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When making choices under uncertainty, people usually consider
both the expected value and risk of each option, and choose the
one with the higher utility. Expected value increases the expected
utility of an option for all individuals. Risk increases the utility of
an option for risk-seeking individuals, but decreases it for risk
averse individuals. In 2 separate experiments, one involving im-
perative (no-choice), the other choice situations, we investigated
how predicted risk and expected value aggregate into a common
reward signal in the human brain. Blood oxygen level dependent
responses in lateral regions of the prefrontal cortex increased
monotonically with increasing reward value in the absence of risk
in both experiments. Risk enhanced these responses in risk-seeking
participants, but reduced them in risk-averse participants. The
aggregate value and risk responses in lateral prefrontal cortex
contrasted with pure value signals independent of risk in the
striatum. These results demonstrate an aggregate risk and value
signal in the prefrontal cortex that would be compatible with basic
assumptions underlying the mean-variance approach to utility.

decision making � fMRI � utility � mean-variance approach �
neuroeconomics

Subjective value is a crucial term used by microeconomic and
finance theories of decision making (1–8). Decisions occur

between choice alternatives (options) that can be certain or uncer-
tain; uncertain options are ‘‘risky’’ when the probabilities of out-
comes are known, and ‘‘ambiguous’’ when probabilities are not
completely known. Two parameters that influence the subjective
value of a risky option are its expected outcome value (first moment
of a probability distribution of outcomes) and its risk (e.g., variance
as second moment of such a probability distribution). Theories of
economic decision making usually assume that subjective value
increases monotonically with expected value. The influence of risk
on subjective value may depend on individual risk attitude. Risk-
averse individuals assign higher subjective value to an option with
lower risk than an option with higher risk. Risk-seeking individuals
show the opposite preference. Thus, for a risk-averse individual, a
sure gain of 100 dollars has higher subjective value than an option
with an equal probability of winning 200 dollars or nothing. The
inverse is true for a risk-seeking individual. Risk-averse individuals
accept reductions in expected value for reductions in risk, whereas
risk-seeking individuals do so for increments in risk. Importantly,
according to this scheme, both risk-averse and risk-seeking indi-
viduals integrate expected value and risk to choose the option with
the highest subjective value. This scheme appears to follow the basic
assumptions underlying the mean-variance approach of finance
theory, which captures subjective value (3).

Expected utility theory and prospect theory provide alternative
descriptions of subjective value, and measure it formally with
individual preferences for choice options (1, 2, 4). Indeed, these
theories often assume that choice provides all necessary informa-
tion about subjective value. However, it is unclear whether valuation
occurs also in ‘‘imperative’’ situations in which the agent is simply
assigned one option and no choice is possible. In economics,
choice-dependent decision utility has superseded experienced util-
ity, which does not necessarily require choice (9), and the 2 forms

of utility can differ (10). However, it cannot be ruled out that utility
indicated in the absence of choice might serve as input for decision
utility. In behavioral neuroscience, the study of no-choice situations
can reveal potential inputs for decision mechanisms. For example,
with increasing reward delay, option-related neuronal responses
decrease similarly in no-choice and choice situations (11, 12). Thus,
these responses could provide a common mechanism for processing
reward delays irrespective of whether choice is required or not.
However, it is unknown whether the crucial subjective value pa-
rameters expected value and risk would follow a similar scheme.

Separate studies of expected value and risk point to a role of
prefrontal cortex and striatum in coding these 2 reward parameters.
Expected value coding is indicated by positive monotonic increases
of prefrontal and striatal activation with reward magnitude, prob-
ability, and their combination (13–17). Risk coding is suggested by
increasing prefrontal and striatal activations with reward uncer-
tainty, variance, or volatility (16–21). Lesions of the prefrontal
cortex alter behavior in risky situations (22–26). However, it is
unclear whether the prefrontal cortex or striatum are capable of
integrating expected value and risk, either in choice or imperative
situations. The lateral part of prefrontal cortex appears to be a likely
candidate, because it not only separately processes expected value
and risk, but also is sensitive to individual differences in attitude
toward ambiguity and risk (17, 26–28). Thus, this region appears to
not only be separately sensitive to the 2 main components of a
utility-like signal, expected value and risk, but also process risk in a
subject-specific way. Here, we tested the possibility that lateral
prefrontal cortex would integrate these components into a common
signal that covaries with both value and risk and depends on the
subjective risk attitude.

