
Risk based facility location by using fault tree analysis
in disaster management$

İbrahim Akgün a,n, Ferhat Gümüşbuğa b, Barbaros Tansel c

a Abdullah Gül University, Department of Industrial Engineering, Kayseri, Turkey
b Turkish Army Military Academy, Institute of Defense Sciences, Ankara, Turkey
c Bilkent University, Department of Industrial Engineering, Bilkent, Ankara, Turkey

a r t i c l e i n f o

Article history:

Received 19 August 2013
Accepted 20 April 2014
Processed by Salazar-Gonzalez
Available online 14 May 2014

Keywords:

Location
Risk
Fault tree analysis
Vulnerability
Disaster management
p-Center risk model

a b s t r a c t

Determining the locations of facilities for prepositioning supplies to be used during a disaster is a
strategic decision that directly affects the success of disaster response operations. Locating such facilities
close to the disaster-prone areas is of utmost importance to minimize response time. However, this is
also risky because the facility may be disrupted and hence may not support the demand point(s). In this
study, we develop an optimization model that minimizes the risk that a demand point may be exposed
to because it is not supported by the located facilities. The purpose is to choose the locations such that a
reliable facility network to support the demand points is constructed. The risk for a demand point is
calculated as the multiplication of the (probability of the) threat (e.g., earthquake), the vulnerability of
the demand point (the probability that it is not supported by the facilities), and consequence (value or
possible loss at the demand point due to threat). The vulnerability of a demand point is computed by
using fault tree analysis and incorporated into the optimization model innovatively. To our knowledge,
this paper is the first to use such an approach. The resulting non-linear integer program is linearized and
solved as a linear integer program. The locations produced by the proposed model are compared to those
produced by the p-center model with respect to risk value, coverage distance, and covered population by
using several test problems. The model is also applied in a real problem. The results indicate that taking
the risk into account explicitly may create significant differences in the risk levels.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Schulz [1] defines a disaster as “an occurrence of widespread
severe damage, injury or loss of life or property with which a
community cannot cope and during which the society undergoes
severe disruption” and Disaster Management (DM) as “the range of
activities designed to maintain control over disaster and emer-
gency situations and to provide a framework for helping at-risk
persons to avoid or recover from the impact of the disaster. DM
deals with situations before, during and after a disaster”. The
activities in the context of DM are generally considered in four
phases: mitigation, preparedness, response, and recovery (e.g.,
[2-4]). Coppola [4] defines these phases as follows: “Mitigation

involves reducing or eliminating the likelihood or the conse-
quences of a hazard or both. Mitigation seeks to treat the hazard
such that it impacts society to a lesser degree. Preparadness

involves equipping people who may be impacted by a disaster or
who may be able to help those impacted with the tools to increase
their chance of survival and to minimize their financial and other
losses. Response involves taking action to reduce or eliminate the
impact of disasters that have occurred or currently occurring, in
order to prevent further suffering, financial loss, or a combination
of both. Relief, a term commonly used in international disaster
management, is one component of response. Recovery involves
returning victims’ lives back to a normal state following the impact
of disaster consequences. The recovery phase generally
begins after the immediate response had ended and can persist
for months or years thereafter”. The activities related to mitigation
and preparedness, i.e., pre-disaster phase, are considered as
Risk Management while the activities related to response and
recovery, post-disaster phase, are considered as Crisis Management

(e.g., [5])
Coppola [4] points out that response and recovery alone are not

effective means of managing disasters if they are performed in the
absence of a comprehensive regimen of preparadness and mitiga-
tion activities. Coppola [4] also points out that there is a shift
towards risk reduction-based disaster management. This is also
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emphasized in the framework developed at the World Confence
on Disaster Reduction held in Japan in 2005 [6]. Three strategic
goals outlined in that framework are as follows:

1. The more effective integration of disaster risk considerations
into sustainable development policies, planning and program-
ming at all levels, with a special emphasis on disaster preven-
tion, mitigation, preparedness, and vulnerability reduction,

2. The development and strengthening of institutions, mechan-
isms and capacities at all levels, in particular at the community
level, that can systematically contribute to building resilience
to hazards,

3. The systematic incorporation of risk reduction approaches into
the design and implementation of emergency preparedness,
response, and recovery programmes in the reconstruction of
affected communities.

In this context, this paper studies one of the problems in the
pre-disaster phase from a risk management perspective. Specifi-
cally, the study investigates the problem of locating the facilities
that are used for pre-positioning stocks needed in the first stages
of a disaster relief operation. The paper explicitly considers the risk
that a demand point (probable disaster point) may not get service
from the located facilities and tries to choose the locations of the
facilities to minimize the maximum risk.

Balcik and Beamon [7] describe the general flow of resources to
the disaster-affected areas as shown in Fig. 1. The resource
requirements in the assessment phase are minimal while the
resource requirements in the deployment phase increase drama-
tically. The need for resources stabilizes in the sustainment phase
and decreases in the reconfiguration phase. The length and
importance of each phase varies depending on the characteristics
of the disaster and the characteristics of the affected areas.
However, Balcik and Beamon [7] state that “the speed of relief
operations during the first days of the disaster significantly affects
the lives of many people, threatened by the disaster. The ability of
a relief organization to mobilize its resources during assessment
and deployment phases is critical to the success of disaster
response”.

One strategy that has gained importance and adopted by the
relief organizations to enhance their emergency response capacity
and hence to respond to a disaster effectively is to pre-position

supplies. This strategy is important because, as Balcik and Beamon [7]
state, most of the critical supplies arriving at the disaster areas are
sourced from relief organizations' pre-positioned stocks. Similarly,

Jahre and Heigh [8] state that the performance of a disaster relief
operation is much dependent on the level of preparedness.

Thomas and Mizushima [9] define pre-positioning as “the
storage of inventory at or near the location at which it will be
used”. Although the importance of locating resources close to the
disaster area for faster delivery of supplies to the affected people
cannot be overemphasized, this also poses an important risk; the
facilities (and hence supplies) themselves may be damaged or
inaccessible due to the disaster(s). This study takes this fact into
account in determining the locations of facilities. This is achieved
implicitly as a part of the vulnerability of a demand point that
depends on the locations of facilities (whether the demand point
is covered or not) and computed by using Fault Tree Analysis (FTA).
The structure in the FTA is incorporated into an optimization
model. The resulting model is a non-linear mixed-integer pro-
gramming model that aims to minimize the maximum risk that a
demand point may be exposed to. The non-linear model is
linearized and solved as a linear integer program.

