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Abstract

Rough set theory has witnessed great success in data mining and knowledge discovery, which provides
a good support for decision making on a certain data. However, a practical decision problem always
shows diversity under the same circumstance according to different personality of the decision makers.
A simplex decision model can not provide a full description on such diverse decisions. In this article, a
review of Pawlak rough set models and probabilistic rough set models is presented, and a three-way view
decision model based on decision-theoretic rough set model is proposed, in which optimistic decision,
pessimistic decision, and equable decision are provided according to the cost of misclassification. The
thresholds of probabilistic inclusion are calculated based on minimization of risk cost under respective
decision bias. The study not only presents a new theoretic decision model considering the different
personality of the decision makers, but also provides a practical explanation and an illustrative example
on diverse risk bias decision.

Keywords: decision-theoretic rough set; three-way view decision; risk decision making; Bayesian deci-
sion

1. Introduction

In many decision making problems, data mining can
be regarded as a useful strategy to discover knowl-
edge structure from the data sets, which helps to pro-
mote decision support. It mainly focuses on a com-
puterized technology that uses diverse algorithms to
find relationships and trends in large databases. Pro-
posed by Pawlak in the early 1980s 1,2, rough set
theory has been widely conceived as a mathemat-
ical tool to deal with vague or imprecise informa-

tion 3. In recent decades, rough set theory has be-
come a focus topic in the research area of data min-
ing and knowledge discovery, and witnessed great
success in practical applications on intelligence in-
formation process, knowledge reduction and deci-
sion making support system. Many examples of ap-
plications of the rough set are frequently mentioned
in literatures 5,6,7,8,9,10.

A fundamental application of rough set is to in-
duce rules based on lower and upper approximation.
Rules induced from lower approximation are certain
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rules, and rules induced from upper approximation
are possible rules. All these rules can be used for
decision making. In practice, however, a decision
problem may show diversity under the same circum-
stance according to different personality of the deci-
sion makers. Decision makers may induce different
decision rules based on the same data set according
to their personal risk bias, and they may take differ-
ent action on the same description of a risk state. A
simplex decision model can not provide a full de-
scription on such diverse decisions, and a three-way
view decision model is necessary.

Researches on classical rough set theory mainly
focus on Pawlak rough set model 1,2, in which the
lower and upper approximation operators are de-
fined by core and support of a rough membership
function represent only two extreme cases. They
may be regarded as qualitative approximations of a
set, which are restricted to induce certain decisions
without flexible parameter. The Pawlak rough set
model can be used to induce decision rules, which
provide support for decision making. In Pawlak
rough set model, the set inclusion must be fully cor-
rect or certain, and the actual degree of member-
ship is not taken into consideration, which makes the
rough set approach to be very sensitive to the accu-
racy of input data and not suitable to process noisy
data.

In order to overcome the disadvantage of Pawlak
rough set model, an extended probabilistic rough set
model has been suggested. By introducing member-
ship functions of set inclusion with statistical infor-
mation, Yao proposes decision-theoretic rough set
model(DTRS) 12,13,14,15 and Ziarko proposes vari-
able precision rough set model(VPRS) 16. DTRS
model is a typical probabilistic rough set models,
in which thresholds of the conditional probabil-
ity for classification are introduced, and an avail-
able method to determine the thresholds is proposed
based on Bayesian cost theory. In DTRS model,
whether or not an object belongs to positive region
depends on conditional probability and the thresh-
olds, and the thresholds are precalculated by mini-
mizing the decision cost according to Bayesian the-
ory. Such extension of set inclusion allows for a con-
trolled degree of misclassification in its formalism

which, in turn, leads to more general notions of con-
cept approximations. DTRS model is a generalized
rough set model, in which α-cut fuzzy set model,
Pawlak rough set model and other type of probabilis-
tic rough set models such as 0.5 probabilistic model
and VPRS model can be derived 12. When compared
to DTRS model, VPRS model can be regarded as a
special case of DTRS model, and a main disadvan-
tage of VPRS is that the thresholds in VPRS are not
presented with a certain method. One may find it
is hard to select an appropriate value of threshold in
VPRS model.

