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Abstract

Lévy processes refer to a class of stochastic processes, for example, Poisson processes and Brow-

nian motions, and play an important role in stochastic processes and machine learning. Therefore,

it is essential to study risk bounds of the learning process for time-dependent samples drawn from

a Lévy process (or briefly called learning process for Lévy process). It is noteworthy that samples

in this learning process are not independently and identically distributed (i.i.d.). Therefore, results

in traditional statistical learning theory are not applicable (or at least cannot be applied directly),

because they are obtained under the sample-i.i.d. assumption. In this paper, we study risk bounds of

the learning process for time-dependent samples drawn from a Lévy process, and then analyze the

asymptotical behavior of the learning process. In particular, we first develop the deviation inequal-

ities and the symmetrization inequality for the learning process. By using the resultant inequalities,

we then obtain the risk bounds based on the covering number. Finally, based on the resulting risk

bounds, we study the asymptotic convergence and the rate of convergence of the learning process

for Lévy process. Meanwhile, we also give a comparison to the related results under the sample-

i.i.d. assumption.

Keywords: Lévy process, risk bound, deviation inequality, symmetrization inequality, statistical

learning theory, time-dependent

1. Introduction

In statistical learning theory, one of the major concerns is the risk bound, which explains the asymp-

totic behavior of the probability that a function produced by an algorithm has a sufficiently small

error. Generally, there are three essential parts in the process of obtaining risk bounds: devia-

tion or concentration inequalities, symmetrization inequalities and complexity measures of func-

tion classes. For example, Van der Vaart and Wellner (1996) showed risk bounds based on the

Rademacher complexity and the covering number by using Hoeffding’s inequality. Vapnik (1998)

gave risk bounds based on the annealed Vapnik-Chervonenkis (VC) entropy and the VC dimension,

respectively. In Vapnik (1998), Vapnik applied some classical inequalities, for example, Cher-

noff’s inequality and Hoeffding’s inequality, but also developed specific concentration inequalities

∗. This work was partly completed when the author was with the School of Computer Engineering, Nanyang Techno-

logical University, 639798, Singapore.
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to study the asymptotic behavior of the i.i.d. empirical process. Bartlett et al. (2005) proposed

the local Rademacher complexity and obtained a sharp risk bound for a particular function class

{ f ∈ F |E f 2 < βE f ,β > 0} by using Talagrand’s inequality. Moreover, there are also other investi-

gations to statistical learning theory (see Cesa-Bianchi and Gentile, 2008; Mendelson, 2008, 2002;

Koltchinskii, 2001). However, all of these results are built under the sample-i.i.d. assumption.

Samples are not always i.i.d. in practice, for example, some financial and physical behaviors are

temporally dependent, and the aforementioned research results are not applicable (or at least cannot

be applied directly) to most cases. Thus, it is essential to study the risk bounds in the scenario of

non-i.i.d. samples. The scenario of non-i.i.d. samples contains a wide variety of cases and it is

impossible to find a unified form to cover all the cases. Instead, one feasible scheme is to find some

representative processes, such as the Lévy process and the mixing process that cover several useful

cases in the scenario of non-i.i.d. samples, and then we study the theoretical properties of each

process individually.

Recently, Mohri and Rostamizadeh (2010) obtained risk bounds for stationary β-mixing se-

quences based on the Rademacher complexity. Mixing sequences can be deemed as a transition

between the i.i.d. scenario and the non-i.i.d. scenario, where the dependence between samples di-

minishes along time. Especially, by adopting a technique of independent blocks (Yu, 1994), samples

drawn from a β-mixing sequence can be transformed to an i.i.d. scenario and thus some classical

results under the sample-i.i.d. assumption can be applied to obtain the risk bounds. Jiang (2009) ex-

tended Hoeffding’s inequality to handle the situations with unbounded loss and dependent data, and

then provided probability bounds for uniform deviations in a general framework involving discrete

decision rules, unbounded loss and a dependence structure. Moreover, there are also some works

about the uniform laws for dependent processes (Nobel and Dembo, 1993).

Lévy processes are the stochastic processes with stationary and independent increments and

cover a large class of stochastic processes, for example, Brownian motions, Poisson processes,

stable processes and subordinators (see Kyprianou, 2006). Moreover, Lévy processes have been

regarded as prototypes of semimartingales and Feller-Markov processes (Applebaum, 2004b; Sato,

2004). Lévy processes have been successfully applied to practical applications in finance (Cont and

Tankov, 2006), physics (Applebaum, 2004a), signal processing (Duncan, 2009), image processing

(Pedersen et al., 2005) and actuarial science (Barndorff-Nielsen et al., 2001). Figueroa-López and

Houdré (2006) used projection estimators to estimate the Lévy density, and then gave a bound to

exhibit the discrepancy between a projection estimator and the orthogonal projection by using the

concentration inequalities for functionals of Poisson integrals. In this paper, we extend the existing

works on the infinitely divisible distribution (see Houdré, 2002; Houdré et al., 1998) to develop

the deviation inequalities for Lévy processes and then obtain the risk bounds by using the resulted

deviation inequalities. Next, we summarize the main results of this paper.

1.1 Overview of Main Results

This paper is mainly concerned with the theoretical analysis of the learning process for the time-

dependent samples drawn from a Lévy process. There are four major concerns in this paper: the

deviation inequality for Lévy process; the symmetrization inequality of the learning process; the

risk bounds and the asymptotical behavior of the learning process.

Generally, in order to obtain the risk bounds of a certain learning process, it is necessary to first

obtain the corresponding concentration (or deviation) inequalities for the learning process. Thus, we
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extend the previous works (Houdré, 2002; Houdré et al., 1998) to develop the deviation inequalities

for the Lévy process, which are suitable for the sequence of random variables at different time

points. We then present the symmetrization inequality of the learning process for Lévy process. By

applying the derived deviation and symmetrization inequalities, we obtain the risk bounds of the

learning process, which is based on the covering number. Finally, we use the resulted risk bounds to

analyze the asymptotical convergence and the rate of convergence of the learning process for Lévy

process, respectively. Meanwhile, we also give a comparison with the learning process for i.i.d.

samples.

Zhang and Tao (2010) discussed risk bounds for Lévy process with zero Gaussian component,

but their results are based on some specific assumptions to function classes. The current results do

not require any conditions of function classes except the boundedness and the Lipschitz continuity

and are valid for a more general scenario where the considered Lévy process has non-zero Gaussian

component, so they are more general than the previous results.

