
The Annals of Statistics
2002, Vol. 30, No. 2, 528–555

RISK BOUNDS IN ISOTONIC REGRESSION

BY CUN-HUI ZHANG

Rutgers University

Nonasymptotic risk bounds are provided for maximum likelihood-type
isotonic estimators of an unknown nondecreasing regression function, with
general average loss at design points. These bounds are optimal up to scale
constants, and they imply uniform n−1/3-consistency of the �p risk for
unknown regression functions of uniformly bounded variation, under mild
assumptions on the joint probability distribution of the data, with possibly
dependent observations.

1. Introduction. In this paper, we provide nonasymptotic risk bounds for
maximum likelihood-type isotonic estimators of an unknown nondecreasing
regression function, with general average loss at design points, for possibly
dependent observations.

In the simplest model under consideration here, the relationship between the
response variables yi and covariates ti is specified by

yi ≡ f (ti )+ εi, 1≤ i ≤ n,(1.1)

where εi are i.i.d. errors with Eεi = 0 and Eε2
i = σ 2, ti are deterministic

design points and f (t) is a nondecreasing regression function. The least squares
estimator (LSE) of the unknown f is a left-continuous step function f̂n with jumps
only at ti , defined by

f̂n ≡ arg min

{
n∑

i=1

(
yi − f (ti)

)2
:f is nondecreasing

}
.(1.2)

Let V (f ) be the total variation of f . In Sections 2 and 3, we develop uniform
upper bounds, in terms of (n,V (f ), σ ), for the �p risk

Rn,p(f )≡
(

1

n

n∑
i=1

E
∣∣f̂n(ti)− f (ti)

∣∣p)1/p

.(1.3)

Our risk bounds are quite sharp. For 1≤ p < 3, they imply the uniform cube-root
convergence with tight constants:

0.64+ o(1)≤ n1/3

σ 2/3V 1/3
sup

V (f )≤V
Rn,p(f )≤Mp + o(1),(1.4)
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where Mp, depending on p only, are the constants in Theorem 2.3, for example,
M2 < 2.75.

The LSE (1.2) and related methods for estimating a monotone regression
or density function f (·) were proposed by Ayer, Brunk, Ewing, Reid and
Silverman (1955), van Eeden (1956) and Grenander (1956). The convergence of
n1/3{f̂n(x0)− f (x0)} in distribution at a fixed x0 was established by Prakasa Rao
(1969) and Brunk (1970). Groeneboom (1985) obtained asymptotic distributions
of the L1 loss and f̂n(x0) for the Grenander estimator. van de Geer (1990,
1993) obtained rates of convergence in probability for the LSE and median
regression estimators, including the n−1/3-consistency in probability of the �2 loss
of (1.2) for independent errors with maxi≤n E exp(b0ε

2
i )=O(1) for some b0 > 0.

Donoho (1991) obtained n1/3 supV (f )≤V Rn,2(f ) = O(1) for i.i.d. normal errors.
Birgé and Massart (1993) weakened Donoho’s assumption on i.i.d. errors to the
finiteness of some exponential moment. Wang (1996) considered nonasymptotic
bounds of Rn,2(f ) and the boundedness of (n/ logn)1/3 supV (f )≤V Rn,2(f ) for
i.i.d. errors with finite second moment. Recently, Meyer and Woodroofe (2000)
obtained bounds for R2

n,2(f ) for i.i.d. normal errors based on Stein’s (1981)
unbiased estimation of mean squared errors. For estimating monotone densities,
Birgé (1987, 1989) obtained nonasymptotic bounds for the L1 risk of the
Grenander estimator which imply the n−1/3-consistency. For a general discussion
of statistical methods with order restrictions, see Barlow, Bartholomew, Bremner
and Brunk (1972), Grenander (1980), Robertson, Wright and Dykstra (1988) and
Groeneboom and Wellner (1992).

Our risk bounds are derived through an inequality for the number of terms
greater than {σ 2/m}p/2 in the sum in (1.3). As a result, we use relatively
“light” probabilistic tools, for example, Doob’s inequality for martingales and
“good-λ inequality,” instead of entropy-type arguments, as used, for example,
in van de Geer (1990). Our methods are applicable to general loss functions
and dependent observations and allow model misspecification for nonmonotone
regression functions. These extensions are given in Sections 4 and 5. In Sections 6–
8, we consider general isotonic estimators of the form

f̂n ≡ arg max

{
n∑

i=1

φi
(
f (ti);yi) :f is nondecreasing

}
,

for example, log-likelihood φi(θ;y) ≡ log{gi(y|θ)} for certain densities gi . To
simplify the notation, we assume throughout that t1 ≤ t2 ≤ · · · ≤ tn. Let x+ ≡ x∨0
and x− ≡ (−x)+.

2. Risk bounds for the LSE. For p ≥ 1, define

r+,p(m,v)≡ max
n1<j≤n2−m

E

(
v + min

j≤�≤j+m
max

1≤k≤j

∑�
i=k εi

�− k + 1

)p
+
,

r−,p(m,v)≡ max
n1+m<j≤n2

E

(
−v + min

j≤�≤n max
j−m≤k≤j

∑�
i=k εi

�− k + 1

)p

−
,
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0≤ n1 ≤ n2 ≤ n, m= 0,1,2, . . . , v ≥ 0, and define

rp(m,v)≡ rp,n1,n2(m,v)≡ r+,p(m,v)+ r−,p(m,v).(2.1)

THEOREM 2.1. Let f̂n be the LSE in (1.2) based on observations (yi, ti), i =
1, . . . , n, from the regression model (1.1) with a nondecreasing f (t) and arbitrary
errors {εi}. Let p ≥ 1, 0≤ n1 ≤ n2 ≤ n and rp(m,v) be as in (2.1). Then

1

n∗

n2∑
j=n1+1

E
∣∣f̂n(tj )− f (tj )

∣∣p

≤
∫

0<x<∞
rp
(�x�, v(�x�))dHv

(
x;n∗, V∗

2

)(2.2)

for all nonincreasing, nonnegative continuous functions v(x), where V∗ ≡
f (tn2) − f (tn1+1), n∗ ≡ n2 − n1, �x� is the integer part of x and Hv(x;n,V )

is a continuous increasing function of x with

Hv(x;n,V )≡min
[
1, x

{
1+ V/v(x)

}
/n
]
.

Theorem 2.1, proved in Section 3, imposes no assumption on the stochastic
structure of the errors {εi}. Since (2.1) depends only on moment-type properties of
the familiar partial-sum processes of the errors, �p risk bounds for the LSE can be
easily derived from (2.2); cf. (3.5) and (3.7) below. The risk bound in (2.2) can be
viewed as a weighted sum of rp(m,v(m)) with total weight Hv(∞;n∗,V∗/2)= 1;
that is, E|f̂n(tj ) − f (tj )|p ≤ rp(mj , v(mj )) for certain mj , with the worst di-
stribution of {mj :n1 < j ≤ n2} being dominated by the discrete version of
Hv(dx;n∗,V∗/2). The power of (2.2) rests in its validity for all nonincreasing
functions v(·), for example, allowing optimization over a parametric family of such
functions. Moreover, (2.2) is localized since the bound for the interval {j :n1 <

j ≤ n2} depends only on the total variation of f in the interval [tn1+1, tn2].
In the rest of this section, we shall focus on independent errors with zero mean

and bounded variance. Since the order of rp(m,v) is vp +m−p/2 in the i.i.d. case,
it is natural to consider v(m)≡ c/

√
m+ 1. We shall provide risk bounds for (1.3)

only, as their local versions can be generated from Theorem 2.1 in the same manner
with n→ n∗ and V (f )→ V∗. Let

Jp(n,V )

≡
∫

0<x<∞
(x ∨ 1)−p/2d min

[
1, n−1

∫ x

0

{
1+ (3/2)V

√
t ∨ 1

}
dt

]
.

(2.3)

By calculus, Jp(n,V ) ∼ n−(p∧3)/3(logn)I {p=3} for fixed V > 0 and p ≥ 1;
cf. (3.7) and Lemma A.1. Let rp,n1,n2(m,v) be as in (2.1) and define

K∗
p,c ≡

{
sup
m≥0

rp,0,n(m, c/
√
m+ 1)

(m+ 1)−p/2

}1/p

, p ≥ 1, c > 0.(2.4)
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For nonnegative random variables X, c > 0 and 1≤ p < 3, define

Mp,c(X)≡
{

6E(c+X)p

(3− p)(2c)p/3

}1/p

, Mp(X)≡ inf
c>0

Mp,c(X).(2.5)

THEOREM 2.2. (i) Let Rn,p(f ), Jp(n,V ) and K∗
p,c be as in (1.3), (2.3)

and (2.4), respectively, and let V (f ) be the total variation of f . Then

Rn,p(f )≤ inf
c>0

K∗
p,c

{
Jp
(
n,V (f )/(2c)

)}1/p
, p ≥ 1.(2.6)

(ii) If εi are independent with Eεi = 0 and E|εi |p∨2 ≤ σ
p∨2
p , p ≥ 1, then

Rn,p(f )

≤ 21/pσp inf
c>0

[
(c/2+Cp)

{
Jp
(
n,V (f )/(cσp)

)}1/p]

≤ 21/pσpCp min
[
1,

3

2

{
3

(3− p)+

(
V (f )

nσpCp

)p/3

+ 1

n

∫ n

0

dx

(x ∨ 1)p/2

}1/p]
,

(2.7)

where Cp are constants depending on p only in general, and Cp =
√

2 for i.i.d. εi
with p ≤ 2.

