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limits or risk targets. Traders in a bank, for example, often face risk limits,

while hedge funds often tell their investors that a particular fund is expected

to realize a certain risk level. So-called “risk parity strategies” are explicitly

designed to equate the risk stemming from the different investments included in

a portfolio, rather than the capital allocated to the different components. Such

investors therefore continually monitor global risk as it evolves and change their

portfolios in response, reducing notional exposures as risk rises and increasing

positions as risk fades.

This paper presents a framework for measuring, modeling, and forecasting

risk across global assets and asset classes. Our main result is that exploiting

commonality in risk everywhere has a statistically and economically significant

impact. Our results are based on a broad data set of realized volatilities

constructed from high-frequency data for more than fifty instruments across

four asset classes. We find that our new risk models, new panel-based estimation

techniques, and our global volatility factor—all designed to exploit the strong

commonalities observed in the volatilities across assets and asset classes—

result in statistically significant out-of-sample forecast improvements and

nontrivial utility gains compared to more conventional individually estimated

asset-specific risk models.

We start by constructing a comprehensive database comprising high-

frequency intraday data from different global markets spanning more than

two decades and covering 20 commodities, 21 equity indices, 8 fixed-income

futures, and 9 currencies. We compute the realized volatilities (RV ) for each

day and asset in our sample. When qualitatively comparing the estimated RV s,

the differences in risk levels across assets and asset classes immediately stand

out. However, when we normalize each asset’s daily realized volatilities by

their respective sample averages, striking similarities emerge. Indeed, these

“normalized risk measures” have almost identical unconditional distributions

and similar highly persistent autocorrelation structures when comparing across

assets and asset classes. Hence, the volatilities of different assets—equities,

bonds, commodities, or currencies—appear to behave almost the same over

time. Going one step further, we document strong volatility spillover effects

both within and across different markets and geographical regions. The

existence of spillover effects and commonalities in the dynamic dependencies

is, of course, well known from the already existing volatility literature and the

estimation results obtained with traditional GARCH and stochastic volatility

models (see, e.g., Taylor 2005; Andersen et al. 2006; and the references

therein).

Next, we build risk forecasting models explicitly designed to exploit these

strong similarities in the distributions of the volatilities across and within asset

classes. The formulation of our models are motivated by the heterogeneous

autoregressive (HAR) model of Corsi (2009) and draws on insights from the

mixed data sampling (MIDAS) approach of Ghysels et al. (2006) and Ghysels,

Sinko, and Valkanov (2007). First, we show how to simultaneously estimate
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risk models across many assets using panel regressions that add power by

exploiting the similarities in the cross-asset risk characteristics.1 An important

step needed to allow such a panel-based estimation is to “center” the models

and eliminate the asset-specific intercept terms to ensure that all parameters are

“scale-free” in the sense that they do not depend on the level of risk. Second,

we introduce new “smooth” realized volatility models, in which the forecasted

future volatilities depends on the past volatilities in a way that is continuous

and decreasing in the lag lengths, thereby eliminating nonmonotonicities

arising from estimation noise and predictable jumps in the risk forecast as

time passes. Our preferred specification, which we denote the heterogenous

exponential realized volatility model (HExp for short), in particular, is based on

a simple mixture of exponentially weighted moving average (EWMA) factors.

Third, to account for the volatility spillover effects and strong commonalities

observed not just across different assets but also across different geographical

regions, we augment the asset-specific HExp model with a lagged “global” risk

factor.

Looking at the in-sample results, we find that all of the RV models that we

consider perform well compared to models that “only” use daily returns. By

construction, when looking in-sample, the models that are tailored to each

asset separately have larger predictive power in terms of R2 than models

that enforce a common risk model across assets. However, when looking

at out-of-sample predictability, the models that impose common parameters

generally perform better. In particular, enforcing common parameters across

models within each asset class produces higher average out-of-sample R2s

than individually estimated models. Even more surprisingly, enforcing common

parameters not just within but across all asset classes, the properly “centered”

risk models result in even higher average out-of-sample R2s. The basic HExp

model and the HExp model with the “global” risk factor (termed “HExpGl”)

result in the highest average out-of-sample predictability among all of the

models, suggesting that the commonality and “smoothness” embedded in the

HExp formulations ensure a robustness beyond that of the standard existing

risk models.

Last, but not least, we present a simple framework for quantifying the utility

benefits of risk modeling. Our approach is linked to the literature that seeks to

assess the utility benefits of return predictability in the presence of empirically

realistic transaction costs and other practical implementation issues (see, e.g.,

Balduzzi and Lynch 1999; Sangvinatsos and Wachter 2005; Lynch and Tan

2010). It is also related to the work of Fleming, Kirby, and Ostdiek (2001,

2003), and the idea of using a quadratic utility function to evaluate the benefits of

1 The use of a panel-based estimation technique to enhance the efficiency of the individual forecasts parallels the
use of Bayesian estimation procedures more generally, as exemplified by Karolyi (1993), who rely on Bayes-
Stein shrinkage for improving the forecasts of individual stock return volatilities based on the cross-sectional
dispersion.
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volatility timing.2 In contrast to all of these approaches that explicitly depend on

forecasts of—and/or realizations of—both the future returns and volatilities, our

method exclusively focuses on volatility forecasting. Specifically, we consider

the expected utility of an investor with mean-variance preferences that trades

an asset with a constant Sharpe ratio. The investor’s optimal portfolio adjusts

the position size to keep a constant volatility (and this “risk target” naturally

depends on the investor’s risk aversion). Correspondingly, the investor’s utility

is directly related to the volatility: the investor achieves the maximum utility

by successfully targeting a constant risk level, while the utility decreases

with the volatility-of-volatility. Hence, risk models that help the investor

achieve more accurate volatility forecasts are associated with higher levels

of utility.

We show that, in this situation, under realistic assumptions about the Sharpe

ratio and the investor’s risk target, using the HExp risk model augmented with

our global risk factor (HExpGl) is worth about 48 basis points (bps) per year

relative to using the best possible static risk model. Put differently, the assumed

investor would in principle pay 48 bps of her/his wealth each year to have access

to the HExpGl risk model developed here rather than using a static risk model.

The utility benefit of HExpGl is also significant, but smaller, when compared

to other sophisticated risk models. For example, the utility gain of the HExpGl

model relative to a simple risk model based on daily data is 19 bps per year

and the utility gain over a 21-day rolling average over realized volatilities is

8 bps per year. These utility gains are of the same magnitude as institutional

asset management fees. While such fees are often thought as compensation

for higher expected returns (“alpha”), our results show that the quality of the

risk model can be equally important. Importantly, these benefits remain when

we take realistic transaction costs into account since the new “smooth” risk

models not only produce more accurate risk forecasts but also more stable

forecasts resulting in less spurious trading than risk models based on daily

data.

In summary, we contribute to the literature by exploring commonality in

volatility across a broad set of asset classes, introducing a new class of

risk models, showing how risk models can be centered to allow panel-based

estimation, developing a utility-based framework to evaluate the economic

importance of risk models, and, finally, combining all these to empirically

showing that our HExp risk model estimated using our panel method

produces statistical and economically significant gains relative to standard risk

models.

2 See also the benefits of volatility-timed time-series momentum factors (Moskowitz et al. 2012), value and
momentum factors (Asness et al. 2013; Barroso and Santa-Clara 2015; Daniel and Moskowitz 2016), and other
volatility-managed factors (Moreira and Muir 2017). Our utility framework can isolate the benefit coming from
stabilizing volatility, as separate from predicting the return (or Sharpe ratio).
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Risk Everywhere: Modeling and Managing Volatility

1. Realized Volatilities: Data Sources and Construction

There is a long history in finance of heuristically quantifying the ex post

volatility based on the sum of intra-period squared returns.3 This approach may

be formally justified by the theory of quadratic variation and the notion of ever-

finer sampled returns over fixed time intervals, or so-called “in-fill asymptotic

arguments” (see, e.g., the discussion and references in Andersen et al. 2013).

1.1 Realized volatilities and quadratic variation

To formally lay out the basic idea underlying the realized volatility concept,

we let the unit time interval correspond to a day. The realized variation defined

by the summation of high-frequency intraday squared returns,

RVt ≡
1/�
∑

i=1

[

log(Pt−1+i�)−log(Pt−1+(i−1)�)
]2

, (1)

then consistently estimates the quadratic variation, that is, the true variation,

on day t as the number of intraday observations increases (1/�→∞), or

equivalently the length of the intraday return interval decreases (�→0). This

effectively renders the daily variation directly observable on an ex post basis.4

The volatility over longer, say weekly or monthly, horizons may similarly be

estimated by summing the intraday squared returns over a week or a month or,

equivalently, by summing the daily realized volatilities RVt over the relevant

longer multiday horizons.

1.2 Data sources and “cleaning”

Our data covers a total of 58 different assets across commodities (20), equities

(21), fixed income (8), and foreign exchange (9). The asset universe comprises

global equity index futures (both developed and emerging markets), global

developed fixed-income futures, commodity futures, and spot market foreign

exchange rates. Our specific choice of assets is dictated by liquidity concerns

and correspondingly the availability of reliable high-frequency intraday prices.

Our primary source of data for equities, fixed income, and commodities is

the Thomson Reuters Tick History (TRTH) database. To extend the history

for some of the assets, most notably fixed income and commodities, we use

data from TickData.com (TDC). For the foreign exchange data, we exclusively

rely on Olsen Data (OD). The data for all of the assets run through September

2014. The start of the sample period differs across assets, with some starting as

3 French, Schwert, and Stambaugh (1987) and Schwert (1989), for instance, rely on the sum of daily squared
returns in their construction and modeling of monthly U.S. equity volatilities, while Hsieh (1991) estimates
models for daily volatilities constructed from 15-minute S&P 500 returns.

4 Consistent with the common use of the two terms in the extant literature, we will use RVt as the daily realized

variation or the daily realized volatility interchangeably and also sometimes explicitly use RV
1/2
t as the daily

realized volatility.
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early as October 1992. In general, the data for commodities are available the

earliest, followed by equities and fixed income, with foreign exchange having

the shortest time span. Table A1 in the appendix summarizes the exact start dates

for all of the assets and the relevant data sources.5 Multiple futures contracts

for the same underlying asset, but with different expiration, trade at the same

time, and new contracts are opened as others expire. We focus on the most

liquid contract, “rolling” from one contract to another at a regular schedule as

further discussed in the appendix. We organize the resultant single time series

of returns for each asset into minute bars based on the last observation prior to

the end of each minute. For the TRTH and OD databases, we use the mid-quote

price (average between the bid and ask price). For the TDC data we use the

observed trade price (TDC does not provide quote-level data prior to 2010).

To avoid “polluting” the high-frequency data with quote changes that occur

during illiquid periods, we only use the minute bars for which there are at least

one valid trade within that minute. Lastly, having organized all of the data into

minute bars, we apply a series of “sanity filters” to clean out any obvious data

errors. These filters are further discussed in the Appendix.

1.3 Overnight returns and intraday sampling

It is well established that volatility tend to be higher during exchange trading

hours than during nontrading hours (see, e.g., French and Roll 1986). The

theory underlying the consistency of the realized volatility measure portrays

prices as evolving continuously through time. In actuality, of course, most

markets close on weekends and certain holidays, change their trading hours,

and sometimes experience “ghost” hours, where liquidity is very poor despite

the markets technically being open. Accordingly, we only retain the trading

hours for which the liquidity is sufficiently high to ensure a reasonable quality

of the high-frequency data. We use the Financial Calendars (FinCal) database

for market open and close times, together with so-called “liquidity plots,”

to delineate the periods of actively operating markets; the appendix provides

further details. Having determined the period for which reliable high-frequency

data are available, we simply add the corresponding “overnight” squared returns

to the daily realized volatilities constructed from the “intraday” squared returns

to obtain an RV measure for the whole day.6

We rely on a common 5-minute sampling frequency for calculating the

intraday RV s for all of the assets. This choice directly mirrors the sampling

frequency used in much of the existing realized volatility literature. It may be

5 The staggered start dates are easily accommodated by our panel-based estimation procedures discussed below.
We do not restrict the sample sizes to be the same for all assets.