This paper is an extended version of the paper
published in the proceedings of RSKT’2009 17. A
main objective of this paper is to propose a three-
way view decision model based on DTRS, which
may present a full description on diverse decisions
according to different risk bias of decision makers.
As mentioned above, practical decision problem of-
ten shows diverse characteristic. For a given de-
scription, different decision makers often take dif-
ferent attitude under a certain decision background.
DTRS can be regarded as a suitable mathematical
tool to describable the diverse characteristic of de-
cisions, which will be illustrated detailedly in the
following discussion. Based on DTRS, optimistic
decision, pessimistic decision, and equable decision
are proposed according to the cost of misclassifica-
tion, which are well explained from both practical
example and mathematical theory.

2. A Review of Rough Set Models

In this section, we will review two categories of
rough set models, which play an fundamental im-
portant role in the development of rough set theory.
One category is Pawlak rough set models, and the
other is probabilistic rough set models.

2.1. Pawlak rough set models

In Pawlak rough set models, upper approximation
and lower approximation are defined by extreme
cases of set inclusion. Let U denote a finite and non-
empty set called the universe, and let R⊆U×U de-
note an equivalence relation on U . The partition of
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the universe by R is denoted by U/R. In informa-
tion table, R can be induced by a subset of attribute
A ⊆ C, where C is the entire set of attributes. Sup-
pose X ⊆ U is a subset of U , the lower and upper
approximation are respectively defined as follows:

apr(X) = {x | x ∈U, [x]R ⊆ X};
apr(X) = {x | x ∈U, [x]R∩X 6= /0}. (1)

Based on the lower and upper approximations of
a set X ⊆ U , the universe U can be divided into
three disjoint regions, the positive region POS(X),
the negative region NEG(X), and the boundary re-
gion BND(X), which are respectively defined as fol-
lows:

POS(X) = apr(X);
NEG(X) = U−apr(X);
BND(X) = apr(X)−apr(X). (2)

One may induce certain rules based on positive
region, i.e., all elements x ∈ POS(X) are certainly
the members of X , and all elements x ∈ POS(X) are
impossible the members of X . In boundary region,
one can not decide with certainty whether or not an
element x ∈ BND(X) is a member of X . From (1)
and (2), we have apr(X) = POS(X)∪BND(X). For
element x ∈ apr(X), one can only conclude that x
possibly belongs to X .

2.2. Probabilistic rough set models

In Pawlak rough set models, all elements with non-
zero and non-full membership values will be classi-
fied into boundary region. However, in practice, a
looser classification may be more useful. An object
may be classified into the positive region if the con-
ditional probability is sufficiently large. Similarly,
an object may be classified into the negative region
if the conditional probability is sufficiently small.
Based on the statistical information of membership
function, two fundamental probabilistic rough set
models are proposed. One is DTRS model, and
the other is VPRS model. As mentioned in sec-
tion 1, DTRS is superior to VPRS in that the thresh-
olds in DTRS are calculated according to Baysion

theory while VPRS does not provide a method to
determine the values of thresholds. Furthermore,
VPRS is just a special case of DTRS, and VPRS can
be directly derived from DTRS when the decision
costs are equal to some certain values 12. Therefore,
DTRS can be regarded as a representative model for
probabilistic rough set.