(iii) If εi are i.i.d. N(0, σ 2) with σ ≤ σp , then (2.7) holds with Cp = 1 for
1≤ p ≤ 2, and for 1≤ p < 3

Rn,p(f )≤ σMp(Z0)

{(
V (f )

nσ

)p/3

+ 1

n

∫ n

0
(x ∨ 1)−p/2 dx

}1/p

,(2.8)

where Z0 ∼ |N(0,1)| and Mp(X) is as in (2.5). In particular, M2(Z0)≈ 3.50.

For 1≤ p ≤ 2 with σ 2
p ≡ σ 2 = Eε2

i , the statistical content of the right-hand side
of (2.7) is clear: (a) the lower bound σ {∫ n0 (x∨1)−p/2 dx/n}1/p is due to the spikes
of the LSE near the large jumps of f and the endpoints t1 and tn [cf. (2.11)]; (b) the
upper bound σ represents the minimax error for estimating f (ti) by yi for each i

when V (f ) is of larger order than n and f (ti) are widely spread; (c) between these
two extreme cases, σ {V (f )/(nσ )}1/3 provides the cube-root consistency of the
LSE when V (f )=O(1). None of these three factors can be removed from (2.7).
In this sense, (2.7) is sharp up to a scale constant, and the conditions cannot be
weakened.

For i.i.d. normal errors and p = 2, Meyer and Woodroofe (2000) proved that

R2
n,2(f )≤

σ 2EDn

n
≤ σ 2

n

[
κ0

{
V (f )

σ
+ logn

}
+ κ1

{
V (f )

σ

}2/3

n1/3
]
,
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where Dn ≡ {1 < j ≤ n : f̂n(tj ) > f̂n(tj−1)}. Since Dn ≤ n, their results imply
(2.7) up to a constant factor in this special case. The constants

√
κ0 and

√
κ1,

comparable to our M2(Z0)≈ 3.50 in (2.8), were not explicitly given.
Next, we consider asymptotic bounds. Let ϕ1(x) ≡ 4{ϕ(x) − x

∫∞
x ϕ(y) dy}

× I{x>0}, with ϕ(x) ≡ e−x2/2/
√

2π . By calculus, we have
∫∞

0 xpϕ1(x) dx =
4
∫∞

0 xpϕ(x) dx/(p+ 2) for p >−1; for example, (4/3)/
√

2π for p = 1 and 1/2
for p = 2. Groeneboom (1983) identified ϕ1 as the density of the slope, at t = 1, of
the concave majorant of the standard Brownian motion. We shall consider a double
array of errors εi ≡ εn,i ,1≤ i ≤ n, in (1.1).

THEOREM 2.3. Let Z1 be a variable with density ϕ1 and let Z be the location
of the maximum of W(t) − t2 for a two-sided standard Brownian motion W .
Suppose {εi ≡ εn,i, i ≤ n} are independent variables with Eεn,i = 0 and Eε2

n,i =
σ 2, {ε2

n,i , i ≤ n, n ≥ 1} is uniformly integrable and supn maxi≤n E|εn,i|p <∞.
Let 1≤ p < 3. Then, for V > 0 and large n,

22/3{E|Z|p}1/p + o(1)

≤Mn,p ≡ n1/3

σ 2/3V 1/3 sup
V (f )≤V

Rn,p(f )≤Mp + o(1),
(2.9)

where Mp ≡Mp(Z1) are as in (2.5); for example, M2 < 2.75. If the empirical∑n
i=1 I {ti ≤ t}/n converges in distribution to a continuous G(t), then

n1/3Rn,p(f )≤Mpσ
2/3

[∫ {
df (t)/dG(t)

}p/3
dG(t)

]1/p

+ o(1),(2.10)

where df/dG is the Radon–Nikodym derivative of the absolutely continuous part
of f with respect to G. If f (·) is a constant and 1 ≤ p ≤ 2, then R

p
n,p(f ) ≤∑n

m=0 rp(m,0)/n and

R
p
n,p(f )= (

1+ o(1)
) n∑
m=0

rp(m,0)

n

= (
1+ o(1)

)σp

n

{
2
∫

xpϕ1(x) dx

}∫ n

0
(x ∨ 1)−p/2 dx.

(2.11)

REMARK 2.1. By Groeneboom (1985), E|Z| ≈ 0.41, so that the lower bound
on the left-hand side of (2.9) is no less than 22/3E|Z|> 0.64 and (1.4) holds. The
proof of Theorem 2.3 indicates that the lower bound in (2.9) is sharp and that (2.10)
should hold with equality for Mp = 22/3{E|Z|p}1/p.

REMARK 2.2. If df is singular to dG, then n1/3Rn,p(f )→ 0 by (2.10) for
p < 3.



RISK BOUNDS IN ISOTONIC REGRESSION 533

3. Proofs of Theorems 2.1–2.3. We provide a mathematical description of
our basic ideas here by proving our risk bounds in the simplest model (1.1).

PROOF OF THEOREM 2.1. Let fi ≡ f (ti) and f̄k,� ≡∑�
i=k fi/(� − k + 1).

The proof is based on the well-known minimax formula for (1.2):

f̂n(tj )=min
�≥j max

k≤j

∑�
i=k yi

�− k + 1
;(3.1)

cf. page 23 of Robertson, Wright and Dykstra (1988) and Proposition 6.1. Define
mj ≡ max{m ≥ 0 : f̄j,j+m ≤ fj + v(m), j + m ≤ n2}. The minimax formula
implies

f̂n(tj )≤ min
j≤�≤j+mj

max
k≤j

( ∑�
i=k εi

�− k + 1
+ f̄k,�

)

≤ fj + v(mj )+ min
j≤�≤j+mj

max
k≤j

∑�
i=k εi

�− k + 1
,

(3.2)

as f̄k,� is nondecreasing in both k and �. Thus, by the definition of r+,p(m,v)

above (2.1), E(f̂n(tj )− fj )
p
+ ≤ r+,p(mj , v(mj )). Set �(m)≡ #{j :mj <m, n1 <

j ≤ n2}. We have
n2∑

j=n1+1

E
(
f̂n(tj )− fj

)p
+ ≤

∞∑
m=0

r+,p

(
m,v(m)

){
�(m+ 1)− �(m)

}
.(3.3)

Since f̄j,j+m is nondecreasing in m, mj ≤ m and n1 + 1 ≤ j ≤ n2 − (m+ 1)
imply f̄j,j+m+1−fj ≥ v(m+1), so that �(m+1) is bounded by the sum of m+1
and

n2−(m+1)∑
j=n1+1

fj,j+m+1 − fj

v(m+ 1)
=

n2−(m+1)∑
j=n1+1

j+m+1∑
i=j

∑i−1
k=j (fk+1 − fk)

(m+ 2)v(m+ 1)

≤
n2−1∑

k=n1+1

k∑
j=k−m

j+m+1∑
i=k+1

fk+1 − fk

(m+ 2)v(m+ 1)

=
n2−1∑

k=n1+1

fk+1 − fk

(m+ 2)v(m+ 1)

(m+ 1)(m+ 2)

2
.

(3.4)

Thus,

�(m+ 1)≤min
(
n∗, (m+ 1)

[
1+ V∗/{2v(m+ 1)}])= n∗Hv(m+ 1;n∗,V∗/2).

Since rp,+(m,v(m)) is nonincreasing in m, we are allowed to replace �(m) by its
upper bound n∗Hv(m;n∗,V∗/2) in (3.3). The proof is completed by applying the
same method to the negative part and then summing the two parts together. �
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PROOF OF THEOREM 2.2. (i) Set v(x) ≡ c/
√
x + 1. By (1.2), Theorem 2.1

and (2.4),

Rp
n,p(f )≤

∫ ∞
0

(K∗
p,c)

p(1+ �x�)−p/2 dH0
(
x;n,V (f )/(2c)

)
,

where H0(x;n,V )≡min{1, x(1+ V
√
x + 1)/n}. Thus, (2.6) follows from∫ ∞

0
(1+ �x�)−p/2 dH0(x;n,V )≤ Jp(n,V ).(3.5)

Inequality (3.5) is part of Lemma A.1.
(ii) Let hp(t)≡ {v+ t1/(p∨2)}p and

Y+,j,m ≡ max
1≤k≤j

(∑j+m
i=k εi

)
+

j +m− k + 1
, Y−,j,m ≡max

�≥j

(∑�
i=j−m εi

)
−

�− j +m+ 1
.

Since hp(t) is concave for t > 0, by (2.1) and the Jensen inequality,

rp(m,v)≤ sup
j

Ehp
(
Y
p∨2
+,j,m

)+ sup
j

Ehp
(
Y
p∨2
−,j,m

)

≤ 2hp

(
1

2

(
sup
j

EY
p∨2
+,j,m+ sup

j

EY
p∨2
−,j,m

))
.

Since εi are independent, it follows from (A.7) of Lemma A.2, with bi =
max(i,m + 1), that supj EY

p∨2
±,j,m ≤ C

p∨2
p σ

p∨2
p /(m + 1)(p∨2)/2 for certain uni-

versal constants Cp . Thus,

(K∗
p,c)

p ≤ sup
m≥0

rp(m, c/
√
m+ 1)

(m+ 1)−p/2 ≤ 2(c+Cpσp)
p.(3.6)

For i.i.d. εi and 1≤ p ≤ 2, the exchangeability of εi and an application of Doob’s
inequality for the reverse submartingales (

∑�
i=1 εi/�)± yield

sup
j

EY 2+,j,m+ sup
j

EY 2−,j,m ≤ E sup
�≥m+1

(
�∑

i=1

εi

�

)2

+
+E sup

�≥m+1

(
�∑

i=1

εi

�

)2

−

≤ 4E

(
m+1∑
i=1

εi

m+ 1

)2

+
+ 4E

(
m+1∑
i=1

εi

m+ 1

)2

−

= 4σ 2

m+ 1
,

so that (3.6) holds with Cp = √
2. Thus, in either the general or the i.i.d.

cases, (2.6) and (3.6) imply the first inequality of (2.7), with the Cp stated, after
a change of variable c→ cσp/2.
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The second inequality of (2.7) follows from

Jp(n,V )≤min
{

1,
3

(3− p)+

(
V

n

)p/3

+ 1

n

∫ n

0
(x ∨ 1)−p/2 dx

}
,(3.7)

which is part of Lemma A.1. Note that c = 0 and c = Cp are used in the infimum
in (2.7) respectively for the first and second bounds in the minimum.