6 Following Hansen and Lunde (2005b), we also experimented with “optimally” combining the squared overnight
returns and the intraday RV , proportionally scaling the intraday RV , and separately modeling the overnight
squared returns. None of these more complicated procedures clearly dominated the approach of simply adding
the overnight squared returns to the intraday RV ’s.
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Risk Everywhere: Modeling and Managing Volatility

justified by the volatility signature plots (Andersen et al., 2000) discussed in the

appendix. To further enhance the efficiency of the RV estimates, we average

the five different daily RV s obtained by starting the day at the first five unique

1-minute marks. A number of other consistent realized volatility estimators,

requiring the choice of additional tuning and/or nuisance parameters, have been

proposed in the literature.7 However, the theoretical comparisons in Andersen,

Bollerslev, and Meddahi (2011) and Ghysels and Sinko (2011) show that

from a theoretical forecasting perspective, the simple subsampled 5-minute

RV estimator that we rely on here performs on par with or better than all of

these more complicated estimators. The empirical study by Liu, Patton, and

Sheppard (2015), comparing more than 400 different RV estimators across

multiple assets, similarly concludes that “it is difficult to significantly beat

5-minute RV .”

2. Risk Characteristics Everywhere

To help guide the specification of empirically realistic risk models, we want to

understand the distributional characteristics of the risks both within each of the

four asset classes, equities, bonds, commodities, and currencies, as well as the

similarities and differences across asset classes.

2.1 Unconditional distributions and dynamic dependencies

To begin, Figure 1 shows the time series of annualized realized volatilities

for four representative assets, one from each asset class: S&P 500, 10-year

Treasury bonds, Crude Oil, and Dollar/Euro. Even though the four volatilities

obviously exhibit their own distinct behaviors, there is a clear commonality in

the dynamic patterns observed across the four assets, with most of the peaks

readily associated with specific economic events.

In spite of the similarities in the general patterns, the overall levels of

the volatilities clearly differ across the four different assets. This is further

evidenced by Figure 2, which plots the unconditional distribution of the daily

realized volatilities for the same four representative assets. As the figure shows,

Crude Oil is the most volatile on average, followed by the S&P 500, and the

Dollar/Euro exchange rate. The volatility of 10-year Treasury bonds is by far

the lowest.

This same ranking carries over to the four asset classes more generally. In

particular, looking at the summary statistics for the daily realized volatilities

averaged across each of the assets within each of the four asset classes reported

in Table 1, the average annualized volatility for commodities and equities equal

25.4% and 20.6%, respectively, compared to 10.3% for foreign exchange, and

just 3.1% for fixed income.

7 These include the two-scale RV of Zhang, Mykland, and Aït-Sahalia (2005), the kernel-based RV of Barndorff-
Nielsen et al. (2008), and the pre-averaged RV of Jacod et al. (2009).
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Figure 1

Monthly realized volatilities

This figure shows the time series of 20-day average realized volatilities (annualized) for four representative
assets: S&P 500 Futures, U.S. 10-year Bond Futures, Crude Oil (WTI) Futures, and USD/Euro Spot.

Figure 2

Unconditional daily RV distributions

This figure shows kernel density estimates of the unconditional daily realized volatility (annualized) for four
representative assets: S&P 500 Futures, U.S. 10-year Bond Futures, Crude Oil (WTI) Futures, and USD/Euro
Spot.
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Table 1

RV summary statistics

Commodities Equities Fixed income Foreign exchange

Mean 25.4 20.6 3.1 10.3
SD 12.6 13.7 1.5 5.7
Skewness 2.6 3.4 2.3 3.1
Excess kurtosis 16.9 22.9 11.6 18.5

Maximum 185.6 186.6 19.4 74.1
95th percentile 47.8 44.8 5.8 20.4
50th percentile 22.7 17.0 2.8 9.0
5th percentile 11.6 8.2 1.5 4.6
Minimum 4.9 3.0 0.6 1.2

1-day autocorr. 0.516 0.707 0.481 0.517
20-day autocorr. 0.362 0.480 0.347 0.415
100-day autocorr. 0.195 0.228 0.197 0.221
250-day autocorr. 0.115 0.105 0.073 0.104

Number of assets 20 21 8 9
Avg. number of obs. 5,407 3,812 4,042 3,351
Earliest start date Oct. 22, 1992 Jan. 3, 1996 Jan. 3, 1996 Jan. 1, 1999
Latest start date Jan. 3, 1996 Dec. 13, 2005 Sept. 26, 2000 Jan. 1, 2004

The table presents summary statistics for daily realized volatilities averaged across all assets within a given asset
class. All of the volatility numbers are reported in annualized percentage units.

These differences in the mean levels of the volatilities across the different

assets and asset classes are, of course, well know. More interesting features

arise when we consider the volatilities normalized by their sample mean,

RVt/Mean(RVt ), corresponding to the risk of a leveraged (or deleveraged)

position. For example, if Mean(RVt )=0.5, then the normalized volatility

measure corresponds to the risk of a position that is always leveraged

2-to-1. Hence, normalizing each individual contract by its own average

volatility is equivalent to measuring risk on a common scale, in the sense that

each position is leveraged to the same common average risk level.

Interestingly, the unconditional distributions of these daily normalized

realized volatilities are remarkably similar, both across assets and asset classes.

Indeed, Figure 3 shows that the sampling distributions of the four representative

assets are obviously very close.8 The unconditional distributions for the

normalized volatility of each of the individual assets within each of the four

asset classes are also very similar, as reported in the Online Appendix.

It is important to note that the “width” of these distributions are not similar

by construction, as would be the case if we normalized by subtracting the

mean and dividing by the standard deviation, [RVt −Mean(RVt )]/std(RVt ),

which would match both the mean and standard deviation by construction

(or, said differently, such a normalization implies a loss of two degrees of

freedom, rather than just one for our normalization). Hence, the fact that the

RVt/Mean(RVt ) normalized distributions are so similar is not hard-wired,

8 Although seemingly very close, pairwise Kolmogorov-Smirnov tests easily reject that the four sampling
distributions in Figure 3 are identical, with a p-value of .0087 for commodities and fixed income, and p-values
below .0001 for all of the other pairwise comparisons.
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Figure 3

Normalized unconditional daily RV distributions

This figure shows kernel density estimates of the normalized daily realized volatility (annualized) of all assets
within each of the four asset classes. In particular, we show the density of each asset’s daily RV divided by its
average daily RV to account for level differences in individual asset volatilities.

but rather direct evidence that risks do indeed behave similarly across asset

classes. Importantly, these similarities also imply that risk parity strategies

designed to match the average volatility of different assets and/or asset classes

will not only equate the average volatility levels but also effectively the entire

unconditional distributions of the ex post realized volatilities for the leveraged

positions.

These commonalities in the unconditional distributions carry over to the

general dynamic dependencies. The autocorrelations for the daily realized

volatilities averaged across the different assets within each of the four asset

classes shown in Table 1 and Figure 4 make clear that the general patterns

and decay rates are very similar. This is, again, in line with the equities

perhaps being slightly different for the short-term lags.9 Similar dynamic

dependencies, of course, have been extensively documented in the burgeon

volatility literature.10

9 Because of the varying degrees of measurement errors in the realized volatilities for the assets within the four
asset classes, the levels of the autocorrelations for the shortest lags are not directly comparable (see also the
discussion in Hansen and Lunde 2014).

10 The book by Taylor (1986), in particular, provides some of the earliest empirical evidence explicitly highlighting
the similarities in the autocorrelations of absolute and squared daily returns across assets and asset classes.
GARCH and stochastic volatility models also typically result in very similar dynamic parameter estimates for
different assets. For instance, applying a GARCH(1,1) model to daily returns, the estimates for α and β in the
usual notation of the model are typically around 0.03−0.08 and 0.92−0.97, respectively, with the sum very close
to unity (see, e.g., Hansen and Lunde 2005a).
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Risk Everywhere: Modeling and Managing Volatility

Figure 4

Daily realized volatility autocorrelations

This figure shows the average autocorrelation function of the daily realized volatilities averaged across all of the
assets within each of the four asset classes.

2.2 Cross-asset dependencies, spillovers, and global volatility

The averages of the standard sample correlations for the realized volatilities

reported in the top panel in Table 2 are all positive. This comovement of risk

across assets and asset classes is consistent with the visual impression from

the time-series plots for the four representative assets previously discussed in

Figure 1. Looking at the actual numbers, commodity volatilities are generally

the least correlated, both within the asset class and across other asset classes.

That is, the risk of different commodities comove less with each other than

do equity risks that comove with each other, and so on, and commodity risks

also comove less with the risk of equity, fixed income, and currencies than they

comove with each other. In fact, commodity risk comoves about as much across

asset classes as within the asset class.

In addition to the within and across asses class correlations, the last row

reports the average correlations with a “global risk factor” that we denote

GlRV . The global risk factor is defined as the average normalized RV s across

all assets. Since we will also use GlRV for forecasting, we construct this factor

on an asset-specific basis to prevent any look-ahead biases due to time-zone

effects. In particular, for any specific asset, we construct the corresponding

GlRV so that today’s GlRV does not use any data that overlap with tomorrow’s

trading hours for the specific asset, lagging by 1 day any asset that would

otherwise create such an overlap.11 Based on this lagging convention, on

11 For instance, the day t −1 market hours for U.S. equities overlap with the overnight portion of day t for Australian
equities. Hence, in the construction of the global factor used for Australian equities, we shift the RV for U.S.
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Table 2

RV contemporaneous and partial correlations

Commodities Equities Fixed income Foreign exchange

A. Contemporaneous correlations

Commodities 0.277 0.298 0.217 0.355
Equities – 0.668 0.407 0.554
Fixed income – – 0.470 0.433
Foreign exchange – – – 0.710
Global 0.410 0.721 0.547 0.633

B. Partial lead-lag correlations and �R2

Commodities 0.059 0.063 0.074 0.132
Equities 0.081 0.173 0.122 0.198
Fixed income 0.072 0.078 0.093 0.151
Foreign exchange 0.078 0.108 0.110 0.144
Global 0.171 0.328 0.267 0.456

Commodities 0.005 0.004 0.007 0.017
Equities 0.011 0.021 0.024 0.041
Fixed income 0.006 0.005 0.011 0.016
Foreign exchange 0.007 0.010 0.015 0.014
Global 0.012 0.022 0.033 0.061

The table presents correlations of daily realized volatilities averaged within and across asset classes. Panel A
reports the standard contemporaneous correlations. Panel B reports the average partial correlation coefficients
obtained from regressions of the daily RV s for the assets within the asset classes indicated in the columns on
their own daily lags and the lagged values of the RVs for the assets in the asset classes indicated in the rows

(top panel), together with the average absolute percentage increases in the R2s compared to regressions of the
assets indicated in the columns on their own daily lags only (bottom panel). The “Global” volatility factor is
constructed as a weighted average of the daily RV s, as further discussed in the main text.

each day and for each asset i, we compute the asset-specific GlRV as the

average normalized RV scaled back to the asset’s own level of volatility; that

is,
(

1
J

∑

j=1,...,J

RVt,j

RVj

)

RVi .

This global volatility factor captures well the overall volatility dynamic

across asset classes as seen in the last row of the top panel in Table 2.

Indeed, as a sign of the strong commonalities in the realized volatilities, the

average correlations with this new global risk factor systematically exceed the

across asset class correlations. With the exception of foreign exchange, the

global risk factor correlations are also all higher than the within-asset class

correlations.