Let us review the DTRS in detail. Suppose
Ω = {w1,w2, . . . ,ws} is a finite set of s states, A =
{a1,a2, . . . ,am} is a finite set of m possible actions,
and P(w j|x) is the conditional probability of an ob-
ject x being in state w j given that the object is de-
scribed by x. Let λ (ai|w j) denote the loss, or cost,
for taking action ai when the state is w j. For an ob-
ject with description x, suppose action ai is taken.
The expected loss associated with taking action ai
can be calculated by:

R(ai|x) =
s

∑
j=1

λ (ai|w j)P(w j|x) (3)

In general, a decision rule can be conceived as a
function τ(x) that specifies which action to take, and
the overall risk R of a decision rule is calculated by:

R = ∑
x

R(τ(x)|x)P(x) (4)

Let us consider the object classification prob-
lem with the approximation operators. The set of
states is given by Ω = {X ,¬X} indicating that an
element is in X and not in X . The set of actions
is given by A = {aP,aN ,aB}, represent the three
actions in classifying an object, deciding POS(X),
deciding NEG(X), and deciding BND(X), respec-
tively. When an object belongs to X , let λPP, λBP
and λNP denote the costs of taking actions aP, aB
and aN , respectively 18. When an object does not
belong to X , let λPN , λBN , and λNN denote the costs
of taking the same three actions. Then the expected
loss R(ai|[x]R) associated with taking the individual
actions can be expressed as:

R(aP|[x]R) = λPPP(X |[x]R)+λPNP(¬X |[x]R);
R(aN |[x]R) = λNPP(X |[x]R)+λNNP(¬X |[x]R);
R(aB|[x]R) = λBPP(X |[x]R)+λBNP(¬X |[x]R).

(5)
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The Bayesian decision procedure leads to the fol-
lowing minimum-risk decision rules:

If R(aP|[x]R) 6 R(aN |[x]R)
R(aP|[x]R) 6 R(aB|[x]R),

decide POS(X) ;
If R(aN |[x]R) 6 R(aP|[x]R)

R(aN |[x]R) 6 R(aB|[x]R),
decide NEG(X) ;

If R(aB|[x]R) 6 R(aP|[x]R)
R(aB|[x]R) 6 R(aN |[x]R),

decide BND(X) . (6)

Consider a reasonable kind of loss functions with
λPP 6 λBP 6 λNP and λNN 6 λBN 6 λPN , one can in-
duce following decision rules based on the fact that
P(X |[x]R)+P(¬X |[x]R) = 1:

If P(X |[x]R) > γ and P(X |[x]R) > α,

decide POS(X) ;
If P(X |[x]R) 6 β and P(X |[x]R) 6 γ,

decide NEG(X) ;
If P(X |[x]R) > β and P(X |[x]R) 6 α,

decide BND(X) , (7)

where

α =
λPN −λBN

(λPN −λBN)+(λBP−λPP)
;

γ =
λPN −λNN

(λPN −λNN)+(λNP−λPP)
;

β =
λBN −λNN

(λBN −λNN)+(λNP−λBP)
. (8)

When (λPN − λBN)(λNP − λBP) > (λBP −
λPP)(λBN −λNN), we have α > β , thus α > γ > β ,
and induce following decision rules:

If P(X |[x]R) > α, decide POS(X);
If P(X |[x]R) 6 β , decide NEG(X);
If β < P(X |[x]R) < α, decide BND(X). (9)

As a special case of DTRS and another type
of probabilistic rough set model, VPRS also intro-
duce statistical information for set approximation.

A parameter β ∈ (0.5,1] is introduced to set thresh-
olds for lower approximation upper approximation,
which is provided by the user. A generalized notion
of β -lower approximation and β -upper approxima-
tion can be obtained as follows:

aprβ (X) = {x ∈U |P(X |[x]R) > β};

aprβ (X) = {x ∈U |P(X |[x]R) > 1−β}.(10)

With the definition of β -lower approximation
and β -upper approximation, one can also partition
the entire universe into three regions based on the
value of β :

POSβ (X) = aprβ (X);

NEGβ (X) = U−aprβ (X);
BNDβ (X) = aprβ (X)−aprβ (X). (11)

However, a fundamental important problem still
remains in VPRS. How to determine the threshold
values for deciding the three regions? Users have to
determine the thresholds according to their intuition,
which may not be reliable. That is a main disadvan-
tage of VPRS when compared to DTRS.