(iii) For normal εi , �−1 ∑�
i=1 εi/σ = W̃ (�)/� = W(1/�) for some Brownian

motion processes W̃ (·) and W(·), so that

√
m sup

�≥m
�−1

(
�∑

i=1

εi

)
±

/
σ ≤√

m max
t≤1/m

{±W(t)} ∼ Z0.

Thus, (K∗
p,c)

p ≤ 2E
(
c + σZ0

)p
by (2.1) and (2.4). This implies (K∗

p,c)
p ≤

2(c+σ) for p ≤ 2 by the concavity of (1+√x)p , so that (2.7) holds with Cp = 1.
Finally, let us prove (2.8). Assume σ = 1 by scale invariance. By (2.6) and (3.7),

Rp
n,p ≤

6E(c+Z0)
p

(3− p)(2c)p/3

{(
V

n

)p/3

+ {
(2c)p/3(3− p)/3

}1

n

∫ n

0
(x ∨ 1)−p/2 dx

}
,

since (K∗
p,c)

p ≤ 2E(c + Z0)
p . By (2.5), the rest follows from (2cp)p/3(3 − p)/

3≤ 1, proved in Lemma A.3, where cp ≡ arg min{Mp,c(Z0) : c > 0}. �

PROOF OF THEOREM 2.3. By the uniform integrability of ε2
n,i , the Lindeberg

condition holds uniformly for {εn,i, k ≤ i ≤ �} as � − k → ∞. Thus, by the
invariance principle,

√
m+ 1

σ
min

j≤�≤j+m
max

1≤k≤j

∑�
i=k εn,i

�− k + 1
≈D min

0<s<1
max
t>1

W(s)−W(t)

t − s
∼ ϕ1,

where t ≈ (j + m − k + 1)/(m + 1), s ≈ (j + m − �)/(m + 1) and W(·) is
a standard Brownian motion. Let v(x) ≡ c/

√
x + 1. By (2.1) and as in the proof

of Theorem 2.2,

lim
m→∞

rp
(
m,v(m)

)
(m+ 1)−p/2 = lim

m→∞
2r±,p

(
m,v(m)

)
(m+ 1)−p/2 = 2E(c+ σZ1)

p.

Since Hv(x;n,V/2)=O(1/n) for all x > 0 and V > 0, by (2.2),

sup
V (f )≤V

Rp
n,p(f )≤

(
1+ o(1)

)
2E(c+ σZ1)

p
∫ ∞

0

(
1+ �x�)−p/2

Hv(x;n,V/2),

with c being the minimizer of Mp,c(Z1). Thus, Mn,p ≤Mp + o(1) by the proof
of (2.8). If G is continuous and f (t)= VG(t), then, by Brunk (1970),

lim
n→∞ n1/3Rn,p(f )= {

E|2Z|p}1/p
σ 2/32−1/3V 1/3.
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This gives the lower bound for Mn,p and so (2.9) holds. The proof of (2.11) is
simpler and omitted.

Finally, we prove (2.10) by dividing the real line into several intervals and using
local versions of (2.9). Let s≡ {−∞≡ s0 < s1 < · · ·< sk−1 < sk =∞}. The local
version of (2.9) implies

lim
n→∞np/3Rp

n,p(f ) ≤ inf
k,s

k∑
j=1

Mp
pσ

2p/37
p/3
j (f )7

1−p/3
j (G)

=Mp
pσ

2p/3
∫
(df/dG)p/3 dG,

where 7j(h) ≡ 7j,s(h) ≡ h(sj ) − h(sj−1) for all h. Note that the infimum in-
volves only the absolutely continuous part of f with respect to G, since the sum of
7

p/3
j (f )7

1−p/3
j (G) over {j :7j(f ) > M7j(G)} is bounded by Mp/3−1V (f )=

o(1) for large M . �

4. Nonmonotone regression functions and general loss. Let

yi ≡µ(ti)+ εi, 1≤ i ≤ n,(4.1)

where µ is an arbitrary function and the errors εi are possibly dependent.
Although (1.2) is derived for the purpose of estimating nondecreasing regression
functions, the true µ(·) may not be monotone. Most results in the literature concern
the case of monotone µ(·). Birgé (1989) showed that the Grenander estimator
performs reasonably well when the true density is nearly monotone.

Define the population version of (1.2) by

f(n) ≡ arg min

{
n∑

i=1

(
µ(ti)− f (ti)

)2
:f is nondecreasing

}
.(4.2)

If µ(t1)≤ · · · ≤ µ(tn), then f(n) = µ at design points. If f̃n is an isotonic estimator,
then (4.2) implies, without condition on µ(·),

‖f(n) −µ‖n ≤ ‖f̃n −µ‖n ≤ ‖f(n) −µ‖n + ‖f̃n − f(n)‖n,(4.3)

where ‖h‖n ≡ {∑n
i=1 h

2(ti)/n}1/2. We argue that isotonic estimators should be
used when we have reason to believe that µ(·) is isotonic or nearly so, and by (4.3)
we should look for estimators close to f(n). We may also view ‖f̃n− f(n)‖n as the
estimation error and ‖f(n)−µ‖n the model approximation error. Thus, we consider
in this section risks of the form

∑n2
i=n1+1 EL(f̂n(ti)− f(n)(ti)) for a general loss

function L(x) and the f(n) in (4.2) without assuming the monotonicity of µ(·).
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Let L+(x)≡L(x)I{x≥0} and L−(x)≡ L(x)I{x<0} and define

rL(m,v)≡ max
1<j≤n−m

EL+
(
v + max

1≤k≤j

∑j+m
i=k εi

j +m− k + 1

)

+ max
1+m<j≤nEL−

(
−v +min

�≥j

∑�
i=j−m εi

�− j +m+ 1

)
.

(4.4)

THEOREM 4.1. Let f̂n be the LSE in (1.2) based on {(yi, ti), i ≤ n} from
the regression model (4.1) with arbitrary µ(·) and {εi}. Let L(x) ≥ 0 be a loss
function that is nonincreasing in (−∞,0) and nondecreasing in [0,∞). Then, for
0≤ n1 ≤ n2 ≤ n,

1

n∗

n2∑
j=n1+1

EL
(
f̂n(tj )− f(n)(tj )

)

≤
∫

0<x<∞
rL
(�x�, v(�x�))dHv(x;n∗,V∗)

(4.5)

for all nonincreasing, nonnegative continuous v(x), where V∗(f(n))≡ f(n)(tn2)−
f(n)(tn1+1), f(n) is as in (4.2) and n∗ and Hv(x;n,V ) are as in Theorem 2.1.

REMARK 4.1. By (4.2), V∗(f(n))≤ V (f(n))≤max1≤i≤j≤n{µ(tj )−µ(ti)}.

REMARK 4.2. For L(x) = |x|p , the differences between (4.5) and (2.2) are
the replacement of rp by the slightly larger (4.4) and the loss of factor 1/2 in V∗/2.
Thus, Theorems 2.2 and 2.3 can be easily extended, for the �p risk of f̂n− f(n), to
the case of general nonmonotone µ in (4.1).

PROOF OF THEOREM 4.1. Let f(n),j ≡ f(n)(tj ). Define

mj ≡max
{
m≥ 0 :f(n),j+m ≤ f(n),j + v(m), j +m≤ n2

}
.

Let �(j) be the largest � ≤ n satisfying f(n),� = f(n),j and let �∗j ≡ �(j + mj).
By (3.1),

f̂n(tj )=min
�≥j max

k≤j

∑�
i=k yi

�− k+ 1
≤max

k≤j

∑�∗j
i=k εi

�∗j − k + 1
+max

k≤j

∑�∗j
i=k µ(ti)

�∗j − k + 1

and maxk≤�∗j
∑�∗j

i=k µ(ti)/(�
∗
j − k + 1) = f(n),�∗j = f(n),j+mj

≤ f(n),j + v(mj ).
Thus,

L+
(
f̂n(tj )− f(n),j

)≤L+
(
v(mj )+ max

k≤�∗j−m

∑�∗j
i=k εi

�∗j − k + 1

)
(4.6)
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holds almost surely, and certainly in expectation, by simple algebra and the mono-
tonicity of L+. This leads to a slightly different version of (3.3). Since (3.2) is no
longer valid for the current mj , the upper bound for �(m+ 1)− (m+ 1) in (3.4) is
replaced by

n2−(m+1)∑
j=n1+1

f(n),j+m+1 − f(n),j

v(m+ 1)
=

n2−(m+1)∑
j=n1+1

∑j+m
k=j (f(n),k+1 − f(n),k)

v(m+ 1)

≤ (m+ 1)
V∗(f(n))
v(m+ 1)

.