The literature is rife with studies seeking to model these strong dependencies

and possible volatility spillover effects using multivariate GARCH and related

procedures (see, e.g., Engle et al. 1990; Karolyi 1995 for some of the earliest

evidence). In contrast to these earlier studies, which rely on parametric volatility

models for inferring the dependencies, our use of realized volatilities allow us to

directly quantify the strengths of any spillover effects. To this end, the middle

panel in Table 2 reports the average partial lead-lag correlation coefficients

equities back by 1 day. The RV for Australian equities, on the other hand, need not be shifted in the construction
of the global factor for U.S. equities. To also account for changes in market hours over the sample period, we
perform this shifting on a day-by-day basis for each asset.
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Risk Everywhere: Modeling and Managing Volatility

Table 3

Global volatility correlations

Sentiment Unusual sentiment VRP News

Global Volatility −0.123∗ 0.197∗∗ −0.454∗∗ 0.183∗∗

Sentiment – 0.568∗∗ −0.097 0.171∗∗
Unusual sentiment – – 0.051 0.136∗
VRP – – – −0.087

The table reports the monthly (end-of-month) contemporaneous correlations between the global volatility factor
ExpGlRV formally defined in Section 3.6 and four other variables. Sentiment refers to the “orthogonalized”
investor sentiment measure of Baker and Wurgler (2006). Unusual sentiment is defined as the absolute value
of the Sentiment measure minus its sample mean. The variance risk premium (VRP) is equal to the difference
between the VIX and the realized U.S. equity volatility over the past month. The News surprise variable is
constructed as the average value of the standardized absolute news announcement surprises observed over the
month. Statistical significance at the 5% and 1% levels are indicated by ∗ and ∗∗, respectively.

obtained from regressions of the daily RV s for each of the assets within the

asset classes indicated in the columns on their own daily lagged value and the

lagged values of the RV s for the assets in the asset classes indicated in the

rows. To allow for a scale-invariant interpretation, we further normalize the

realized volatility RVj of any asset j by its sample mean RVj and regress the

normalized RV for asset j on a constant, its own lag, and the normalized lagged

RV for asset i, where the latter regression coefficient is the partial correlation

of interest. Specifically, the first-order partial autocorrelation between asset j

and asset i is the estimated b2,ij coefficient from the regressions RVt,j/RVj =

b0,ij +b1,ijRVt−1,j/RVj +b2,ijRVt−1,i/RVi +ut,ij , with Table 2 reporting the

average of these within-asset classes. The bottom panel shows the resultant

average increases in the R2s compared to simple first order autoregressions that

only control for the own lagged dynamic dependencies; that is, RVt,j/RVj =

b0,j +b1,jRVt−1,j/RVj +ut,j .

Consistent with the presence of strong cross-market linkages and spillover

effects, all of the average partial correlations are positive.12 Comparing the

results across the different asset classes, equity volatilities as a whole tend to

exert the largest impact on the other asset class volatilities. Meanwhile, the

magnitude of the equity partial correlations and the resultant increases in the

R2s are all dominated by those of the global risk factor. This naturally raises a

few questions: What is behind these linkages? And, in particular, what might

explain the dynamic variation in the global risk factor?

The economic forces behind volatility clustering per se remain poorly

understood, and a full-fledged analysis of that question is beyond the scope of

the present paper. However, in an effort to shed some light on the mechanisms

at work, Table 3 reports the monthly (end-of-month) correlations between an

exponentially smoothed version of the global volatility factor ExpGlRV , as

used in our preferred HExpGl model formally defined in Section 3.6, and four

12 As reported in the Online Appendix, the vast majority of the individually estimated coefficients are also
statistically significant.
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Figure 5

Global volatility, sentiment, VRP, and news

This figure shows the global volatility factor (ExpGlRV), unusual monthly sentiment, the volatility risk premium
(VRP), and the absolute news surprise variable, as formally defined in the main text. All of the variables are
plotted at a monthly frequency.

other variables naturally related to volatility. Figure 5 plots the global volatility

factor, together with three of the four variables.

The first entry in Table 3, in particular, shows that the global volatility

factor is negatively correlated with the U.S. investor sentiment index of Baker

and Wurgler (2006).13 Baker, Wurgler, and Yuan (2012) have previously

argued that U.S. investor sentiment is contagious, and that international capital

flows may in part account for this contagion. The well-established strong

link between trading volume and return volatility (see, e.g., for a survey of

some of the earliest empirical evidence Karpoff 1987) may help explain the

connection between investor sentiment and global volatility. Further along these

lines, Karolyi, Lee, and van Dijk (2012) have previously documented strong

commonalities in equity trading volumes across countries, arguably driven by

correlated trading activity among institutional investors and common investor

sentiment.

13 We rely on the “orthogonalized” sentiment measure available on Wurgler’s Web site: http://people.stern.
nyu.edu/jwurgler/.
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Risk Everywhere: Modeling and Managing Volatility

The previous correlation portrays a monotonic relationship between volatility

and sentiment, possibly driven by correlated trading. However, if “noise” traders

acting on sentiment affect prices, unusually high or low levels of sentiment

should both be associated with high levels of volatility (see, e.g., Brown 1999).

Consistent with this idea, the monthly correlation between the global volatility

factor and “unusual” sentiment, defined as the absolute value of the same

sentiment measure minus its sample mean, equals 0.197.14 Thus, whereas the

general level of U.S. investor sentiment is negatively correlated with global

market volatility, unusual U.S. investor sentiment is positively correlated with

global market volatility.

The variance risk premium, formally defined as the difference between the

actual and risk-neutral expectation of the future return variation, is naturally

interpreted as a measure of aggregate risk aversion (see, e.g., Bakshi and Madan

2006). Supporting the idea that risk aversion, and in turn risk bearing capacity,

influence volatility, the global volatility factor is strongly negatively correlated

with the U.S. equity variance risk premium.15

Numerous studies have sought to relate low-frequency variation in return

volatility to directly observable macroeconomic variables or indicators (see,

e.g., Schwert 1989; Engle and Rangel 2008). The reported relations, however,

are weak at best. At the other end of the spectrum, a number of studies have

documented a sharp, but short lived, increase in intraday volatility following

macroeconomic and other public news announcements (see, e.g., Ederington

and Lee 1993; Andersen et al. 2003). The last entry in Table 3 reports the

correlation between the global volatility factor and a news surprise variable,

constructed as the average of the standardized absolute surprises for five of the

most important U.S. macroeconomic news announcements released over the

month.16 Corroborating the idea that the volatility in global financial markets

may in part be attributed to “news” about the U.S. economy, the correlation

between this news surprise variable and the global volatility factor equals

0.183.

Taken as a whole, the results in Table 3 support the idea that commonalities

in trading behavior possibly induced by changes in investor sentiment and/or

notions of risk aversion, together with unanticipated news, all serve important

roles in accounting for the strong commonalities in the dynamic dependencies

observed in the volatilities within and across asset classes. We will not pursue

this any further here. Instead, we turn to a discussion of the practical risk models

that we use for modeling and forecasting these dynamic dependencies.

14 Restricting the sentiment measure to just two states, Yu and Yuan (2011) also find that especially high sentiment
tends to be associated with high volatility.

15 We follow Bollerslev, Tauchen, and Zhou (2009) in quantifying the variance risk premium as the difference
between the VIX and the realized U.S. equity volatility over the past month.

16 We follow Andersen et al. (2003) in identifying the five most important regularly scheduled U.S. macroeconomic
news announcement as nonfarm payroll, durable goods orders, retail sales, housing starts, and the Philadelphia
Fed’s business outlook survey.
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3. Risk Modeling

Our new risk models are explicitly designed to incorporate the strong

similarities observed in risk characteristics across assets and asset classes.

3.1 Omnibus RV-based risk models: AR(∞)

To facilitate the discussion, it is instructive to consider the omnibus AR(∞)

risk model,

RVt+1 = b0 + b1RVt + b2RVt−1 + ... + ǫt = b0 + b(L)RVt + ǫt , (2)

in which the realized volatility on day t +1 is determined by a distributed

lag of past realized volatilities.17 The estimation of an infinite number of bi

coefficients implicit in this representation is, of course, not practically feasible,

and the different risk models in effect represent alternative ways of restricting

the b(L) lag polynomial to allow for its meaningful estimation, as exemplified

by the RV -based ARIMA model originally proposed by Andersen et al. (2003),

and the MIDAS model advocated by Ghysels, Santa-Clara, and Valkanov (2006)

in which b(L) is parameterized in terms of beta functions.

The notion of multiple volatility components, or factors, is commonly used

for parsimony, representing the b(L) lag polynomial. The HAR model of

Corsi (2009), for example, is based on a weighted sum of a daily, weekly

and monthly volatility factors.18 In this situation, what ultimately matters from

a practical forecasting perspective is the factors’ ability to capture the influence

of the lagged RV ’s. Ideally, we want a set of factors that “span” the b(L) lag

space well, while still enforcing some commonality and “smoothness,” thereby

enabling a unified set of factors to be used for all assets and asset classes by

simply altering the weights of the different factors.

Regardless of the way in which the b(L) lag polynomial is parameterized, the

bi coefficients are usually estimated on an asset-by-asset basis. This ignores the

cross-asset similarities in the dynamic dependencies discussed in the previous

section. We therefore also explore the use of panel regression techniques that

force the coefficients to be the same within and across different asset classes.

As demonstrated below, doing so imbues the resultant risk models with a

built-in robustness and statistically significant superior out-of-sample forecast

performance.

17 In addition to the risk models nested in this AR(∞) representation, we also explored models that decompose the
daily RV ’s into continuous and jump components (Andersen, Bollerslev, and Diebold, 2007), and models that
differentiate between up and down realized semivariances (Patton and Sheppard 2015). For the monthly forecast
horizon primarily analyzed below, none of these alternative RV measures and models resulted in superior out-
of-sample forecasts. Chen and Ghysels (2011) report largely symmetric “news impact curves” for U.S. aggregate
equity indexes at the 1-month horizon.

18 Related representations based on the combination of multiple distributed lag polynomials also have been proposed
in the MIDAS literature and elsewhere (see, e.g., Ghysels et al. 2007).
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Risk Everywhere: Modeling and Managing Volatility

3.2 “Centering”: Eliminating the level parameter in a robust fashion

Even though one might naturally restrict the dynamic b(L) lag coefficients to be

the same across assets to exploit the commonalities in the dynamic dependen-

cies and distribution of the standardized volatilities, RVt/Mean(RVt ), the very

different volatility levels for different asset classes means that it is unreasonable

to force the b0 intercepts to be the same. To circumvent this and allow for

meaningful cross-asset estimation, we “center” the risk models by replacing

the intercept with a long-run volatility factor RV LR
t , equal to the expanding

sample mean of the daily RV ’s from the start of the sample up until day t .

Forcing all of the bi coefficients to sum to one, including the coefficient for

the RV LR
t factor, ensures that the iterated long-run forecasts from the model

constructed on day t converges to this day t estimate of the “unconditional”

volatility.19

Although seemingly complicated to implement, this “centering” of the risk

models is easily enforced by subtracting the long-run volatility factor from all

of the RV s, including the left-hand-side RV forecast target:

RVt+1 −RV LR
t = b1(RVt −RV LR

t ) + b2(RVt−1 −RV LR
t ) + ... + ǫt . (3)

When the regression is run in this way, the coefficients are free (i.e., need not

sum to one), but, if we collect terms for RV LR
t on the right-hand side, then

RV LR
t has an implied coefficient of 1−b1 −b2 − ...=1−b(1) such that all the

implied coefficients do sum to one. By eliminating the level of the volatility,

this alternate representation allows for the meaningful estimation of common

dynamic bi coefficients by panel regression techniques. More complicated

Bayesian shrinkage-type procedures, in which the dynamic coefficients are

allowed to differ across assets, of course, could be applied. However, we

purposely restrict the coefficients to be the same within-asset classes or across

all assets, to allow for a direct comparison with the individually estimated risk

models.20

3.3 Multiperiod and other volatility forecasts

The AR(∞) model in (2) and the centered version thereof in (3) are directly

geared to forecasting the one-day-ahead variance. Longer-run forecasts, say

over weekly or monthly horizons, may be obtained by recursively substituting

the forecasts for the future daily RV ’s into the right-hand side of the model,

subsequently adding up the resultant one, two, three, etc., days-ahead forecasts

to achieve the multiperiod RV forecast over the requisite horizon. Instead,

19 This mirrors the idea of variance targeting in GARCH models first proposed by Engle and Mezrich (1996),
in which the intercept in the conditional variance equation is replaced by a (scaled) estimate of the long-run
“variance target” to which the forecasts converge. It also resembles the Spline-GARCH model of Engle and
Rangel (2008) and the use of a low-frequency volatility component to scale the forecasts.