1.2 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we formalize the main research of

this paper. Section 3 introduces some preliminaries of the infinitely divisible (ID) distribution and

the Lévy process. We present the deviation inequalities and the symmetrization inequality of the

learning process for Lévy process in Section 4. Section 5 gives the risk bounds of the learning

process. In Section 6, we analyze the asymptotic behavior of the learning process and the last section

concludes the paper. The proofs of main results are given in the appendices including Theorem 8,

Theorem 11, Theorem 12 and Theorem 15.

2. Problem Setup

Denote X ⊂R
I as an input space and Y ⊂R

J as its corresponding output space. Let Z = (X ,Y )⊂
R

K (K = I + J) and {Zt}t≥0 be an undetermined Lévy process. Assume that Z = {Zt}t≥0 with

Zt = (xt ,yt). Let G ⊂ Y X be a function class with the domain X and the range Y . Given a loss

function ℓ : Y 2 → R and a time interval [T1,T2], it is expected to find a function g∗ ∈ G : X → Y
that minimizes the expected risk

E(ℓ◦g) :=
1

T

∫ T2

T1

∫
ℓ(g(xt),yt)dPtdt, g ∈ G , (1)

where T = T2 −T1, Pt stands for the distribution of Zt = (xt ,yt) at time t and ℓ(g(x),y) is denoted

as (ℓ◦g)(x,y).
Generally, if Pt (t ∈ [T1,T2]) are unknown, the target function g∗ usually cannot be directly

obtained by minimizing (1). Instead, we can apply the empirical risk minimization (ERM) principle

to handle this issue. Given a function class G and a sample set ZN
1 := {Ztn}N

n=1 drawn from Z in the

time interval [T1,T2] with T1 ≤ t1 < · · ·< tN ≤ T2, we define the empirical risk of g ∈ G as

EN(ℓ◦g) :=
1

N

N

∑
n=1

ℓ(g(xtn),ytn), (2)

which is considered as an approximation to the expected risk (1). Let gN ∈ G be the function that

minimizes the empirical risk (2) over G and we deem gN as an estimate to g∗ with respect to ZN
1 .

353



ZHANG AND TAO

It is noteworthy that such learning process covers many kinds of practical applications, for

example, the predicting for time series (Mukherjee et al., 1997; Kim, 2003) and the estimation of

channel state information (Biguesh and Gershman, 2006; Love et al., 2008; Tulino et al., 2005). We

take the estimation of channel state information for example.

In the estimation of channel state information, x ∈ X ⊂ R
I and y ∈ Y ⊂ R

J are regarded as the

transmit and the receive vectors, respectively. The following are the reasons why we suppose that Z

is a segment of an undetermined Lévy process:

• In fact, the tasks of the estimation of channel state information are time-dependent and can

be regarded as the approximation to unknown stochastic processes.

• The Lévy process is one of representative processes and covers a large body of stochastic pro-

cesses, that is, Brownian motions, Poisson processes, compound Poisson processes, Gamma

processes and inverse Gaussian processes (see Kyprianou, 2006).

• Many kinds of signals have the Poisson property, the martingale property or both of them.

One of the most frequently used models is y = Hx+n, where H and n are the channel matrix

and the noise vector, respectively (see Love et al., 2008; Tulino et al., 2005). The corresponding

function class G can be formalized as G := {x 7→ Hx+n : H ∈R
J ×R

I, n ∈R
J}. The loss function

ℓ is selected as the mean square error function, and then the least-square estimation is used to

find the function that minimizes the empirical risk (2). Moreover, there are also other ERM-based

methods proposed for the estimation of channel state information (see Sanchez-Fernandez et al.,

2004; Sutivong et al., 2005).

In the aforementioned learning process, we are mainly interested in the asymptotic behavior

of the quantity (E(ℓ◦g∗)−EN(ℓ◦gN)), when the sample number N goes to the infinity. Since

EN(ℓ◦g∗)−EN(ℓ◦gN)≥ 0, we have

E(ℓ◦gN) =E(ℓ◦gN)−E(ℓ◦g∗)+E(ℓ◦g∗)

≤EN(ℓ◦g∗)−EN(ℓ◦gN)+E(ℓ◦gN)−E(ℓ◦g∗)+E(ℓ◦g∗)

≤2 sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣+E(ℓ◦g∗),

and thus

0 ≤ E(ℓ◦gN)−E(ℓ◦g∗)≤ 2 sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣.

The supremum

sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣ (3)

is the so-called risk bound of the learning process for a Lévy process {Zt}t≥0.

Then, we define the loss function class

F := {Z 7→ ℓ(g(x),y) : g ∈ G}, (4)

and call F the function class in the rest of this paper. Given a sample set {Ztn}N
n=1 drawn from

{Zt}t≥0, we shortly denote for any f ∈ F ,

Et f :=
∫

f (Z)dPt , t > 0, (5)
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and

EN f :=
1

N

N

∑
n=1

f (Ztn), (6)

where Et stands for the expectation taken with respect to Zt .

According to (3), (4), (5) and (6), we have

sup
f∈F

|E f −EN f |

= sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣

= sup
g∈G

∣∣∣ 1

T

∫ T2

T1

∫
ℓ(g(xt),yt)dPtdt − 1

N

N

∑
n=1

ℓ(g(xtn),ytn)
∣∣∣

≤2 sup
g∈G

t∈[T1,T2]

∣∣∣
∫

ℓ(g(xt),yt)dPt −
1

N

N

∑
n=1

ℓ(g(xtn),ytn)
∣∣∣

=2 sup
f∈F

t∈[T1,T2]

∣∣∣Et f −EN f

∣∣∣.

Therefore, the supremum

sup
f∈F

t∈[T1,T2]

∣∣∣Et f −EN f

∣∣∣

plays an important role in studying the risk bound sup f∈F |E f −EN f | of the learning process for

Lévy process.

3. Infinitely Divisible Distributions and Lévy Processes

Since the infinitely divisible (ID) distribution is strongly related to the Lévy process, this section

first introduces the ID distribution and then briefs the Lévy process for the subsequent discussion.

3.1 ID Distributions

A probability distribution is said to be infinitely divisible if and only if it can be represented by

the distribution of the sum of an arbitrary number of i.i.d. random variables. Many probability

distributions have the infinite divisibility, for example, Poisson, geometric, lognormal, noncentral

chi-square, exponential, Gamma, Pareto and Cauchy (see Bose et al., 2002). The ID distribution

can be defined based on the characteristic function.

Definition 1 Let φ(θ) be the characteristic function of a random variable Z, that is

φ(θ) := E
{

eiθZ
}
=

∫ +∞

−∞
eiθZdP(Z). (7)

Then, the distribution of Z is infinitely divisible if and only if for any N ∈ N, there exists a charac-

teristic function φN(θ) such that

φ(θ) = φN(θ)∗ · · · ∗φN(θ)︸ ︷︷ ︸
N

,
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where “∗” stands for multiplication.

