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Abstract—This paper addresses the self-scheduling problem of
a price-taker power producer. It focuses on risk modeling, em-
phasizing the tradeoff existing between maximum profit and min-
imum risk. The paper analyzes a self-scheduling model that con-
siders simultaneously profit and risk. This model is formulated as
a mixed-integer quadratic programming problem, which is solved
using commercially available software. Relevant results from a re-
alistic case study are discussed.

Index Terms—Pool-based electricity market, price-taker power
producer, profit versus risk tradeoff, risk-constrained self-sched-
uling.

NOMENCLATURE

Variables:
Production cost during hour .
Power production during hour .
Total revenue.

covariance matrix of random variables
.

Market-clearing price of hour (random variable).
Vector of the (24) prices for day .

Constants:
Number of days for which true and estimate prices
are available.
Considered time periods in one day (typically 24).
Factor used to estimate the covariance matrix.
Weighting factor to incorporate risk into the ex-
pected profit objective function.
Feasible operating region of the generating machine.

Miscellaneous:
Expected value operator with respect to random
variables .
Variance operator with respect to random variables

.
est Superscript that indicates estimate value.
true Superscript that indicates true value.
exp Superscript that indicates expected value.
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I. INTRODUCTION

THIS PAPER considers a day-ahead electric energy
market based on a pool. Within this pool, producers and

consumers submit production and consumption bids to the
market operator, which clears the market using an appropriate
market-clearing procedure. This procedure results in 24 hourly
energy prices to be paid by consumers and to be charged by
producers. Appropriate forecasting techniques can be used to
predict these 24 day-ahead hourly prices. Furthermore, the
covariance matrix that expresses the statistical dependence
of these prices among themselves can also be estimated [1].
It should be noted that modeling bilateral contracts requires
longer market horizons than those considered in this paper.

In the above framework, this paper addresses the self-sched-
uling problem faced by a power producer. The effect of risk
is explicitly recognized in formulating this self-scheduling
problem taking into account the variance of the market-clearing
prices. Therefore, the tradeoff of maximum profit versus
minimum risk is properly addressed. Within the framework
stated in [2], the analysis performed can be extended to simul-
taneously consider AGC, spinning reserve, and nonspinning
reserve markets.

Note that any producer participating in an electric energy pool
should self-schedule its units to maximize its expected profit
assuming a given level of risk. This optimal self-schedule is then
used by the producer to derive an appropriate bidding strategy to
the pool [3]. This strategy is designed so that the optimal self-
schedule is accepted by the pool operator through its market-
clearing procedure (based on unit commitment or on auctions).

The producer considered in this paper is a price-taker, i.e.,
a producer with no capability of altering the market-clearing
prices. Therefore, its power plants do not have to seek coordina-
tion among themselves in determining their respective produc-
tion strategies because coordination does not change market-
clearing prices. Therefore, the self-scheduling of each generator
is independent of the self-scheduling of the others. For the sake
of simplicity and without loss of generality, a producer owning
a single generator is considered in this paper.

The objective of the producer is to maximize the expected
value of profit from selling energy in the day-ahead market, as-
suming a certain risk level. Therefore, a precise modeling of risk
is embedded in the considered maximum profit problem.

The profit maximization problem faced by the producer is
therefore a risk-constrained self-scheduling problem that is for-
mulated as a mixed-integer quadratic programming problem. A
commercial software [4] is used to solve this problem.

This paper is built upon previous results on self-scheduling of
power producers as stated in [3] and [5]. Its relevant contribution
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consists in modeling risk in a rigorous manner and providing a
tradeoff decision framework involving profit versus risk.

Relevant references on self-scheduling include [5] and [6].
Although several references are available on risk management
in pool markets for a long-term time span, only few references
address risk-related problems in the short-term. They include
the following references. Paper [7] presents a unit commitment
problem with uncertainty in the market prices. It uses a real
option model to manage the price risk and the price behavior is
modeled through scenarios (trinomial trees). Paper [8] presents
“Value-at-Risk” and hedging instruments to manage market
price risk for suppliers, distributors and traders. In [9], the
authors analyze how to deal with the risk associated with
operating conditions for models that include the transmission
network. In [10], the authors explain how the participants in
the former California power market had a risk exposure related
to prices and propose the “Value-at-Risk” method to quantify
this exposure. [11] presents a methodology to analyze the risk
associated to short-term operational planning in the presence
of load uncertainty.

The risk analysis carried out in this paper frames itself in a
pool-based electric energy market that is cleared using a simple
auction procedure, and where bilateral contracts are not signifi-
cant. This is actually the case of the electricity market of main-
land Spain [12].