The rest of the proof is identical to the parallel parts of the proof of Theorem 2.1
and is omitted. �

5. Dependent errors. In this section, we apply Theorem 4.1 to the �p risk

R∗
n,p ≡

(
1

n

n∑
i=1

E
∣∣f̂n(ti)− f(n)(ti )

∣∣p)1/p

,(5.1)

with dependent errors in (4.1) satisfying the moment condition

(
E

∣∣∣∣∣
�∑

i=k

εi

�− k + 1

∣∣∣∣∣
p′)1/p′

≤ σ

(�− k + 1)α
∀k ≤ �,(5.2)

for some 0 < α < 1, p′ ≥ 1/(1−α) and σ <∞. Consider the case of Eεi = 0. For
p′ = 2, (5.2) holds for α = 1/2 if the errors are uncorrelated with Eε2

i ≤ σ 2, or for
α < 1/2 if the errors are stationary with Eε1εk =O(k−2α). For independent εi and
p′ ≥ 1, (5.2) for any α implies maxi≤n E|εi |p′ = O(1), which then implies (5.2)
for α = 1− 1/(2∧ p′); cf. Lemma A.2.

THEOREM 5.1. Let 0 < α < 1 ≤ p < ∞ and c ≡ cα ≡ αe1/α−1. Let f̂n,
f(n) and R∗

n,p be as in (1.2), (4.2) and (5.1). Suppose that (5.2) holds for p′ ≥
max{p,1/(1− α)}. Then

R∗
n,p ≤M∗σ

{∫ ∞
0

logβp(x + 1+ c)

max(xα, xpα)
dHα,β,c(x;n,V (f(n))/σ )

}1/p

,(5.3)

where Hα,β,c(x;n,V ) ≡ min[1, (x/n){1 + V xα/ logβ(x + 1 + c)}], β ≡
I{p′=1/(1−α)} and M∗ <∞ depending on (p,p′, α) only. Consequently,

lim sup
n→∞

nα/(1+α)

(logn)β/(1+α)
sup

V (f(n))≤V
R∗
n,p ≤

M∗σ 1/(1+α)V α/(1+α)

1− pα/(1+ α)
(5.4)

for p < 1+ 1/α.
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REMARK 5.1. Under (5.2), Theorem 5.1 describes the connection between
the convergence rate n−α for the estimation of a common mean by the sample
mean of {yi} and the convergence rate n−α/(1+α) for (1.2); for example, α/(1 +
α)= 1/3 for α = 1/2.

REMARK 5.2. The LSE f̂n is a local average of {yi} over a data-driven
partition of {1, . . . , n}. For µ(·)↑ and β = 0, the order of |f̂n(ti ) − µ(ti)|p is
(σ/mα)p under (5.2) if f̂n(ti) is roughly the average of a block of m of the yi’s
and µ(ti) does not change much in the block. As in Theorem 2.1, (5.3) is obtained
by finding upper bounds on the number of such blocks of size m, and thus the pth
power of its right-hand side is a weighted average of (σ/mα)p .

PROOF OF THEOREM 5.1. Let v(x) ≡ σ {log(x + 1 + cα)}β/(x + 1)α . It
follows from Lemma A.2(i) and condition (5.2) that, for the loss L(x)= |x|p ,

21−pEL+
(
v + max

1≤k≤j

∑j+m
i=k εi

j +m− k + 1

)
≤ vp +

[
K

p′
p′,α

{log(m+ 2)}βp′
(m+ 2)αp′

σp′
]p/p′

,

so that rL(m,v(m))≤ (M∗
p′,α)

pvp(m) by (4.4). Thus, by Theorem 4.1,

(R∗
n,p)

p ≤ (M∗
p′,α)

pσp
∫ ∞

0
v
p
1

(�x�)dHv1

(
x;n,V (f(n))/σ

)
,

with v1(x) ≡ v(x)/σ , and (5.3) follows from (A.1) of Lemma A.1 with h(x) ≡
{log(x + cα)}β . Note that xα/ log(x + c) is increasing in [0,∞) iff c ≥ cα . The
asymptotic bound (5.4) follows from (5.3) by straightforward calculus. �

6. General isotonic regression methods. Let −∞ ≤ a∗ < a∗ ≤ ∞ and let
φi(θ;yi) be observable continuous functions of θ from [a∗, a∗] into [−∞,∞],
given the response variables yi . Here, the topology in the extended real line allows
xn →±∞ in the usual sense. In this section, we consider restricted MLE-type
general isotonic estimators

f̂n ≡ arg max

{
n∑

i=1

φi
(
f (ti);yi) :f is nondecreasing and a∗ ≤ f ≤ a∗

}
.(6.1)

Estimators of the form (6.1) have been considered by van Eeden (1957a, b),
Robertson and Waltman (1968), Brunk and Johansen (1970) and Barlow and
Ubhaya (1971), among others. van de Geer (1990, 1993) obtained the n−1/3-
consistency in probability of the �2 loss functions for the median regression with
φi(θ;yi)= |yi| − |yi − θ |.

The estimator (6.1) is quite general. In location models, φi(θ;yi)= wiφ̃({yi −
g(θ)}/σi) is often used, where wi and σi are constants, g(θ) is a link function
and φ̃(·) is a reward function or a log-likelihood function. For example, φi(θ;yi)=
log{φ0((yi − θ)/σi)/σi} for some known density function φ0. For weighted
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�p regression, (6.1) is used with φi(θ;yi) = wi{|yi |p − |yi − θ |p}/p for certain
p ≥ 1. The LSE (1.2) is a special case of (6.1) with φi(θ;yi)= {y2

i − (yi − θ)2}/2.
For estimators based on quasi-likelihood, φi(θ;yi)= {g(θ)yi − ψ(g(θ))}/σ 2

i for
a convex function ψ . For example, φi(θ;yi)= θyi − log(1+ eθ ) for Bernoulli yi
and φi(θ;yi)= yi log(θ)−θ for Poisson yi . In Section 8, we shall consider median
regression with φi(θ;yi)= |yi| − |yi − θ |.

Suppose there exist a∗ ≤ θ̂±k,� ≤ a∗ for 1≤ k ≤ �≤ n such that

�∑
i=k

φi(θ
′;yi)−

�∑
i=k

φi(θ
′′;yi)



< 0, if a∗ ≤ θ ′ < θ ′′ ≤ θ̂−k,�,
= 0, if θ̂−k,� ≤ θ ′ < θ ′′ ≤ θ̂+k,�,
> 0, if θ̂+k,� ≤ θ ′ < θ ′′ ≤ a∗.

(6.2)

This unimodality condition implies that for the estimation of a common para-
meter θ based on yk, . . . , y�, the “MLE,” that is, the set of maximizers of the
“log-likelihood”

∑�
i=k φi(θ;yi), is a closed interval [θ̂−k,�, θ̂+k,�]. The estimator (6.1)

can be easily computed using the pool-adjacent-violators algorithm under (6.2),
as both families of modes {θ̂+k,�} and {θ̂−k,�} satisfy the Cauchy-mean condition;
cf. (6.6) and Robertson and Waltman (1968).

Let L(·) be a loss function, with L(0) = 0, such that L↑ in [0,∞] and L↓
in [−∞,0] [limx→±∞L(x) =∞ allowed]. Let f0 be a nondecreasing function.
We consider upper bounds for sums of EL(f̂ (ti )− f0(ti )). Define, via integrating
by parts if necessary,

r+(m,v;f0)≡ max
n1<j≤n2−m

∫ ∞
0

P
{
min
�≥j max

k≤j θ̂+k,� − f0(tj+m) > x − v
}
dL(x),

r−(m,v;f0)≡ max
n1+m<j≤n2

∣∣∣∣
∫ 0

−∞
P
{
min
�≥j max

k≤j θ̂−k,� − f0(tj−m) < x + v
}
dL(x)

∣∣∣∣
for v ≥ 0, m= 0,1, . . . and integers 0≤ n1 ≤ n2 ≤ n, and define

r(t, v;f0)≡ r+(m,v;f0)+ r−(m,v;f0).(6.3)

THEOREM 6.1. Let f0↑ and let r(t, v;f0) be as in (6.3). Then, for 0 ≤ n1 ≤
n2 ≤ n,

1

n∗

n2∑
j=n1+1

EL
(
f̂n(tj )− f0(tj )

)

≤
∫ ∞

0
r
(�x�, v(�x�);f0

)
dHv(x;n∗,V∗)

(6.4)

for all nonincreasing, nonnegative continuous v(x), where V∗ ≡ f0(tn2) −
f0(tn1+1) and n∗ ≡ n2 − n1, Hv(x;n,V ) ≡ min[1, x{1 + V/v(x)}/n] and �x�
are as in Theorem 2.1.
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A remarkable aspect of Theorem 6.1 is that (6.4) holds for all nondecreasing
continuous functions v. This is probably related to the insensitivity of the norm
that is used to find the isotonic estimator; cf. Section 1.5 of Robertson, Wright and
Dykstra (1988). If r(m,v(m);f0) ≤ {Mv(m)}p for v(m) ≡ h(m + 1)/(m + 1)α

and a suitable h, then (6.4) and Lemma A.1 can be used to derive risk bounds as in
Theorem 5.1. Explicit risk bounds for more specific loss functions will be derived
from (6.4) in Sections 7 and 8.

The proof of Theorem 6.1 is based on the minimax bounds in the following
proposition. Minimax formulas of slightly different form were obtained by van
Eeden (1957a, b) and Robertson and Waltman (1968), among others.

PROPOSITION 6.1. Let θ̂±k,� be as in (6.2) and let f̂n be a solution of (6.1).
Then

min
�≥j max

k≤j θ̂−k,� ≤ f̂n(tj )≤min
�≥j max

k≤j θ̂+k,�, 1≤ j ≤ n.(6.5)

In particular, f̂n(tj )=min�≥j maxk≤j
∑�

i=k yi/(�− k + 1) for the LSE (1.2).