By (7), given a characteristic function φ(θ), we define the corresponding characteristic exponent

as

ψ(θ) := lnφ(θ) = ln
(

EeiθZ
)
.

Afterward, we will show that the characteristic exponent of any ID distribution has a unified form

(see Sato, 2004). Before the formal presentation, we need to give a definition of the Lévy measure

(see Applebaum, 2004a).

Definition 2 Let ν be a Borel measure defined on R
K \{0}. This ν will be a Lévy measure if

∫
RK\{0}

min{‖u‖2,1}ν(du)< ∞,

and ν({0}) = 0.

The Lévy measure describes the expected number of a certain height jump in a time interval of

the unit length. Define the indicator function for the event E as

1E =

{
1, the event E appears;

0, otherwise,

and for any ID random variable, its characteristic exponent takes the following form (see Sato,

2004).

Theorem 3 (Lévy-Khintchine) A Borel probability measure µ of a random variable Z ∈ R
K is in-

finitely divisible if and only if there exists a triplet (a,A,ν) such that for all θ∈R
K , the characteristic

exponent ψµ is of the form

ψµ(θ) =i〈a,θ〉− 1

2
〈θ,Aθ〉+

∫
RK\{0}

(
ei〈θ,u〉−1− i〈θ,u〉1‖u‖≤1

)
ν(du), (8)

where a ∈ R
K , A is a K ×K positive-definite symmetric matrix, ν is a Lévy measure on R

K \ {0},

and 〈·, ·〉 and ‖ · ‖ stand for the inner product and the norm in R
K , respectively.

Theorem 3 shows that an ID distribution can be completely determined by a triplet (a,A,ν),
where a is a drift, A is a Gaussian component and ν is a Lévy measure. Thus, we call (a,A,ν) the

generating triplet of an ID distribution.

3.2 Lévy Processes

First, we give a rigorous definition of Lévy processes.

Definition 4 A stochastic process {Zt}t≥0 on R
K is a Lévy process if it satisfies the following con-

ditions:

1. Z0 = 0, almost surely.
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2. For any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ ·· · ≤ tn, the random variables

Zt0 ,Zt1 −Zt0 , · · · ,Ztn −Ztn−1

are independent.

3. The increments are stationary, that is, the distribution of Zs+t −Zs is independent of s.

4. The process is right continuous, that is, for any 0 ≤ t ≤ s and ε > 0, we have

lim
s→t

Pr
{
|Zt −Zs|> ε

}
= 0.

According to Theorem 7.10 of Sato (2004), a Lévy process {Zt}t≥0 can be distinguished by the

distribution of Z1, which has an ID distribution with the generating triplet (a1,A1,ν1), and at any

time t > 0, Zt ∈ {Zt}t≥0 has an ID distribution with the generating triplet (at ,At ,νt). Therefore, we

call (a1,A1,ν1) the characteristic triplet of the Lévy process {Zt}t≥0. For any t > 0, there also holds

that

(at ,At ,νt) := (a1t,A1t,ν1t).

Next, we introduce the Lévy-Ito decomposition to discuss the relationship between the path of a

Lévy process and its characteristic triplet (a1,A1,ν1). The details are referred to Kyprianou (2006);

Sato (2004).

Theorem 5 (Lévy-Ito Decomposition) Consider a triplet (a1,A1,ν1) where a1 ∈ R
K , A1 is a K ×

K positive-definite symmetric matrix, ν1 is a Lévy measure on R
K \ {0}. Then, there exist four in-

dependent Lévy processes, L(1), L(2), L(3) and L(4), where L(1) is a constant drift, L(2) is a Brownian

motion, L(3) is a compound Poisson process and L(4) is a square integrable (pure jump) martingale

with an a.s. countable number of jumps of magnitude less than 1 on each finite time interval. Tak-

ing L = L(1)+L(2)+L(3)+L(4), there then exists a Lévy process L = {Zt}0≤t≤T with characteristic

exponent in the form of (8).

The proof of this theorem has been given by Chapter 4 in Sato (2004) or Chapter 2 in Kyprianou

(2006), so we omit it here. We only go through some steps of the proof to reveal the relationship

between the path of a Lévy process and its characteristic triplet (a1,A1,ν1). Recalling (8), we can

split the characteristic exponent ψ into four parts:

ψ = ψ(1)+ψ(2)+ψ(3)+ψ(4)

with

ψ(1)(θ) = i〈a1,θ〉; ψ(2)(θ) =−1

2
〈θ,A1θ〉;

ψ(3)(θ) =
∫
‖u‖≥1

(
ei〈θ,u〉−1

)
ν1(du);

ψ(4)(θ) =
∫
‖u‖<1

(
ei〈θ,u〉−1− i〈θ,u〉

)
ν1(du),

which correspond to L(1), L(2), L(3) and L(4), respectively. We also refer to Jacobsen (2005) for the

knowledge on jump processes as well as Lévy processes. At the end of this section, we give two

examples of Lévy processes in addition to the corresponding Lévy-Khintchine representations and

Lévy-Ito decompositions:
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• A Poisson process {Nt}t≥0 is a Lévy process that has a Poisson distribution with parameter

pt at any time t > 0. In the Lévy-Khintchine representation, we find that a1 and A1 are

both zero and ν1 = pδ1, where δ1 is the Dirac measure supported on {1}. In the Lévy-Ito

decomposition, its characteristic exponent is expressed as ψ(θ) = ψ(3)(θ) = p(eiθ −1).

• A scaled Brownian motion with linear drift is also a Lévy process with the characteristic

triplet (a1,A1,0) in the Lévy-Khintchine representation. In the Lévy-Ito decomposition, its

characteristic exponent is expressed as ψ(θ) = ψ(1)(θ)+ψ(2)(θ) with ψ(1)(θ) = i〈a1,θ〉 and

ψ(2)(θ) =− 1
2
〈θ,A1θ〉.

4. Deviation Inequalities and Symmetrization Inequalities

In this section, we present the deviation inequalities and symmetrization inequality of the learning

process for Lévy process.

4.1 Preliminaries

Firstly, we need to introduce some notations and conditions for the following discussion.