3. A three-way view decision model based on
DTRS

DTRS is a typical probabilistic rough set model, in
which a reasonable method to determine the thresh-
old for distinguishing the three regions is provided,
and the method is proposed based on the reliable
mathematics foundation: Bayesian decision theory.
The successful applications of the DTRS in a variety
of problems have amply demonstrated its usefulness
and versatility 19,20,21,22,23. In this section, we will
propose a new three-way view decision model based
on DTRS.

3.1. A three-way view decision model

In a practical decision problem, we may find diverse
characteristics between the types of decisions. Dif-
ferent attitudes towards a single decision can be seen
among separate groups of people. Some people al-
ways take optimistic decision, while other people
may take pessimistic decision or equable decision.
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For example, in medical examination, some symp-
toms indicate that a person may get illness with a
certain possibility. For an optimistic person, he or
she will think the possibility of get illness is not so
high, and the illness may be self-recover even with-
out treatment, therefore, he or she makes the deci-
sion not to see the doctor, while a pessimistic person
will be afraid of getting illness and think that the
illness may cause an aggravation without treatment,
therefore he or she will make the decision to see the
doctor immediately.

In general, people will take different type deci-
sion according their personal character. When con-
sidering the difference among different people, it
is necessary to develop a fully descriptive decision
model in which diverse types of decision are embod-
ied. To this end, we propose a three-way view deci-
sion model based on DTRS. It can be argued that op-
timistic decision, pessimistic decision, and equable
decision are different in that they adopt different val-
ues on the costs.

Let us take the example mentioned above for il-
lustration. Suppose there are two states after a series
of diagnoses for a disease: X is a confirmed disease
state and ¬X is a confirmed no-disease state, thus
they are two complementary states. There are three
actions regarding the three regions of the disease de-
cision: aP is to take some treatments to a patient,
aB is an amphibolous action, which means to wait-
and-see, and aN is to cancel any further treatment.
For each pair of action-state, there is a correspond-
ing cost λi j, where i = P, N, or B, and j = P, or
N. For optimistic people, the cost of taking action
of canceling any treatment for a confirmed disease
state, λNP, is not so high, because they have opti-
mistic character and do not care so much about get-
ting disease. In comparison, pessimistic people will
always be anxiety and afraid of getting any disease.
Therefore, they adopt a very high value on the cost
λNP.

In addition, there are some other people whom
take middle-of-the road, i.e., the values of cost λNP
is medium. Likewise, for pessimistic people, the
cost of taking action of treatment for a confirmed
no-disease state, λPN , is not so high as that of opti-
mistic people. That is, for pessimistic people, λPN is

low and λNP is high. Based on the analysis above,
for a given description [x]R, we provide three type of
decision: optimistic decision, pessimistic decision,
and equable decision, which are defined according
to the values of cost λPP, λBP, λNP, λPN , λBN , and
λNN . All these three types of decision are based on
following assumption:

(i) α > β ; (ii)λPP = λNN = 0;
(iii) λBP = σλNP,λBN = σλPN ,0 < σ < 1.

(12)

Based on formula (8) and assumption (12), we
have:

α =
(1−σ)λPN

(1−σ)λPN +σλNP
;

β =
σλPN

σλPN +(1−σ)λNP
. (13)

Let σ ∈ (0,1), and the three decisions are pre-
sented as follows:
Optimistic decision: Select a Low λNP and a High
λPN , then calculate the αO and βO based on formula
(13),

If P(X |[x]R) > αO, decide POS(X);
If P(X |[x]R) 6 βO, decide NEG(X); (14)
If βO < P(X |[x]R) < αO, decide BND(X).

Pessimistic decision: Select a High λNP and a Low
λPN , then calculate the αP and βP based on formula
(13),

If P(X |[x]R) > αP, decide POS(X);
If P(X |[x]R) 6 βP, decide NEG(X); (15)
If βP < P(X |[x]R) < αP, decide BND(X).