Results
We used fMRI in 2 separate experiments to investigate whether and
how the prefrontal cortex integrates expected value and risk in a
risk-attitude dependent fashion. In experiment 1, we aimed to
investigate the basic parameters of expected value and variance as
potential inputs to neural decision processes. We used an impera-
tive situation in which we had full control over these parameters
(Fig. 1A). Single visual stimuli, associated with different levels of
expected value and risk, appeared on one quadrant of the monitor.
Participants indicated with a button press the quadrant of stimulus
appearance. Experiment 1 used 4 levels of expected value, each with
a low and high-risk option. In experiment 2, we investigated whether
the potential inputs identified by experiment 1 would be used during
decisions under uncertainty (Fig. 1B). In each trial, participants
chose between a risky and a safe option. Experiment 2 used 2 levels
of expected value, each with a low and high risk variant. To reflect

Author contributions: P.N.T., G.I.C., and W.S. designed research; P.N.T., G.I.C., and J.P.O.
performed research; P.N.T. and G.I.C. analyzed data; and P.N.T., R.J.D., and W.S. wrote the
paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: pnt21@cam.ac.uk.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0809599106/DCSupplemental.

www.pnas.org�cgi�doi�10.1073�pnas.0809599106 PNAS � April 28, 2009 � vol. 106 � no. 17 � 7185–7190

EC
O

N
O

M
IC

SC
IE

N
CE

S
N

EU
RO

SC
IE

N
CE

http://www.pnas.org/cgi/content/full/0809599106/DCSupplemental
http://www.pnas.org/cgi/content/full/0809599106/DCSupplemental


the main difference between the 2 experiments, we used well-
established imperative and choice-based measures of risk attitude
in experiments 1 and 2, respectively. These measures were taken for
the levels of expected value and risk used in the task, during or
immediately after the task. Thus, we accounted for the possibility
that experience may affect risk attitudes (29), and obtained a
quantitative measure of risk attitude reflecting individual differ-
ences in processing the risk parameters used in the task.

Behavioral Performance. In experiment 1, we measured the pleas-
antness of stimuli before and after the experiment. Pleasantness
ratings did not vary across stimuli associated with different reward
expected value and risk before the experiment (ANOVA: F1,11 �
0.77, P � 0.67; regression: � r � � 0.12, P � 0.29), but did afterward
(F1,11 � 10.01, P � 0.0001), as a function of expected value (r � 0.53,
P � 0.0001) (Fig. 1C). Ratings did not vary within pairs of stimuli
that had the same expected value but different risk (t14 � �0.67,
P � 0.51; paired t test on ratings for low versus high risk stimuli,
averaged separately for each participant). Reaction time was sig-
nificantly shorter for the highest, compared with lowest expected
reward value (587 ms versus 601 ms, t14 � 3.1, P � 0.05; paired t
test). Risk attitudes were quantified by comparing the postexperi-
mental pleasantness ratings of (p � 0.25 � p � 0.75) with that of
(p � 1.0) (30). If the first expression is smaller than the second,
participants are risk averse, if it is larger, they are risk seeking. Of
the 15 participants, 4 were risk averse, 8 risk seeking, and 3 risk
neutral [average risk aversion (� SEM): risk averters 4.1 (� 0.3);
risk seekers �1.5 (� 0.5); Fig. 1D]. The rating-based, imperative,
measure of risk attitude correlated with an independent, choice-
based, measure of risk attitude (r � 0.59, P � 0.05). Thus,
participants discriminated the stimuli according to expected value,
and differed in their risk attitudes.

In experiment 2, we measured points of equal preference (cer-
tainty equivalents) between adjusting safe options and risky options
to quantify the subjective value each participant assigned to risky
options (31). Certainty equivalents significantly increased with
expected value, keeping risk constant (t13 � 34.4, P � 0.0001) (Fig.
1E). To assess risk attitudes, we used the difference in certainty
equivalents between low and high risk options, keeping expected
value constant. Two participants were risk seeking, 12 risk averse
(Fig. 1F). Thus, participants’ choice preferences were influenced by
both expected value and risk.