20 We also experimented with the use of common long-run asset class RV LR
t s, but we did not find that these models

resulted in obviously superior forecasts.
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a much simpler approach for constructing multi-day-ahead forecasts is to

estimate the risk model as such from the start. That is, by replacing the daily

variance RVt+1 on the left-hand side of the risk model, with the realized

variance over the forecast horizon h of interest, say RV h
t ≡ 1

h

∑h
i=1RVt−h+i .

In the forecasting literature, this approach is commonly referred to as direct as

opposed to iterated forecasts.21

In particular, for the “monthly,” or 20-day, forecast that we focus on below,

and the generic risk model in (2), we have

RV h
t+h = bh

0 + bh(L)RVt + ǫh
t , (4)

with h=20. The bh
i coefficients, which dictate the “speed” of the model, will

obviously depend on the forecast horizon, as indicated by the superscripts h.

For notational simplicity, however, we will drop this superscript in the sequel.

Also, even though ǫh
t generally will be serially correlated up to the order of

h−1, we will simply denote the residuals in all of the models discussed below

as ǫt for short.22 In theory, if the model for the 1-day-ahead RVt+1 in (2) is

correctly specified, the iterated forecasts from that model would be the most

efficient. However, ample empirical evidence shows that even minor model

misspecifications tend to be amplified in iterated volatility forecasts, and, as

a result, the direct forecasts produced from a model, such as (4), are often

superior in practice (see, e.g., Andersen et al. 2003; Ghysels et al. 2009; Sizova

2011).23

This same basic idea also may be used for forecasting other functions of the

variance, by simply replacing RV h
t+h on the left-hand side in Equation (4) with

the volatility object of interest. For instance, the future volatility as opposed

to the variance, or the inverse of the variance, are often of primary import.

Unless the volatility is constant or perfectly predictable, simply transforming

the forecast for the variance will result in a systematically biased forecast.24

We turn next to a brief discussion of the specific risk models, old and new, that

we actually rely on.

3.4 HAR models

The original HAR model of Corsi (2009) has proven very successful. It

has emerged as somewhat of a benchmark in the financial econometrics

21 A similar distinction has been made in the context of option pricing and the use of exactly matched-by-horizon
versus cumulated volatility estimates (see, e.g., Karolyi 1993). This issue also has been extensively studied in
the MIDAS literature (see, e.g., Ghysels et al. 2009).

22 The use of overlapping daily data in the estimation of the models means that the conventional standard errors for
the coefficient estimates will have to be adjusted to account for the overlap (see, e.g., Hansen and Hodrick 1980;
Newey and West 1987).

23 Ghysels, Rubia, and Valkanov (2009) explicitly refer to direct forecasts as MIDAS.

24 By a standard first-order Taylor series expansion, E(
√

X)∼= E(X)1/2 − 1
8
V ar(X). Hence, [Et (RV h

t+h
)]1/2 is

an upward-biased forecast of future volatility. Similarly, E(1/X)∼= 1/E(X)+V ar(X)/E(X)3, so that one over

Et (RV h
t+h

) will result in a downward-biased forecast for the relevant ratio. The appendix provides some additional
discussion and empirical results along these lines.
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Risk Everywhere: Modeling and Managing Volatility

literature for judging other RV -based forecasting procedures. The model may

be succinctly expressed in variance form as

RV h
t+h =β0 +βDRVt +βWRV W

t +βMRV M
t +ǫt , (5)

where RV W
t and RV M

t denote the 5-day (weekly) and 20-day (monthly)

realized volatilities, respectively, thus implying a step function for the bi

coefficients in the omnibus AR(∞) representation in (2).25 In addition to the

results from individual asset-by-asset estimation of this “uncentered” HAR

model, we report the results from a fixed effects panel-based estimation of

a “centered” version of the model, in which we restrict the βD , βW and βM

coefficients to be the same, but allow the β0 coefficients to differ across different

assets.

The stepwise nature of the volatility factors employed in the HAR models,

imply that the forecasts from the models are subject to potentially abrupt

changes as an unusually large/small daily lagged RV drops out of the sums

for the longer-horizon lagged volatility factors.26 Our remaining risk models

rely on alternative b(L) polynomials for “smoothing” out these problems.

3.5 MIDAS models

The original HAR model may be interpreted as a special case of MIDAS

regressions with step functions (see, e.g., the discussion in Andersen et al.

2007, Ghysels et al. 2007, Corsi 2009), while the HAR-free model discussed

in the footnote above is closely related to the so-called “U-MIDAS model”

(Foroni et al. 2015). In contrast to HAR models, however, one of the main

objectives of the MIDAS approach is the specification of “smooth” distributed

lag polynomials for representing the dynamic dependencies. Another main

theme of the MIDAS literature, of course, relates to the use of data sampled at

different frequencies, and the choice of sampling frequency for the regressor

variables. Addressing both of those issues, Ghysels, Santa-Clara, and Valkanov

(2006) conclude that the direct modeling of high-frequency data does not result

in systematically better volatility forecasts compared to the forecasts from a

model of the form in (2) based on the daily RV s only.27 They also propose a

specific parameterization for the b(L) lag polynomial based on beta functions.

25 Analogous multifactor formulations previously have been used as way to approximate long-memory dynamic
dependencies in the context of parametric stochastic volatility models (see, e.g., Gallant et al. 1999). The use
of monthly lagged volatility in the daily ARCH model estimated by French, Schwert, and Stambaugh (1987)
provides an early precedent to this formulation.

26 In addition to the basic HAR model in (5), we also experimented with a model in which we freely estimated

the coefficients for the first six daily lagged RV s, together with an annual volatility factor RV A
t , defined as the

(normalized) sum of the daily RV ’s over the past 261 days. The Online Appendix reports the results for this
HAR-free model.

27 Echoing this same theme, Clements, Galvao, and Kim (2008) also find that that the parameterization implicit in
the original HAR model generally results in superior out-of-sample forecasts compared to a freely parameterized
MIDAS model for the high-frequency intraday squared returns.
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This representation has now emerged as somewhat of a standard in the MIDAS

literature.

Thus, directly following Ghysels, Santa-Clara, and Valkanov (2006), we

implement a MIDAS model of the form,

RV h
t+h = β0 + β1[a(1)−1a(L)]RVt +ǫt , (6)

in which the nonzero coefficients in the a(L) lag polynomial are defined by

scaled beta functions:

ai =

(
i

k

)θ1−1(

1− i

k

)θ2−1

Ŵ(θ1 +θ2)Ŵ(θ1)−1Ŵ(θ2)−1, i =1,...,k, (7)

where Ŵ(·) denotes the Gamma function. The normalization by a(1)≡a1 +

...+ak in Equation (6) ensures that the coefficients in the [a(1)−1a(L)] lag

polynomial sum to unity, so that the β1 coefficient is uniquely identified.

Implementation of the model still requires a choice of the cutoff k, and the

two tuning parameters θ1 and θ2. Again, directly mirroring Ghysels, Santa-

Clara, and Valkanov (2006), we fix the cutoff at k =50, and set the tuning

parameter θ1 =1. This choice of θ1 is now also commonly employed in the

MIDAS literature more generally. Lastly, following the approach of Ghysels

and Qian (2016), we determine the remaining θ2 tuning parameter by a grid

search, in which we profile the predictive R2 from the model as a function of θ2,

together with the freely estimated β0 and β1 parameters, and choose the value

of θ2 that maximizes the predictability over the full sample.28 As a result, our

subsequent predictive MIDAS analysis is not truly out-of-sample. However,

the computational burden does not allow us to perform a rolling grid search for

the θ2 parameter.

3.6 HExp models

The “smooth” beta polynomial employed in the MIDAS model avoids the

stepwise changes inherent in the forecast from the HAR component-type

structure. Further extending this idea, our last set of risk models rely on

a mixture of “smooth” exponentially weighted moving averages (EWMA)

of the past realized volatilities. Simple EWMA filters with a pre-specified

center of mass are often used in practice. Instead, we explicitly estimate

the relative importance of different EWMA factors constructed from the past

daily RV ’s:

ExpRV
CoM(λ)
t ≡

500
∑

i=1

e−iλ

e−λ +e−2λ + ...+e−500λ
RVt+1−i, (8)

28 In addition to this benchmark MIDAS model, we also experimented with a series of more elaborate specifications
based on the mixture of multiple beta polynomials. The Online Appendix provides further details concerning
these additional models.
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Risk Everywhere: Modeling and Managing Volatility

where λ defines the decay rate of the weights, and CoM(λ) denotes the

corresponding center-of-mass, CoM(λ)=e−λ/(1−e−λ).29 The center-of-mass

of each exponential RV measure effectively summarizes the “average” horizon

of the lagged realized volatilities that it uses. Conversely, for each center-of-

mass, we can compute the corresponding rate of decay as λ=log(1+1/CoM).

Hence, we can think of λ=log(1+1/125)=0.008 as an annual ExpRV risk

measure because the corresponding center of mass is 125 trading days, that

is, about half a year, just like an annual equal-weighted average realized

volatility, RV A
t .

Focussing on similar horizons to the ones used in the HAR model augmented

with an annual volatility factor, we rely on the exponential RV ’s to “span”

the universe of past RV ’s in a way that is both parsimonious and “smooth,”

mixing four ExpRV
CoM(λ)
t factors with λ chosen to equate the center-of-mass

to 1, 5, 25, and 125 days, respectively. Further “centering” the model around

the expanding long-run volatility factor, we obtain the following new risk

model:

RV h
t+h−RV LR

t =
∑

j=1,5,25,125

βj (ExpRV
j
t −RV LR

t ) + ǫt . (9)

We will refer to this specification as the Heterogeneous Exponential, or HExp,

model. This model, of course, is still nested in the omnibus distributed-lag

model in (3). In contrast to the MIDAS specification above, this HExp model

uses pre-specified volatility factors for characterizing the volatility dynamics

that do not depend on any unknown tuning parameters, which implies that the

model is straightforward to estimate by standard OLS on an asset-by-asset basis

or panel regression procedures that restrict the beta coefficients to be the same

across groups of assets.30

Motivated by the cross-asset and cross-market volatility spillover effects

discussed in Section 2, our final risk model augments the asset-specific HExp

model in (9) with a global risk factor. Specifically, ExpGlRV 5
t is defined as

the 5-day center-of-mass EWMA of the realizations of the GlRVt global risk

29 The center of mass is formally defined as the weighted-average time period for the lags used,

CoM(λ)≡
∑∞

t=0 e−λt t
∑∞

t=0 e−λt
=

e−λ

1−e−λ
,

where we ignore that the sum in (8) only uses the first 500 lags to achieve a simple formula (the influence of the
remaining lags is numerically immaterial).

30 We also experimented with related specifications based on linearly and hyperbolically decaying volatility
factors, mixtures of multiple beta polynomials as the one employed in the MIDAS model, and mixtures of
both exponentially and hyperbolically decaying factors. For the monthly forecast horizon primarily analyzed
below, none of these alternative models resulted in systematically superior forecasts compared to the HExp
model in (9). The Online Appendix provides further details concerning some of these additional results.
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factor defined in Section 2.2, yielding the following model:

RV h
t+h−RV LR

t =
∑

j=1,5,25,125

βj (ExpRV
j
t −RV LR

t )

+βGl
5 (ExpGlRV 5

t −RV LR
t )+ǫt . (10)

As discussed in Section 2.2, the global risk factor is purposely defined on

an asset-specific basis to avoid any overlap between RVt and GlRVt−1, and

further normalized to have the same time t expanding sample mean as the

specific asset. The inclusion of the ExpGlRV 5
t risk factor thus naturally

enforces a degree of commonality over-and-above that afforded by restricting

the beta coefficients to be the same. We will refer to this specification as the

HExpGl risk model.