The rest of the paper is organized as follows. Section 2 reviews
the literature. Section 3 gives the risk definition used in the paper
and Section 4 explains the fault tree analysis and how to compute
the vulnerability of a demand point. Section 5 and Section 6 give
the p-center risk and p-center models, respectively. Section 7
explains how the models are solved. Section 8 analyzes the model
by considering several factors. Section 9 defines an application of
the proposed model. Section 10 concludes the paper.

2. Literature review

DM has mostly been related to the social research and hence
there is a rich literature in this context. The survey papers by Altay
and Green [3] and Galindo and Batta [10] indicate that DM has
gained importance in the last two decades in OR/MS (Operations
Research/Management Science) research as well. Altay and Green [3]
review 109 papers from 1980 to 2005 while Galindo and Batta [10]
review 156 papers from 2006 to 2010. They classify the papers with
respect to several criteria and identify potential research directions
for the OR/MS community. In this paper, we consider only the
optimization models with a focus on facility location in DM and on
reliable facility location in general.

Caunhye et al. [11] review optimization models in emergency
logistics. They categorize the studies into two main categories:
(1) facility location and (2) relief distribution and casualty trans-
portation. They state that most facility location models combine
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Fig. 1. Relief mission life cycle (Balcik and Beamon [7]).
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the process of location with stock-prepositioning, evacuation, and
relief distribution and that the only location-alone models are
published by Jia et al. ([12,13]) and Dessouky et al. [14]. Those
models are formulated as maximal covering location models with
multiple-coverage requirements. Dessouky et al. [14] additionally
include a stochastic vehicle routing model to perform relief
distribution. In this paper, a location-alone model is developed,
i.e., decisions regarding the inventory levels of prepositioned
stocks are not considered.

Belardo et al. [15] and Balcik and Beamon [7] combine location
and stock prepositioning. They develop models that try to locate the
facilities such that maximum demand is covered. They assign stock
to the facilities in order to meet demands and do not consider the
routing of stock through the network. Balcik and Beamon [7]
include budget and response time requirements as well.

According to the classification by Caunhye et al. [11], other
facility location models, e.g., Charnes et al. [16], McCall [17], and
Wilhelm and Srinivasa [18], combine relief distribution and stock-
prepositioning mainly for cost minimization. Unlike other studies,
Duran et al. [19] develop a time-minimizing model. Rawls and
Turnquist [20] include ordering costs, holding costs, and the
possibility of post-disaster damage to stock. They also state that
most of the research has concentrated on post-disaster manage-
ment and little research has been conducted on the topic of a
priori planning, i.e., what resources should be stockpiled at which
locations so that emergency response is most effective in the event
that it is needed.

The idea of reliable facility location is not new. Daskin [21]
considers reliability in the context of a maximum covering loca-
tion model. The author takes into account the fact that a facility
may not serve a demand because it is busy serving other demands.
This is achieved by assigning predetermined, identical probabil-
ities to all facilities. Drezner [22] considers new variants of the
classical p-median and p-center location problems. Unlike the
standard definitions, each facility may fail to serve its allocated
customers and these customers may then have to be served by an
alternate source. Each facility has a known failure probability that
is a function of the facility design and independent of the location.
The modified objective for the p-median problem contains the
expected cost of each customer being served by its closest facility,
its next closest, etc. The modified p-center problem chooses the
locations of the p facilities to minimize the maximum travel time
where the travel time is based on the worst case scenario of
q facilities failing. Lee [23] considers the same modified p-median
formulation as in Drezner [22] as well as a similar algorithm.
Snyder and Daskin [24] model the cost of using backup facilities
when facilities fail. The authors also present a reliability-based
formulation of the uncapacitated fixed charge location problem.
They assume that the failure probabilities of the facilities are
independent. Berman et al. [25] extend the results in Drezner [22]
and focus on structural results. Failure probabilities are not
assumed to be identical but failures at different locations are again
assumed to be independent. Berman et al. [26] study a class of
location models where facilities are not perfectly reliable and
failures may be correlated. They analyze problems with median
and center objectives under complete and incomplete customer
information regarding the state of facilities. They derive closed-
form analytical results for a 2-facility problem on a unit segment,
with customer demand distributed uniformly over the segment.

Reliable facility location is also considered in the context of DM.
Rawls and Turnquist [20] consider the possibility that supply
locations and/or roadways may be damaged or destroyed by using
a scenario-based approach in a cost minimization model combin-
ing relief distribution and stock-prepositioning. A probability of
occurence is assigned to each scenario where disruptions to the
infrastructure and supplies are represented by capacity reductions.

If demand at a node is not met in a scenario or there is excess
supply, several costs are incurred and incorporated into their
model. Ukkusuri and Yushimoto [27] model the pre-positioning
of supplies as a location routing problem. They maximize the
probability that all the demand points can be served by a service
location given fixed link/node failure probabilities and a specified
budget constraint. Campbell and Jones [28] examine the decision
of where to preposition supplies in preparation for a disaster and
how much to preposition at a location. They derive equations for
determining optimal stocking quantity and the total expected
costs associated with delivering to a demand point from a supply
point. They claim that their paper is the first to consider both risk
and inventory levels without the use of scenarios. They assign
probabilities to supply points to reflect the risk of being destroyed
or made inaccessible. The types of costs and decisions considered
are close to those in Rawls and Turnquist [20].

The literature indicates that uncertainties regarding the infra-
structure are handled either by assigning probabilities or by defining
scenarios. Galindo and Batta [10] state two drawbacks regarding the
scenario-based approaches: (1) scenarios generally do not compre-
hend all the possible outcomes and (2) researchers generally assume
the set of scenarios as a given input and they do not offer an efficient,
systematic, and reliable way to define them. The authors point out
that a more appropriate path would be to study the potential
outcomes of a disaster through a solid probabilistic analysis.