Value Coding Irrespective of Risk in Lateral Prefrontal Cortex. First,
we reasoned that an expected value-coding region should show
increasing activity to safe options with increasing expected value in
the absence of any risk. To test this prediction in experiment 1, we
regressed responses to stimuli predicting reward of different mag-
nitudes with certainty (p � 1.0), and found a significant increase in
lateral prefrontal regions (Fig. 2A; P � 0.05, small volume correc-
tion in frontal lobe). Activations increased similarly, and differed
insignificantly for risk-seeking and risk-averse individuals (Fig. 2B;
P � 0.05 for both risk-averse and risk-seeking participants; P � 0.97
for difference between the 2 groups). In experiment 2, we com-
pared brain activation when participants chose safe options with
high as opposed to low magnitude. To control for the possibility of
outcome-related activation contaminating choice-related activa-
tion, we did not show the outcomes of each choice in this experi-
ment. As with imperative trials of experiment 1, lateral prefrontal
activations were significantly stronger for high, compared with low
magnitude options (Fig. 3A; Fig. S1A; P � 0.001 for all partici-
pants). Activations increased similarly for both risk seeking and
risk-averse participants. However, due to the little number of
risk-seeking partricipants (n � 2), the power to make meaningful
inferences is very limited; therefore, we show data comparing
risk-seeking with risk-averse groups for experiment 2 only in the SI.
The lateral prefrontal regions identified in experiments 1 and 2
overlapped (Fig. 3B). Indeed, the activations found in experiment
2 were significant within a region of interest (ROI) defined by only
the significantly activated voxels of experiment 1 (P � 0.05, small
volume correction). Thus, activations in similar lateral prefrontal
regions increase with expected value in the absence of risk, both in
imperative and choice situations.

Integration of Expected Value and Risk According to Subjective Risk
Attitude in Lateral Prefrontal Cortex. Next, we investigated how the
addition of risk would influence the lateral prefrontal activations
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Fig. 1. Experimentaldesignandbehavioralmeasuresofexpectedvalueandrisk
attitude. (A) Imperative task. Single stimuli were presented randomly in one of
the 4 quadrants of a monitor for 1.5 s. Participants responded by indicating the
quadrant in which stimuli appeared with a button press. Stimuli were associated
with different combinations of reward magnitude and probability. (B) Choice
task. A safe and a risky monetary choice option were presented randomly on the
right and left side of a monitor for 5.5 s. Gambles with 2 levels of expected value
and risk were used. The safe option on the left consists of a 100% gain of 45 £; the
risky option on the right consists of a 50% gain of either 30 or 90 £(expected
value � 60 £; 2 numbers are used for the safe option to keep visual stimulation
comparable with the risky option). Participants chose an option with a button
press on presentation of a go-signal. (C) Average change in pleasantness rating
resulting from the imperative procedure in all participants as a function of
expected value (imperative task; 15 participants, error bars represent SEM). The
scale ranged from �5 (very unpleasant) to �5 (very pleasant). (D) Risk attitudes
of single participants in experiment 1. (E) Average certainty equivalents of low
and high expected value options with same risk in experiment 2 (14 participants,
error bars represent SEM). (F) Risk attitudes of single participants in experiment
2. Risk attitude was measured as difference between certainty equivalents of the
low- and high-risk options.
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related to expected value. Thus, we not only regressed activations
to expected value, but also searched for stronger activations for the
high-risk options than the low-risk options in risk-seeking individ-
uals and weaker activations in risk-averse individuals. Activations in
the previously identified lateral region of prefrontal cortex fulfilled
this response profile (P � 0.05, small volume correction in frontal
lobe). Time course analyses revealed that the high-risk options
elicited stronger activations than the low-risk options in the risk-
seeking individuals, but weaker activation in the risk-averse indi-
viduals (Fig. 2C). The time courses for the low-risk options were
similar in the 2 participant groups. Activations increased with
expected value in both participant groups (Fig. 2D). The increased
risk of the high-risk options boosted or suppressed activations in
risk-seeking and risk-averse participants, respectively (Fig. 2D).
These results suggest that activations in lateral prefrontal cortex
combine expected value and risk.

