, UAVs, and LEO
satellites, respectively.

We assume that tasks are uploaded to the nearest base station first and then propagate
them from the base station to the target computing nodes. Since the propagation delay of
tasks directly to edge computing nodes is much greater than the upload delay of tasks to
the nearest base station, we will ignore the upload delay of tasks.

The time taken by a task to be uploaded and downloaded between ECNs and the
latency taken to calculate the task can be expressed as follows:

Tup =
nup

kup =
nup

Blog2(1 +
P×10−[LP/10]

N )
(4)

Tdown =
ndown

kdown =
ndown

Blog2(1 +
P×10−[LP/10]

N )
(5)

Tcomp = Ltime − Tup − Tdown (6)

where Tcomp is the time to execute the task, Tup and Tdown represent the time of uploading
and downloading the task message.

The overall latency of the tasks offloaded to the BSs comprises the transfer delay to the
target BS, the computation delay of the BS, and the transfer delay of the result download.

TBS
ib = Tup

ib + Tcomp
ib + Tdown

ib , i ∈ N (7)

One option is to upload tasks to the UAVs when the computing resources on the
ground are insufficient to handle the high influx of tasks.

TUAV
iu = Tup

iu + Tcomp
iu + Tdown

iu , i ∈ N (8)
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The task process changes with the calculations involved in offloading tasks to LEO
satellites. Task information must be uploaded to the nearest UAV before spreading to
satellites. After the task processing is completed, the data are returned to the original path.
The total latency taken to offload the tasks to an LEO satellite can be expressed as follows:

TLEO
is = Tup

iu + Tup
is + Tcomp

s + Tdown
iu + Tdown

ib (9)

where Tup
ibu, Tup

ius, Tdown
isu , Tdown

iub and Tcomp
is represent the uploading latency of task i from BSs

to UAVs, from UAVs to LEO satellites, the downloading latency from LEO satellites to
UAVs, from UAVs to BSs, and the computation delay of task i, respectively.

For this paper, we ensured that the task was completed within the time delay con-
straints. Therefore, to allocate computing resources rationally, the node only provides the

lowest possible computational resources, fi =
ncomp

i
/
LT

i − Ttrans, where Ttrans
i represents

the time taken for task i to be transmitted over the link.
There is an upper bound on the total amount of computing resources an ECN can

have. As a result, the combined computational resources required for the tasks assigned to
a node should not exceed the upper limit.

∑n
i=1 fixBS

ib ≤ LBcomp
b , ∀b ∈ B, (10)

∑n
i=1 fixUAV

iu ≤ LUcomp
u , ∀u ∈ U , (11)

∑n
i=1 fixLEO

is ≤ LLcomp
s , ∀s ∈ S , (12)

We consider caching in 3C, where each ECN has its individual storage limit.

∑N
i=1 xBS

ib nup
i ≤ LBcache

b , ∀b ∈ B (13)

∑N
i=1 xUAV

iu nup
i ≤ LUcache

u , ∀u ∈ U (14)

∑N
i=1 xLEO

is nup
i ≤ LLcache

s , ∀s ∈ S (15)

LBcache
b , LUcache

b , and LLcache
b represent the cache upper bound of the BS b, UAV u, and

LEO satellite s, separately.
The cost for task offloading is closely tied to the server type and the number of

required computing resources. In this paper, we focus on solving computationally intensive
and time-delay-sensitive tasks. Therefore, minimizing the offload cost by selecting an
appropriate offloading target is crucial. Hence,

Ci =∑B
b=1

(
δBS

b × ncomp
i × xBS

ib

)
+ ∑U

u=1

(
δUAV

u × ncomp
i × xUAV

iu

)
+ ∑S

s=1

(
δLEO

s × ncomp
i × xLEO

is

)
, i ∈ N

(16)

Call = ∑N
n=1 Cn (17)