One of the research directions offered by Galindo and Batta [10]
is to incorporate coverage probabilities based on infrastructure
reliabilities (vulnerabilities) while considering the locations of
facilities. In this paper, we deviate from the current literature
and address this issue by using one of the risk analysis tecniques,
namely FTA.

3. Definition of risk

In this paper, we minimize the maximum risk that a demand
point is not serviced due to disruptions to the located facilities.
Although there are different definitions of risk, we use the one
given by Willis et al. [29]. Even though the aforementioned
definition is used in the context of terrorism risk, it can be adapted
in other contexts as well. According to [29], risk is composed of
three components, threat, vulnerability, and consequence. Threat is
the probability that a specific target is attacked in a specific way
during a specified time period. In our case, threat is the probability
that a disaster (e.g., earthquake) occurs. Vulnerability is the prob-
ability that damages (where damages may involve fatalities,
injuries, property damage, or other consequences) occur, given a
specific attack type, at a specific time, on a given target. In our
case, the vulnerability is the probability that damages occur at a
demand point because it is not served on time by the located
facilities. Vulnerability is computed by using FTA. Consequence is
the expected magnitude of damage (e.g., deaths, injuries, or
property damage), given a specific attack type, at a specific time,
that results in damage to a specific target. In our case, the number
of people living in an area (city) is considered to be the magnitude
of the damage. Risk is then defined as the anticipated conse-
quences over some period of time to a defined set of targets,
resulting from a defined set of threats. Risk can be determined as a
product of threat, vulnerability, and consequence.

4. Fault tree analysis and vulnerability of a demand point

FTA has been mostly used in engineering for reliability or
hazard analysis (e.g., Rahman et al. [30] and Zhang et al. [31]). It is
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a deductive reasoning method used to identify failures prior to
their occurrence, to analyze accidents, and/or as investigative tools
to pinpoint failures. It is deductive in the sense that it starts with a
general top event or output event and develop down through the
branches to specific input events that must occur in order for the
output to be generated. The top event for a fault tree is a negative
event. Each event is analyzed by asking, “How could this happen?”.
In answering this question, the primary causes and how they
interact to produce an undesired event are identified. This logic
process continues until all potential causes have been identified.
Throughout this process, a tree diagram is used to record the
events as they are identified. Tree branches stop when all events
leading to the negative event are complete.

The fault tree is constructed by using several symbols that
represent various events and describe relationships. In the follow-
ing, we only explain the ones used in the context of this study.
AND gate is used when the output event will occur only if all of the
input events exist simultaneously. OR gate is used when the event
will occur if only one or any combination of the input events
exists. Rectangle and circle are two symbols used to represent
different types of events. A rectangle represents a negative main
event that can be broken down into further input events. It can be
located anywhere in the tree. It is only the rectangle that can have
a logic gate and input events. A circle represents a base event in
the tree and is found at the bottom tiers of the tree. A base event is
not broken down into further events.

After the tree is constructed, the probabilities are assigned to
the base events and the probability of the top event is computed in
a bottom-up approach by multiplying (AND gates) and summing
over (OR gates) probabilities of the events until the the top event is
reached. For further information on FTA, see Vesely et al. [32].

Now, we explain how we develop the fault tree in our study on
the sample network in Fig. 2. Suppose that all nodes are demand
points and that the facilities can be located at all nodes. Assume
that the vulnerability of demand point A is to be computed. Thus,
the top event T is identified as the event that demand point A is
not supported by the located facilities. The top event may occur if
none of the facilities located at the nodes A, B, and C can support
the demand point. Notice that it is not known a priori where the
facilities will be located and hence an input event is defined for
each possible location and connected to the top event with an
AND gate. From now on, we will proceed with node B. The part of
the resulting fault tree for node B is given in Fig. 3 by using the
same coding system to name the events.

We define the event that the facility at node B cannot support
demand point A as the main event B. Then, three events leading to
event B are identified: (1) the event BTA that a facility is not
located at node B, (2) the event BTK that a facility is located at
node B but node B does not cover the demand point (whether a
facility location covers a demand point or not is determined based
on a predetermined coverage distance K), and (3) the event BTE
that a facility is located at node B and the demand point is
covered; however, the facility is disrupted and hence inaccessible,
i.e., supplies at location B are not usable. These three events (BTA,
BTK, and BTE) are connected to the input event B via an OR gate.

Of these three events, the first one BTA is a base event and hence is
not broken down into further events. The second event BTK is
broken down into two more base events with an AND gate: (1) the
event BT that a facility is located at node B and (2) the event BKA
that the facility at node B does not cover the demand point A. The
third event BTE is broken down into three events via an AND gate:
(1) the event BT that a facility is located at node B, (2) the event BK
that the facility at node B covers the demand point, and (3) the
event BE that the facility at node B is disrupted and hence
inaccessible. Of these three events, the first two (BT and BK) are
base events. There may be several events leading to the disruption
of the facility at node B, i.e., the main event BE. In this paper, four
events are defined: (1) the event DB that an earthquake causes
disruption, (2) the event SB that a flood causes disruption, (3) the
event HB that a landslide causes disruption, and (4) the event CB
that an avalanche causes disruption. These four events are con-
nected to the event BE via an OR gate. All of these four events are
broken down into two base events similarly. For CB, the events are
defined as follows: (1) the event CBA that there is an avalanche at
node B and (2) the event CBB that there occurs a damage
(disruption) that prevents access to the facility at node B given
an avalanche occurs. We remark that the analysis can be extended
to include other events. For example, the vulnerability of the roads
connected to the facility location, the vulnerability of the facility
itself due to design, or the susceptibility of the facility to a terrorist
attack may be considered. For the purposes of this study, we prefer
to stop our analysis at this point.