PROOF OF THEOREM 6.1. Set mj ≡ max{m ≥ 0 :fj+m ≤ fj + v(m), j +
m ≤ n2} as in the proof of Theorem 4.1, where fj ≡ f0(tj ). Then, by (6.5)
and (6.3),∫ ∞

0
P
{
f̂n(tj )− fj > x

}
dL(x)≤

∫ ∞
0

P
{
f̂n(tj )− fj+mj

> x − v(mj )
}
dL(x)

is bounded by r+(mj , v(mj );f0). The rest of the proof is the same as that of
Theorem 4.1 and is omitted. �

PROOF OF PROPOSITION 6.1. First, let us verify the Cauchy-mean property
for θ̂+k,�:

min
(
θ̂+k,j , θ̂

+
j+1,�

)≤ θ̂+k,� ≤max
(
θ̂+k,j , θ̂

+
j+1,�

)
, k ≤ j < �.(6.6)

Since both S1(θ)≡∑j
i=k φi(θ;yi) and S2(θ)≡∑�

i=j+1 φi(θ;yi) are nondecreas-

ing in θ ≤min(θ̂+k,j , θ̂
+
j+1,�), the sum S(θ)≡∑�

i=k φi(θ;yi) is nondecreasing in θ

in the same interval, which implies the first inequality of (6.6) by (6.2). Likewise,
the second inequality of (6.6) holds, since both S1(θ) and S2(θ) are strictly de-
creasing in θ > max(θ̂+k,j , θ̂

+
j+1,�).

By symmetry, we shall only prove the second inequality of (6.5) for a fixed
j = j0. Since the minimax formula is nondecreasing in j , we assume f̂n(tj0−1) <

f̂n(tj0), with the convention f̂n(t0)≡−∞. It suffices to show f̂n(tj0) ≤ θ̂+j0,�0
for

every fixed �0 ≥ j0.
Let j0 < j1 < · · ·< jm be the jump points of f̂n in [j0, �0] and let jm+1 = n+1.

Let k be fixed, 1≤ k ≤m+1, and set f̃ (ti)≡ f̂n(ti)−a for i ∈ [jk−1, �0∧(jk−1)]
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and f̃ (ti)≡ f̂n(ti) otherwise. Since f̂n(tjk−1−1) < f̂n(tjk−1), f̃ (ti) is nondecreasing
in i for sufficiently small a > 0, so that, by the optimality of f̂n,

�0∧(jk−1)∑
i=jk−1

φi
(
f̂n(tjk−1);yi

)− �0∧(jk−1)∑
i=jk−1

φi
(
f̂n(tjk−1)− a;yi)

=
n∑

i=1

φi
(
f̂n(ti);yi)− n∑

i=1

φi
(
f̃ (ti);yi)≥ 0.

This and the unimodality (6.2) imply f̂n(tjk−1) ≤ θ̂+jk−1,�0∧(jk−1). Since f̂n is
nondecreasing and 1≤ k ≤m+ 1 is arbitrary, by the Cauchy-mean property (6.6),

f̂n(tj0)≤ min
1≤k≤m+1

f̂n(tjk−1)≤ min
1≤k≤m+1

θ̂+jk−1,�0∧(jk−1) ≤ θ̂+j0,�0
.

This completes the proof. �

7. Truncated �p and zero–one losses. We shall apply Theorem 6.1 to loss
functions L(x)= (|x| ∧ δ0)

p and L(x)= I{|x|>δ0}. Let ψi(θ)≡ Eφi(θ;yi). As in
Section 4, we consider (6.4) with f0 = f(n), the population version of (6.1), given
by

f(n) ≡ arg max

{
n∑

i=1

ψi

(
f (ti)

)
:f is nondecreasing and a∗ ≤ f ≤ a∗

}
.(7.1)

Assume throughout this section that

φi(θ;yi)= φ̃i
(
g(θ);yi)(7.2)

for certain random concave functions φ̃i(·;yi) and an increasing continuous g.
Define

ρ±i (θ)≡ lim
ε→0±

φ̃i
(
g(θ)+ ε;yi)− φ̃i

(
g(θ);yi)

ε
,(7.3)

that is, the right- and left-continuous versions of φ̃i(g(θ) + dx;yi)/dx. For
[a∗, a∗] #= [−∞,∞], the domain of g is assumed to be [−∞,∞], through natural
extension of g if necessary, so that (7.3) is meaningful for all −∞ < θ < ∞.
For (4.1) with φ(θ;yi)= {y2

i − (yi − θ)2}/2, ρ±i (θ)= yi − θ = (∂/∂θ)φi(θ;yi).
Define

k(j)≡min
{
k :f(n)(tk)= f(n)(tj )

}
,

�(j)≡max
{
� :f(n)(t�)= f(n)(tj )

}
.

(7.4)

By the concavity of φ̃i(·;yi) and the monotonicity of g, ρ±i (θ;yi) are nonincreas-
ing in θ . Since θ̂±k,� are modes of

∑�
i=k φi(θ;yi), (θ − θ̂±k,�)

∑�
i=k ρ

±
i (θ;yi) ≤ 0
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for all a∗ < θ < a∗. Thus, for k ≤ �≤ �(j+m), θ̂
+
k,� > f(n)(tj+m)+ x implies

0≤
�∑

i=k

ρ+i
(
f(n)(tj+m)+ x;yi)≤ �∑

i=k

ρ+i
(
f(n)(ti)+ x;yi)

by the monotonicity of ρ+i (·;yi) and (7.4). Consequently,{
min
�≥j max

k≤j θ̂+k,� − f(n)(tj+m) > x
}

⊆
{

min
j≤�≤�(j+m)

max
k≤j

�∑
i=k

ρ+i
(
f(n)(ti )+ x;yi)≥ 0

}
.

(7.5)

Let ε+i (x) be nonincreasing [ε−i (x) nondecreasing] random functions of x such
that

�(j)∑
i=k

ρ+i
(
f(n)(ti)+ x

)≤ �(j)∑
i=k

ε+i (x),

�∑
i=k(j)

ρ−i
(
f(n)(ti)− x

)≥ �∑
i=k(j)

ε−i (x)
(7.6)

for all 1 ≤ k ≤ j ≤ � ≤ n, for example, ε±i (x) = ρ±i (f(n)(ti ) ± x), where k(j)

and �(j) are as in (7.4). We shall derive risk bounds based on moment conditions
on ε±i (x) and the relationship{

min
�≥j max

k≤j θ̂+k,� − f(n)(tj+m) > x
}

⊆
{

max
k≤j

�(j+m)∑
i=k

ε+i (x)≥ 0, f(n)(tj+m)+ x < a∗
}(7.7)

from (7.5) and its counterpart for ε−i (x), in view of (6.3). Note that a∗ ≤ θ̂±k,� ≤ a∗.
Let 0 < α < 1≤ p <∞, p′ ≥ 1/(1−α), x > 0 and d0 > 0. Consider conditions

�(j)∑
i=k

Eε+i (x)
�(j)− k + 1

≤−d0x,

�∑
i=k(j)

Eε−i (x)
�− k(j) + 1

≥ d0x ∀k ≤ j ≤ �(7.8)

for 0 < x < a∗ − f(n)(tj ) in the first inequality and 0 < x < f(n)(tj ) − a∗ in the
second,

{
E

∣∣∣∣∣
�∑

i=k

ε±i (x)−Eε±i (x)
�− k+ 1

∣∣∣∣∣
p′}1/p′

≤ σd0

(�− k + 1)α
∀k ≤ �,(7.9)
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cf. the discussion after (5.2), and for all j ≥ 1 and m≥ 1,∫ δ0

0
P
{±{ε±j (x)−Eε±j (x)

}≥md0x/2
}
dxp ≤ (σ/m)p,(7.10)

where ε±i (x) are as in (7.6) and k(j) and �(j) are as in (7.4).
Let ψi(θ) ≡ Eφi(θ;yi) as in (7.1) and ψ̇±

i (θ) be their left and right deriv-
atives. If the limit in (7.3) is exchangeable with the expectation and ε±i (x) =
ρ±i (f (ti)± x) is chosen for (7.6), then Eε±i (x)= ψ̇±

i (f(n)(ti)± x). In this case,

�(j)∑
i=k

Eε+i (x)≤
�(j)∑
i=k

Eε+i (0)≤ 0, 0≤
�∑

i=k(j)

Eε−i (0)≤
�∑

i=k(j)

Eε−i (x)(7.11)

for all the (x, j, k, �) considered in (7.8), by the monotonicity of ε±i (x) and the

optimality of f(n). Note that, by (7.1),
∑�(j)

i=k ψi(f(n)(ti)+ x) ≤∑�(j)
i=k ψi(f(n)(ti))

for x > 0 and k(j)≤ k ≤ �(j). Consequently, (7.8) holds if ψ̇±
i (θ+x)− ψ̇±

i (θ)≥
d0x for all a∗ < θ < θ + x < a∗.

In the location model (4.1) with φ(θ;yi)= {y2
i − (yi − θ)2}/2,

�∑
i=k

ρ±i
(
f(n)(ti)± x

)= �∑
i=k

{
yi − f(n)(ti)∓ x

}

=
�∑

i=k

(εi ∓ x)+
�∑

i=k

{
µ(ti)− f(n)(ti )

}
.

Since
∑�

i=1 f(n)(ti) is the convex minorant of
∑�

i=k µ(ti), by (7.4),

�(j)∑
i=k

{
µ(ti)− f(n)(ti)

}≤ 0≤
�∑

i=k(j)

{
µ(ti)− f(n)(ti )

}
, k ≤ j ≤ �.