In the above equation, Ci denotes the final cost of task i; CALL denotes the cost for
accomplishing whole tasks; δBS

b , δUAV
b , and δLEO

b represent the ratio between the fees and
the data size that will be processed by BSs, UAVs, and LEO satellites, respectively
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min
xBS

ib ,xUAV
iu ,xLEO

is

Call

s.t. (2), (3), (10), (11), (12), (13), (14), (15)

(18)

3.3. Computing Resources Using a Fussy Set Model

Realistically, the computational resources of each node can be greatly influenced by
external factors. Qu et al. [4] considered the resource uncertainty of MECN in a traditional
environment. In this paper, to account for the computing resource uncertainty of ECNs, we
propose a realistic scenario-based set with a definite probability distribution to represent
the possible range of uncertain resources.

Based on a fuzzy set of random parameters ξ, we will make the one-stage offloading
decision and the two-stage cloud resource request.

Delage, E. et al. [39] considered a set of uncertainties with specific boundaries and
moments, derived from real-world data, i.e.,

D
(
ξ, ∑, µ0, γ1, γ2

)

=

P ⊆ F :

P{ξ ∈ M} = 1

(E[ξ]− µ0)
T∑−1(E[ξ]− µ0) 6 γ1

E
[
(ξ − µ0)(ξ − µ0)

T
]
6 γ2 ∑

 (19)

where parameters γ1 and γ2, based on historical data, are utilized to control the size of
the ambiguity set and the conservatism of optimal solutions.M is the closed convex set
representing the support of the currently known random variable ξ, and ∑ and µ0 are,
respectively, its corresponding first-order and second-order moments. In contrast, F is the
set of all probability measures on the measurable space (Rm, B), where B represents the
Borel β-algebra on Rm.

The first constraint indicates that the probability density sum of ξ is 1 overMξ ; the
second constraint assumes that the mean of ξ lies on an ellipsoid of size γ1 centered at
µ0; the third constraint assumes that the covariance matrix lies in a positive semi-positive
definite cone bounded by matrix inequalities.

4. Risk-Aware Distributionally Robust Optimization Task Offloading
Algorithm Design

In this section, we consider fuzzy sets and CVaR to address the uncertainty of computa-
tional resources in edge computing nodes. In the first stage, we consider the computational
resources required for performing computations on the currently available computing
nodes. In the second stage, we take into account the cost associated with additional compu-
tational resources that may need to be requested from the cloud due to the uncertainty of
node computational resources. As the computational resources are presented in the form
of fuzzy sets, the second stage is represented by taking the mean value in the RaDROO
algorithm. Additionally, to consider CVaR, we use lambda as a weight and select the mean
value of the poorer part in the fuzzy set to obtain a more robust offloading solution.

4.1. Network Architecture and System Model

In this section, we consider the transformation of the original problem into a two-stage
DRO programming model with a mean-CVaR recourse function, namely a risk-aware DRO
model.
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Above all, we express (18) in terms of matrix form variables and parameters. We
consider the set D = B ∪ U ∪ S and M = B + U + S. The formulated problem is written as
follows:

min
X

NcompT × X× δ (20)

s.t. X×Om = On, (20a)

XT ×Nup ≤ Lcache, (20b)

XT × F ≤ Lcomp, (20c)

X ∈ RN×M, δ ∈ RN ,Ncomp ∈ RM,Nup ∈ RN ,

f ∈ RN , Lcache ∈ RM, Lcomp ∈ RM (20d)

where the offloading strategy matrix variable X := {xnm}n∈N ,m∈D , the upper bound of the

computing resource vector parameter Lcomp :=
{

Lcomp
m

}
m∈D

, the upper bound of the cache

ceiling vector parameter Lcache :=
{

Lcache
m

}
m∈D

, the computing resource vector parameter

F := { fi}i∈N , the ratio between the cost and the data size vector parameter δ := {δi}i∈N ,
and the all-ones vector parameter is O.