We asked whether expected value and risk would also combine
in the choice situation of experiment 2. The increased risk of the
high-risk option resulted in moderate activation increases when
chosen by risk-seeking individuals, but in activation suppresions
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Fig. 2. Integrated value and risk coding in lateral prefrontal cortex. (A) Value
coding with safe options in experiment 1. Activation in lateral prefrontal cortex
increasing with safe reward (peaks at 42/30/10 and 34/44/10; P � 0.05, small
volume correction with false discovery rate in frontal lobe). Activations were
identified by a linear contrast of the 3 safe options: 0, 100, and 200 points. (B)
Increase of BOLD response with expected value in safe options irrespective of risk
attitude in experiment 1. Peak activations from cluster shown in A covarying with
expected value for both risk-averse and risk-seeking individuals (P � 0.05, simple
regressions). The difference between the 2 groups was not significant (P � 0.97,
unpaired t test). (C) Risk attitude-dependent activation or suppression of re-
sponses to risky options in lateral prefrontal cortex in imperative experiment 1.
Time courses of responses were extracted from circled cluster shown in A. Re-
sponses to stimuliassociatedwithdifferent levelsof risk (averagevarianceof low-
and high-risk stimuli � 2.5-k and 20-k points2) were averaged separately for
risk-averse and risk-seeking participants and across the 4 levels of expected value
of interest (50, 100, 150, and 200 points; average, 125 points). (D) Peak activations
from time course analysis shown in A to different pairs of stimuli with same
expected value but different risk, averaged separately for risk-averse and risk-
seeking participants. Activations were higher with higher risk in risk-seeking
participants, and lower in risk-averse participants (risk-averse participants: t �
�8.6, P � 0.01; risk-seeking participants; t � 3.1, P � 0.05). Activations increased
with expected values (left to right; for all: R2 � 0.64, P � 0.06). The groups of
participants were split according to the sign of risk attitude.