The aforementioned tree structure is repeated for all demand
points and then the vulnerability of each demand point, i.e., the
probability of the top event for each demand point, is determined.
However, notice that the locations of the facilities are not known a
priori but the vulnerability of a demand point is dependent on
where the facilities are located. In this regard, the probability of a
top event cannot be computed directly by multiplying (AND gate)
and summing (OR gate) probabilities; the facility location decisionsFig. 2. Sample network.
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Fig. 3. The fault tree for three facility locations. The structure of the tree for main
events A and C are the same as the one for main event B.
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are to be incorporated into the computation. The vulnerability of a
demand point j can be formulated as follows:

vj ¼ ∏
iA I

fð1�xiÞþ½ð1�aijÞxi�þaijeixig jA J ð1Þ

In the formulation (1), I is the set of nodes that are candidates
for facility location and J is the set of demand nodes. xi is a binary
variable that takes on the value of 1 if a facility is located at node i

and 0 otherwise. aij is a parameter that is 1 if demand node j is
covered by the facility at node i. Assuming that the coverage is
expressed in terms of shortest path lengths dij and that K is a
predetermined coverage distance, aij¼1 if dijrK and aij¼0 other-
wise. ei is the probability that facility at node i is disrupted and/or
inaccesible, i.e., the probability of event BE in Fig. 3. Notice that ei
is computed by using the part of the fault tree leading to BE.

The terms in (1) are derived from the fault tree. The first term
in the equation represents the event that a facility is not located at
a candidate point, e.g., the event BTA. The second term represents
the event that a facility is located at the candidate point but it does
not cover the demand point, e.g., BTK. Finally, the third term
represents the event that a facility is located at a candidate point
and it covers the demand point; however, the facility is disrupted
and hence inaccessible, e.g, BTE. These are the events that lead to
the main event that a facility located at at node cannot serve the
demand point.

Each term in (1) represents the vulnerability of a demand point
resulting from the aforementioned events for a specific facility
location. For example, if a facility is not located, then the first term
is 1 and the other terms are 0 meaning that the demand point is
100% vulnerable. If a facility is located but it does not cover the
demand point, then the first and third terms are 0 and the second
term is 1 and hence the demand point is 100% vulnerable. If a
facility is located and it covers the demand point, then the first and
second terms are 0 and the third term is ei meaning that the
vulnerability of the demand point results only from the disruption
of the facility for some reason, e.g., natural events. To sum up, the
vulnerability of each demand point resulting from a specific
location takes on a value between 0 and 1 as required for a
probability value. The overall vulnerability of the demand point is
computed by multiplying individual vulnerabilities resulting from
candidate facility locations, which is in accordance with the AND
gate in the fault tree. In other words, when a demand point is
covered by more than one facility, its vulnerability decreases
accordingly.

5. p-center risk model

We now give the p-Center Risk Model (p-CR). The model is
named as given because the maximum risk that a demand point is
exposed to is minimized. p-center type models are considered
more appropriate for situations where the equity is important
(e.g., Lu and Sheu [33] and Bell et al. [34]), as is the case in a
disaster management environment.

In addition to the definitions given in the previous section, we
define p as the number of facilities to locate, cj as the consequence
(a value or loss, e.g., the number of people living) at demand point
j and tj as the probability that a threat (e.g., an earthquake) occurs
at demand point j. Defining R as the maximum risk that a demand
node is exposed to, p-CR can be formulated as follows.

5.1. Model p-CR: p-center risk model

Rn ¼Min R
x;R

ð2Þ

s:t RZcjtj∏
iA I

fð1�xiÞþ½ð1�aijÞxi�þaijeixig jA J ð3Þ

∑
iA I

xi ¼ p ð4Þ

xiAf0;1g iA I ð5Þ

Notice that the risk term on the right-hand-side of (3) is the same
as the one defined earlier, i.e., the risk is the multiplication of
consequence cj, threat tj, and the vulnerability vj ¼ ∏

iA I

fð1�xiÞþ

½ð1�aijÞxi�þaijeixig. The vulnerability term is exactly the same as
Eq. (1) and used to compute the vulnerabilities of demand points
depending on the values of the decision variable xi. Thus, objective
function (2) together with constraints (3) minimizes the maximum
risk that demand points are exposed to. Constraints (4) require that
exactly p facilities be located. Constraints (5) define the integrality
requirements for decision variables.

p-CR is not required to cover all demand points. Of course,
covering all demand points is desirable. However, this may not be
possible with given p and K. Even though it is possible to cover all
demand points, not covering some demand points may produce
better risk values. For example, if covering a demand point with
high population and high threat value more than once decreases
its vulnerability significantly, the model may prefer not to cover
some demand points with low population and low threat values in
order to decrease the overall risk value.

We remark once again that vj, the vulnerability of demand
point j, changes depending on the locations of the facilities and is
determined by the model endogeneously. This value can be
computed only for a fixed set of facility locations and varies
depending on the disruption probabilities of the facility locations
as well as the number of facilities that cover the demand point.
So, this is not the same as assigning a preset (risk) probability to a
demand point (or to a facility location), which is mostly done in
the literature.

6. Vertex p-center model

The coverage distance K needed to determine aij values in p-CR
is obtained by solving the vertex p-Center (p-C) model. p-C is also
used to compare the results of p-CR as will be explained later. The
objective in p-C is to find locations of p facilities so that all demand
points are covered and the maximum distance between a demand
node and the nearest facility (coverage distance) is minimized.
Because the objective is in minimax form, it is mostly applicable to
emergency cases. The formulation used in our study is due to
Hakimi [35]. In the formulation, yij is a binary variable that takes
on the value of 1 if the demand point j is assigned to the facility
located at node i and the value of 0 otherwise. Defining Z as the
maximum distance between a demand point and the nearest
facility, the formulation is as follows.

6.1. Model p-C: p-center model

In addition to (4) and (5);

Zn ¼Min
x;y;Z

Z ð6Þ

s:t: ZZ∑
i

dijyij jA J ð7Þ

∑
i

yij ¼ 1 jA J ð8Þ

yijrxi iA I; jA J ð9Þ

yijAf0;1g iA I; jA J ð10Þ

İ. Akgün et al. / Omega 52 (2015) 168–179172



Objective function (6) together with constraints (7) minimizes
the maximum distance between a demand point and the nearest
facility. Constraints (8) ensure that each demand point be assigned
to a single facility. Constraints (9) guarantee that allocation of a
demand point can be made only to open facilities. Constraints (10)
define the integrality requirement for the decision variables.