4. Risk Inference: Model Estimation and Forecasting

We will focus our discussion on a 1-month (i.e., 20-day) forecast horizon. We

report both in-sample results, in which we rely on all the available data, as

well as out-of-sample forecasts, in which we estimate the models based on

an expanding window of the data up to that point in time.31 We rely on the

explained sum of squares divided by the total sum of squares within and across

asset classes as way to succinctly summarize the performance of the different

models. To allow for meaningful comparisons between the in- and out-of-

sample results, we use the expanding long-run sample mean, or the RV LR
t

factor, in the calculations of the out-of-sample R2’s.32 All of the models are

estimated by OLS on an individual asset-by-asset basis, by panel regressions

that restrict the coefficients to be the same for all of the assets within an asset

class, and by panel regressions that restrict the coefficients to be the same across

all assets.33 We refer to these alternative estimation schemes as “Individual

Asset,” “Panel,” and “Mega” panel, respectively.

4.1 Basic estimation and in-sample forecasting results

We begin our discussion by considering the in-sample estimation results, and

the different risk models’ ability to forecast the future variance, as measured by

31 We require that an asset has at least 1 full calendar year of RV ’s before it is included in the estimation.

32 The out-of-sample R2 is formally defined as R2 =1−
∑T

t=1(RV M
t+20 − ̂

RV M
t+20)2/

∑T
t=1(RV M

t+20 −RV LR
t )2,

where ̂
RV M

t+20 refer to the predictions from one of the risk models. This mirrors the out-of-sample R2s commonly

used in evaluating return predictability (see, e.g., Campbell and Thompson 2008). The HAR and MIDAS models

in a few instances produce very large out-of-sample forecasts. To avoid deflating the corresponding R2’s for
these models and to allow for empirically more meaningful comparisons, we follow Swanson and White (1997)

in applying an “insanity filter,” in which we replace any forecast that exceeds the maximum RV M
t observed up

to that point with RV LR
t ; that is, “insanity” is replaced by “ignorance.”

33 As noted above, the additional θ2 parameter needed for the MIDAS model is estimated by profiling. Since the R2s
are fairly “flat” over a wide range of θ2s, we rely on the full in-sample estimates for the out-of-sample analysis as
well, implicitly ignoring any look-ahead biases. The single MIDAS model that restricts the parameters to be the
same across all assets results in a common θ̂2 =6.50. The Online Appendix provides further details concerning
the θ2 MIDAS.
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Risk Everywhere: Modeling and Managing Volatility

the in-sample predictive R2’s. It is instructive to think about the results in terms

of different types, or “generations,” of risk models: static (based on the idea that

risk is constant, as exemplified by the expanding sample average of the realized

RV s); first-generation dynamic (based on daily data, as exemplified by the

21-day rolling sums of the daily squared returns); second-generation dynamic

(based on the use of high-frequency intraday data, as exemplified by the 21-day

rolling RV s, corresponding to a simple random-walk-type forecast); and state-

of-the-art dynamic (based on directly modeling the RV s, as exemplified by the

HAR, MIDAS, and HExp risk models).

Table 4 shows that, not surprisingly, having a static risk model performs the

worst. The use of the 21-day rolling sample variance constructed from the daily

squared returns is obviously better, and for foreign exchange, in particular, by

quite a wide margin. Still, the simple 21-day RV performs substantially better,

while the more sophisticated dynamic RV -based models perform the best. At

the same time, the differences across the sophisticated risk models are modest,

with the HExp models generally performing the best overall.

In addition to the results for the individually estimated risk models, the

table also shows the results from our panel-based estimation techniques that

restricts the parameters in the dynamic risk models to be the same for all assets

within a given asset class (panel) and across all assets (mega). By construction,

of course, the individually estimated risk models always result in larger in-

sample R2’s compared to any of the panel-based versions of the identical

models. Interestingly, however, the differences in R2’s across the individual

versus panel-based models are fairly small. Given the robustness afforded by

the panel estimation, this therefore also suggests that the results may look

different out-of-sample.

To more formally assess the statistical significance of the differences in in-

sample predictability, the bottom panel of Table 4 reports the results of Diebold

and Mariano (1995) (DM) tests. Specifically, taking the individually estimated

HExp model as the benchmark, we test the null hypotheses of equal predictive

ability by calculating robust t-statistics for the sample means of the time series

comprising the average standardized (by the mean of the realized variation)

squared error losses for each of the different models, estimation procedures,

and asset classes.34 With the exception of the predictions pertaining to the

foreign exchange market and the predictions from the HExpGl model, the

majority of the t-statistics are significant at the usual 5% level. Looking across

the different estimation procedures, the by-construction higher in-sample R2s

for the individually estimated models also generally translate into statistically

34 The results in Patton (2011) formally justify the use of the DM tests for judging the statistical significance in
this situation. The standardization of the squared error loss allows for a more meaningful comparison of the
losses across the different assets. It also reflects the empirical observation that the normalized distributions of
the realized volatilities are similar across the different assets and more directly corresponds to the scale-invariant

R2s reported in the top panel. However, similar average DM-test statistics are obtained for nonstandardized loss
differentials; the Online Appendix reports further details.
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Table 4

In-sample predictions

Static 21-daily 21-day RV HAR MIDAS HExp HExpGl

R2

Indiv. −2.3% 2.5% 27.1% 45.3% 46.1% 45.9% 47.1%
Commodities Panel – – – 43.4% 43.6% 43.8% 44.8%

Mega – – – 43.2% 43.5% 43.7% 44.4%

Indiv. −3.2% 2.3% 20.9% 43.6% 43.4% 43.8% 46.9%
Equities Panel – – – 42.1% 41.6% 42.2% 45.2%

Mega – – – 41.9% 41.5% 42.0% 44.1%

Indiv. –4.8% 2.5% 27.6% 43.1% 44.1% 46.7% 47.4%
Fixed income Panel – – – 42.5% 43.4% 45.9% 46.1%

Mega – – – 41.6% 42.2% 43.9% 42.3%

Indiv. −1.8% 28.9% 39.9% 53.7% 54.3% 54.4% 61.1%
Foreign exchange Panel – – – 53.0% 53.5% 53.5% 58.8%

Mega – – – 52.4% 52.7% 52.6% 56.2%

Indiv. –2.8% 2.6% 24.2% 44.5% 44.8% 44.9% 47.1%
All assets Panel – – – 42.8% 42.7% 43.1% 45.1%

Mega – – – 42.6% 42.6% 42.9% 44.3%

DM t-tests

Indiv. −3.86 −7.09 −4.60 −2.22 −0.46 NA 1.68
Commodities Panel – – – −2.45 −2.22 −2.00 −1.27

Mega – – – −2.55 −2.32 −2.11 −1.64

Indiv. −2.86 −2.78 −2.40 −0.15 −0.65 NA 1.29
Equities Panel – – – −1.30 −1.32 −1.41 0.28

Mega – – – −1.31 −1.36 −1.44 −0.36

Indiv. −5.02 −3.63 −3.46 −2.10 −1.42 NA 1.44
Fixed income Panel – – – −2.30 −1.75 −2.65 −1.92

Mega – – – −3.10 −2.84 −3.66 −2.07

Indiv. −1.96 −2.31 −1.28 −0.60 −0.15 NA 1.08
Foreign exchange Panel – – – −1.20 −0.97 −1.79 0.66

Mega – – – −2.01 –1.79 –1.54 0.98

Indiv. −3.42 −4.64 −3.64 −0.86 −0.23 NA 1.39
All assets Panel – – – −2.20 −2.02 −2.20 0.17

Mega – – – −2.24 −2.10 −2.21 −0.65

This table reports the in-sample results for predicting the 20-day future realized volatility using the different

predictor variables and risk models. The top panel reports the average in-sample regression R2s by asset class
and across all assets. The bottom panel reports Diebold-Mariano (DM) t-statistics for testing the significance
of the average standardized loss differentials relative to the individually estimated HExp model. A positive
(negative) DM-test statistic indicates that the model and the estimation procedure outperform (underperform)
the individually estimated HExp model in-sample.

significant lower losses compared to the panel and mega models that restrict

the coefficients to be the same across groups of assets. As a case in point,

the t-statistic for the individually estimated HExp model versus the mega

HExp model for all assets equals −2.21. Among the mega-based models,

only the mega HExpGl model does not result in statistically inferior in-sample

predictions compared to the individually estimated HExp model.

The different specifications of the models complicate any direct comparisons

of the estimated regressions coefficients. However, all of the risk models, except

for the HExpGl model, are nested in the univariate AR(∞) representation in

(2). Hence, whereas the estimated β coefficients are not directly comparable,

the dynamics of the different risk models may be meaningfully compared in
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Risk Everywhere: Modeling and Managing Volatility

Figure 6

Implied lag coefficients for different risk models

This figure shows the lag coefficients implied by the regression coefficients of full-period models pooled across
all assets for each of five different RV-based models: 21-day-RV, HAR, HAR-free, MIDAS, and HExp.

terms of the implied bi coefficients in that representation. To this end, Figure 6

depicts the impled b(L) polynomials out to a lag length of 25 days for the mega-

panel-based estimated models.35 For comparison purposes, we also include the

weights for the 21-day RV , or equivalently a HAR model with βM =1 and

β0 =βD =βW =0, together with a HAR-free model in which we freely estimate

the impact of the first six daily lagged RV s. As the figure shows, with the

exception of the flat weights for the 21-day RV , the estimates are generally

fairly close. Nonetheless, the HAR-free and HExp models both appear slightly

“faster” than the MIDAS model, with a more rapid initial decay and less

weight assigned to the intermediate lags ranging between five days and two

weeks.

The figure also visualizes the stepwise nature of the implied bi coefficients for

both of the HAR models. As a result, forecasts constructed from these models

are more susceptible to abrupt changes, and therefore potentially also more

costly to implement, than the forecasts from the “smoother” risk models.36 We

will return to this issue and the “speed” of the models in our discussion of the

utility-based comparisons in Section 5 below.

35 The Online Appendix provides similar graphs for the individually estimated risk models for the four representative
assets shown in Figures 1 and 2 and the panel-based estimation of the four asset classes.

36 For instance, looking at the daily change in the in-sample forecasts averaged across all assets, the sample variance

V ar(RV M
t+21|t+1 −RV M

t+20|t ) equals 2.11 ·10−4 for the HAR model, compared to 1.37·10−4 for the HExp model.