4.1.1 NOTATIONS

Assume that F is a function class consisting of λ-Lipschitz functions and {Zt}t≥0 ⊂ R
K is a Lévy

process with the characteristic triplet (a1,A1,ν1). Let ZN
1 = {Ztn}N

n=1 be a sample set drawn from

{Zt}t≥0 in the time interval [T1,T2]. For any t ∈ [T1,T2], we give the following definitions:

(D1) Σ
(∗)
N := sup

t∈[T1,T2]

1

N

N

∑
n=1

sup
f∈F

|Etn f −Et f |;

(D2) ϕ(α) :=
N

∑
n=1

λ2πK2αtn +
∫
RK

λ‖u‖
(
eλα‖u‖−1

)
νtn(du);

(D3) V (n) :=
∫
RK

‖u‖2νtn(du) = tn

∫
RK

‖u‖2ν1(du);

(D4) Γ(x) := x− (x+1) ln(x+1).

Note that the quantity sup f∈F |Etn f −Et f | is called the integral probability metric and has been

widely used to measure the difference between two probability distributions (see Zolotarev, 1984;

Rachev, 1991; Müller, 1997; Reid and Williamson, 2011). Recently, Sriperumbudur et al. (2012)

gave the further investigation and proposed the empirical method to compute the integral probabil-

ity metric. As mentioned by Müller (1997), the quantity sup f∈F |Etn f −Et f | is a (semi)metric to

measure the difference between the distributions of {Zt}t≥0 at two time points t and tn. In fact, given

a non-trivial function class F , the quantity sup f∈F |Etn f −Et f | is equal to zero if the distributions

at the two time points match or the two time points coincide, that is, t = tn.

4.1.2 CONDITIONS

In order to achieve the desired risk bounds, some necessary conditions need to be introduced to

specify the behavior of Lévy processes.
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(C1) The f is a partially differentiable function on R
K and there exists a constant λ > 0 such that

for any Z = (z1, · · · ,zK)
T ∈ R

K ,

max
1≤k≤K

∣∣∣∂ f (Z)

∂zk

∣∣∣≤ λ.

(C2) Denoting A1 = {ai j}K×K , there exists a constant π > 0 such that

max
1≤i, j≤K

|ai j| ≤ π.

(C3) The ν1 has a bounded support with

R = inf{ρ > 0 : ν1({u : ‖u‖> ρ}) = 0}.

Condition (C1) implies that f has bounded partial derivatives and holds for many kinds of functions,

for example, quadratic functions with bounded domains and trigonometric functions. The constant

λ is determined by the selected function and thus it is manipulatable. Condition (C2) implies that all

entries of A1 are bounded. Condition (C3) implies the Lévy measure ν1 has a bounded support. To

take an example of Conditions (C2)-(C3), we refer to Poisson processes whose characteristic triplet

is (0,0,ν1) with ν1 supporting on {1}. Afterwards, we come up with the deviation inequalities of

the learning process for Lévy process.

4.2 Deviation Inequalities

Deviation inequalities play an essential role in obtaining risk bounds of a certain learning pro-

cess. Generally, specific deviation inequalities need to be developed for different learning pro-

cesses. There are a lot of popular concentration inequalities and deviation inequalities, for example,

Hoeffding’s inequality, McDiarmid’s inequality, Bennett’s inequality, Bernstein’s inequality and Ta-

lagrand’s inequality, which are all valid under the sample-i.i.d. assumption. Moreover, there have

been the deviation inequalities for ID distributions and Lévy processes both with zero Gaussian

components proposed by Houdré (2002); Houdré and Marchal (2008), respectively. Here, we ex-

tend the deviation results in Houdré (2002) to develop the deviation inequalities of the learning

process for Lévy process, which is related to a sequence of random variables taking values from a

Lévy process at different time points.

Based on a fact that the vector formed by N independent ID random vectors is itself infinitely

divisible, the following theorem and corollary can be derived from Theorem 1 & Corollary 1 of

Houdré (2002) and Proposition 2 of Houdré et al. (1998). We also refer to Zhang and Tao (2011a,b)

for the related discussions.

Theorem 6 Assume that f is a function satisfying Condition (C1) and {Zt}t≥0 ⊂ R
K is a Lévy

process with the characteristic triplet (a1,A1,ν1) satisfying Condition (C2). Let ZN
1 = {Ztn}N

n=1

(t1 < t2 < · · · < tN) be a set of time-dependent samples drawn from {Zt}t≥0 in the time interval

[T1,T2]. Define a function F : RNK → R as

F
(
ZN

1

)
:=

N

∑
n=1

f (Ztn). (9)

359



ZHANG AND TAO

If Condition (C1) is valid and Eeα‖zt‖
∣∣
t=1

< +∞ holds for some α > 0, then we have for any 0 <
ξ < ϕ((M/λ)−),

Pr
{∣∣F

(
ZN

1

)
−EF

∣∣> ξ
}
≤ 2exp

{
−
∫ ξ

0
ϕ−1(s)ds

}
, (10)

where the expectation E is taken on all {Zt1 , · · · ,ZtN}, ϕ is given in Definition (D2), ϕ(a−) is the

left-hand limit of ϕ at a, M = sup
{

α > 0 : Eeα‖zt‖
∣∣
t=1

<+∞
}

and ϕ−1 is the inverse of ϕ(α) with

the domain of 0 < α < M/λ.

In Theorem 6, we present a deviation inequality of the learning process for the Lévy process

satisfying Condition (C2). However, there are two drawbacks of this result that will bring some

difficulties to the future theoretical analysis of asymptotic behavior.

• The deviation inequality (10) is represented by the integral of ϕ−1, and thus the inequality

cannot explicitly reflect the asymptotic behavior as N goes to the infinity.

• Recalling Definition (D2), there is an integral term in the expression of the function ϕ. Thus,

given a certain ξ > 0, it may be difficult to justify whether the ξ satisfies the condition ξ <
ϕ((M/λ)−).

In order to overcome these drawbacks, we add Condition (C3) to achieve another deviation inequal-

ity for the learning process.

Corollary 7 Follow notations in Theorem 6. If Conditions (C1)-(C3) are all valid, then we have

for any ξ > 0,

Pr
{∣∣∣F

(
ZN

1

)
−EF

∣∣∣> ξ
}

≤2exp

{
∑N

n=1(λ
2πK2αtn +V (n))

(λR)2
Γ

(
λRξ

∑N
n=1(λ

2πK2αtn +V (n))

)}

≤2exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λRξ

NT2(λ2πK2α+V )

)}
, (11)

where Γ is given in Definition (D4) and

V :=
∫
RK

‖u‖2ν1(du).

The second inequality of the above result is derived from the facts that there holds that V (n) ≤ T2V

for any 1 ≤ n ≤ N and the function Γ(x) is a monotonically decreasing function when x > 0 as

shown in Figure 1.