In some cases, considering demand-weighted distances may be
more appropriate. This requirement can be incorporated into the
model p-C by multiplying the right-hand sides of constraints (7)
with the weights of the demand points. The resulting model is the
weighted vertex p-center problem (p-CW). In this study, the
weight of a demand point j is set to cj, i.e., the population.

7. Solution of the models

p-CR is a nonlinear optimization model with binary variables
and hence is difficult to solve. However, it can be linearized and
solved as a linear integer program.

We linearize p-CR in three steps. In the first step, we take the
natural logarithm of constraints (3). This gives us constraints (11).
Because ln terms except lnðcjtjÞ in (11) include variables, the
resulting set of constraints is still nonlinear. In the second step,
we linearize the ln term on the right-hand-side by utilizing the
observation that the inner part of the ln term takes the value of
1 when aij ¼ 0 (irregardless of whether xi ¼ 0 or xi ¼ 1) or xi ¼ 0
(irregardless of whether aij ¼ 0 or aij ¼ 1) and ei when aij ¼ 1 and
xi ¼ 1. The resulting values are 0 and lnei in the first and second
cases, respectively. We can obtain the same values by moving xi
out of the ln term and rearranging the inner part as given in (12).
When aij ¼ 0 and xi ¼ 0, the resulting value is 0 and when aij ¼ 1
and xi ¼ 1, the resulting value is lnei, as required.

ln RZ lnðcjtjÞþ∑
iA I

ln fð1�xiÞþ½ð1�aijÞxi�þaijeixig jA J ð11Þ

ln RZ lnðcjtjÞþ∑
iA I

lnð1�aijþaijeiÞxi jA J ð12Þ

In the third and final step of the linearization, we use the fact
that minimizing a monotonic function of a variable is equivalent to
minimizing the variable itself. In this regard, we replace Min

x;R
R in

p-CR with Min
x;R

lnR. Moreover, by setting R1 ¼ lnR, we come up

with a linear integer program, say p-CRL, composed of (4) and (5)
and (13) and (14). The optimal objective function value of p-CR is

Rn ¼ eR
n

1 .

7.1. Model p-CRL:linearized p-CR

In addition to (4) and (5);

Rn

1 ¼Min
x;R1

R1 ð13Þ

R1Z lnðcjtjÞþ∑
iA I

lnð1�aijþaijeiÞxi jA J ð14Þ

Both p-CRL and p-C are coded in GAMS ([36]) and solved by CPLEX
12.1 ([37]) on a PC with 3 GB RAM and 2.40 Intel Core i3 CPU. All
problem instances are solved to optimality in a matter of seconds
for both p-CRL and p-C.

8. Analysis of the proposed model p-CR

To assess and gain insight about the results of p-CR, we define
and solve a set of test problems. The problems are defined on a
complete network where the nodes represent the cities (demand
points and candidate facility locations) in Turkey. The distances
between the cities are taken from the distance table prepared by
the General Directorate of Highways. The population of each city is
accepted as the value (consequence), cj. The probability that an
earthquake occurs in city is used as the threat. The threat
probability of a city, tj, is determined based on the earthquake
risk zone that the city belongs to. The five risk zones are
determined by the Turkish Catastrophe Insurance Pool (TCIP)
taking Turkey's Earthquake Regions Map of the Ministry of
Environment and Urban Planning as the basis. The risk zones are
assigned the probabilities of 0.8, 0.6, 0.4, 0.2, and 0.0 from the first
to the fifth, respectively. The probability that a facility at location i

cannot be reached, ei, is computed as described in the fault tree by
using the occurence probabilities of natural disasters and the
probability that a devastating damage occurs given the associated
natural disaster occurs. The former probabilities are obtained
based on the risk zones as defined for the threat probability while
the latter probabilities are taken from Gökçe et al. [38].

To see the effect of taking the risk into account explicitly, we
consider risk values, covered populations, coverage distances, and
facility locations obtained by solving p-C (p-CW) and p-CR. We
follow the steps of the procedure given in Fig. 4 to obtain the
results. In the first step, p-C is solved and coverage distance
Kp�C¼Z* and facility locations xp�C

i are saved. Because all demand
points are required to be covered, the covered population by p-C is
Cp�C

¼ Σjcj. In the second step, p-CR is solved by using Kp�C in
determining the values of aij. Facility locations xp�CR

i and the risk
value Rp�CR ¼ Rn are saved. The coverage distance Kp�CR and
covered population Cp�CR are determined by postprocessing the

Solve p-C  

Solve p-CR  

Solve p-CR  

K p−C

K p−C

K p−CR

C p−C

x
i

p−C

x
i

p−C

x
i

p−CR 
≡ x

i

p−C

x
i

p−C

R p−CR

R p−C

Postprocess to

obtain  

C p−CR

Fig. 4. Procedure to determine results of p-C and p-CR.
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solution. Kp�CR is the maximum distance between a demand point
and the nearest located facility. Remember that covering the
whole population is not required in p-CR. Cp�CR is the population
covered by the located facilities within a distance of Kp�C. So,
Cp�CR is obtained by summing over the populations of the cities
that are within a distance of Kp�C from a located facility. In the
third step, the risk value Rp�C generated by the solution of p-C is
computed by solving the p-CR with the facility locations set to
xp�C
i . When p-CW is solved instead of p-C, the same procedure is
used except that p-C replaced is with p-CW. Because different
coverage distances are obtained for p-C and p-CW, the results for
p-CR change accordingly.

Table 1 (Table 2) gives the risk values, covered populations, and
coverage distances of p-C (p-CW) and p-CR for p changing between
1 and 10. Fig. 5 shows the results graphically. Fig. 6 depicts a
sample solution and indicates the locations of the cities mentioned
in the manuscript on the earthquake risk map of Turkey.

8.1. Risk values

For all problem instances in both unweighted and weighted
cases, the risk values of p-CR, Rp�CR, are better (lower) than those
of p-C (p-CW), Rp�C (Rp�CW). This is actually expected but what is
more important is the relative magnitude of the difference. The
results indicate that the difference between the risk values varies
between 2.5 times to 14.2 times with an average of about 8.2 times
for p-C and from 3.2 times to 30.4 times with an average of about
11.5 times for p-CW. To put the risk values into a meaningful
context, the results imply that the expected losses (in terms of
population) may be up to 8.2 (11.5) times more on the average
when the risk of a demand point that is not supported by the
located facilities is not considered explicitly.