0

6

12

-6 -4 -2 0 2 4 6

C
on

tra
st

 e
st

im
at

e

Risk aversion

C

C
on

tra
st

 e
st

im
at

e

-6

0

6

12

-2 0 2 4 6 8 10 12
Risk aversion

∆ Expected value
∆ Variance

DExperiment 1 Experiment 2

16

12

8

4

0

-4 Variance Skewness Standard
deviation

Coefficient
of variation

C
on

tra
st

 e
st

im
at

e

E

∆ Expected value
∆ Variance

-6

Z=10

OverlapExperiment 2
Z=10

BA

Fig. 3. Control analyses. (A) Value coding with safe options in experiment 2.
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around circled peak voxel at 34/44/10 shown in Fig. 2A defined by experiment 1).
(B) Overlap of activations from experiment 1 and 2. To show the full extent of the
overlap, activations from A and E were plotted at P � 0.05. Activations from
experiment 2 were significant (P � 0.05, small volume correction) within signif-
icant voxels of experiment 1. (C and D) Correlation of risk attitude with coding of
risk,butnotexpectedvalue in lateralprefrontalcortex.Forthisanalysis,wevaried
risk and kept expected value constant or varied expected value and kept risk
constant. In clusters shown in A and in Fig. 2A, the high-risk option elicited
stronger activation than the low-risk option in risk-seeking individuals, but
weaker activation in risk-averse individuals. These activation differences corre-
lated with the degree of individual risk aversion (open squares), in both imper-
ative (C; experiment 1) and choice situations (D; experiment 2) (for experiment 1,
the variance of low- and high-risk options was 7.5-k and 22.5-k points2, the
expectedvalueofbothoptionswas150points;R2 �0.49,P�0.01; forexperiment
2, the variance of low- and high-risk options was 400 and 900 £2, the expected
value of both options was 60 £; R2 � 0.81, P � 0.0001). Conversely, higher
expected value elicited an increase in lateral prefrontal activation that did not
covary with risk attitude (filled diamonds; for experiment 1, the expected value
of low- and high-value options was 50 and 150 points, the variance of both
options was 7.5-k points2; R2 � 0.01, P � 0.64; difference between correlations:
P � 0.05, z test; for experiment 2, the expected value of low- and high-value
options was 30 and 60 £, the variance of both options was 400 £2; R2 � 0.06, P �
0.39; difference between correlations: P � 0.01, z test). (E) Comparison of differ-
ent risk attitude-weighted risk terms in lateral prefrontal cortex in experiment 1.
Paired t tests revealed a significantly better fit of brain activation with risk-
attitude weighted variance than skewness (t � 3.34, P � 0.01). The comparisons
of skewness with coefficient of variation and SD did not reach significance (t �
1.74, P � 0.11 and t � 2.05, P � 0.06 for coefficient of variation and SD,
respectively). To compare different risk terms, we normalized each one of them
before multiplying it with negative individual risk attitude in experiment 1 and
searching for covariation with brain activation. The analysis was restricted to
risk-averse and risk-seeking participants (n � 12), because the equivalent regres-
sors in risk neutral participants consisted only of zeros and, thus, did not discrim-
inate between different risk terms. Error bars correspond to SEM.
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when chosen by risk-averse individuals. (Fig. S1B). Activations
increased with expected value in both groups of individuals (Fig.
S1C). Thus, lateral prefrontal cortex activation appears to combine
expected value and risk not only in imperative, but also in choice
situations.

Risk Coding Dependent on Subjective Risk Attitude in Lateral Pre-
frontal Cortex. Above, we observed substantial influences of risk
attitude on the integrated expected value and risk signal. Utility
theory suggests that risk attitude should primarily influence risk
rather than expected value processing. Therefore, utility-related
activation should correlate with individual differences in risk atti-
tude only for options that differ in terms of risk but not in terms of
expected value. We tested this requirement and found it met by the
previously identified lateral prefrontal region (Fig. 3C). The dif-
ference in activation elicited by 2 options differing in risk but not
expected value correlated negatively with risk aversion (r � �0.70,
P � 0.01). Conversely, the differential activation arising from 2
options differing in expected value but not risk did not correlate
with risk attitude (r � �0.10, P � 0.64; Fig. 3C). These data suggest
that risk, but not expected value coding by lateral prefrontal cortex,
is sensitive to risk attitude.

Next we asked whether risk attitude would also primarily affect
risk rather than expected value processing in the choice situations
of experiment 2. As with the imperative experiment 1, the differ-
ential lateral prefrontal activation elicited by 2 options differing in
risk, but not expected value correlated negatively with risk aversion
(r � �0.90, P � 0.0001; Fig. 3D). Inspection of the correlation
showed that lateral prefrontal activation to higher risk decreased
continuously with increasing risk aversion. Conversely, the activa-
tion difference between 2 options with the same risk, but different
expected value did not correlate with risk attitude (r � �0.24, P �
0.39; Fig. 3D). These data indicate that lateral prefrontal activation
related to risk depends on risk attitude irrespective of whether
choice is a formal task requirement or not.

Risk can be defined, for example, as SD, variance, skewness, and
coefficient of variation (SD divided by expected value) (3, 32, 33).
Thus, risk attitude could influence different risk terms differen-
tially, and an integrated expected value and risk signal could
theoretically be constructed with various risk terms. In experiment
1, we used enough different options to allow at least partial
distinction between some of the proposed risk terms. Activation in
the lateral prefrontal region showing individual risk-attitude de-
pendent risk coding was similarly responsive to variance, SD, and
coefficient of variation, and marginally more responsive to these
risk terms than to skewness (Fig. 3E). Importantly, irrespective of
the precise risk term used, the basic rationale of the current study
holds in that increasing risk decreases the utility of an option for a
risk-averse individual, but increases it for a risk-seeking individual.