Thus, (7.6) holds for ε±i (x) = εi ∓ x. Furthermore, for either choices ε±i (x) =
εi ∓ x and ε±i (x)= ρ±i (f(n)(ti)± x), (7.8) holds with d0 = 1 and (7.9) and (7.10)
follow from (5.2). In fact, rL(m,v) ≤ r(m,v;f(n)) by (4.4), (7.7) and (6.3). It is
clear that (7.8) may not hold if k(j) and �(j) are replaced by general 1≤ k ≤ �≤ n.

With f̂n and f(n) in (6.1) and (7.1), respectively, let

R∗
n,p ≡

(
1

n

n∑
i=1

E min
{|f̂n(ti)− f(n)(ti)|p, δp}

)1/p

.(7.12)
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THEOREM 7.1. Let 0 < α < 1 ≤ p <∞, 0 < δ0 ≤∞ and p′ ≥ max{p,1/
(1− α)}. Suppose (7.8) and (7.9) hold for all 0 < x < δ0. Suppose that either (a)
δ0 <∞ for p′ = p or (b) condition (7.10) holds and α ≤ min(1/2,1− 1/p) and
both sequences {ε+i (x), i ≤ n} and {ε−i (x), i ≤ n} are independent for each x.
Let β ≡ I{p′=1/(1−α)} + p−1I{p′=p} under (a) and β ≡ 0 under (b). Then (5.3)
holds with the R∗

n,p in (7.12), M∗ ≡M∗
p,p′,α and c≡ (α/β)eβ/α−1. Consequently,

(5.4) holds.

THEOREM 7.2. Suppose (7.8) and (7.9) hold for x = δ0/2 and p′ ≥ 1/(1−α).
Then

n∑
i=1

P
{|f̂n(ti)− f(n)(ti)|> δ0

}

≤Mp′,α
σp′ logβ

′
(n+ 1)

δ
p′
0 n−(1−p′α)+

(
1+ V (f(n))

δ0

)
,

(7.13)

where β ′ ≡ p′I{p′=1/(1−α)≤1/α} + I{p′=1/α} without additional conditions, β ′ ≡
I{p′=1/α} if both {ε+i (δ0/2), j ≤ n} and {ε−i (δ0/2), j ≤ n} are independent
sequences and β ′ ≡ 0 if α = 1− 1/p′ > 0 and 1 < p′ ≤ 2 and {ε±i (δ0/2), j ≤ n}
are both i.i.d. sequences.

The proofs of Theorems 7.1 and 7.2 are based on the moment and tail
probability inequalities provided in Lemma A.2.

PROOF OF THEOREM 7.1. First, consider the case p′ > max{p,1/(1 − α)}.
It follows from the definition of r+(m,v; δ0) in (6.3), (7.7), the monotonicity
of ε+i (·) and (7.8) that

21−pr+(m,v;f(n))
≤max

j
21−p

∫ δ0

0
P

{
max

k≤j−m

�(j)∑
i=k

ε+i (x − v)≥ 0

}
dxp

≤ vp +max
j

∫ δ0

0
P

{
max

k≤j−m

�(j)∑
i=k

ε+i (x)−Eε+i (x)
�(j)− k + 1

≥ d0x

}
dxp.

(7.14)

By the Markov inequality, Lemma A.2(i) and (7.9), the integration on the right-
hand side is bounded by

∫ δ0

0
min

{
1,

K
p′
p′,α(σd0)

p′

(m+ 1)p′α(d0x)p
′

}
dxp ≤ K

p

p′,ασ
p

(m+ 1)αp

∫ ∞
0

min{1, x−p′}dxp.
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These and the same for r−(m,v;f(n)) imply r(m,v(m);f(n)) ≤ K∗vp(m) for
v(m) ≡ σ/(m+ 1)α . Thus, with β = 0, (5.3) follows from Lemma A.1 as in the
proof of Theorem 5.1.

For p′ = 1/(1 − α), the probability inside the integration is bounded by the

smaller of one and K
p′
p′,α(σd0)

p′ logp
′
(m+ 1 + c)/{(m+ 1)p

′α(d0x)
p′ } by Lem-

ma A.2(i). For p′ = p,
∫∞

0 min(1, x−p′) dxp should be replaced by

∫ δ0(m+1)α/(Kσ)

0
min{1, x−p′}dxp = α log(m+ 1+ c)+O(1).

These two modifications of the calculation yield r(m,v(m);f(n)) ≤ K∗vp(m)

for v(m) ≡ σ logβ(1 + c + m)/(m + 1)α . Again, Lemma A.1 can be used to
prove (5.3).

Now, consider the independence case. Set � ≡ �(j) and Xi ≡ ε+�−i+1(x) −
Eε+�−i+1(x). By (A.6) of Lemma A.2 with (k0, c, t) = (2,2/3, (3/4)d0x) and
bi = (m+ 1)∨ i, the integration on the right-hand side of (7.14) is bounded by

∫ δ0

0
P

{
max

1≤i≤�
Si

(m+ 1)∨ i
> xd0

}
dxp

≤
∫ δ0

0
P

{
max

1≤i≤�
Xi

(m+ 1)∨ i
>

xd0

2

}
dxp

+
∫ δ0

0

(
min

{
1,

4p

(xd0)p
E max

1≤i≤�

∣∣∣∣ Si

(m+ 1)∨ i

∣∣∣∣
p})2

dxp.

By (7.10), the first integral above is on the order of
∑�

i=1{(m + 1) ∨ i}−p ∼
(m+ 1)1−p ≤ (m + 1)−αp, while the second one is on the order of (m + 1)−αp

by (A.7) of Lemma A.2 and (7.9). The rest is the same as the proof of Theorem 5.1.
�

PROOF OF THEOREM 7.2. Let v(x) ≡ v0 ≡ δ0/2 (a constant). By Theo-
rem 6.1 with L(x) ≡ I{|x|>δ0} and Lemma A.2, the left-hand side of (7.13) is
bounded by

n∑
m=0

r(m,v0;f(n))
(

1+ V (f(n))

v0

)

≤K
p′
p′α

(
2σ

δ0

)p′(
1+ V (f(n))

v0

) n∑
m=0

logβ1p
′
(m+ 1)

(m+ 1)p′α

as in the proof of Theorem 7.1, where β1 ≡ I{p′=1/(1−α)} in general and β1 ≡ 0 for
independent ε±i (v0). Thus, (7.13) holds for β ′ = β1p

′I{p′α≤1} + I{p′α=1}.
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In the i.i.d. case with 1 < p′ ≤ 2, (7.9) implies E|Xi |p′ ≤ (σd0)
p′ , where

Xi ≡ ε+i (v0)−Eε+i (v0). Let Sk ≡∑k
i=1 Xi . By Chow and Lai (1978),

n∑
m=0

r(m,v0;f(n))≤
n∑

m=0

n2−p′

m2−p′ P
{

sup
k≥m+1

Sk

k
> d0v0

}

≤ K
p′
p′ n

2−p′

(d0v0)p
′ E|X1|p′ . �

8. Rates of convergence in probability. Although Theorems 7.1 and 7.2 deal
with truncated �p and zero–one losses, they imply convergence in probability of
the �p losses without truncation under a mild additional condition (8.1). We shall
also consider here median regression as an example.

THEOREM 8.1. Suppose (5.4) and (7.13) hold for certain (α,p,p′, β,β ′, δ0),
with p < 1 + 1/α, p′ > p and 0 < δ0 < ∞ as in Theorems 7.1 and 7.2. Let
γ ≡ 1/p− α/(1+ α)− (1− p′α)+/p and β ′′ ≡ β/(1+ α)− β ′/p. Define

bn ≡ nα/(1+α)

(logn)β/(1+α)
, xn ≡ n1/p/bn

{n(1−p′α)+(logn)β ′ }1/p = nγ (logn)β
′′
.

Let θ̂±k,� be as in (6.2) and let kn,ε ≡ �n(1−p′α)+(logn)β
′
/ε�. Suppose that, for all

ε > 0,

P
{

max
0≤k<kn,ε

θ̂+n−k,n ≥ f(n)(tn)+Mxn

}

+P
{

min
1≤k≤kn,ε

θ̂−1,k ≤ f(n)(t1)−Mxn

}
→ 0

(8.1)

as n→∞ and then M →∞, where f(n) are as in (7.1). Then, for f̂n in (6.1),

lim
M→∞ lim sup

n→∞
P

{
bn

[
1

n

n∑
i=1

∣∣f̂n(ti)− f(n)(ti )
∣∣p]1/p

≥M

}
= 0.(8.2)

REMARK 8.1. Since p < 1 + 1/α and p′ > p, γ > 0 and xn →∞ in (8.1).
If p′ > 1/α and β ′ = 0, then kn,ε = �1/ε� does not depend on n.

EXAMPLE 8.1 (Median regression). For median regression,

f̂n ≡ arg min

{
n∑

i=1

|yi − f (ti)| :f is nondecreasing and a∗ ≤ f ≤ a∗
}
,
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which is a special case of (6.1) with φi(θ;yi) = |yi| − |yi − θ |. Let f(n) be as
in (7.1) and assume f(n)(tn) − f(n)(t1) ≡ V (f(n)) ≤ V0 for some fixed V0 <∞.
Suppose that yi are independent variables.

By (7.3), ρ+i (θ)= 2I {θ ≤ yi} − 1 and ρ−i (θ)= 2I {θ < yi} − 1, and (7.6) holds
for

ε+i (x)≡ 2I
{
yi ≥ f(n)(ti)+ x

}− 1, ε−i (x)≡ 2I
{
yi > f(n)(ti)− x

}− 1.