The risk values of p-CR are better in the weighted case because
coverage distances are higher than those in the unweighted case.
In p-CW, the objective function value increases as the distance
between a demand point with high population and its closest
facility increases. This causes facility locations to be close to
demand points with high population in different parts of the
network. However, this produces coverage distances Kp�CW sig-
nificantly higher than Kp�C for demand points with low popula-
tion. Given higher coverage distances, p-CR can find facility
locations that give better risk values with the same number of
facilities. Actually, p-CW also produces better risk values than p-C
for all cases except for p¼1. For p¼1, p-CW locates the facility in
Kocaeli (neihgboring İstanbul in the first earthquake zone and
with the highest population constituting about 18% of the whole
population) whose disruption probability is close to the highest
value. The resulting risk value turns out to be the risk value of
Istanbul. For p¼1, p-C locates the facility in Kayseri almost in the
center of Turkey to minimize the distance. The resulting risk value
turns out to be the risk value of Istanbul again. However, because
the disruption probability of Kayseri is lower than that of Kocaeli,
the resulting risk value is lower. Notice that even though the risk
values are improved for both p-CW and p-CR in the weighted case,
the improvement for p-CR is higher resulting in larger relative
differences in the risk values. So, both cases indicate that con-
sidering risk explicitly has a value.

8.2. Coverage distances and population coverages

For all problem instances in the unweighted case, the coverage
distance of p-CR, Kp�CR, is higher than that of p-C, Kp�C. Specifi-
cally, the ratio of Kp�CR to Kp�C changes from 1.05 to 1.78 with an
average of 1.46. That is, p-CR prefers not to cover some demand
points within the coverage distance of Kp�C to obtain better risk
values. The percentage of the whole population covered by p-CR
within Kp�Cchanges from 81.6% to 99.4% with an average of 95.2%.
To clarify, consider the case for p¼4 in Table 1. The solutions of p-C
and p-CR are depicted on the earthquake risk map of Turkey in
Fig. 6. The locations of p-C and p-CR are represented by M and R,
respectively. The facility locations of p-C cover all 81 demand
points and hence the whole population with Kp�C¼504 km.
On the other hand, the facility locations of p-CR can cover about
97% of the whole population, i.e., 71,469,693 out of 73,722,988,
within a distance of 504 km. p-CR prefers not to cover nine
demand points, whose population constitutes about 3% of the
whole population, within this distance to obtain better risk values.
The uncovered demand points are represented by U in Fig. 6. The
maximum distance Kp�CR turns out to be 624 km as shown in
Fig. 6. The population of the demand point with the maximum
distance to a facility is just 0.34% of the whole population.

For the weighted case, Kp�CR is lower than (equal to) Kp�CW

for eight (one) instances out of 10. For these instances, the ratio
of Kp�CR to Kp�CW changes from 0.75 to 1 with an average of 0.91.
For the remaining one instance, the ratio is 1.19. Even though this
result may seem counterintuitive at first glance, it is actually
expected. As explained above, p-CW locates the facilities close to
demand points with high population in certain parts of the
network producing high coverage distances. In p-CR, the distance
between a demand point and its closest facility is not a factor
taken into account. What is important in p-CR is whether a
demand point is within the coverage distance or not; a facility
covering the most populated demand point may be placed at a
location K distance units away from the demand point, which is
not possible in p-CW. This flexibility of determining the locations
may result in better coverage distances for p-CR. The exact
locations of the facilities are dependent on the distribution of
the disruption probabilities, threat probabilities, and population

Table 1

The results of p-C and p-CR for several parameters (unweighted case).

p p-C p-CR

Rp�C Kp�C Cp�C Rp�CR Kp�CR Cp�CR

1 424,182 1048 73,722,988 169,673 1105 73,287,268
2 615,064 636 73,722,988 158,378 1133 60,180,820
3 593,855 541 73,722,988 94,772 796 69,817,550
4 572,646 504 73,722,988 44,539 624 71,469,693
5 615,064 426 73,722,988 57,535 754 70,192,687
6 572,646 377 73,722,988 41,570 609 71,221,630
7 572,646 349 73,722,988 40,364 434 72,343,460
8 296,927 318 73,722,988 59,568 408 70,862,590
9 129,233 305 73,722,988 40,587 434 71,273,770

10 466,600 276 73,722,988 49,854 474 71,225,168

Table 2

The results of p-CW and p-CR for several parameters (weighted case).

p p-CW p-CR

Rp�CW Kp�CW Cp-CW Rp�CR Kp�CR Cp-CR

1 551,436 1701 73,722,988 148,464 2023 71,192,279
2 110,287 1473 73,722,988 13,574 1105 73,722,988
3 33,025 1175 73,722,988 1086 1105 73,722,988
4 38,530 821 73,722,988 11,877 796 73,722,988
5 16,492 815 73,722,988 2957 701 73,722,988
6 63,961 566 73,722,988 7486 509 73,722,988
7 29,820 624 73,722,988 1853 534 73,722,988
8 39,760 557 73,722,988 2811 552 73,722,988
9 21,123 556 73,722,988 1601 509 73,722,988

10 125,982 414 73,722,988 10,932 414 73,722,988
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values throughout the network as well the number of facilities
to locate and coverage distances. For example, for p¼1,
the facility is located in Kırklareli neighboring İstanbul. Kırklareli
is located in the north-west of Turkey and has the smallest
disruption probability among all locations. Because the west
part of Turkey is more highly populated than the east part, the
model locates the facility in Kırklareli and prefers not to cover
demand points with low population in the east part. This is
why the coverage distance Kp�CR is higher than Kp�CW. The
percentage of the population not covered in this case is 3.4% of
the whole population. The location with the second lowest
disruption probability is Aksaray (almost in the center of Turkey).
If the model were to select that location, all demand points
would be covered. However, this would increase the maximum
risk value of İstanbul and hence that of the model. For p¼2, p-CR
selects two neighboring locations Aksaray and Niğde, both of
which have the second lowest disruption probabilities and are
almost in the center of Turkey. Both locations cover all demand
points with a coverage distance Kp�CR lower than Kp�CW. The

vulnerability of each demand point is the same and equal to the
multiplication of the disruption probabilities. The resulting max-
imum value is again determined by İstanbul. However, notice that
Kırklareli with the minimum disruption probability is not
selected because in that case the risk value increases. When
Kırklareli is selected as one of the locations, some demand points
are not covered twice resulting in higher vulnerability values.
One of those demand points is highly populated Diyarbakır in the
southeastern part of Turkey and in the second degree earthquake
zone. Its risk value becomes greater than that of İstanbul. This
analysis also indicates that the model can make the aformen-
tioned trade-offs correctly.