Compared to the result (10), the deviation inequality (11) holds for any ξ > 0 and its right-

hand-side is represented by using the function Γ(x) (x > 0). Therefore, we can directly analyze the

asymptotic behavior as N goes to the infinity. In fact, since the function Γ(x) is smaller than zero

when x > 0, the right-hand-side of (11) will go to zero for any ξ > 0 when N approaches to the

infinity. Next, we present the symmetrization inequality of the learning process for Lévy process.
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Figure 1: The Function Curve of Γ(x)

4.3 Symmetrization Inequality

Symmetrization inequalities are mainly used to replace the expected risk by an empirical risk com-

puted on another sample set that is independent of the given sample set but has the identical distri-

bution. In this manner, risk bounds can be achieved by using some kinds of complexity measures,

for example, the covering number and the VC dimension. However, the classical symmetrization

results (see Bousquet et al., 2004) are only valid under the sample-i.i.d. assumption. Afterward, we

propose the symmetrization inequality of the learning process for Lévy process.

For clarity of presentation, we give a notation that will be used in the rest of the paper. Given a

sample set ZN
1 = {Ztn}N

n=1 (t1 < t2 < · · · < tN), we denote Z′N
1 := {Z′

tn
}N

n=1 as the ghost sample set

of ZN
1 , where Z′

tn
has the same distribution as Ztn for any 1 ≤ n ≤ N. Then, the following theorem

presents the symmetrization inequality of the learning process.

Theorem 8 Assume that F is a function class with the range [a,b] and {Zt}t≥0 ⊂ R
K is a Lévy

process. Let ZN
1 and Z′N

1 be drawn from {Zt}t≥0 in the time interval [T1,T2]. Then, given any

ξ > Σ
(∗)
N , we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤ 2Pr

{
sup
f∈F

∣∣E′
N f −EN f

∣∣> ξ′

2

}
. (12)
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This theorem shows that given ξ > 0, the probability of the event:

sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ

can be bounded by using the probability of the event:

∣∣E′
N f −EN f

∣∣> ξ′

2

that is only determined by the characteristics of the sample sets ZN
1 and Z′N

1 , when N ≥ 8(b−a)2

(ξ′)2 for

any given ξ′ > 0 with ξ′ = ξ−Σ
(∗)
N . Compared with the classical symmetrization result under the

sample-i.i.d. assumption (see Bousquet et al., 2004), the derived symmetrization inequality (12)

incorporated a discrepancy term Σ
(∗)
N and the two results coincide when the time interval [T1,T2]

shrinks to one time point that match to t, that is, T1 = T2 = t that results in Σ
(∗)
N = 0.

In the next section, we use the resulted deviation inequalities and symmetrization inequality to

achieve the risk bounds of the learning process for Lévy process.

5. Risk Bounds of Learning Processes for Lévy Processes

In this section, we present the risk bounds of the learning process for Lévy process. Since the

resulting bounds are based on the covering number, we first introduce the definition of the cover

and then present the definition of the covering number of F .

Definition 9 Let N be a collection of sets. Then, the collection N is said to be a cover of a given

set Ω, if for any x ∈ Ω, there always exists an element of N that contains the point x.

Next, we define the the covering number of F as follows.

Definition 10 Let ZN
1 be a sample set drawn from a distribution Z. For any 1 ≤ p ≤ ∞ and ξ > 0,

the covering number of F at radius ξ, with respect to ℓp(Z
N
1 ), denoted by N (F ,ξ, ℓp(Z

N
1 )) is the

minimum size of a cover of radius ξ.

Subsequently, we come up with the main results of this paper.

Theorem 11 Assume that F is a function class composed of functions satisfying Condition (C1)
with the range [a,b] and {Zt}t≥0 ⊂ R

K is a Lévy process with the characteristic triplet (a1,A1,ν1)
satisfying Condition (C2). Let ZN

1 and Z′N
1 be drawn from {Zt}t≥0 in the time interval [T1,T2], and

denote Z2N
1 := {ZN

1 ,Z
′N
1 }. Given any Σ

(∗)
N < ξ < Σ

(∗)
N + 8ϕ((M/λ)−)

N
, if Eeα‖zt‖

∣∣
t=1

< +∞ holds for

362



RISK BOUNDS FOR LÉVY PROCESSES

some α > 0, then we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr

{
sup
f∈F

1

2

∣∣∣E f −EN f

∣∣∣> ξ

}

≤Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
−
∫ Nξ′

8

0
ϕ−1(s)ds

}
, (13)

where ϕ(a−) denotes the left-hand limit of ϕ at the point a, M = sup
{

α > 0 : Eeα‖zt‖
∣∣
t=1

<+∞
}

and ϕ−1 is the inverse of ϕ(α) with the domain of 0 < α < M/λ.

The result shown in this theorem has the same drawbacks as those of Theorem 6. The right-

hand-side of the inequality (13) is represented by using the integrals of ϕ−1, so it is difficult to find

the asymptotic behavior of the risk bound as N goes to the infinity. The range 0 < ξ′ < 8ϕ((M/λ)−)
N

of ξ′ is expressed by incorporating the function ϕ that contains an integral term [see Definition

(D2)]. These will bring difficulties to the future theoretical analysis of asymptotic convergence.

To overcome the two drawbacks, we develop another risk bound of the learning process for Lévy

process by adding a mild condition (C3) that requires that the Lévy measure ν have a bounded

support.

Theorem 12 Follow notations in Theorem 11. Given any ξ > Σ
(∗)
N , if Conditions (C1)-(C3) are

valid, then we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr

{
sup
f∈F

1

2

∣∣∣E f −EN f

∣∣∣> ξ

}

≤Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
, (14)

where Γ is given in Definition (D4).

This theorem shows that under Conditions (C1)-(C3), given any ξ > Σ
(∗)
N , the probability of the

event that for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

sup
f∈F

∣∣∣E f −EN f

∣∣∣> 2ξ
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can be bounded by the last term of (14). Until now, we have achieved the risk bound (3) and

the result (14) can explicitly reflect the asymptotic behavior as N goes to the infinity. Following

this result, the next section will discuss the asymptotical behavior of the learning process for Lévy

process.

6. Convergence Analysis

Based on the risk bound (14), this section presents a detailed theoretical analysis to asymptotic

convergence and the rate of convergence of the learning process for Lévy process. Meanwhile, we

also give a comparison with the related results of the learning process for i.i.d. samples.

6.1 Asymptotic Convergence

In statistical learning theory, it is well-known that the complexity of function classes is the main

factor to the asymptotic convergence of the learning process for i.i.d. samples (see Vapnik, 1998;

Van der Vaart and Wellner, 1996; Mendelson, 2003).