If the producer has the possibility of signing
long/medium-term contracts to hedge risk, the decision
framework becomes more complex and versatile. In the
long/medium-term, the producer should decide which
contracts to sign, and as a result of such decision, the power
that the producer allocates to trade in the pool (short-term).
The long/medium-term decision of which contracts to sign
is better taken within a stochastic programming framework,
similar to the one stated, for instance, in [13]–[16] or [17]. The
power that has not been allocated to bilateral contracts should
be traded in the spot market using a framework similar to the
one developed in this paper. An overview of the cascaded
decisions faced by a power producer in the long-, medium-,
and short-term frameworks can be found in [18].

This paper is organized as follows. Section II provides a de-
scription of the revenue that the producer expects to achieve in
the day-ahead energy market. This revenue is characterized as a
random variable whose average value and variance (a measure
of risk) are described mathematically. In Section III, the risk-
constrained self-scheduling problem faced by the producer is
formulated as a mixed-integer quadratic programming problem.
Results from a realistic case study are described and analyzed
in Section IV. Finally, Section V provides some relevant conclu-
sions.

II. REVENUE AND RISK CHARACTERIZATION

The expected value of the revenue obtained by the generator
in the day-ahead electric energy market is calculated as

(1)

Note that expectation and summation operators can be
swapped, i.e.,

(2)

Therefore, the average value of the revenue of the generator in
the day-ahead electric energy market is computed as the sum-
mation over time of the price estimate times the actual power
production in each hourly time-period.

The mutual dependence among the 24 revenues can be mea-
sured through their variance. This variance is an appropriate
measure of risk: the higher the variance, the higher the risk. The
variance of the 24 revenues can be computed as

(3)

where is the covariance matrix of prices
[1]. It should be noted that the variance of the total

revenue can be formulated solely as a function of the covariance
matrix of the prices because the only random variables involved
are these prices.

The actual covariance matrix for day is

(4)

where for day .
If the true values of prices as well as their estimates are avail-

able up to day , the covariance matrix of day can be
estimated as

(5)

where is a convenient number of days (up to and including
day ) for which true and estimate prices are available.

Hourly price series of most electric energy markets present
some characteristics that can cause problems if (5) is directly
used. These characteristics are [19]: nonconstant mean and vari-
ance, multiple seasonality (corresponding to a daily and weekly
periodicity, respectively), high volatility, and high percentage of
unusual prices (mainly in periods of high demand). Therefore, a
better estimate for the covariance matrix can be obtained using
the following exponentially weighted moving-average equation
[20]:

(6)

where is greater than or equal to 24 to make the covariance
matrix positive definite. To guarantee that covariance matrix
is positive definite, at least 24 error vectors should be linearly
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independent, which is usually the case. Moreover, using more
than 24 error vectors further ensures the positive definiteness of
the covariance matrix . Because past prices are weighted by
the “smoothing constant” , higher weights are
assigned to the days closer to day and these weights decay ex-
ponentially as the days considered are farther and farther away
in the past from day . Therefore, seasonality effects and outliers
have less impact on variances and covariances as these effects
occur in periods more and more distant from day . It should
be noted that both (5) and (6) render biased estimations of ma-
trix . However, as stated in [20], it can be shown that the bias
approaches zero as , the number of days considered in the es-
timation, increases. Nevertheless, as the value of increases,
precision may deteriorate due to possible outliers. Therefore,
by trial and error, an appropriate value of should be selected
so that the bias approaches zero while estimation precision re-
mains high.

III. SELF-SCHEDULING

At the time of self-scheduling, any producer faces a tradeoff
between maximum profit and minimum risk. If the producer
decides to ignore risk, the resulting profit maximization self-
scheduling problem can be formulated as [5]

(7)

where is the production cost during hour . This cost includes
a quadratic operation cost that depends on the power output ,
and fixed, start-up and shut-down costs. Further information on
cost can be found in [5].

Operation constraints of the generator include:

• minimum and maximum power output limits;
• ramp-up and ramp-down limits;
• start-up and shut-down ramp limits;
• minimum up- and minimum down-time constraints.

The above constraints can be generally expressed as
, where is the feasible operating region of

the generator. A detailed description of the feasibility region
can be found in [5].

On the other hand, if the producer seeks to minimize risk and
it is not disturbed by low profit, the corresponding risk mini-
mization self-scheduling problem can be formulated as

(8)

where both and are time indices.
It should be noted that problem (8) is of no practical use.

However, it is formulated for derivation consistency and for the
sake of clarification.

Generally, a producer is interested in finding a self-schedule
that results in a large profit with low risk (variance). To combine

TABLE I
TECHNICAL DATA FOR THE GENERATING MACHINE

TABLE II
COSTS DATA FOR THE GENERATING MACHINE

TABLE III
PRICE ESTIMATES

these two conflicting objectives, the technique presented in [21]
for portfolio selection can be used. This technique uses a single
objective function with the help of a risk tolerance parameter .
The resulting self-scheduling problem has the form

(9)

Note that the variance of the total revenue is equal to the vari-
ance of the total profit because all costs are considered deter-
ministic.