Let δ0 be a (small) positive number. Since |ε±i (x)| ≤ 1, (7.11) holds, so that (7.8)
holds if

P
{
f(n)(ti)≤ yi < f(n)(ti)+ x

}≥ d0x

2
,

P
{
f(n)(ti)− x < yi ≤ f(n)(ti )

}≥ d0x

2

(8.3)

for 0 < x ≤ δ0. Since |ε±i (x)| ≤ 1, (7.9) holds for (α,p′, σ ) = (1/2,4,4/d0),
and (7.10) holds for σ = 4δ0/d0. Let 2 ≤ p < 3. By Theorems 7.1 and 7.2,
(5.4) and (7.13) hold with (α,p′, β,β ′) = (1/2,4,0,0) under (8.3), so that γ =
1/p − 1/3 > 0, β ′′ = 0, bn = n1/3, xn = nγ and kn,ε = �1/ε� in Theorem 8.1.
Furthermore, since kn,ε do not depend on n and θ̂±k,� are the medians of
{yk, . . . , y�}, (8.1) holds if either a∗ − a∗ <∞ or

lim
M→∞ lim sup

n→∞
sup

1≤i≤n
P
{|yi − f(n)(ti)|>Mn1/p−1/3}= 0.(8.4)

Consequently, by Theorem 8.1, if (8.3) holds with a∗ − a∗ <∞ or (8.3) and (8.4)
both hold, then

lim
M→∞ lim sup

n→∞
P

{
n1/3

[
1

n

n∑
i=1

∣∣f̂n(ti)− f(n)(ti)
∣∣p]1/p

≥M

}
= 0.(8.5)

In the special case where the medians of yi are nondecreasing, that is,
median(yi) = f(n)(ti ), van de Geer (1990) obtained (8.5) under condition (8.3)
for the estimator

f̂n ≡ arg min

{
n∑

i=1

|yi − f (ti)| :f is nondecreasing and V (f )≤ V0

}
.(8.6)

The estimator (8.6) is similar to (7.1) for a∗ − a∗ < ∞, so that our results are
comparable to hers in this case. We also allow here [a∗, a∗] = [−∞,∞] with the
extra condition (8.4) to control the contribution of the spikes of f̂n at t1 and tn
to the �p loss. Condition (8.4) holds if the errors yi − f(n)(ti) are uniformly
stochastically bounded.

PROOF OF THEOREM 8.1. Let In(x) ≡∑n
i=1 I {|f̂n(ti) − f(n)(ti)| > x} and

Ln,p(x)≡ n−1∑n
i=1 |f̂n(ti)− f(n)(ti)|p ∧ xp . By (5.4) and (7.13),

bpnELn,p(2Mxn)≤ bpnELn,p(δ0)+ bpn
(
(2M)pxpn /n

)
EIn(δ0)=O(1)
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for each fixed 0 < M < ∞. Since Ln,p(∞) = Ln,p(2Mxn) in the event of
In(2Mxn) = 0 and EIn(δ0)/kn,ε = o(1) as n→∞ and then ε→ 0+, it suffices
to show

lim sup
M→∞

lim sup
n→∞

P
{
In(2Mxn) > 0, In(δ0)≤ kn,ε

}= 0, ε > 0.

By the monotonicity of both f̂n and f(n), In(2Mxn) > 0 implies either f̂n(tn) −
f(n)(t1)≥ 2Mxn or f̂n(t1)− f(n)(tn)≤−2Mxn. By (8.1) and symmetry, we shall
only prove {

f̂n(tn)− f(n)(t1)≥ 2Mxn, In(δ0)≤ kn,ε
}

⊆
{

max
0≤k<kn,ε

θ̂+n−k,n ≥ f(n)(tn)+Mxn

}
.

(8.7)

Let M ≥ 1 and let n be large enough such that xn ≥ V (f(n)) + δ0. Suppose
f̂n(tn) ≥ f(n)(t1)+ 2Mxn and In(δ0) ≤ kn,ε . Since f(n)(tj ) ≤ f(n)(t1)+ V (f(n)),
f̂n(tn) ≥ f(n)(tj ) +Mxn + δ0 for all j . Moreover, since there exist at most kn,ε
of j ≤ n for which f̂n(tj ) ≥ f(n)(tj ) + δ0, f̂n(tn) = f̂n(tn−k) > f̂n(tn−k−1) for
some random k < kn,ε, so that, for small x > 0,

∑n
i=n−k φi(f̂n(tn) − x;yi) ≤∑n

i=n−k φi(f̂n(tn);yi). It follows that θ̂+n−k,n ≥ f̂n(tn) for certain k < kn,ε in view
of (6.2) and (7.2). This completes the proof of (8.7) and therefore the theorem. �

APPENDIX

We provide three lemmas here.

LEMMA A.1. Let 0 < α < 1 ≤ p <∞ and let h(x) be a continuous function
such that xα/h(x)↑ for x ≥ 0 and x1−αh(x)↑ for x ≥ 1. Let v(m) ≡ h(m +
1)/(m + 1)α and let Hv(x;n,V ) ≡ min

[
1, x{1 + V/v(x)}/n] be as in (2.2). If

h(x)↑, then, with δ = 1,∫
0<x<∞

vp(�x�) dHv(x;n,V )

≤
∫

0<x<∞
hp(x + δ)

max(xα, xpα)
d min

{
1,

x

n
+ x1+αV

h(x + δ)n

}
.

(A.1)

If h(1) ≤ h(x) for 0 < x < 1 and xh′(x)/h(x)↑ for x > 0, then (A.1) holds with
δ = 0. If h(x) = 1 and α = 1/2, then (3.5) holds for p ≥ 1 and (3.7) holds for
1≤ p < 3.

PROOF. Let H(x) ≡ x{1 + V/v(x)}/n. By definition, the left-hand side of
(A.1) equals

vp(m0)
{
H(t0)−H(m0)

}+ m0−1∑
m=0

vp(m)
{
H(m+ 1)−H(m)

}
,(A.2)
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where m0 ≤ t0 <m0 + 1 and H(t0)= 1. Since h(x)/xα↓ for 0≤m≤m0,

nv(m)
{
H(m+ c)−H(m)

}
= h(m+ 1)

(m+ 1)α

[
c+ (m+ c)

(m+ 1+ c)αV

h(m+ 1+ c)
−m

(m+ 1)αV

h(m+ 1)

]

≤
∫ m+c

m

h(x)

xα
dx + V

{
h(m+ 1)

(m+ 1)α−1

∫ m+1+c

m+1
d

xα

h(x)
+ c

}
,

where c≡ 1 for m<m0 and c ≡ t0 −m0 for m=m0. Since h(x)x1−α↑ for x ≥ 1,

h(m+ 1)

(m+ 1)α−1

∫ m+1+c

m+1
d

xα

h(x)
+ c

≤
∫ m+1+c

m+1

h(x)

xα−1
d

xα

h(x)
+ c=

∫ m+1+c

m+1

h(x)

xα
d
xα+1

h(x)
.

Now, the above two inequalities imply

nv(m)
{
H(m+ c)−H(m)

}
≤
∫ m+c

m

h(x)

xα
dx + V

∫ m+1+c

m+1

h(x)

xα
d
xα+1

h(x)
.

(A.3)

If h(x)↑, then
∫m+c
m x−αh(x) dx ≤ ∫ m+c

m x−αh(x + 1) dx and

∫ m+1+c

m+1

h(x)

xα
d
xα+1

h(x)

≤
∫ m+c

m
xh(x + 1) d

1

h(x + 1)
+ c(1+ α)

=
∫ m+c

m

h(x + 1)

xα
d

x1+α

h(x + 1)
.

Thus, (A.3) is bounded by
∫ m+c
m x−αh(x + 1) d{x + V x1+α/h(x + 1)}, and,

by (A.2),

∫
0<x<∞

v
(�x�)dHv(x;n,V )≤

∫ t0

0
x−αh(x + δ) d

{
x

n
+ x1+αV

h(x + δ)n

}
,(A.4)

with δ = 1. This implies (A.1) with δ = 1, since vp−1(m) ≤ {h(x + 1)/(x ∨
1)α}p−1 for m≤ x < m+ 1 and t0/n+ t1+α

0 V/{h(t0 + 1)n} ≤H(t0)= 1.
If xh′(x)/h(x)↑, then the second integration in (A.3) is decreasing in m,

so (A.3) leads to (A.4) with δ = 0 and then to (A.1) with δ = 0. We omit the
details here.
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Now consider h(x)= 1 and α = 1/2. The difference between the proofs of (3.5)
and (A.1) is the treatment of the first term in (A.2). Similar to (A.4), we obtain

∫
0<x<∞

v(�x�) dH0(x;n,V )≤
∫ t0

0
(x ∨ 1)−1/2 dH1(x)

for t0 ≥ 1, where H ′
1(x) ≡ max{(1 + V

√
2)/n,1/n + (3/2)V

√
x/n} and

H1(0)≡ 0. This implies (3.5) for t0 ≥ 1, since H1(t0) ≤ 1 and the measure in the
integration in (2.3) puts more mass in [0,1) than H1(dx) does. Inequality (3.5) for
the case of t0 < 1 is trivial.

Finally, let us prove (3.7). Let t > 1 satisfy
∫ t

0 {1 + (3/2)V
√
x ∨ 1}dx = n.