We remark that the resulting Kp�CR and Cp�CR may change for
alternative optimal solutions. For example, Table 1 indicates that a
risk value of 59,568 is obtained with Kp�CR ¼ 408 and
Cp�CR

¼ 70;862;590 when p¼ 8. However, another solution with
the same risk value gives Kp�CR ¼ 630 and Cp�CR

¼ 68;469;173.
So, it may be a good practice to search for alternative solutions
with better population coverages and coverage distances.

Fig. 5. Comparison of risk, coverage distance, and covered population values. (a) Unweighted case, (b) Weighted case, (c) Unweighted case, (d) Weighted case,
(e) Unweighted case and (f) Weighted case.
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8.3. Facility locations

Table 3 (Table 4) presents the facility locations selected by p-CR
and p-C (p-CW) at least 3 times for p changing from 1 to 10. The
results indicate that the facility locations of p-C and p-CR (p-CW)

are different except for a few cases. This is actually evident from
the risk values discussed previously; if the facility locations were
mostly common, the risk values would be close.

These tables are important because they indicate the locations
to focus on. For example, Table 3 indicates that Kırklareli, Uşak,
and Kilis are selected 6, 5, and 5 times, respectively, and Table 4
indicates that Kırklareli, Niğde, and Mardin are selected 5 times
and Kütahya, Aksaray, and Uşak are selected 4 times. So, these
locations are of critical importance and good candidates for
locating facilities. Why Kırklareli is selected has been discussed
in the preceding section. Uşak is in the center of the western part
of Turkey in the first earthquake zone and has the lowest
disruption probability in the region. İzmir with the highest value
in the region can be covered by Uşak to minimize the risk value.
Niğde and Aksaray neighbor each other and have the same and the
second lowest disruption probability. They are in the center of
Turkey and close to the capital of Turkey, Ankara, which is in the
first earthquake zone and has the second highest population in
Turkey. Mardin is in the eastern part of Turkey and close to
demand points in the first earthquake zone as well as to Diyarba-
kır with the highest population in the region. Mardin has the
lowest disruption probability in the region. Similar explanations
hold for Kilis as well. We remark that İstanbul that has been
selected by p-CW 8 times is not chosen by p-CR because İstanbul is
in the first earthquake zone and has significantly large disruption
probability. The other cases may be analyzed similarly. The results
indicate the facility locations selected by p-CR are certainly more
resilient than the ones selected by p-C and p-CW.

8.4. The change in risk, covered population, and coverage distance

in p-CR based on K

To determine how the risk, covered population, and coverage
distance Kp�CR change in p-CR depending on the given coverage
distance K, p-CR is solved for coverage distances changing from
zero to 2200 by increments of 200 with p¼1. The results are
shown graphically in Fig. 7(a). The results indicate that the risk
value monotonically decreases when coverage distance is
increased. The marginal contribution of increasing coverage dis-
tance to minimize the risk value diminishes as expected. For
example, when the coverage distance is changed from 200 to

Fig. 6. Facility locations of p-C and p-CR for p¼4. M and R represents the facility locations of p-C and p-CR, respectively. U represents the demand points p-CR cannot cover
within the given distance. 1: Kırklareli; 2: İstanbul; 3: Kocaeli; 4: Aksaray; 5: Niğde; 6: Kayseri; 7: Diyarbakır; 8: Kütahya; 9: İzmir; 10: Uşak; 11: Kilis; 12: Mardin;
13: Ankara.

Table 3

Facility locations of p-CR and p-C. R and C stand for p-CR and p-C, respectively.

Locatıon p

1 2 3 4 5 6 7 8 9 10

Kirklareli R R R R R R
Uşak R C R R R, C R, C
Balikesir C R R R
Elaziğ C R
Kayseri C C
Kilis R R R R R
Niğde R R C
Kütahya R R R
Erzurum C C C
Osmaniye C C C

Table 4

Facility locations of p-CR and p-CW. R and W stand for p-CR and p-CW, respectively.

Locatıon
p

1 2 3 4 5 6 7 8 9 10

Kirklareli R R R R R
Kütahya R R R R
Niğde R R R R R
Diyarbakir R R R
Mardin R R R R R
Konya R R R, W
Uşak R R R R
Aksaray R R R R
Ankara W W R, W R, W R W W
İzmir W W W
Osmaniye W W W W
Antalya W W W
Kocaeli W W R W R
Manisa W W W
İstanbul W W W W W W W W
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400, the decrease in the risk value is about 50%. On the other hand,
when the coverage distance is changed from 400 to 600, the
decrease is 21%. Notice also that every increase in coverage
distance does not necessarily mean a decrease in the risk value.
For example, the model produces the same risk value for coverage
distances ranging from 800 to 1400 and from 1600 to 2200. This
result occurs because the facility is located at the same location
and the same point determines the maximum risk value for those
coverage distances.

Unlike risk value, population coverage does not follow a
monotonic pattern even though there is an increasing trend.
As long as the facility location does not change, the population
coverage increases with increasing coverage distance as expected.
For example, from 0 to 200, from 800 to 1400, and from 1600 to
2200, the facility location does not change but the population
coverage increases. When the facility location changes, the popu-
lation coverage may increase or decrease. For example, when
coverage distance is increased from 200 to 400, better risk value
and better population coverage are obtained simultaneously.
On the other hand, population coverages decrease when the
coverage distance is increased from 400 to 600 and from 1400
to 1600. At these coverage distances (600 and 1600), the facility is
placed at the locations that produce lower population coverages

but better risk values. So, risk value is improved at the expense of
population coverage.