Equable decision: Select a Medium λNP and a
Medium λPN , then calculate the αE and βE based
on formula (13),

If P(X |[x]R) > αE , decide POS(X);
If P(X |[x]R) 6 βE , decide NEG(X); (16)
If βE < P(X |[x]R) < αE , decide BND(X).
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For simplicity, all these three decisions can be
presented as a simply uniform expression:

If P(X |[x]R) > αi, decide POS(X);
If P(X |[x]R) 6 βi, decide NEG(X); (17)
If βi < P(X |[x]R) < αi, decide BND(X),

where i ∈{optimistic, pessimistic, equable}, and
αi ∈ {αoptimistic,αpessimistic,αequable}. The values of
αi is determined according to the selected λNP and
λPN :
Optimistic decision: Low λNP and High λPN ;
Pessimistic decision: High λNP and Low λPN ;
Equable decision: Medium λNP and Medium λPN .

The three decision models are different in the se-
lected values of λNP and λPN , which indicate the dif-
ferent risk bias of decision-makers. An optimistic
decision-maker always shows low cost of λNP and
high cost of λPN , and a pessimistic decision shows
quite the contrary: high cost of λNP and low cost
of λPN . It should be noted that this description is
based on the fact that POS(X) is an unpleasant event
for all decision-makers, while NEG(X) is a pleasant
event for all decision-makers. The decision mod-
els will take opposite result if POS(X) is an pleasant
event for all decision-makers and NEG(X) is an un-
pleasant event. We may illustrate it in detail by an
example of medical diagnoses.

For example, diagnoses for a disease and de-
cision for treatment are unpleasant event for all
decision-makers, and an optimistic decision-maker
is overly optimistic when judging whether unpleas-
ant events are more or less likely to bring them un-
happiness. This optimistic bias often stems from
their perception that they have control over unpleas-
ant events. They believe the disease is just a matter
of no importance, therefore the cost of λNP is low.
On the contrary, they think the wrong diagnoses for
a disease in the case that they actually have not got
the disease will bring more trouble or cost, therefore
the cost of λPN is high. For a pessimistic decision-
maker, they are pessimistic when judging whether
unpleasant events are more or less likely to bring
them unhappiness. The pessimistic bias stems from
their perception that they can not control over un-
pleasant events, and they believe the disease is an
unpleasant and uncontrollable event, which should

be treated as soon as possible, otherwise it will be
much dangerous, therefore the cost of λNP is high
and λPN is relatively low.

However, the cost λNP and λPN in the decision
model will go upside down when POS(X) is a pleas-
ant event. In the example mentioned above, suppose
POS(X) denote that the diagnoses result is healthy
and decide no treatment, and NEG(X) denote that
the diagnoses result is diseased and decide for fur-
ther treatment. In this case, POS(X) is a pleasant
event for all decision-makers, and NEG(X) is an un-
pleasant event, and the cost of taking positive de-
cision(no treatment) under the negative state is de-
noted by λ ′PN , and the cost of taking negative deci-
sion(treatment) under the positive state is denoted
by λ ′NP. Compared with previous case, we have
λ ′NP = λPN , λ ′PN = λNP, and the selected cost λ ′PN
and λ ′NP with regard to decision type are modified
as:
Optimistic decision: High λ ′NP and Low λ ′PN ;
Pessimistic decision: Low λ ′NP and High λ ′PN ;
Equable decision: Medium λ ′NP and Medium λ ′PN .

3.2. An explanation on three-way view decision
model

The three-way view decision model given in last
subsection is based on assumption (12), and it se-
lects λNP and λPN instead of other costs as parame-
ters to define the type of decision. In this subsection,
we will explain why we adopt such an assumption
and why λNP and λPN instead of other costs are key
factors to classify the decisions.