Moreover, the first-order autocorrelation of the change in the daily forecasts equals −0.21 for the HAR model,
compared to −0.01 for the HExp model.
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Table 5

Out-of-sample predictions

Static 21-daily 21-day RV HAR MIDAS HExp HExpGl

R2

Indiv. 1.2% 5.9% 29.7% 44.5% 45.0% 46.4% 47.6%
Commodities Panel – – – 45.5% 45.7% 46.9% 47.9%

Mega – – – 45.6% 45.8% 47.5% 48.1%

Indiv. 2.9% 8.1% 25.6% 41.2% 41.9% 48.3% 51.6%
Equities Panel – – – 45.8% 46.4% 50.7% 53.8%

Mega – – – 47.0% 47.8% 51.0% 53.3%

Indiv. −1.5% 5.5% 29.9% 42.6% 44.3% 47.2% 45.7%
Fixed income Panel – – – 43.3% 44.7% 47.5% 46.1%

Mega – – – 43.2% 43.1% 47.0% 44.0%

Indiv. 1.4% 31.1% 41.8% 28.6% 30.4% 46.8% 54.6%
Foreign exchange Panel – – – 27.8% 30.4% 46.5% 55.1%

Mega – – – 47.7% 49.2% 52.6% 56.8%

Indiv. 2.1% 7.1% 27.7% 42.8% 43.4% 47.3% 49.5%
All assets Panel – – – 45.5% 45.9% 48.7% 50.7%

Mega – – – 46.2% 46.7% 49.2% 50.6%

DM t-tests

Indiv. −3.93 −7.01 −3.68 −3.18 −1.82 −0.76 0.29
Commodities Panel – – – −3.34 −3.68 −2.31 0.85

Mega – – – −4.01 −4.09 NA 1.31

Indiv. −2.42 −2.46 −1.85 −1.69 −1.72 −1.40 −0.07
Equities Panel – – – −2.91 −3.71 −0.77 1.03

Mega – – – −2.95 −3.62 NA 1.16

Indiv. −4.70 −3.07 −2.50 −1.32 −0.96 −0.23 −0.78
Fixed income Panel – – – −1.78 −1.29 −0.52 −0.77

Mega – – – −1.71 −1.78 NA −0.86

Indiv. −1.96 −2.01 −0.93 −1.21 −1.15 −0.93 0.67
Foreign exchange Panel – – – −1.20 −1.15 −0.90 0.68

Mega – – – −1.30 −1.32 NA 1.30

Indiv. −3.42 −3.70 −2.56 −2.01 −2.02 −1.93 −0.23
All assets Panel – – – −2.83 −3.43 −2.05 0.91

Mega – – – −3.64 −4.80 NA 1.21

This table reports the out-of-sample results for predicting the 20-day future realized volatility using the different

predictor variables and risk models. The top panel reports the average out-of-sample predictive R2s by asset class
and across all assets. The bottom panel reports Diebold-Mariano (DM) t-statistics for testing the significance
of the average standardized loss differentials relative to the mega HExp model that restricts the coefficients to
be the same across all assets. A positive (negative) DM-test statistic indicates that the model and the estimation
procedure outperform (underperform) the mega HExp model out-of-sample.

4.2 Out-of-sample forecasting results

Before this discussion, however, Table 5 reports on the out-of-sample

performance of the identical set of risk models using the same R2 metric as

above.37 Looking across the columns, we see a similar ranking as for the in-

sample results: the static risk model (the expanding average RV ) naturally

performs the worst, the first-generation risk model based on daily data is second,

followed by the simple 21-day RV , while the more sophisticated RV models

perform the best, with the HExp models again preforming the very best overall.

37 We note again that the results for the MIDAS models are not truly out-of-sample, as the θ2 tuning parameters
have been chosen using the full sample.
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Risk Everywhere: Modeling and Managing Volatility

Meanwhile, looking across the rows, we see that the systematic ordering

of the individual versus panel-based estimated models is completely reversed

relative to the in-sample results in Table 4. The mega-panel estimation that

restricts the coefficients to be the same across all assets now typically results

in the highest R2’s. This is especially true for foreign exchange, where the

individually estimated dynamic risk models perform rather poorly, clearly

underscoring the importance of more robust forecasting procedures.

The DM-tests based on the average out-of-sample standardized squared

error losses, reported in the bottom part of the table, again corroborate these

conclusions.38 Now taking the mega HExp model as the benchmark, the

pairwise tests show that the forecasts from that model result in significantly

lower losses than the forecasts from all of the other models, except for the

different HExpGl models. Importantly, the forecasts from the mega HExp

model also result in significantly lower losses than the forecasts from the

individually estimated HExp models and panel HExp models that allow for

different coefficients across asset classes. Intuitively, the mega estimation

approach provides a built-in robustness against influential outliers, and in turn

superior out-of-sample forecast.

To further appreciate this point, the expected squared forecast error loss

may be expressed as the sum of the squared forecast bias, the variance of the

forecasts, plus the variance of the “irreducible error” associated with the true

(unknown) conditional expectation RV h
t+h−Et (RV h

t+h) (see, e.g., the discussion

in Hastie et al. 2009). Looking at the bias-variance trade-off implicit in the

squared forecast error losses thus help explain why the pooling and panel-based

estimation that exploit the commonalities and reduce the parameter estimation

error uncertainty generally works the best from an out-of-sample forecasting

perspective and result in the highest predictive R2s. In particular, while the

squared out-of-sample forecast biases are very small for all of the different

models and estimation methods and effectively immaterial, the individually

estimated risk models systematically result in the most variable forecasts by

quite a wide margin. For the HExp model, for example, the average variance

of the forecasts is reduced by almost 30% for the mega model that restrict

the coefficients to be the same for all assets compared to the average forecast

variance for the individually estimated HExp models; the Online Appendix

provides more detailed results along these lines for all of the different models.

Importantly, by the same reasoning, this does not necessarily imply that the

best performing forecasting model is somehow closest to the “true” model,

only that more parsimonious risk models tend to produce better out-of-sample

forecasts.

38 Note that the out-of-sample DM-tests are not formally justified as tests for the correct model specification, as
the magnitude of the parameter estimation errors decrease with the size of the expanding estimation window,
thereby rendering the losses nonstationary. Nonetheless, taking the model forecasts as the primitives, the tests
still may be justified as tests for how competing risk forecasters using the different models would have fared (see
also the discussion in Diebold 2015).
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The practical uses of risk models, of course, face a host of other issues and

tradeoffs related to the actual costs and benefits of implementing the forecasts

from the models. To illustrate these issues, we turn next to a utility-based

framework for evaluating the benefits of an investment strategy involving the

notion of equal risk shares. To keep the results simple and directly comparable

to the ones discussed in the previous sections, we purposely focus on the risk

models estimated to forecast the variance.

5. Risk Models in Action: Quantifying the Utility Benefits

We consider a simple utility-based framework: an investor with mean-variance

preferences investing in an asset with time-varying volatility and a constant

Sharpe ratio. In contrast to the related approach of Fleming, Kirby, and Ostdiek

(2001, 2003), which depends on forecasts for both returns and volatilities, our

framework relies exclusively on volatility forecasts.

5.1 Expected utility and risk targeting

By standard arguments, the time-t expected utility may, up to a factor of

proportionality, conveniently be approximated as (dropping constant terms that

only depend on time-t variables):

Et (u(Wt+1))=Et (Wt+1)− 1

2
γ AV art (Wt+1), (11)

where γ A ≡−u′′/u′ denotes the absolute risk aversion of the investor. We will

assume that the investor allocates a fraction xt of his current wealth to a risky

asset with return rt+1 and the rest to a risk-free money market account earning r
f
t .

Correspondingly, his future wealth becomes Wt+1 =Wt (1+xtrt+1 +(1−xt )r
f
t )=

Wt (1+r
f
t )+Wtxtr

e
t+1, where re

t+1 ≡rt+1 −r
f
t denotes the excess return, resulting

in an expected utility of (again dropping constant terms):

U (xt ) = Wt

(

xtEt (r
e
t+1)− γ

2
x2

t V art (r
e
t+1)

)

= Wt

(

xtEt (r
e
t+1)− γ

2
x2

t Et (RVt+1)
)

,

(12)

where γ ≡γ AWt refers to the investor’s relative risk aversion.

To focus on risk modeling, we assume that the conditional Sharpe ratio,

defined as SR≡Et (r
e
t+1)/

√
Et (RVt+1), is constant.39 Under this assumption, the

39 This assumption naturally corresponds to our modeling of the realized variation in the previous sections.
Alternatively, one might assume that Et (re

t+1/
√

RVt+1) is constant, resulting in a Jensen’s inequality adjustment

term Et (
√

RVt+1)/Et (RVt+1) for the optimal investment positions and expected utilities derived below. This

same general setup also generalize to time-varying conditional Sharpe ratios, SRt ≡Et (re
t+1)/

√

Et (RVt+1), as
long as SRt is independent of the risk Et (RVt+1).
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Risk Everywhere: Modeling and Managing Volatility

expected utility simply depends on the position xt , together with the expected

realized volatility Et (RVt+1):

U (xt )=Wt

(

xtSR
√

Et (RVt+1)− γ

2
x2

t Et (RVt+1)
)

. (13)

The optimal portfolio that maximizes this utility is obtained by investing the

fraction of wealth x∗
t =Et (r

e
t+1)/(γEt (RVt+1)) in the risky asset, or, alternatively,

x∗
t =

SR/γ√
Et (RVt+1)

. (14)

In other words, the investor optimally targets a volatility of SR/γ ,

since the conditional standard deviation of the x∗
t portfolio equals

√

V art (x
∗
t re

t+1)=SR/γ. When the predicted volatility
√

Et (RVt+1) is above

the “risk target” SR/γ , the agent only invests part of his wealth in the risky

asset (x∗
t <1). Conversely, when the predicted risk is below the target, the

investor applies leverage (x∗
t >1) to reach his risk target. This “volatility-

timing" behavior mimics in a simple way the actual trading behavior of many

hedge funds with explicit volatility targets and so-called “risk parity investors.”

This in turn results in an expected utility of

U (x∗
t )=

SR2

2γ
Wt =

1

2
︸︷︷︸

fraction of expected
return not lost to
disutility of risk

× SR
︸︷︷︸

reward-to-risk

× SR

γ
︸︷︷︸

risk target
︸ ︷︷ ︸

expected excess return

Wt . (15)

We see that the expected utility (as a fraction of wealth) is half of the expected

return of the optimal position size; the other half of the expected return is “lost”

to disutility of risk.

For concreteness and in parallel to the forecasting results discussed in the

previous section, we focus on a monthly forecast horizon. Guided by the typical

results reported in the extant investment literature, we take the corresponding

annualized Sharpe ratio and coefficient of risk aversion to be SR =0.4 and

γ =2, respectively (see, e.g., Pedersen 2015 for empirical evidence pertaining

to the same broad set of assets analyzed here).40 Correspondingly, the investor

optimally targets an annualized volatility of 20% (similar to the average

volatility across all of the assets considered here):

x∗
t =

20%√
Et (RVt+1)

. (16)

By substitution into (13) or (15), the associated utility for this optimally targeted

portfolio equals

U (x∗
t )=4%Wt , (17)

40 However, we also consider the results for other values of SR and γ . As discussed further below, higher Sharpe
ratios and lower risk aversion coefficients will generally result in greater utility benefits.
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meaning that the investor would be willing to give up 4% of his wealth to have

access to the x∗
t portfolio rather than simply investing in the risk-free asset. Put

differently, since the utility from (13) of a risk-free position equals U (0)=0,

the investor would receive the same utility by either (1) trading the risky asset

optimally while paying a fee of 4% times his wealth or (2) putting all of his

money in the risk-free asset.

To further appreciate this number, consider the expected return of the

investor’s strategy. Given a Sharpe ratio of 0.4 and a 20% risk target, the

investor expects to make an excess return of 8% per year. However, by the

decomposition in (15), at the optimally targeted position half of this return is

“lost” due to the disutility of risk, so the investor is left with a benefit of only

4%.41

To explicitly quantify the utility gains from different risk models, let Eθ
t (·)

denote the expectations from model θ . Also, let Et (·) denote the expectations

from the true (unknown) risk model. Assuming that the investor uses model θ ,

to choose the position xθ
t =20%/

√

Eθ
t (RVt+1), the expected utility per unit of

wealth, UoW θ
t ≡Ut (x

θ
t )/Wt , may be expressed as

UoW θ
t = 8%

√
Et (RVt+1)

√

Eθ
t (RVt+1)

−4%
Et (RVt+1)

Eθ
t (RVt+1)

. (18)

We evaluate this expected utility empirically by averaging the corresponding

realized expressions over the same rolling out-of-sample risk model forecasts

underlying the results discussed in Section 4.2:

UoW θ =
1

T

T
∑

t=1

(

8%

√
RVt+1

√

Eθ
t (RVt+1)

−4%
RVt+1

Eθ
t (RVt+1)

)

. (19)

For short, we will simply refer to this as the “realized utility.” In parallel to

(15), a risk model that perfectly predicts the realized volatilities would deliver

a realized utility of 8%−4%=4%. Or said differently, the value of trading

the risky asset with the perfect risk model is worth 4% percent of wealth.

Importantly, the expected returns do not enter this expression. As such, this

circumvents the invariable noise stemming from random return realizations,

thereby allowing for a more pointed and meaningful comparison of the different

risk models solely based on the actual realized volatilities and the different

Eθ
t (RVt+1) risk model forecasts.