Based on Theorem 12, we show that the asymptotic convergence of the learning process for

Lévy process is affected by two factors: the covering number N (F ,ξ′/8, ℓ1(Z
2N
1 )) and the quantity

Σ
(∗)
N .

Recalling Definition (D4), it is noteworthy that there is only one solution x = 0 to the equation

Γ(x) = 0 and Γ(x) is monotonically decreasing when x ≥ 0 (see Figure 1). Thus, according to

Theorem 12, we can obtain the following result that describes the asymptotic convergence of the

learning process for Lévy process.

Theorem 13 Assume that F is a function class composed of functions satisfying Condition (C1)
with the range [a,b] and {Zt}t≥0 ⊂ R

K is a Lévy process with the characteristic triplet (a1,A1,ν1)
satisfying Conditions (C2) and (C3). Let ZN

1 = {Ztn}N
n=1 and Z′N

1 = {Z′
tn
}N

n=1 be drawn from {Zt}t≥0

in the time interval [T1,T2], and denote Z2N
1 := {ZN

1 ,Z
′N
1 }. If the following condition holds:

lim
N→+∞

lnEN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

N
<+∞, (15)

then we have for any ξ > Σ
(∗)
N with ξ′ = ξ−Σ

(∗)
N ,

lim
N→+∞

Pr

{
sup
f∈F

∣∣E f −EN f
∣∣> 2ξ

}
= 0, (16)

where E f and EN f are defined in (1) and (2), respectively.

As shown in Theorem 13, if the covering number N (F ,ξ′/8, ℓ1(Z
2N
1 )) satisfies the condition

(15), the probability of the event

sup
f∈F

∣∣E f −EN f
∣∣> 2ξ

will converge to zero for any ξ > Σ
(∗)
N , when the sample number N goes to the infinity. This is

partially in accordance with the classical result given by Theorem 2.3 of Mendelson (2003): the

probability of the event

sup
f∈F

∣∣E f −EN f
∣∣> ξ (17)
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will converge to zero for any ξ > 0, if the covering number N
(
F ,ξ, ℓ1(Z

N
1 )
)

satisfies the following

condition:

lim
N→+∞

lnE
{

N
(
F ,ξ, ℓ1(Z

N
1 )
)}

N
<+∞. (18)

Note that in the learning process for Lévy process, the uniform convergence of the empirical

risk EN f to the expected risk E f may not hold, because the limit (16) does not hold for any ξ > 0

but for any ξ > Σ
(∗)
N . By contrast, the inequality (17) holds for all ξ > 0 in the learning process for

i.i.d. samples, if the condition (18) is satisfied. Again, these two results coincide when the time

interval [T1,T2] shrinks to one single time point that matches to t, that is, T1 = T2 = t that results in

Σ
(∗)
N = 0.

Interestingly, we show below that by ignoring the quantity Σ
(∗)
N , the learning process for Lévy

process has a faster rate of convergence than the classical result (see Mendelson, 2003, Theorem

2.3) in the large-derivation case.

6.2 Rate of Convergence

The classical result (see Mendelson, 2003, Theorem 2.3) is actually derived from Hoeffding’s in-

equality. Thus, it is said to be of Hoeffding-type and can directly lead to its alternative expression

as follows:

sup
f∈F

∣∣EN f −E f
∣∣≤ O



(

lnE
{

N
(
F ,ξ, ℓ1(Z

N
1 )
)}

− ln(ε/8)

N

) 1
2


 , (19)

which implies that the rate of convergence of the i.i.d. learning process is up to O(1/
√

N).
Recalling the classical Bennett’s inequality (Bennett, 1962; Bousquet, 2002), we can find that

the expression of the risk bound (14) is similar to that of Bennett’s inequality, that is, both of them

are in the form of eΓ(x) with Γ(x) = x− (x+ 1) ln(x+ 1). For convenience, this form is said to be

of Bennett-type. Differing from the Hoeffding-type result (see Mendelson, 2003, Theorem 2.3), it

is difficult to directly achieve the alternative expression of the Bennett-type result (14), because it

is difficult to obtain the analytical expression of the inverse function of Γ(x). Instead, one generally

uses the term −x2

2+(2x/3) to approximate the function Γ(x) and then get the so-called Bernstein’s in-

equality. In this way, we can obtain the following alternative expression of the Bennett-type result

(14):1

sup
f∈F

∣∣EN f −E f
∣∣≤2Σ

(∗)
N +

64λRT2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

N
1 )
)}

− ln(ε/8)
)

3NT1

+
16T2

√
2(λ2πK2α+V )

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

N
1 )
)}

− ln(ε/8)
)

√
NT1

, (20)

which implies that the rate of convergence of the learning process for Lévy process is also up to

O(1/
√

N), which is in accordance with the classical result (19), if the discrepancy term Σ
(∗)
N is

ignored.

1. The details are referred to http://ocw.mit.edu/courses/mathematics/

18-465-topics-in-statistics-statistical-learning-theory-spring-2007/lecture-notes/l6.pdf.
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Here, we adopt a new method to obtain another alternative expression of the Bennett-type risk

bound (14) and show that the rate of convergence of the learning process can be up to o(1/N
1

1.3 ) in

the large-deviation case.

Remark 14 Here, “large-deviation” means that the discrepancy between the empirical risk and

the expected risk is large (or not small). Given any ξ > Σ
(∗)
N with ξ′ := ξ−Σ

(∗)
N , one of our ma-

jor concerns is the probability Pr
{

sup f∈F

∣∣EN f −E f
∣∣> ξ

}
, and then we say that the case that

λRξ′

8T2(λ2πK2α+V )
> 1.719 is of large-deviation, that is, ξ > 13.752T2(λ

2πK2α+V )
λR

+Σ
(∗)
N .

Theorem 15 Follow the notations and conditions of Theorem 12. Then, given any

ξ > 13.752T2(λ
2πK2α+V )

λR
+Σ

(∗)
N and for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N , we have with probabil-

ity at least 1− ε,

sup
f∈F

∣∣EN f −E f
∣∣≤ 2Σ

(∗)
N +

27.504T2(λ
2πK2α+V )

λR
+

16T2(λ
2πK2α+V )

λR

×
(
(λR)2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)}

− ln(ε/8)
)

NT1(λ2πK2α+V )

) 1
γ

,

where

ε := 8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
,

and 0 < γ ≤ γ
(

λRξ′

8T2(λ2πK2α+V )

)
< 1.3 with

γ(x) :=
ln
(
(x+1) ln(x+1)− x

)

lnx
.