Thus, given the uncertainty of the parameter Lcomp, a two-stage offloading strategy
model is created using the distribution set proposed above. We constructed a fuzzy set
based on the historical data of the computing resources of the offload nodes, expressed as
follows: ξ = L̃comp.

min
X

NcompT × X× δ +Eξ [ϑ(X, ξ)], (21)

s.t.((20a)− (20d)),P ⊆ Fξ :

P
{

ξ ∈ Mξ
}
= 1

(E[ξ]− µ0)
T ∑−1(E[ξ]− µ0) ≤ γ1

E
[
(ξ − µ0)(ξ − µ0)

T
]
≤ γ2 ∑

 (21a)

with ϑ(X, ξ) =


min

Y
ϕT ×Y,

(X⊗ Freq)T ×On 6 ξ + Y,

0 ≤ Y,

(21b)

ϑ(X, ξ) represent the additional cost of uploading tasks to the cloud when the real-time
computing resources change in a phase of decision task offloading and are insufficient to
meet demand. Vector ϕ indicates the ratio of additional costs to required computational
power.

Instead, we further consider the mean-CVaR (conditional value at risk) criterion in the
model, which can be expressed in the following form:
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VaRα(ζ) = inf{v ∈ R : F(v) ≥ α} (22a)

CVaRα(ζ) = E{ζ|ζ ≥ VaRα(ζ)}

= min
v∈R
{v +

1
1− α

E[(ζ − v)+]} (22b)

where F is the cumulative distribution function of the function used to solve the random
variable ζ, and a is the given confidence level. (a)+ means max(a, 0).

This model gives the set of possible distributions Mξ for the unknown stochastic
parameter ξ, while ensuring its robustness through a mean-CVaR approach with a two-
stage minimization of fees. The following formulation is made using the min–max theory:

min
X

h(x) + sup
ξ

{(1− λ)E[ϑ(x, ξ)] + λCVaR(ϑ(x, ξ))} (23)

with h(x) = NcompT × X× δ,

s.t. (20a), (20b), (20c), (20d), (21a), (21b)),

where λ indicates the trade-off coefficient of conditional risk considered in the objective
function, with 1 ≥ λ ≥ 0.

4.2. Transform from DRO to SDP

We reconstruct the original problem by considering the uncertainty of computational
resources and acknowledging the challenge of directly addressing the DRO problem. To
solve this, we employ the Lagrangian dual to transform it into a semi-definite programming
(SDP) problem.

Problem (23) presents a DRO problem. Below, we further analyze the target formula
and convert it into a more explicit form.

sup
ξ

{(1− λ)E[ϑ(x, ξ)] + λCVaR(ϑ(x, ξ))}

= sup
ξ

{ min
v∈R
{λv + (1− λ)E[ϑ(x, ξ)] + λ

1−αE[(ϑ(x, ξ)− v)+]}}

= min
v∈R
{λv + sup

ξ

{E[(1− λ)ϑ(x, ξ) + λ
1−α (ϑ(x, ξ)− v)+]}}

(24)

The ambiguous distribution set of the random parameter cannot be used directly for
the solution, and we need to convert it into the common inequality form. Consider only the
latter half, which involves finding the optimal value in relation to the random parameter ξ.
Instead of the original distribution set form, we transform it into the following semi-infinite
conic linear problem form, expressed as:
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sup
ξ

∫
M

[(1− λ)ϑ(x, ξ) +
λ

1− α
(ϑ(x, ξ)− v)+] d f (ξ) (25)

s.t.
∫
M

d f (ξ) = 1, (25a)

∫
M

(ξ − µ0)(ξ − µ0)
Td f (ξ) 4 γ2 ∑, (25b)

∫
M

 ∑ ξ − µ0

(ξ − µ0)
T γ1

d f (ξ) < 0, (25c)

ξ ∈ Mξ , (25d)

Secondly, we utilize the duality theory to convert it into an SDP problem. Consider
the dual of problem (25):