Contrast with Posterior Striatum. Previous research reported ex-
pected value coding in the striatum (14, 17). By way of replicating
and extending these findings, we asked whether striatal expected
value signals would show risk-attitude dependent changes with risky
options. We found that striatal activations increased with expected
value irrespective of risk level and risk attitude in the imperative
situations of experiment 1 (Fig. 4 A–C). The identified region
located in posterior striatum, at the border of the globus pallidus
and putamen. We tested for pallidal/putamen expected value and
risk coding also in the choice situations of experiment 2. As with
experiment 1, we found phasic increases in ventral pallidum/
putamen activation with increasing expected value, irrespective of
risk level and attitude (Fig. S2). These data suggest that ventral
pallidum/putamen activity reflects risk-independent expected value
both in imperative and choice situations. Importantly, in contrast to
the lateral prefrontal cortex, the phasic expected value-related
activations in striatum are not modulated by risk, suggesting that not

every expected value-sensitive region also displays dependence on
risk and risk attitude.

Discussion
The present study shows that expected value signals in the lateral
prefrontal cortex are reduced by risk in risk-averse individuals, but
increase with risk in risk-seeking individuals. Although previous
data showed separate coding of expected value and risk, the present
results uncover a remarkable integration of risk into expected value
signals. Moreover, the integration of expected value and risk in
prefrontal reward signals was not restricted to choices, but occurred
also in choice-free (imperative) situations. In contrast to the
prefrontal integration, expected value signals in the striatum ap-
peared to be insensitive of risk. Together with separate risk signals
identified in previous studies, striatal mechanisms appear to code
the expected value and risk components separately.

Relation to Utility Theory. The present experiment showed similar
ventrolateral prefrontal activations both in imperative and choice
situations (experiments 1 and 2, respectively). Formal measurement
of expected utility traditionally is based on preferences. Therefore,
it requires choice situations. However, it is conceivable that micro-
economic decision signals are based on more basic input signals
reflecting simple reward parameters such as expected value and
risk. As an analogy, sensory systems may give rise to perceptual
decision signals based on neuronal correlates of basic sensory
parameters such as visual motion or tactile vibration (34, 35). The
current data suggest that the lateral prefrontal cortex processes a
combined signal of expected value and risk not only in imperative
but also in choice situations. Thus, for the lateral prefrontal cortex,
similar valuation processes may occur in the absence and presence
of overt choice and decision, and valuation may not necessarily
require choice. This finding may suggest that experienced and
decision utility (10) can rely on similar neuronal mechanisms.

In the mean-variance approach to decision utility developed
by finance theory, the expected utility of an option corresponds
to its expected value minus its risk-attitude-weighted risk (8, 36,
37). The weight that corresponds to risk attitude assumes positive
values with risk averse and negative values with risk-seeking
individuals. The mean-variance approach appears to provide a
useful approximation to utility and even prospect (32, 36–39).
Also, with some classes of utility functions (e.g., quadratic), the
expected utility is characterized completely by mean and vari-
ance, although these functions have some unrealistic properties.
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Last, with normally distributed outcomes, variance is a valid
measure of risk and the mean-variance approach to expected
utility holds (32), whereas with not normally distributed out-
comes higher moments such as skewness and kurtosis are needed
(5). Thus, several lines of evidence suggest that the mean-
variance approach to utility is viable, at least under some
conditions. The currently found aggregate signal of expected
value and risk in the lateral prefrontal cortex could form the
neuronal basis of an accepted normative theory of economic
decision making.

Standard economic and prospect theories treat utility as a scalar
value rather than separating it into constituent elements as en-
dorsed by the mean-variance approach (1, 2, 4). We are agnostic
about the specific form of the utility function used by our partici-
pants. Any of the utility functions we have recalled are possible; in
each function, an increase in the mean without reducing the
variance increases utility. The standard utility theories would ex-
plain the presently found behavioral and neuronal sensitivity to risk
with considerable nonlinearities of utility functions (i.e., deviations
from linear expected value coding). The present results are per-
fectly compatible with expected utility coding by the lateral pre-
frontal cortex. As a matter of fact, although we used only 3 different
magnitudes, the responses to safe options (Fig. 2B) tended to show
the typical concave and convex functions of reward magnitude in
risk-averse and risk-seeking participants, as would be suggested by
expected utility or prospect.