The above theorem provides another upper bound of the risk bound sup f∈F

∣∣EN f −E f
∣∣ in the

large-deviation case, where 1.719 is the numerical solution to the equation γ(x) = 0. Compared to

the classical result (19), there is a discrepancy quantity Σ
(∗)
N that also appears in the Bernstein-type

result (20). Interestingly, in the large-deviation case, the risk bound (14) can provide a faster rate

o
(

1

N1/1.3

)
of convergence than the rate O

(
1

N1/2

)
of the classical result (19) and the Bernstein-type

result (20). Note that the rate o
(

1

N1/1.3

)
will not hold if the large-deviation case is not valid (that is,

0 < λRξ′

8T2(λ2πK2α+V )
≤ 1.719), while the Bernstein-type result (20) for the learning process performs

well and provides the rate O
(

1

N1/2

)
regardless of whether the large-deviation case is valid.

7. Conclusion

In this paper, we study the risk bounds of the learning process for time-dependent samples drawn

from a Lévy process. We first provide the deviation inequalities and the symmetrization inequality

of the learning process, respectively. We then use the resulted deviation inequalities and sym-

metrization inequality to derive the risk bounds based on the covering number.
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By using the risk bound shown in Theorem 12, we analyze the asymptotic convergence and

the rate of convergence of the learning process for Lévy process. We point out that the asymptotic

convergence of such learning process is affected by two factors: the complexities of the function

class F measured by the covering number and the quantity Σ
(∗)
N . This is partially in accordance

with the classical result on the asymptotic convergence of the learning process for i.i.d. samples

(see Mendelson, 2003). Due to the quantity Σ
(∗)
N , the uniform convergence of the learning process

for Lévy process may not be valid. We also show that the rate of convergence of the learning process

is up to O(1/
√

N), which matches with the the classical result under the sample-i.i.d. assumption.

Furthermore, we adopt a new method to obtain another alternative expression of the risk bound

(14) and then find that the rate of convergence of the learning process can reach o(1/N
1

1.3 ) in the

large-deviation case. Note that as stated in Sections 3 & 5, the faster rate of convergence is actually

provided by the specific deviation inequality (17) which is of Bennett-type (that is, its expression is

similar to that of Bennett’s inequality), while the classical result (19) is derived from Hoeffding’s

inequality (see Mendelson, 2003).

In our future work, we will attempt to study risk bounds for other stochastic processes via

some specific concentration or deviation inequalities, for example, stochastic processes with ex-

changeable increments that are a well-known generalization of stochastic processes with indepen-

dent increments (Kallenberg, 1973; Kallenberg et al., 1975). Then, we will develop the risk bounds

of the learning process for Lévy process by using other complexity measures, for example, the

Rademacher complexity and the fat-shattering dimension.
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Appendix A. Proof of Theorem 8

Proof of Theorem 8. Let f̂ and t̂ be the function and the time achieving the supremum

sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣

with respect to ZN
1 , respectively. According to Definition (D1), we have

∣∣Et̂ f̂ −EN f̂
∣∣=
∣∣Et̂ f̂ − 1

N

N

∑
n=1

Etn f̂ +
1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣

≤Σ
(∗)
N +

∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣,

which can lead to for any ξ > Σ
(∗)
N with ξ′ = ξ−Σ

(∗)
N ,

Pr
{∣∣Et̂ f̂ −EN f̂

∣∣> ξ
}
≤ Pr

{
∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣> ξ′

}
.
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According to the triangle inequality, we have

∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣−
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣≤ |E′

N f̂ −EN f̂ |. (21)

Let A stand for an event and denote the indicator function of the event A as

1A =

{
1, if A occurs;

0, otherwise.

By denoting ∧ as the conjunction of two events, it is followed from (21) that
(

1| 1
N ∑N

n=1 Etn f̂−EN f̂ |>ξ′

)(
1| 1

N ∑N
n=1 Etn f̂−E′

N f̂ |< ξ′
2

)

=1{| 1
N ∑N

n=1 Etn f̂−EN f̂ |>ξ′}∧
{
|E′

N f̂− 1
N ∑N

n=1 Etn f̂ |< ξ′
2

}

≤1|E′
N f̂−EN f̂ |> ξ′

2

.

Then, taking the expectation with respect to Z′N
1 gives

(
1∣∣ 1

N ∑N
n=1 Etn f̂−EN f̂

∣∣>ξ′

)
Pr′
{
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣< ξ′

2

}

≤Pr′
{∣∣E′

N f̂ −EN f̂
∣∣> ξ′

2

}
. (22)

By Chebyshev’s inequality, we have for any ξ′ > 0,

Pr′
{
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣≥ ξ′

2

}
=Pr′

{
∣∣

N

∑
n=1

(Etn f̂ − f̂ (Z′
tn
)
∣∣≥ Nξ′

2

}

≤
4E

{
∑N

n=1

(
Etn f̂ − f̂ (Z′

tn
)
)2
}

N2(ξ′)2

≤4N(b−a)2

N2(ξ′)2
=

4(b−a)2

N(ξ′)2
. (23)

Subsequently, according to (22) and (23), we have for any ξ′ > 0,

Pr′
{∣∣E′

N f̂ −EN f̂
∣∣> ξ′

2

}
≥
(

1∣∣ 1
N ∑N

n=1 Etn f̂−EN f̂

∣∣>ξ′

)(
1− 4(b−a)2

N(ξ′)2

)
.

Let
4(b−a)2

N(ξ′)2
≤ 1

2

and take the expectation with respect to ZN
1 . Given any ξ > Σ

(∗)
N , we then have for any N ≥ 8(b−a)2

(ξ′)2

with ξ′ = ξ−Σ
(∗)
N ,

Pr
{∣∣Et̂ f̂ −EN f̂

∣∣> ξ
}
≤2Pr

{
∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣> ξ′

2

}

≤2Pr

{∣∣E′
N f̂ −EN f̂

∣∣> ξ′

2

}
.
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This completes the proof. �

Appendix B. Proofs of Theorems 11 & 12

Proof of Theorem 11. Consider {εn}N
n=1 as independent Rademacher random variables, that is,

independent {−1,1}-valued random variables with equal probability of taking either value. Given

{εn}N
n=1 and Z2N

1 , denote −→
ε := (ε1, · · · ,εN ,−ε1, · · · ,−εN)

T , (24)

and for any f ∈ F ,

−→
f (Z2N

1 ) :=
(

f (Z′
t1
), · · · , f (Z′

tN
), f (Zt1), · · · , f (ZtN )

)T
. (25)

According to (6) and Theorem 8, given any ξ > Σ
(∗)
N , we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ =

ξ−Σ
(∗)
N ,

Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤2Pr

{
sup
f∈F

∣∣E′
N f −EN f

∣∣> ξ′

2

}
(by Theorem 8)

=2Pr

{
sup
f∈F

∣∣∣ 1

N

N

∑
n=1

(
f (Z′

tn
)− f (Ztn)

)∣∣∣> ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ 1

N

N

∑
n=1

εn

(
f (Z′

tn
)− f (Ztn)

)∣∣∣> ξ′

2

}
(since Z′

tn
and Ztn are i.i.d.)