(Dual) :

inf

r,H,

[
Z z
zT ẑ

] r +
〈

H, γ2 ∑−µ0µT
0

〉
+
〈

Z, ∑
〉
+ ẑγ1 − 2zTµ0 (26)

s.t. u(x, ξ)− r− ξHξT + 2ξT Hµ0 + 2zTξ ≤ 0, ξ ∈ Mξ , (26a)

r ∈ R, (26b)

H < 0, (26c) Z z

zT ẑ

 < 0, (26d)

with u(x, ξ) = (1− λ)ϑ(x, ξ) +
λ

1− α
(ϑ(x, ξ)− v)+

where r, H, and

 Z z

zT ẑ

 are, correspondingly, the dual variables of constraints (25a),

(25b), and (25c). 〈a, b〉 represents Trace(AB).
Due to the inclusion of ()+, the inequality constraint (26a) has to be processed as

follows:

r + ξHξT − 2ξT Hµ0 − 2zTξ

>(1− λ)ϑ(x, ξ) +
λ

1− α
(ϑ(x, ξ)− v)+
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When the random parameter ξ appears in the constraint, it cannot be directly sub-
stituted into constraint (26a). Therefore, it is necessary to consider the dual of problem
ϑ(x, ξ), where the random parameters are transferred into the objective function. Another
problem arises, which is the coupling of variables between the dual variable q and variable
Y. The constraint on the dual variable q confines it to a boxed region, as indicated by the
constraint.

(Dual) :

ϑ′(x, ξ) = max
q,p

qT
(
(X⊗ Freq)TON − ξ

)
, (27)

s.t. ϕ− p > q > 0, (27a)

p > 0, (27b)

Responding to constraint (26a), taking its extreme value points, each point corresponds
to two corresponding semi-definite matrix constraints. We transformed (26a) into a clearer
and more concise form.



r + ξHξT − 2ξT Hµ0 − 2zTξ

> (1− λ)ϑ′(x, ξ) + λ
1−α (ϑ

′(x, ξ)− v)

=
(

1 + λα
1−α

)
ϑ′(x, ξ)− λv

1−α

r + ξHξT − 2ξT Hµ0 − 2zTξ > (1− λ)ϑ′(x, ξ)

In the above constraints, we denote
(

1 + λα
1−α

)
as φ and transform them into the

following two semi-definite matrix constraints.



 H 1
2 φqT − Hµ0 − z(

1
2 φq− Hµ0 − z

)T
r− φqT(X⊗ Freq)TON + λv

1−α

<0

 H 1−λ
2 q− Hµ0 − z(

1−λ
2 q− Hµ0 − z

)T
r− (1− λ)qT(X⊗ Freq)TON

<0

The dual problem (26) can then be rewritten as follows:
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min

X,v,r,H,

[
Z z
zT ẑ

] h(x) + λv + r +
〈

H, γ2 ∑−µ0µT
0

〉
(28)

+
〈

Z, ∑
〉
+ ẑγ1 − 2zTµ0

s.t. X×OM = ON , (28a)

XT ×Nup 6 Lcache, (28b) H 1
2 φqT − Hµ0 − z(

1
2 φq− Hµ0 − z

)T
r− φqT(X⊗ Freq)TON + λv

1−α

<0 (28c)

 H 1−λ
2 q− Hµ0 − z(

1−λ
2 q− Hµ0 − z

)T
r− (1− λ)qT(X⊗ Freq)TON

<0 (28d)

[
Z z
zT ẑ

]
< 0, H < 0, r ∈ R, (28e)

xij = {0, 1}, v ∈ R, (28f)

4.3. RADROO-MILP Algorithm

In this paper, the task offloading decision is an integer programming problem, and
the additional computational resources requested from CDC follow linear programming,
which makes our problem (19) a MILP problem. Hence, we used the branching implicit
enumeration method to obtain the optimal offloading decision based on the uncertainty of
computational resources and the minimum average cost.