The mean-variance approach to utility defines risk as variance,
whereas in standard economic approaches to utility, the definition
of risk depends on the class of utility functions used (40). We
compared several alternative risk terms, such as standard deviation,
coefficient of variation (33), and skewness and found comparable
relations between lateral prefrontal activation and these terms
when weighted with individual risk-attitude, except for skewness.
Thus, for the presently reported region in lateral prefrontal cortex,
the general scheme of integrating expected value and risk may hold
irrespective of the exact risk term used, as long as higher moments
such as skewness are not considered.

Individual Differences in Risk Processing. Although other species
such as bumblebees and juncos show primarily situation-specific
differences in risk attitude (41), the degree to which risk attitudes
differ across individuals in similar situations appears to be partic-
ularly pronounced in humans. In the present study, individuals
differed substantially in their risk attitudes. These differences were
expressed in lateral prefrontal activation. The correlation of be-
havioral and lateral prefrontal blood-oxygen-level-dependent
(BOLD) responses to risk concurs with the finding that stimulation
of lateral prefrontal regions alters risk attitudes (27, 28). Thus, the
present data add to the notion that the analysis of individual
differences in brain activation is not only viable but also elucidates
basic mechanisms of risky decision making.

In the present study, we measured risk attitudes in imperative and
choice tasks. As in principle these tasks might yield different risk
attitudes, it may be important to keep conclusions based on BOLD
activity separate for imperative and choice tasks. Nevertheless, for
experiment 1, we found that risk attitude correlated well between
imperative (rating) and choice situations. This result suggests that,
at least in some situations, risk attitude seems to be independent of
imperative or choice measures. One could argue that a task-
independent measure of risk attitude, such as a questionnaire about
hypothetical gambles, would be more appropriate to measure risk
attitude. However, behavioral economics has become reluctant to
use hypothetical and task-independent measures, because experi-
ence of the task can profoundly affect risk attitudes (29). Future
research is needed to determine the most appropriate measure of
risk attitude.

Comparison with Striatum. Previous research reported increasing
striatal responses to increases in expected value and its components,
magnitude and probability (14, 16, 17, 42–46). Expected value is a
risk-independent measure of the value of choice options. We now
show that the currently observed expected value-related striatal
activations are insensitive to risk and risk-attitude. It is worth noting
that these striatal activations were detected with regression models
that tested for phasic activations. Longer-lasting, more tonic acti-
vations reflecting risk occur in the striatum, but it is unclear whether
they are related to risk-attitude (16). The present designs used short
intervals between stimuli and outcomes (experiment 1) or no
outcomes at all (experiment 2). The designs were optimized for the
detection of phasic signals, more similar to the expected value than
risk signals emitted by dopamine neurons (47). With these designs,
we identified activations in posterior striatal regions, extending into
the globus pallidus. The globus pallidus codes reward, receives
inputs primarily from the ventral striatum, and sends reward-
related information to the lateral habenula, which in turn innervates
dopamine neurons (48, 49). Critically, the distinction between
striatal and lateral prefrontal responses suggests that not all ex-
pected value-sensitive regions integrate risk. Instead, striatal ex-
pected value signals are coded separately from risk, and could
form the basis for lateral prefrontal integration of expected value
and risk.

Anatomical and functional considerations suggest that the lateral
prefrontal cortex may be ideally suited to assign choice options with
an integrated expected value and risk signal. It receives input from
inferior temporal, orbitofrontal and cingulate cortex, the amygdala,
and dopaminergic midbrain (50–54). Sensory and object related
information could arrive from inferior temporal cortex (55, 56).
Expected value and risk-related information could arrive from
orbitofrontal and posterior cingulate cortex, amygdala, and dopa-
minergic midbrain (57–63). In turn, it projects to dorsolateral
prefrontal and premotor regions, and could, thus, influence be-
havioral output (51, 54). Neurophysiological studies have shown
that single lateral prefrontal neurons use reward information to
increase spatial discrimination, encode reward-based stimulus cat-
egory, and integrate reward and response history (64–66). To-
gether, these findings on expected reward value and risk processing
in the lateral prefrontal cortex underline the role of this structure
as a key component of the decision system of the brain. By showing
that the lateral prefrontal cortex integrates expected reward value
and risk, our data suggest that this region may provide a building
block for the computation of utility, as specified by finance and
risk-sensitive foraging theories.