In general, the cost of a correct classification of a
description [x]R is always lower than that of a wrong
classification or amphibolous classification. There-
fore, we have λPP 6 λBP 6 λNP and λNN 6 λBN 6
λPN . For simplification, suppose the ratio of λBP to
λNP and the ratio of λBP to λNP are constant and take
the same value σ , then we have 0 < σ < 1. Further-
more, the boundary region of a given state is not al-
ways empty, which indicates that α > β holds. In
the six costs, λPP and λNN are the costs of correct
classification, therefore, it is reasonable to set them
as 0.

Based on the assumption, the key factors to clas-
sify the types of decision lies in the costs of wrong
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classification: λNP and λPN . The relationship of
λNP, λPN and α,β is depicted in Fig.1, where σ =
1/3 and x-axis, y-axis are λNP and λPN respectively,
and the values of α and β are presented in z-axis.
In Fig.1, it shows that with the increase of λNP, the
threshold of α and β are decreased, and a large λNP
and a low α means a pessimistic decision and a low
λNP and a high α means optimistic decision. Like-
wise, with the increase of λPN , the threshold of α
and β are increased, and a large λPN and a high α
means a optimistic decision and a low λPN and a
low α means pessimistic decision. For the medi-
cal example mentioned above, a pessimistic person
always adopts a high value of cost λNP, and the cor-
responding α is low, which means a low possibility
of getting disease will lead a pessimistic people to
make the decision to take some treatment, but for
optimistic persons, they always adopts a low value
of cost λNP, and the corresponding α is high, which
means that the optimistic people will not take some
treatment until the possibility of getting disease is
very high. We may get similar conclusion when con-
sidering the relation between λPN and α .
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Fig. 1. Curved surface of α and β with regard to λNP, λPN
.

3.3. An illustrative example

We use an example to illustrate the main idea of
three-way view decision based on decision-theoretic
rough set. The example is a medical diagnose case
given in Table 1, which is also called a decision ta-
ble.

The columns of the Table 1 represent cases,
which include the symptoms of patients and the
diagnosis results for whether or not the pa-
tients have got flu. There are 9 columns in
the table respectively represent 9 patients de-
noted by U = {x1,x2,x3,x4,x5,x6,x7,x8,x9,}. The
rows of the decision table are labeled by vari-
ables, which are called attribute, abbreviated by
Att, and the attribute set of this decision is
Att = {temperature,cough,nausea, f lu}, and the
first three attributes are condition attributes, which
are respectively abbreviated and denoted by C =
{Tem,Cou,Nau}. The last attribute flu is decision
attribute: d = { f lu}, which denotes the diagnosis
result. The symbol “+” indicates that the patient has
got flu, and “-” indicates that the patient has not got
flu.

Table 1. An decision table for flu diagnose

Att x1 x2 x3 x4 x5 x6 x7 x8 x9

Tem high low high low high high low low high

Cou yes yes no yes no yes yes yes yes

Nau no yes no yes no no yes yes no

Flu + - + - - + + - +

In Table 1, the set of condition attributes C deter-
mine an equivalence relation R:

R = {(x,y)|Ia(x) = Ia(y),∀a ∈C},
where Ia(x) is the value of x on attribute a. A par-
tition will be constructed with regard to equivalence
relation R:

U/R = U/C = {{x1,x6,x9},{x2,x4,x7,x8},{x3,x5}}
= {[x1]R, [x2]R, [x3]R},

where [xi]R (i = 1,2,3) is the equivalence class of xi:

[xi]R = {y ∈U |(xi,y) ∈R}.
Similarly, the decision set d = { f lu} constructs a
partition as:

U/d = {{x1,x3,x6,x7,x9},{x2,x4,x5,x8}}
= {X ,¬X},
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where X = {x1,x3,x6,x7,x9} represents the state
“flu” and ¬X = {x2,x4,x5,x8} represents the state
“no flu”.