In the above SDP problem, the X-matrix variables, 0-1 integer variables, the Y-vector
variables, and continuous variables, are included. This makes the original problem a
mixed-integer linear formulation, which poses a challenge in terms of direct solvability.
To simplify the problem, we relax it by treating the discrete variable X as a continuous
variable ranging from 0 to 1, i.e., 0 6 xij 6 1, ∀xij ∈ X.

In fact, the above SDP problem can be solved by using the SDPT3 solver through the
CVX package in MATLAB. The original MILP problem then needs to be solved; here, we use
the branching implicit enumeration method to solve it. This method is a specialized branch
and bound technique for 0-1 integer problems, leveraging the fact that the variables can only
take values of 0 or 1, allowing for branching for the purpose of hidden enumeration. Each
task is divided into m sub-nodes, i.e., each task can only be offloaded to and completely
offloaded on a single node.

Algorithm 1 presents the procedure for calculating the minimum cost of computation
offloading. First of all, tasks should be sorted according to the number of CPU cycles they
require, which determines the cost spent to a large degree. The solution to the relaxed
LP problem is then obtained. Based on this solution, the implicit enumeration method is
applied to solve the branching subproblem. During the branch and bound process, the two
nodes with the highest values in the Xi vector, representing the most probable nodes for
offloading the current task, are selected at each iteration. The process involves constant
branching, resulting in a gradually increasing lower bound, and constant delimitation,
resulting in a gradually decreasing upper bound.
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Algorithm 1 Cost-based MILP algorithms for the DRO task offloading problem.

Input: the convex probability distributional setM∼, stochastic sample space F∼, trade-
off coefficient λ, confidence level α, ambiguous set parameters γ1 and γ2;
Output: offload decision X, optimal cost value to satisfy distribution robustness;

Solve the MILP formulation SDP problem with a confidence level of α, to obtain the
optimal values of the continuous variables X and the optimal cost value;
for i from 0 to N − 1 do

Sort(N )
[opt, X] = max(Xi)
[x1ij, x2ij] = max2(X)

if SDP(X′, x′i,j1 = 1) ≤ SDP(X′, x′i,j2 = 1) then
x′i,j1 = 1
min_cost[i] = SDP(X′, X′i,j1 = 1)

else
x′i,j2 = 1
min_cost[i] = SDP(X′, X′i,j2 = 1)

end if
end for
if min_cost[N − 1] ! = NaN then

return X′, min_cost[N − 1]
end if

4.4. Complexity Analysis

In Algorithm 1, a solver is used to solve the optimization problem. Here, the time
complexity for solving the optimization problem is set to T, the number of unloading tasks
is set to N, and the branch and bound method is used to traverse all unloading tasks. In the
unloading target section, the process is simplified to selecting only the optimal two node
locations using a cycle number. The time complexity of the proposed algorithm is O(TN).

5. Performance Evaluation

In this section, we evaluate the performance and effectiveness under different parame-
ters, analyze the results of the above-proposed algorithm under different risk confidence
conditions, and compare them with the traditional algorithm to highlight its superiority.

5.1. Simulation Setup

We accomplished the simulation on a laptop with an AMD Ryzen 7 4800H with
Radeon Graphics running at 2.90 GHz. The laptop had 16GB of RAM and was running
on the Windows 10 operating system. We envision a SAGIN-Cloud system where the
coverage of the space layer includes both the air layer and the entire MECN. The following
parameters are randomly generated within a certain range, with mean values generated
according to a normal distribution.