=2Pr

{
sup
f∈F

∣∣∣ 1

2N

〈−→
ε ,

−→
f (Z2N

1 )
〉∣∣∣> ξ′

4

}
. (by (24) and (25)) (26)

Fix a realization of Z2N
1 and let Λ be a ξ′/8-radius cover of F with respect to the ℓ1(Z

2N
1 ) norm.

Since F is composed of the λ-Lipschitz functions with the range [a,b], we assume that the same

holds for any h ∈ Λ. If f̂ is the function that achieves sup f∈F
1

2N

∣∣〈−→ε ,
−→
f (Z2N

1 )
〉∣∣ > ξ′

4
, there must

be an ĥ ∈ Λ that satisfies that

1

2N

N

∑
n=1

(
| f̂ (Z′

tn
)− ĥ(Z′

tn
)|+ | f̂ (Ztn)− ĥ(Ztn)|

)
<

ξ′

8
,

and meanwhile,

sup
h∈Λ

1

2N

∣∣〈−→ε ,
−→
h (Z2N

1 )
〉∣∣> ξ′

8
.

Therefore, for the realization of Z2N
1 , we arrive at

Pr

{
sup
f∈F

∣∣∣ 1

2N

〈−→
ε ,

−→
f (Z2N

1 )
〉∣∣∣> ξ′

4

}
≤ Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}
. (27)
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Moreover, we denote the event

A :=

{
Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}}
,

and let 1A be the characteristic function of the event A. By Fubini’s Theorem, we have

Pr{A}= E
{

E−→
ε

{
1A

}∣∣ Z2N
1

}
= E

{
Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}∣∣ Z2N
1

}
. (28)

Fix a realization of Z2N
1 again. According to (24), (25) and Theorem 6, we have

Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

≤|Λ|max
h∈Λ

Pr

{∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

=N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{∣∣E′
Nh−ENh

∣∣> ξ′

4

}

≤N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
| 1

N

N

∑
n=1

Etnh−E′
Nh|+ | 1

N

N

∑
n=1

Etnh−ENh|> ξ′

4

}

≤2N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
∣∣ 1

N

N

∑
n=1

Etnh−ENh
∣∣> ξ′

8

}

≤4N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
−
∫ Nξ′

8

0
ϕ−1(s)ds

}
. (29)

The combination of (26), (27), (28) and (29) leads to the result (13). This completes the proof. �

In the similar way, we can also prove Theorem 12.

Proof of Theorem 12. Similarly, by (11), we have

Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

≤2N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
∣∣ 1

N

N

∑
n=1

Etnh−ENh
∣∣> ξ′

8

}

≤4N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
. (30)

Then, the combination of (26), (27), (28) and (30) can lead to the result (14). This completes the

proof. �

B.1 Proof of Theorem 15

Proof of Theorem 15. Given any x > 1, consider the following equation with respect to γ > 0

x− (x+1) ln(x+1) =−xγ, (31)
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and denote its solution as

γ(x) :=
ln
(
(x+1) ln(x+1)− x

)

ln(x)
. (32)

It is evident that γ(x) is a continuously differentiable function with respect to x > 1 and there is only

one solution to the equation γ(x) = 0. Its numerical solution is x ≈ 1.719 and γ(x)> 0 holds for all

x > x ≈ 1.719. Then, given any x > 1.719, we have for any 0 < γ̃ ≤ γ(x),

x− (x+1) ln(x+1)≤−x γ̃. (33)

By combining Theorem 12, (31), (32) and (33), we can straightforwardly show an upper bound

of the risk bound sup f∈F

∣∣EN f −E f
∣∣ in the large-deviation case: letting

ε := 8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
.

and with probability at least 1− ε,

sup
f∈F

∣∣EN f −E f
∣∣≤ 2Σ

(∗)
N +

27.504T2(λ
2πK2α+V )

λR
+

16T2(λ
2πK2α+V )

λR

×
(
(λR)2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)}

− ln(ε/8)
)

NT1(λ2πK2α+V )

) 1
γ

,

where 0 < γ ≤ γ
(

λRξ′

8T2(λ2πK2α+V )

)
with

λRξ′

8T2(λ2πK2α+V )
> 1.719. Thus, we only need to find the upper

bound of the function γ(x) when x > 1.719.

According to (32), for any x > 1.719, we consider the derivative of γ(x)

γ ′(x) =
ln(x+1)

ln(x)
(
(x+1) ln(x+1)− x

) − ln
(
(x+1) ln(x+1)− x

)

x(lnx)2
, (34)

and draw the function curve of γ ′(x) in Figure 2.

Figure 2 shows that there is only one solution to the equation γ ′(x) = 0 (x > 1.719). Letting

the solution be x̂, we then have γ ′(x) > 0 (1.719 < x < x̂) and γ ′(x) < 0 (x > x̂), that is, γ(x) is

monotonically decreasing when x > x̂. Meanwhile, by (34), there holds that

lim
x→+∞

γ ′(x) = 0. (35)

Furthermore, we study the second derivative of γ ′′(x)

γ ′′(x) =
ln((x+1) ln(x+1)− x)

x2(lnx)2
− 1

(x+1)(x− (x+1) ln(x+1)) lnx

+
2ln((x+1) ln(x+1)− x)

x2(lnx)3
− (ln(x+1))2

(x− (x+1) ln(x+1))2 lnx

+
2ln(x+1)

x(lnx)2(x− (x+1) ln(x+1))
, (36)
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Figure 2: The Function Curve of γ ′(x)
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Figure 3: The Function Curve of γ ′′(x)
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and draw the function curve of γ ′′(x) in Figure 3. This figure shows that there is a solution to the

equation γ ′′(x) = 0 and its value approximately equals to 137.67. Moreover, according to (36), we

arrive at

lim
x→+∞

γ ′′(x) = 0. (37)

Therefore, by combining (34), (35), (36) and (37), we obtain that γ(x) has only one global

maximum point when x > 1.719 and thus the solution x̂ to the equation γ′(x) = 0 also achieves

x̂ = arg max
x>1.719

γ(x).

Our further numerical experiment shows that the value of x̂ approximately equals to 69.85 and

the maximum of γ(x) (x > 1.719) is not larger than 1.3 (see Figure 4). This completes the proof. �
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Figure 4: The Function Curve of γ(x)
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