Materials and Methods
For details, see SI Methods.

Fifteen right-handed healthy participants (mean age, 27 years; range, 20–41
years; 8 females) were investigated in experiment 1, 14 (mean, 25; range, 20–30
years, 6 females) in experiment 2. Participants were recruited through an adver-
tisement on a local community web site.

Experiment 1 consisted of an imperative paradigm, which allowed us to study
the processing of expected value and risk independent of choice. At the begin-
ning of a trial in the main paradigm, single visual stimuli appeared for 1.5 s in one
of the 4 quadrants of the monitor. Participants pressed one of 4 buttons corre-
sponding to the quadrant of stimulus appearance. Outcomes appeared 1 s after
thestimulusfor0.5s.Pointsservedasreward,4%ofwhichwerepaidoutasBritish
pence to participants at the end of the experiment. Throughout the experiment,
thetotalofpointsaccumulatedwasdisplayedandupdatedafter rewarddelivery.
We used 4 levels of expected value, which varied between 50 and 200 points in
steps of 50. For each of these levels, we used a high- and a low-risk variant with
the same expected value, resulting in 8 different stimuli. Trial types alternated
randomly. Participants rated the pleasantness of visual stimuli before and after
the experiment on a scale ranging from 5 � very pleasant to �5 � very unpleas-
ant.Wequantifiedprobabilistic riskaversionbycomparingthepostexperimental
ratings for (p � 0.25 � p � 0.75) and p � 1.0 (30). Experiment 2 varied expected
valueandrisk inachoicesituation. Ineachtrial,a riskyandasafeoptionappeared
for 5.5 s on the right and left side of a fixation cross present in the middle of the
screen. The risky options consisted of a 50% gain of either a larger or a smaller
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option. The safe options consisted of a 100% gain of an intermediate amount. To
equate visual stimulation between the safe and the risky options, 2 times the
samenumberwasdisplayedfor thesafeoption.Participants thenchose1ofthese
options by button press. No outcome was shown. At the end of the experiment,
one trial was chosen randomly and played out to determine participants’ payoff
in British Pound. For the risky options, we used 2 levels of expected value, £30 and
£60 . Each of these was presented in a low- and a high-risk version. To determine
risk attitude, we identified for each risky option the safe amount for which
participants were indifferent between the risky and the safe option (certainty
equivalent) (31).

In both experiments, we acquired gradient echo T2*-weighted echo-planar
images (EPIs) with BOLD contrast on a Siemens Sonata 1.5 Tesla scanner (slices per
volume, 33; repetition time, 2.97 s). Imaging parameters were: echo time, 50 ms;
field-of-view, 192 mm. The in-plane resolution was 3 � 3 mm; with a slice
thickness of 2 mm, and an interslice gap of 1 mm. Statistical Parametric Mapping
(SPM2 and SPM5; Functional Imaging Laboratory, London, U.K.) served to spa-
tially realign functional data, normalize them to a standard EPI template, and
smooth them using an isometric Gaussian kernel with a full width at half-
maximum of 10 mm. Data were analyzed by constructing a set of stick functions
at the time of stimulus or option presentation in experiment 1 and 2, respectively.

In both experiments, participant-specific movement parameters were modeled
as covariates of no interest. The general linear model served to compute trial
type-specific betas. Using random-effects analysis, contrasts were entered into t
tests and simple regressions. Following the mean-variance approach, contrasts
tested for increasing activation with expected value and further increasing acti-
vation with higher risk in risk seeking participants or activation suppression by
higherrisk inrisk-averseparticipants.Correlationsofseparateexpectedvalueand
risk contrasts with risk attitude were performed as simple regressions. To control
for false positives due to multiple comparisons, we used small volume correction
within frontal lobe (FDR at P � 0.05). Reported voxels conform to Montreal
Neurological Institute (MNI) coordinate space. The right side of images corre-
sponds to the right side of the brain.
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