(1) Channel State Information (CSI)

For information transportation within ECNs, different frequency bands were bor-
rowed between the different layers, resulting in different bandwidths and transmission
speeds. Currently, the C-band is one of the most commonly used frequency bands for
satellite operations, with the Ka-band being a latecomer. This paper assumes that the data
transmission between BSs and UAVs occupies the C-band, while the Ka-band is occupied
between UAVs and LEO satellites. The bandwidth of the C-band is 20 MHz, while the
available bandwidth of the Ka-band can reach up to 3500 MHz. As for the signal frequency
range, the C-band and Ka-band are 3.4–8 GHz and 26.5–36 GHz, respectively.
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(2) ECNs Information

The horizontal and vertical coordinates of the BSs on the ground and the UAVs in the
air are within (−1, 1) km, respectively, while vertically, they are all 0. In contrast, the UAVs
are located at altitudes of (0.075, 0.15) km. LEO satellites are located in space and they are
at distances of (780, 800) km from the Earth’s surface. LEO satellites are located in space
and they are (780, 800) km away from the surface. They are not too space-constrained, so
they are deployed in a square area with four points as vertices: (−200, −200), (−200, 200),
(200, −200), and (200, 200).

BSs, UAVs, and LEO satellites possess CPU process speeds of 2 ∗ 109 cycles/s, 3 ∗ 108

cycles/s, and 5 ∗ 109 cycles/s, respectively.

(3) Comparison Algorithm

First, we propose using the most basic comparison algorithm, namely the Brute-Force
algorithm.

• The Brute-Force algorithm does not take into account any uncertainty or potential
computational overflow of tasks to the extent that it may eventually result in the
inability to obtain an optimal solution.

Second, we compare two traditional algorithms that take parameter uncertainty into
account: the RO algorithm and SO algorithm.

• In RO, only the uncertainty of computational resources of ECNs is considered and their
possible worst-case scenarios are experimentally selected to ensure their robustness.

• In SO, the fuzzy set is constructed based on the historical data of the computational
resources of the given ECNs; thus, we obtain their means and variances.

Third, there is another algorithm closest to our proposed one, which is the DRO
algorithm; this is for obtaining the optimal solution.

• In DRO [5], the mean value in the range of the uncertainty set is obtained, and its
optimal robust result is obtained by the min–max theory, which guarantees both
robustness and practicality. However, there is also a drawback, namely that it is an
uncertainty set constructed from historical data, which does not guarantee the stability
of the uncertainty set and does not consider its risk.

Finally, we propose the RaDROO algorithm, on the basis of the traditional DRO
algorithm.

• In RaDROO, in addition to what the DRO considers, it complements certain defi-
ciencies that it possesses. It considers CVaR, choosing only the α− tail part as the
benchmark, while using λ as a weight with the original part. That is to say, it selec-
tively aggravates the proportion of the worse part of the results within the final result
in order to guarantee its risk resistance.

5.2. Experiments
5.2.1. RaDROO Algorithm

First, we observe the practical results of our proposed RaDROO algorithm in the
context of addressing the optimization of offloading costs for edge network tasks. The
optimal values of lambda in the range of (0, 1) are given as α of 0.5, 0.7, and 0.9, respectively.
As illustrated in Figure 2, when lambda is 0, it means that CVaR is not considered, is
weakened to a classical distribution robust problem, and the obtained results converge to a
point. However, as λ increases, the risk consideration is reinforced step by step, further
constraining the range of values provided within the uncertainty set. This results in a
progressive increase in the amount to be spent, but at the same time, a more superior and
stable optimal choice is obtained. At the same time, the larger the lambda, i.e., the larger
the weight considering the CVaR value, the worse the optimal value of the required spend.

Second, observing the value of V gives a more intuitive view of the degree of con-
sideration of risk in CVaR. As shown in Figures 3 and 4, it is obvious that the value of V
is larger when a higher alpha value is taken, i.e., when the worse part of the fuzzy set is
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used as a criterion; at the same time, this value is almost unaffected by the value of λ taken.
However, with a fixed value of α, as the simultaneous uploading of tasks increases, the
value of V for each experiment also increases gradually and steadily, which means that the
value of CVaR also increases; that is, the risk is further considered as a way to ensure the
authenticity and practicality of the whole system.

5.2.2. Comparison with Other Algorithms

For a comparison with other algorithms, some of the parameters of RaDROO are
λ = 0.5, α = 0.5, γ1 = 0, γ2 = 1.