By (2.3),

Jp(n,V )= 1

n

∫
0<x<t

(x ∨ 1)−p/2{1+ (3/2)V
√
x ∨ 1

}
dx

= 1

n

∫ t

0
(x ∨ 1)−p/2 dx + 3V

2n

∫ t

0
(x ∨ 1)(1−p)/2 dx.

If t ≥ 1, then t+V/2+V t3/2 = n, so that (3.7) follows from t ≤min{n, (n/V )2/3}
for p ≥ 1. If t < 1, then n/(1 + 3V/2) = t < 1 ≤ n and, for 1 ≤ p < 3,
(3.7) follows from

3V

2n

∫ t

0
(x ∨ 1)(1−p)/2 dx

= 3V/2

1+ 3V/2
≤
(

3V/2

1+ 3V/2

)p/3

≤
(

3V

2n

)p/3

≤ 3

3− p

(
V

n

)p/3

. �

LEMMA A.2. Let {Xi} be a sequence of random variables and let {bn} be
a nondecreasing sequence of positive constants. Set Sn ≡∑n

i=1 Xi with S0 ≡ 0.
Let 0 < α < 1.

(i) Let p ≥ 1/(1− α). Then, for β ≡ I{p=1/(1−α)} and all m≥ 1,

sup
k

E sup
�≥k+m

∣∣∣∣S� − Sk

�− k

∣∣∣∣
p

≤Kp
p,α

{
log(m+ 1)

}pβ
(m+ 1)pα

sup
�>k

E|S� − Sk|p
(�− k)p(1−α)

,

(A.5)

where Kp,α <∞ are universal constants depending on (p,α) only.
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(ii) Suppose {Xi} are independent variables. Then, for 0 < c < 1 and k0 =
2,3, . . . ,

P

{
max

1≤i≤n
Si

bi
> (k0 − c)t

}

≤ P

{
max

1≤i≤n
Xi

bi
> ct

}

+ max
0≤j<n

P k0

[ ⋃
j<i≤n

{
Si − Sj

bi
> (1− c)t, max

j<�≤i
X�

b�
≤ ct

}]
,

(A.6)

and under the additional condition EXi = 0 there exist universal Kp <∞ such
that

E max
1≤i≤n

∣∣∣∣Sibi
∣∣∣∣
p

≤Kp
p

{
n∑

i=1

E

∣∣∣∣Xi

bi

∣∣∣∣
p

+
(

n∑
i=1

E|Xi |2
b2
i

)p/2

I{p>2}
}
.(A.7)

PROOF. (i) Let k = 0. By Serfling (1970), we have E max�≤2jm |S�|p ≤
K

p
p,α(2jm)(1−α)p for p > 1/(1−α). This implies (A.5) after dividing sup�≥m into∑∞
j=1 max2j−1m≤�<2jm. The proof for p = 1/(1− α) is the same, using Radema-

cher–Mensov [cf. Serfling (1970)].
(ii) Inequality (A.6) is a version of the good-λ inequality [cf., e.g., Hoffmann-

Jorgensen (1974) and Chow and Lai (1975, 1978)]. Set τ (j) ≡ inf{i > j : (Si −
Sj )/bi ≥ (1 − c)t}, Tj+1 ≡ τ (Tj ), T0 ≡ 0 and Aj,m ≡ {Xi/bi ≤ ct, j < i ≤ m}.
Since the left-hand side of (A.6) is bounded by P {Ac

0,n} + P {Tk0 ≤ n,A0,n},
(A.6) follows from induction via

P {Tm+1 ≤ n,Aj,Tm+1|Tm = j,A0,j }

≤ P

[ ⋃
j<i≤n

{
Si − Sj

bi
> (1− c)t, max

j<�≤i
X�

b�
≤ ct

}]
.

For EXi = 0, we find, with truncation at level x > 0,

P
{

max
j<i≤n(Si − Sj ) > x

}
≤
{

1+
(

3

2

)2} n∑
i=j+1

E|Xi |p
xp

,(A.8)

1 ≤ p ≤ 2, by the Kolmogorov inequality, since |∑�
i=j+1 EXiI {|Xi | ≤ x}| ≤

x1−p
∑n

i=j+1 E|Xi|p ≤ x/3 for �≤ n and
∑n

i=j+1 E|Xi|p/xp ≤ 4/13. Let bnk ≤
2k < bnk+1. By (A.8),

4

13
P

{
max
j<i≤n

Si − Sj

bi
> x

}
≤∑

k

∑nk
i=j+1 E|Xi|p
xpb

p
nk−1+1

≤
n∑

i=j+1

4pE|Xi|p
b
p
i x

p(2p − 1)
.
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This and (A.7) provide, with c = 1/2 and k0 > max(1,p/2),

(k0 − 1/2)−pE max
1≤i≤n

∣∣∣∣Sibi
∣∣∣∣
p

≤
∫ ∞

0
P

{
max

1≤i≤n
|Xi |
bi

>
x

2

}
dxp

+ (K ′
p)

p
∫ ∞

0

[
min

{
1,

n∑
i=1

E|Xi|p∧2

(bix)
p∧2

}]k0

dxp

≤Kp
p

{
n∑

i=1

E

∣∣∣∣Xi

bi

∣∣∣∣
p

+
(

n∑
i=1

E|Xi |2
b2
i

)p/2

I{p>2}
}
.

�

LEMMA A.3. Let cp ≡ arg min{E(c + X)p/cp/3 : c > 0} for a nonnegative
random variable X with EXp < ∞. Then cp is increasing in p for p ≥ 1.
Moreover, for X ∼ |N(0,1)|, c3 ≤ 2/3, so that (2cp)p/3(3 − p)+/3 ≤ 8/9 for
1≤ p < 3.

PROOF. Let h(a;p) ≡ E(a2 + X/a)p and a(p) ≡ arg min{h(a;p) :a > 0}.
Then cp = a3(p) is the minimizer of h(c1/3;p). Define hk(a;p) ≡ (∂/∂a)kh(a;
p). Since h(a;p) is strictly convex in a, h1(a(p);p) = 0 and h2(a(p);p) > 0.
Moreover,

∂

∂p
h1
(
a(p);p)= a′(p)h2

(
a(p);p)+ h1

(
a(p);p)/p

+pE(a2 +X/a)p−1(2a −X/a2) log(a2 +X/a)
∣∣
a=a(p) = 0,

with the expectation being negative, since log(a2 + X/a) is increasing and
2a−X/a2 is decreasing in X. Thus, a′(p) > 0.

If X ∼ |N(0,1)|, then h(a;3)= a6+ 3a3√2/π + 3+ 2
√

2/π/a3 is minimized
at a(3) ≈ 0.87, so that c3 = a3(3) ≤ 2/3 and (2cp)p/3(3 − p)+/3 ≤ (4/3)(3 −
1)/3= 8/9. �

Acknowledgment. This research was partially supported by the National
Science Foundation. The author thanks a referee for his/her helpful sugges-
tions.

REFERENCES

AYER, M., BRUNK, H. D., EWING, G. M., REID, W. T. and SILVERMAN, E. (1955). An empirical
distribution function for sampling with incomplete information. Ann. Math. Statist. 26
641–647.

BARLOW, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and BRUNK, H. D. (1972). Statistical
Inference Under Order Restrictions. Wiley, New York.



554 C.-H. ZHANG

BARLOW, R. E. and UBHAYA, V. A. (1971). Isotonic approximation. In Optimizing Methods in
Statistics (J. S. Rustagi, ed.) 77–86. Academic Press, New York.

BIRGÉ, L. (1987). Estimating a density under order restrictions: Nonasymptotic minimax risk. Ann.
Statist. 15 995–1012.

BIRGÉ, L. (1989). The Grenander estimator: A nonasymptotic approach. Ann. Statist. 17 1532–1549.
BIRGÉ, L. and MASSART, P. (1993). Rates of convergence for minimum contrast estimators. Probab.

Theory Related Fields 97 113–150.
BRUNK, H. D. (1970). Estimation of isotonic regression (with discussion by R. Pyke). In Nonpara-

metric Techniques in Statistical Inference (M. L. Puri, ed.) 177–197. Cambridge Univ.
Press, London.

BRUNK, H. D. and JOHANSEN, S. (1970). A generalized Radon–Nikodym derivative. Pacific J. Math.
34 585–617.

CHOW, Y. S. and LAI, T. L. (1975). Some one-sided theorems on the tail distribution of sample sums
with applications to the last time and largest excess of boundary crossings. Trans. Amer.
Math. Soc. 208 51–72.

CHOW, Y. S. and LAI, T. L. (1978). Paley-type inequalities and convergence rates related to the law
of large numbers and extended renewal theory. Z. Wahrsch. Verw. Gebiete 45 1–19.

DONOHO, D. (1991). Gel’fand n-widths and the method of least squares. Technical report, Dept.
Statist., Univ. California, Berkeley.

GRENANDER, U. (1956). On the theory of mortality measurement II. Skand. Aktuarietidskr. 39 125–
153.

GRENANDER, U. (1980). Abstract Inference. Wiley, New York.
GROENEBOOM, P. (1983). The concave majorant of Brownian motion. Ann. Probab. 11 1016–1027.
GROENEBOOM, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley

Conference in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen,
eds.) 2 539–555. Wadsworth, New York.

GROENEBOOM, P. and WELLNER, J. A. (1992). Information Bounds and Nonparametric Maximum
Likelihood Estimation. Birkhäuser, New York.

HOFFMANN–JORGENSEN, J. (1974). Sums of independent Banach space valued random variables.
Studia Math. 52 159–189.

MEYER, M. and WOODROOFE, M. (2000). On the degrees of freedom in shape-restricted regression.
Ann. Statist. 28 1083–1104.

PRAKASA RAO, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A 31 23–36.
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