With regard to coverage distance Kp�CR, no monotonic pattern
is observed. Kp�CR may decrease or increase depending on the
facility location that may change with increasing K. As long as the
location does not change, coverage distance Kp�CR remains the
same. Because the location alternatives increase with increasing
coverage distance K, better risk values may be obtained. However,
that does not necessarily mean better Kp�CR. Kp�CR may be greater
or less than K depending on the location.

8.5. The change in risk, covered population, and coverage distance

in p-CR based on p

To determine how the risk, covered population, and coverage
distance Kp�CR change in p-CR depending on p, the number of
facilities to locate, p-CR is solved for p changing from 1 to 80 with
increments of 10 with K¼200. The results are shown graphically
in Fig. 7(b). The results indicate that the risk value decreases
monotonically with increasing p. The marginal contribution of
increasing p diminishes as p gets larger. The risk value decreases
81%, 66%, 66%, and 12% when p changes from 1 to 10, from 10 to

Fig. 7. Change in risk, covered population, and coverage distance based on (a) K and (b) p.

İ. Akgün et al. / Omega 52 (2015) 168–179 177



20, from 20 to 30, and from 30 to 40, respectively. For pZ40, the
risk value does not change at all.

With regard to population coverage, it increases monotonically
with increasing p. For pZ50, the whole population is covered. For
p¼40, about 99.7% of the whole population is covered.

Coverage distance Kp�CR decreases monotonically with dimin-
ishing return as p is increased. It stabilizes for pZ40.

When all the results are considered, for K¼200, p¼40 may be
considered as a good decision. If a larger coverage distance is used,
p will decrease accordingly. Actually, the risk value and population
coverage obtained with p¼40 and p¼30, respectively, may be
achieved with p¼10 when K¼400. Similarly, coverage distance
Kp�CR obtained with p¼20 may be realized with p¼10.

9. An application of p-CR

p-CR has been applied to suggest the locations of facilities that
will be used by Turkish Red Crescent Society (TRC) for preposi-
tioning disaster-relief items. The underlying structure defined in
the previous section has been used after the confirmation by TRC.
TRC has currently split Turkey into 10 service regions and located a
facility for each region. Because of a need to reorganize, it has
started a decision making process to revise the number and
locations of the facilities. It has considered three decision alter-
natives: (1) current 10 facilities, (2) 15 facilities, and (3) 16
facilities. p-CR has been developed after the decision process has
been initiated and decision alternatives have almost been fina-
lized. In this context, p-CR has been used to evaluate the planned
locations and to suggest new locations in three steps: (1) the risk
values RPlanned and coverage distances KPlanned of the planned
locations have been determined, (2) p-CR has been used to
determine facility locations with coverage distances K¼KPlanned

for p¼10, 15, and 16, and (3) the current 10 facility locations have
been fixed and new locations have been determined by p-C and
p-CR for p changing from 11 to 16 with K¼Kp�C.

The risk values, coverage distances, and population coverages
are given Table 5. The results indicate that the differences between
the risk values of plannned locations and those of p-CR are
significant. The risk values of planned locations are higher than
those of p-CR about 19, 16, and 30 times for p¼10, 15, and 16,
respectively. For all three cases, p-CR covers the whole population
with a smaller coverage distance.

When the locations of p-CR are considered, there is one
common location for p¼10 and two common locations for p¼15
and 16 with those of the planned locations. On the other hand,

almost all of the locations given in Table 3 are selected by p-CR as
expected.

The results with 10 fixed locations indicate that the locations
determined by p-C cannot improve the rerefence risk value with
p¼10 even though the coverage distances are improved. On the
other hand, p-CR is able to find solutions with better risk values.
However, the improvement upon the reference solution is limited;
the risk value can be decreased up to about 25% of the current
solution. Actually, the risk values between p¼10þ3 and p¼10þ6
are almost the same. In this regard, because more than 99% of the
population is covered for all cases even though the coverage
distances are not the same, locating 10þ3 may be a cost-
effective decision. On the other hand, it is clear that much better
risk values are realized when all facility locations are determined
from scratch. However, this incurs much higher costs.

To present the results in a structured way, we have represented
the alternatives on the objective value space on a graph similar to
the one given in Fig. 8 with the axes representing the risk and cost
values. From the graph, we have determined the dominating
alternatives and explained which dominating alternative is to be
chosen depending on the preference of the decision maker. TRC
has not made the decision yet but p-CR clearly has added a new,
valuable dimension to take into account.

10. Conclusion

In this study, we address the facility location problem in the
pre-disaster phase of DM operations. We develop an optimization
model that minimizes the risk that a demand point may be
exposed to because it is not supported by the located facilities.
The purpose is to choose the locations such that a reliable facility
network to support the demand points is constructed. The risk for
a demand point is measured as the multiplication of the (prob-
ability) threat, the vulnerability of the demand point, and the
consequence. The vulnerability of a demand point is computed by
using fault tree analysis and incorporated into the optimization
model innovatively. To our knowledge, this paper is the first to use
such an approach. The resulting model is tested with several
problems. The results indicate that taking the risk into account
explicitly may create significant differences in the risk levels.
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Table 5

The results for the application.

p Planned p-CR

RPlanned KPlanned CPlanned Rp�CR Kp�CR Cp-CR

10 166,067 428 73,722,988 8854 341 73,722,988
15 83,139 360 73,722,988 5141 359 73,722,988
16 68,698 395 73,722,988 2296 371 73,722,988

p p-C p-CR

Rp�C Kp�C Cp-C Rp�CR Kp�CR Cp-CR

10þ1 166,067 428 73,722,988 72,565 428 73,722,988
10þ2 166,067 395 73,722,988 39,084 428 73,520,248
10þ3 166,067 371 73,722,988 40,208 395 73,268,950
10þ4 166,067 320 73,722,988 40,208 403 73,268,950
10þ5 166,067 294 73,722,988 33,235 403 73,520,248
10þ6 166,067 275 73,722,988 40,208 395 72,851,890

Fig. 8. Alternatives on the objective value space (risk and cost).
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