5.2 Quantifying the value of a risk model: Realized utility comparisons

Table 6 reports the realized utility for the same set of risk models studied

above. Guided by the out-of-sample forecasting results in Section 4.2, we

41 We note that, while a proportional change in the Sharpe ratio and the relative risk aversion coefficient would

imply the exact same risk target SR/γ , the resultant utility equals SR2/(2γ ), so the risk target alone is not a
sufficient statistic for the utility in general.
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Risk Everywhere: Modeling and Managing Volatility

Table 6

Realized utility

Static 21-daily 21-day RV HAR MIDAS HExp HExpGl Future RV

Realized utility

Zero 3.48% 3.60% 3.74% 3.77% 3.77% 3.79% 3.79% 4.00%
Commodities Full 3.48% 3.29% 3.60% 3.59% 3.66% 3.62% 3.62% 3.85%

Gradual 3.47% 3.49% 3.65% 3.71% 3.72% 3.73% 3.73% 3.91%

Zero 2.93% 3.46% 3.53% 3.55% 3.57% 3.62% 3.64% 4.00%
Equities Full 2.92% 3.26% 3.34% 3.46% 3.51% 3.53% 3.55% 3.90%

Gradual 2.90% 3.34% 3.41% 3.48% 3.49% 3.54% 3.56% 3.91%

Zero 3.59% 3.56% 3.73% 3.78% 3.77% 3.80% 3.81% 4.00%
Fixed income Full 3.58% 2.78% 3.34% 3.30% 3.49% 3.38% 3.36% 3.60%

Gradual 3.58% 3.27% 3.53% 3.66% 3.67% 3.69% 3.68% 3.80%

Zero 3.30% 3.66% 3.79% 3.74% 3.76% 3.79% 3.82% 4.00%
Foreign exchange Full 3.30% 3.04% 3.49% 3.30% 3.51% 3.42% 3.44% 3.70%

Gradual 3.28% 3.43% 3.63% 3.64% 3.65% 3.67% 3.69% 3.85%

Zero 3.27% 3.55% 3.67% 3.69% 3.70% 3.73% 3.74% 4.00%
All assets Full 3.26% 3.17% 3.48% 3.46% 3.56% 3.52% 3.53% 3.81%

Gradual 3.25% 3.40% 3.54% 3.61% 3.62% 3.64% 3.66% 3.88%

DM t-tests

Zero −6.30 −13.37 −4.18 −6.53 −6.16 NA 1.98 15.30
Commodities Full −2.92 −19.31 −1.35 −7.98 14.26 NA 1.10 16.09

Gradual −5.19 −13.86 −6.27 −4.98 −4.13 NA 1.50 12.21

Zero −3.30 −3.51 −1.98 −4.55 −5.22 NA 2.99 8.51
Equities Full −2.82 −6.48 −2.46 −4.59 −2.05 NA 2.27 7.92

Gradual −3.08 −3.97 −3.01 −3.61 −3.77 NA 2.27 6.32

Zero −6.12 −3.97 −2.50 −2.95 −2.99 NA 1.22 9.18
Fixed income Full 7.42 −8.00 −0.87 −7.48 11.72 NA −4.99 8.90

Gradual −2.43 −5.13 −3.84 −2.19 −1.21 NA −1.64 4.79

Zero −2.38 −5.80 −0.96 −2.13 −3.34 NA 1.79 5.33
Foreign exchange Full −0.69 −12.47 1.03 −4.05 9.96 NA 1.00 5.45

Gradual −1.97 −9.62 −2.99 −2.80 −3.08 NA 1.25 3.13

Zero −4.50 −9.90 −4.01 −5.11 −6.44 NA 2.79 12.90
All assets Full −2.41 −17.47 −2.97 −6.06 10.09 NA 1.15 12.47

Gradual −3.86 −11.40 −6.09 −4.38 −4.13 NA 1.88 8.71

The top panel reports the average 20-day realized utilities from holding volatility-targeted positions based on the
rolling out-of-sample predictions from the same set of risk models analyzed in Table 5. All of the results are based
on the mega models that restrict the coefficients to be the same across all assets. The last (infeasible) column
assumes knowledge of the true future 20-day realized volatility. We report the results for three scenarios: no
transaction costs (“zero”); transaction costs equal to the full average spreads for each of the different assets with
the positions fully rebalanced at the close of each business day (“full”); and transaction costs equal to the average
spread with the positions rebalanced only gradually as described in the main text (“gradual”). The bottom panel
reports Diebold-Mariano (DM) t-statistics for testing the significance of the average utility differentials relative
to the HExp model under the identical transaction cost and trading speed assumptions. A positive (negative)
DM-test statistic indicates that the alternative procedure outperforms (underperforms) the mega HExp model in
terms of the out-of-sample realized utility gains.

only consider the mega versions that restrict the estimated coefficients in the

dynamic models to be the same for all assets. In addition to the results for

the practically feasible risk models, we also report the utility from exactly

knowing the future volatility (the column labeled “Future RV”). We begin

by studying the utility benefits in the absence of transaction costs (the rows

denoted “Zero”). We discuss the effects of transaction costs in Section 5.3

below.
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The relative utility-based ordering of the different risk models echoes that

of the out-of-sample R2’s reported in Table 5: the static model delivers the

lowest utility, the first-generation risk model based on the 21-day rolling daily

sample variance is better, the simple 21-day RV is better yet, and the more

sophisticated dynamic RV models perform the best, with the highest realized

utility achieved by the HExp models. Of course, the highest utility arises from

knowing the future RV , which results in the maximum possible utility of 4%.

The lower panel of the table reports DM-tests for testing the statistical

significance of these differences in utilities obtained by comparing the realized

utilities for the HExp model to the realized utilities for each of the other

models and procedures. As the table shows, when averaged across all assets,

the HExp model does indeed result in significantly higher utility than the static

and simple 21-day risk models, as well as the more sophisticated dynamic

HAR and MIDAS models.42 Further, consistent with the ordering of the risk

models based on the out-of-sample R2’s in Table 5, the HExpGl model results

in significantly higher utility than the simple HExp model, underscoring the

additional improvements afforded by incorporating a common global risk

factor.

It is instructive to also consider the economic significance (in addition to the

statistical significance) of these findings. Note first that, while the ordering is

the same, the magnitudes of the differences in utilities appear smaller than those

of the R2’s. To appreciate this difference, note that the relation between utility

and R2 is highly nonlinear (and, in fact, not one-to-one) as seen in Figure A3

in the appendix. Intuitively, since the utility is maximized at U (x∗)=4%, the

marginal utility is zero around this optimum, U ′(x∗)=0. Hence, locally around

the optimum, small deviations in the input will have only small effects on

the utility; that is, U (x)∼= U (x∗)+U ′(x∗)(x−x∗)=U (x∗). As such, first-order

differences in R2 may appear to have only a second-order impact on the utility.

Nevertheless, the utility differences are still economically significant when

properly viewed.43

Specifically, consider the economic magnitude in the context of the results

for “all assets.” The difference in the utility of the HExp model over and above

that of having a static risk model is 0.46%, or 46 bps (and even more, 48 bps,

for the HExpGl model). This means that under our maintained assumptions,

42 Even though the differences in the average realized utilities appear numerically small, the HExp model almost
always performs the best, as seen in, for example, Figure 7, and discussed further below, and thus explains the
significance of the t-statistics.

43 In contrast to our results, Campbell and Thompson (2008) find large utility gains despite low R2’s in return-
prediction regressions. The difference is that forecasting the future return potentially increases the maximum
utility (e.g., from 4% with no return predictability to a higher number) while the benefit of forecasting the
volatility, as we study, is bounded from above (by 4% in our example). Further, when volatility is relatively

stable over time for a given asset, then even a static risk model (with close to zero R2) can realize a utility close
to the upper bound as seen in Figure A3 in the appendix. See also Cenesizoglu and Timmermann (2012), who
find a weak relation between “a return prediction model’s out-of-sample statistical performance and its ability
to add economic value.”
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Risk Everywhere: Modeling and Managing Volatility

an investor would be willing to pay 46 bps to have access to the HExp risk

model rather than using the expanding sample mean of RV . This magnitude

is of the same order as typical institutional fees for active asset management,

but these fees are often thought of as compensation for “alpha,” that is, the

asset manager’s extra sources of returns, rather than a good risk model. For

example, studying predictors of the future mean return (rather than predictors

of return volatility), Campbell and Thompson (2008) document “large benefits

for investors” of order of “50 basis points per year.” However, many managers

and investors would be surprised to learn that a “good” risk model can also

have such a large value.

Clearly, a large portion of this “extra utility” can be achieved through a

simpler dynamic risk model. Indeed, the utility increases by 29 bps when

moving from a static risk model to the first-generation risk model (21-Daily).

Utility further increases by 12 bps when moving from the daily risk model to

the simple 21-day RV -based model, showing the value of high-frequency data.

Finally, moving from the use of 21-day RV to the HExp model leads to a utility

increase of 6 bps, while the HExpGl model adds an additional 2 bps.

To further appreciate the economic significance of these numbers, recall that

firms like Blackrock and Vanguard have created big businesses around various

products with fees of single-digit basis points so, in investments, improvements

of the order of multiple basis points are noticeable, tens of basis points are large,

hundreds of basis points seem unrealistic, while less than 1 bps is relatively

insignificant.

As an even more concrete example, suppose that a pension plan hires an asset

manager to a mandate of managing $1B of assets. Based on the above numbers,

the pension plan should be willing to pay up to $4.6M per year to the manager

if he uses the HExp model rather than a static risk model. If the daily (first-

generation) risk model is an industry standard that is expected to be delivered

for free, then the pension plan should be willing to pay up to $1.8M per year

for the HExp model. Similarly, if the 21-day RV is considered the benchmark,

then the pension fund should be willing to pay up to an extra $0.6M per year

for the HExp model.

These specific numbers, of course, depend on the assumed constant Sharpe

ratio and risk target (or, equivalently, risk aversion). As seen in equation (15),

the utility scales proportionally with SR and the risk target. For example, an

investor with access to an asset with a Sharpe ratio of 0.8, double the Sharpe

ratio of 0.4 underlying the calculations in Table 6, would be willing to pay

twice as much for having access to any of the more sophisticated dynamic risk

models.

Another indication of the economic significance and the value of better risk

models per se stem from the uses of the models during turbulent times and

periods with especially large volatility shocks. To illustrate, Figure 7 presents a

scatter plot of the period-by-period utility arising from the simple 21-day RV

and the most sophisticated dynamic risk model that we consider, the HExpGl
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Figure 7

Realized utility: HExpGl versus 21-day RV

This figure shows the daily realized 20-day utility obtained using the mega-based HExpGl model on the y-axis
versus the realized utility of using a simple 21-day RV on the x-axis. Realized utilities are calculated without
transactions costs, trading all the way to the desired positions each day.

model. As the figure clearly shows, most of the observations are above the

45-degree line, meaning that the HExpGl model almost always delivers the

highest utility. At the same time, while a lot of the observations are clustered

around (4%, 4%), close to the maximum possible utility, the more sophisticated

HExpGl model tends to outperform by more in situations when both models

deliver utility substantially below 4%, that is, during periods of large volatility

shocks that are difficult to predict.

The specific numbers discussion above all pertain to the realized utilities

averaged across all assets. However, as the more detailed numbers in Table 6

show, the utility gains vary substantially across asset classes. To understand the

reason behind these differences, recall that the benefits from risk targeting are

intimately related to the volatility-of-volatility: if the volatility was constant

through time, the optimal positions would also be constant. As such, fixed

income, which had the most stable volatility over the sample period, also shows

the smallest relative utility gains from dynamic risk modeling. By comparison,

equities, which exhibited the highest asset class volatility-of-volatility over the

sample, show much larger relative gains from using the more sophisticated

dynamic risk models.