The comparison between algorithms takes the obtained target value as the evaluation
criterion. Figure 5 shows the optimal cost results obtained by different algorithms at the
same time as the number of tasks received increases. Figures 6 and 7 present a comparison
of the results obtained from the four algorithms at task volumes of 150 and 170. When
the number of tasks is small, and only known allocatable resources are considered, all
algorithms provide better results. As the total number of tasks that may be uploaded
simultaneously rises, the Brute-Force algorithm fails to obtain an optimal solution because
it does not take into account the lack of computational resources. In contrast, RO, SO, DRO,
and RaDROO can obtain their optimal solutions, and the optimal cost obtained increases
with the increasing number of tasks.

In the two observations with 150 and 170 tasks, we can clearly see from Figures 6 and 7
that the cost results obtained by the RaDROO algorithm are slightly higher than those
of the traditional DRO algorithm. Obviously, as the number of tasks gradually increases,
the Brute-Force algorithm that fails to consider offloading the second-stage tasks to the
cloud for computations can no longer produce solutions. At the same time, the results
obtained by the RaDROO algorithm and the DRO algorithm are close to those of the SO
algorithm, while significantly lower than those of the RO algorithm. The SO algorithm, as it
calculates the average of the fuzzy sets, is capable of obtaining excellent results, but it may
not align closely with real-world scenarios. On the other hand, the RaDROO algorithm
considers various factors and still manages to achieve results that are close to those of the
SO algorithm, demonstrating its superiority. This indicates that the RaDROO algorithm
is still capable of achieving favorable results. By incorporating CVaR to enhance risk
resistance, it generates superior outcomes even under uncertain computational resource
conditions.

The RaDROO algorithm, although yielding better results, comes with a trade-off in
terms of computational time, as shown in Figure 8. The time required to solve the RO, SO,
and Brute-Force algorithms is relatively close and generally lower. The DRO algorithm
derives the optimal two-stage mean using fuzzy sets within the framework of the min-max
theory of robust algorithms. The RaDROO algorithm considers CVaR on top of this, which
further increases the complexity of the algorithm and takes more time to solve the problem.

The results obtained clearly indicate that RaDROO yields superior outcomes compared
to other algorithms. It is worth noting that there is a drawback in terms of the time delay
associated with obtaining the offloading decisions. However, this issue can be effectively
mitigated by enhancing the performance of the managed physical devices.

Overall, although RaDROO incurs a certain time cost, it strikes a balance between
computational time and risk consideration by incorporating CVaR into the decision-making
process. It achieves improved robustness compared to traditional methods, while maintain-
ing competitive performance. By considering CVaR, RaDROO effectively manages the risks
associated with uncertain factors and makes informed task offloading decisions within the
SAGIN environment.
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Figure 2. Expected costs under different α.
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Figure 4. V values between 110 and 200 tasks.
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6. Conclusions

This paper focuses on the task offloading decision problem within the SAGIN frame-
work, considering the instability of computational resources at each node, as well as the
limited channel and storage resources of ECNs. Based on this problem, we propose the
RaDROO algorithm, which enhances its risk resistance by incorporating CVaR while build-
ing upon the traditional DRO algorithm. In addition, we conducted simulation experiments
in a simulated environment. The algorithm demonstrated better results compared to the
traditional robust algorithm, achieved comparable results to the traditional DRO algorithm,
and proved the effectiveness of the algorithm.

There are several directions in which we can extend this work in the future. First, the
execution time of the RaDROO algorithm is a major problem that needs to be solved; it
may be solved by optimizing the algorithm architecture and using a better model-solving
method. Second, the task uploads are transient, and it is possible to consider the real-time
task offloading decision problem within the SAGIN framework. Third, the value of lambda
is freely variable, posing a challenge in selecting a rational value. Finally, this experiment
only considers the uncertainty of computational resources. In real-world environments,
the storage spaces of ECNs and CSI also have uncertainties, and the impacts of these
uncertainties on the offloading decision are also worth considering.
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