Penalty parameter allows adding the two conflicting terms
that form the objective function of problem (9). Parameter
lies in the range and its actual value materializes the
tradeoff between expected profit and risk; therefore, it depends
on the preferences of the producer. A conservative producer
places more emphasis on minimizing risk while deriving its
self-scheduling, so it chooses a large value of to increase the
weight of the risk measure in (9). On the contrary, another pro-
ducer may be prepared to assume higher risk in the hope of ob-
taining a higher profit, so its selected value for is close to 0.

The solution of (9) for different values of provides the effi-
cient frontier [21]–[24], that is, the set of solutions for which ex-
pected profit cannot be increased without increasing profit vari-
ance, i.e., risk. As stated in [25], the selection of the weighting
factor depends on, among others, the financial situation of the
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TABLE IV
ESTIMATE OF THE COVARIANCE MATRIX

generating company, its willingness to take risks and the char-
acteristics of the particular electricity market. A detailed dis-
cussion on how to obtain appropriate values for the weighting
factor is outside the scope of this paper.

It should be noted that modeling the feasible operating re-
gion of the generator (represented by ) requires the use of
binary variables to represent the commitment status as well as
start-ups and shut-downs. Therefore, problem (9) is a mixed-in-
teger quadratic programming problem.

If covariance matrix is positive definite, problem (9) has a
strict optimum that can be efficiently attained. If, on the other
hand, is positive semidefinite (only other possibility), non-
strict optima may exist and solution algorithms behave not as
efficiently as in the positive definite case. Nevertheless, com-
putational experience shows that appropriate solutions are ob-
tained in both cases.

IV. CASE STUDY

The considered case study consists in the day-ahead self-
scheduling of a power producer owning a single generating ma-
chine. Data for this machine is provided in Tables I and II.

Price forecasts are provided in Table III while an estimate
of the covariance matrix is provided in Table IV. A time series
of three months corresponding to the electric energy market
of mainland Spain [12] has been used to estimate prices. Price
estimates are obtained using a transfer function procedure
[19], while the covariance matrix has been estimated through
(6) using data for the last 24 days prior to the estimation
day. Through numerical simulation it has been verified that
good estimations for this covariance matrix are obtained with

and . Using standard clustering techniques
[26] to analyze this covariance matrix, the following can be
concluded in terms of correlations affecting risk. Hours 20–24
(late-evening peak) are highly correlated among each other
and show small correlations with the other hours of the day.

Fig. 1. Expected profit versus profit standard deviation.

The same pattern is presented by hours 5–9 (early-morning
shoulder) and 11–14 (afternoon peak). The physical reasons for
the above correlations lay on the structure and the composition
of the load. However, the study of the load structure is beyond
the scope of this paper.

The scheduling problem (9) is solved for different values of
the parameter , which allows assigning different weights to the
risk term versus the profit term in the objective function. This al-
lows constructing the efficient frontier. Fig. 1 depicts expected
profit versus profit standard deviation and illustrates the effi-
cient frontier. It can be observed that expected profit increases as
variance also increases. Note that the decrement rate in expected
profit is important, which makes the tradeoff profit versus risk
relevant.

The expected profit achieved by a conservative producer
is $11 737.21 whereas the expected profit with maximum

risk is equal to $29 209.56.
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TABLE V
SCHEDULING COMPARISON FOR TWO LEVELS OF RISKS

Table V illustrates scheduling differences for the cases of
maximum risk and a low level of risk (see
Fig. 1). This range on is considered wide enough to reflect the
variety of risk that electricity producers are willing to assume.
As can be seen from this table, the consideration of different risk
levels yields two results: 1) the risk averse producer
is on-line during fewer time periods, and 2) in those periods in
which it is on-line, its production is considerably lower com-
pared to the case of maximum risk . Note that interme-
diate values of result in different intermediate schedules.

A clear conclusion can be drawn: the producer should make a
decision on its desired level of risk before solving its day-ahead
scheduling problem and using that information to bid in the
electric energy market. Different levels of risk imply different
self-scheduling results and different bidding strategies, and ul-
timately, different actual profits.

The CPU time required to solve problem (9) for a given value
of in a Dell PowerEdge 6600 with two processors at 1.60 GHz
and 2 Gb of RAM memory is approximately 7 s.

V. CONCLUSION

Any power producer faces a profit versus risk tradeoff while
determining its self-scheduling and its bidding strategy for the
day-ahead electric energy market. This paper provides an appro-
priate tool to analyze the profit versus risk tradeoff faced by the
producer. Moreover, it provides the producer with an instrument
to efficiently self-schedule once a level of risk has been speci-
fied. Practical simulations using realistic electric energy mar-
kets show that risk levels affect profits in a significant manner.
Therefore, any producer should be aware of the consequences
of its selected level of risk on its self-scheduling, its bidding
strategy, and ultimately, on its actual profits.
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