For each equivalence class in U/R, we may cal-
culate the conditional probability as follows:

P(X |[x1]R) =
|[x1]R∩X |
|[x1]R|

=
|{x1,x6,x9}∩{x1,x3,x6,x7,x9}|

|{x1,x6,x9}|
= 1, (18)

P(X |[x2]R) =
|[x2]R∩X |
|[x2]R|

=
|{x2,x4,x7,x8}∩{x1,x3,x6,x7,x9}|

|{x2,x4,x7,x8}|
= 0.25, (19)

P(X |[x3]R) =
|[x3]R∩X |
|[x32]R|

=
|{x3,x5}∩{x1,x3,x6,x7,x9}|

|{x3,x5}|
= 0.5, (20)

where |.| denotes the cardinality of a set. The con-
ditional probability P(X |[xi]R) describes the proba-
bility of getting flu under the description [xi]R. The
higher the conditional probability, the more possi-
ble getting flu. But optimistic decision maker, pes-
simistic decision maker and equable decision maker
may take different attitude on the same conditional
probability, and a three-way view decision model is
necessary.

According to three-way view decision model
presented in subsection 3.1, the values of αi is de-
termined by λNP and λPN . For optimistic decision,
λNP is greater than that in pessimistic decision, and
λPN is less than that in pessimistic decision, while
equable decision takes middle way. For simplicity,
let λNP and λPN be a integer range from 0 to 10. The
values of λNP and λPN for each decision are listed as
following payoff matrix (Table 2).

Table 2. A payoff matrix of three-way view decision model

Cost Optimistic Pessimistic Equable

λNP 2 7 4

λPN 7 2 4

Let σ = 0.4, the threshold αi and βi are deter-
mined based on formula (13):

αoptimistic =
(1−0.4)×7

(1−0.4)×7+0.4×2
= 0.84

βoptimistic =
0.4×7

0.4×7+(1−0.4)×2
= 0.7

αpessimistic =
(1−0.4)×2

(1−0.4)×2+0.4×7
= 0.3

βpessimistic =
0.4×2

0.4×2+(1−0.4)×7
= 0.16

αequable =
(1−0.4)×4

(1−0.4)×4+0.4×4
= 0.6

βequable =
0.4×4

0.4×4+(1−0.4)×4
= 0.4

The three-way view decision can be described as:
Optimistic decision:

If P(X |[x]R) > 0.84, decide POS(X);
If P(X |[x]R) 6 0.7, decide NEG(X); (21)
If 0.7 < P(X |[x]R) < 0.84, decide BND(X).

Pessimistic decision:

If P(X |[x]R) > 0.3, decide POS(X);
If P(X |[x]R) 6 0.16, decide NEG(X); (22)
If 0.16 < P(X |[x]R) < 0.3, decide BND(X).

Equable decision:

If P(X |[x]R) > 0.6, decide POS(X);
If P(X |[x]R) 6 0.4, decide NEG(X); (23)
If 0.4 < P(X |[x]R) < 0.6, decide BND(X).

In Table 1, all cases in the universe U are
partitioned to three equivalence classes by equiva-
lence relation R, i.e., [x1]R = {{x1,x6,x9}, [x2]R =
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{x2,x4,x7,x8}, [x3]R = {x3,x5}, and all equivalence
classes are respectively associated with logic de-
scriptions as:

[x1]R : Tem = high∧Cou = yes∧Nau = no,

[x2]R : Tem = no∧Cou = yes∧Nau = yes,
[x3]R : Tem = no∧Cou = yes∧Nau = yes,

and the decisions of POS(X), NEG(X), and BND(X)
are respectively interpreted as:

Decide POS(X) : Flu = yes (treatment),
Decide NEG(X) : Flu = no : (no treatment),
Decide BND(X) : Flu = uncertain (wait and see).

According to (18)∼(23), we may get opti-
mistic decision rules, pessimistic decision rules and
equable decision rules. For optimistic decision rules,
we may induce rules based on (21): P(X |[x1]R) =
1 > 0.84, then decide POS(X), and P(X |[x2]R) =
0.25 6 0.7, then decide NEG(X), and P(X |[x3]R) =
0.5 6 0.7, then decide NEG(X). Therefore, opti-
mistic decision rules are:

Tem = high∧Cou = yes∧Nau = no,

=⇒ Flu = yes (treatment),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = no (no treatment),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = no (no treatment).

For pessimistic decision rules, we may induce
rules based on (22): P(X |[x1]R) = 1 > 0.3, then de-
cide POS(X), and 0.16 < P(X |[x2]R) = 0.25 < 0.3,
then decide NEG(X), and P(X |[x3]R) = 0.5 > 0.3,
then decide POS(X). Therefore, pessimistic decision
rules are:

Tem = high∧Cou = yes∧Nau = no,

=⇒ Flu = yes (treatment),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = uncertain (wait and see),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = yes (treatment),

For equable decision rules, we may induce rules
based on (23): P(X |[x1]R) = 1 > 0.6, then decide
POS(X), and P(X |[x2]R) = 0.25 6 0.4, then decide
NEG(X), and 0.4 < P(X |[x3]R) = 0.5 < 0.6, then de-
cide BND(X).

Tem = high∧Cou = yes∧Nau = no,

=⇒ Flu = yes (treatment),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = no (no treatment),
Tem = no∧Cou = yes∧Nau = yes,

=⇒ Flu = uncertain (wait and see).

For a specific description [xi]R, the three-way
view decision model presents a general decision
strategy considering diversiform risk bias, which are
listed in Table 3 for comparison. In Table 3, “treat-
ment”,“no treatment” and “wait and see” are respec-
tively abbreviated as “T”, “NT” and “WAS”.

Table 3. A comparative analysis on different risk bias

Description Optimistic Pessimistic Equable

[x1]R T T T

[x2]R NT WAS NT

[x3]R NT T WAS

We may find the decision rules induced by three-
way view decision model shows a good accordance
with the practical decision-making. In Table 3, both
optimistic decision makers and pessimistic decision
makers take the same decision on the description
[x1]R since the conditional probability of getting flu
(P(X |[x1]R) = 1) is very high, but they take different
decision on the description [x2]R and [x3]R. For opti-
mistic decision makers, they take “no treatment” on
both [x2]R and description [x3]R because they think
the probability of getting flu is not so high, whereas
pessimistic decision makers decide “treatment” on
the description [x3]R since the probability of getting
flu under the description [x3]R beyond their security
threshold, and they can not make a resolute decision
on the description [x2]R even though the probability
of getting flu under the description [x2]R is very low.
In addition, equable decision makers always show
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a moderation attitude towards the three description,
which is more optimistic than pessimistic decision
makers and more pessimistic than optimistic deci-
sion makers.

4. Conclusion

Rough sets theory has proved to be a useful tool
for decision making based on data sets. A practi-
cal decision making problem always shows diversity
according to the personal risk bias of the decision
makers. A simplex decision model can not provide
a full description on diverse decisions, and a three-
way view decision model is suggested, in which di-
verse risk bias of the decision makers are embodied.
For this purpose, a review of Pawlak rough set mod-
els and probabilistic rough set models is presented
in this paper, and a three-way view decision model
based on decision-theoretic rough set is proposed,
in which optimistic decision, pessimistic decision,
and equable decision are provided according to the
cost of misclassification. The thresholds of proba-
bilistic inclusion are calculated based on minimiza-
tion of risk cost under respective decision bias. All
three decisions in the model are different in their
risk cost of taking positive action under the negative
state, and risk cost of taking negative action under
the positive state, which result in different thresh-
olds of probabilistic inclusion for decision making.
The proposed decision model truthfully reflects the
diversity of decision making according to different
risk bias. The study not only presents a new the-
oretic decision model considering the different per-
sonality of the decision makers, but also provides a
practical explanation and an illustrative example on
diverse risk bias decision.
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