5.3 Realized utility comparisons with transaction costs

The previous comparisons ignore the cost of implementing the risk-targeted

positions. In actuality, of course, trading is costly. Since the realized utility in

(19) is effectively expressed in units of returns, it is easy to incorporate the effect

of transaction costs by simply subtracting the simulated costs of implementing

the positions. For simplicity, we assume that the costs of trading are linear in
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the absolute magnitude of the change in the positions, |xθ
t−1 −xθ

t |.44 As our

benchmark transaction cost estimate, we use the median bid-ask spread for

each of the assets over the last nine months of the sample.45 This is twice the

so-called “half-spread,” which is the difference between the mid-quote and the

bid or ask price. We use the full spread (rather than the half spread) because

transaction costs could be higher for a large trader because of market impact.

On the other hand, the transaction costs could be lower due to the possibility

of strategic trading and transactions occurring inside the spread combined with

the netting of other positions.46

The second row in each section of Table 6 (labeled “Full”) reports the

resultant realized utilities net of transaction costs. All of the utilities are

obviously lower than the ones reported in the first row (the only exception

being the static risk model based on the expanding sample mean of RV , which

is effectively constant over the majority of the sample). The incorporation of

transaction costs also change the ordering of the different risk models, as they

imply different amounts of trading. In particular, while the use of a static risk

model results in little transaction costs, the first-generation daily model has the

largest cost, and, the RV models are in between. Among the more sophisticated

risk models, the MIDAS model results in the lowest turnover due to its “slower”

response to new information, as seen in the previous Figure 6.

A commonly employed approach to help mitigate the impact of transaction

costs is to slow down trading, allowing the investor to deviate from the zero-cost

optimal positions. The formal development of optimal trading strategies for the

different risk models that explicitly incorporate transaction costs is beyond the

scope of this paper. Instead, we rely on the strategy discussed by Garleanu and

Pedersen (2013, 2016) of trading only partially toward the desired position.47

The third row in each section of Table 6 (labeled “gradual”), in particular,

reports the realized utilities when the “speed” of trading is reduced, and the

positions are only traded 15% toward the zero-cost optimal targets each day.

This “slowing down” of the models does indeed restore some of the “lost” utility

vis-à-vis the results in the first row that abstracts from transaction costs and the

results in the second row based on trading all the way to the targeted positions.

The HExp and HExpGl models now also again significantly outperform all of

the other practically feasible risk models.

44 In practice, of course, the cost will generally increase with the magnitude of the trade and will likely also depend
on the volatility. We leave a more thorough analysis of these issues for future work.

45 The only exception is USDSEK (Sweden FX), where we use spread data from all of 2013 because of data
availability.

46 The Online Appendix reports the additional results for other transaction cost assumptions.

47 Garleanu and Pedersen (2013, 2016) show that this strategy is optimal under certain conditions, including
quadratic transaction costs due to, for example, market impact. Thus, even though this strategy is not fully
optimal here, it nevertheless gives a sense of the benefits that may be obtained by reducing the “speed” of
trading.
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6. Conclusion

This paper studies risk across commodities, currencies, global equities, and

fixed-income securities using a new extensive data set of intraday data.

Based on this rich data set, we find that risk dynamics are surprisingly

similar across assets, asset classes, and countries. Normalized by the average

levels, risk measures everywhere have similar unconditional distributions and

autocorrelation structures. This commonality in risk structures can be exploited

when estimating risk models by aggregating information across assets using

panel estimation methods. Beyond common structures in asset risk levels and

dynamics, we also find that a common normalized “global” risk factor contains

information on the future volatilities of individual assets not already contained

in the asset-specific realized volatility histories, and that models that include

this common factor outperform models that do not.

In addition to the robustness generated by exploiting commonality in

risk dynamics, we add further robustness by developing new “smooth” and

“centered” realized volatility models that enforce a natural continuous and

monotonic dependence on lagged realized volatilities. We show that these new

robust risk models perform well in out-of-sample risk forecasting.

Lastly, we develop a simple framework for quantifying the utility benefits

of risk models for risk-targeting investors. We show that, under empirically

realistic assumptions, our robust dynamic risk models are worth close to 0.5%

of total wealth per year relative to a static risk model.

Appendix

A.1. Data and Data Cleaning

Our data for the different assets come from a few different data sources. The data start at different

points in time, but all end on September 30, 2014. Table A1 provides a summary.

A.1.1 Contract rolling

Our returns for commodities, equities, and fixed income are all constructed from futures contract

prices. Unlike spot prices (like our foreign exchange data), individual futures contracts are listed

and subsequently expire multiple times per year.

With multiple futures contracts for the same underlying asset trading at the same time, we

need a rule for determining which contracts to actually use on any given day. In practice, an asset

manager typically gains continuous exposure through these contracts by “rolling” their position

from a contract that is set to expire to the next contract in line. For instance, if S&P 500 E-mini

futures come in contracts that expire in mid-March and mid-June, then an investor can hold the

contract expiring in March through the beginning of March, and then close that position while

simultaneously opening a comparable position in the E-mini contract that does not expire until

June. Naturally, many investors would like to roll their positions at the same time.48 Rolling can

48 Recall that all futures contract positions have offsetting positions on the other side of the contract, so if investor
A is long one contract and investor B is short one contract and they both desire to keep those positions, they
can mutually close their position in the expiring contract (the “near” contract) and open a new position in the
contract with the next expiry (the “far” contract) without requiring outright liquidity from the market.
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Risk Everywhere: Modeling and Managing Volatility

Table A1

Data Sources

Number Total Primary Secondary Assumed
Asset of Days in Data Used Data Used T-Costs
Class Asset Assets Analysis Source From Source From (in bps)

COMMODITIES 20 108149 TRTH TDC

Brent Oil 1 4754 TRTH 1/3/1996 TDC 1/3/1996 1.0
Cattle 1 5483 TRTH 12/20/2004 TDC 11/30/1992 3.2
Cocoa 1 5471 TRTH 4/1/2008 TDC 11/11/1992 3.4
Coffee 1 5469 TRTH 4/1/2008 TDC 11/17/1992 8.0
Corn 1 5502 TRTH 8/1/2006 TDC 11/19/1992 5.7
Cotton 1 5453 TRTH 4/1/2008 TDC 11/12/1992 4.6
Crude (WTI) Oil 1 5480 TRTH 9/5/2006 TDC 11/10/1992 1.0
Feeder Cattle 1 5513 TRTH 8/1/2007 TDC 10/29/1992 4.5
Gas Oil 1 4754 TRTH 1/3/1996 TDC 1/3/1996 2.8
Gold 1 5471 TRTH 12/4/2006 TDC 12/2/1992 0.8
Heating Oil 1 5480 TRTH 9/5/2006 TDC 11/16/1992 1.7
Lean Hogs 1 5486 TRTH 2/15/2005 TDC 11/30/1992 4.5
Natural Gass 1 5442 TRTH 8/23/2006 TDC 1/5/1993 4.0
Silver 1 5412 TRTH 12/4/2006 TDC 1/5/1993 2.6
Soybeans 1 5522 TRTH 8/1/2006 TDC 10/22/1992 2.1
Soymeal 1 5502 TRTH 8/1/2006 TDC 11/19/1992 4.1
Soyoil 1 5501 TRTH 8/1/2006 TDC 11/19/1992 3.0
Sugar 1 5481 TRTH 4/1/2008 TDC 11/3/1992 5.9
Unleaded (RBOB) 1 5475 TRTH 8/22/2006 TDC 11/16/1992 2.0
Wheat 1 5498 TRTH 8/1/2006 TDC 11/19/1992 4.4

EQUITIES 21 80042 TRTH NONE

Australia (SPI 200) 1 3472 TRTH 12/18/2000 NA NA 1.9
Germany (DAX 30) 1 4732 TRTH 1/3/1996 NA NA 1.0
Brazil (BOVESPA) 1 4577 TRTH 2/27/1996 NA NA 2.8
China (Hang Seng CEI) 1 2667 TRTH 12/9/2003 NA NA 2.0
Canada (S&P/TSX 60) 1 3773 TRTH 9/14/1999 NA NA 1.3
Spain (IBEX 35) 1 4698 TRTH 1/4/1996 NA NA 2.0
Eurostoxx 1 4130 TRTH 6/23/1998 NA NA 3.2
France (CAC 40) 1 4007 TRTH 1/7/1999 NA NA 1.1
Hong Kong (Hang Seng) 1 4591 TRTH 1/3/1996 NA NA 1.2
India (SGX NIFTY) 1 2213 TRTH 10/11/2005 NA NA 1.7
Italy (FTSE MIB) 1 2617 TRTH 6/15/2004 NA NA 2.4
Japan (TOPIX) 1 4570 TRTH 1/5/1996 NA NA 4.1
South Korea (KOSPI 200) 1 4466 TRTH 5/6/1996 NA NA 1.9
Netherlands (AEX) 1 4499 TRTH 1/9/1997 NA NA 1.3
South Africa (ALSI) 1 2308 TRTH 7/7/2005 NA NA 1.7
Switzerland (SMI) 1 4027 TRTH 9/15/1998 NA NA 1.2
Taiwan (SGX-MSCI 1 4295 TRTH 2/24/1997 NA NA 3.1

Taiwan)
UK (FTSE 100) 1 4706 TRTH 1/3/1996 NA NA 0.8
US (S&P 500 E-Mini) 1 4274 TRTH 9/10/1997 NA NA 1.3
US (Russell 2000 E-Mini) 1 2234 TRTH 12/13/2005 NA NA 0.9
US (S&P 400 Mid 1 3186 TRTH 1/29/2002 NA NA 1.5
Cap E-Mini)

FIXED INCOME 8 32333 TRTH TDC

Australia 10y 1 4734 TRTH 1/3/1996 TDC NA 3.9
Germany 10y 1 4499 TRTH 1/5/1999 TDC 1/3/1997 0.7
Germany 5y 1 4493 TRTH 2/1/1999 TDC 1/3/1997 0.8
Canada 10y 1 2771 TRTH 9/26/2000 TDC NA 0.8
Japan 10y 1 3605 TRTH 1/5/1996 TDC NA 0.7
UK 10y 1 4711 TRTH 1/3/1996 TDC NA 0.9
US 10y 1 3993 TRTH 1/1/2001 TDC 10/20/1998 1.3
US 5y 1 3527 TRTH 7/1/2001 TDC 9/5/2000 0.7

(continued)
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Table A1

Continued

Number Total Primary Secondary Assumed

Asset of Days in Data Used Data Used T-Costs

Class Asset Assets Analysis Source From Source From (in bps)

FOREIGN EXCHANGE 9 30161 Olsen Data NONE

Australia (AUD-USD) 1 2802 OlsenData 1/1/2004 NA NA 2.2

Eurozone (EUR-USD) 1 4103 OlsenData 1/1/1999 NA NA 0.7

Canada (USD-CAD) 1 3061 OlsenData 1/1/2003 NA NA 2.5

Japan (USD-JPY) 1 3841 OlsenData 1/1/2000 NA NA 1.0

Norway (USD-NOK) 1 2801 OlsenData 1/1/2004 NA NA 8.1

New Zealand (NZD-USD) 1 2803 OlsenData 1/1/2004 NA NA 4.7

Sweden (USD-SEK) 1 3062 OlsenData 1/1/2003 NA NA 7.7

Switzerland (USD-CHF) 1 3844 OlsenData 1/1/2000 NA NA 1.7

UK (GBP-USD) 1 3844 OlsenData 1/1/2000 NA NA 1.5

typically be done at far lower cost and market impact than outright trading for this reason, assuming

that the trader rolls positions at the same time that many investors are seeking to roll their positions

as well.

The dates when most investors roll positions (and therefore the times when the roll trade has the

most liquidity) vary for different assets, but typically fall around 3–6 days prior to contract expiry

or first notice date for noncommodities. Commodity roll times are more likely to be associated

with the roll schedule of major commodity indices, such as the S&P GSCI. That most of our

assets studied are futures contracts that need to be rolled necessitates a formal roll rule.49 As an

actual investor would, we determine our roll time based on a measure of liquidity in the near and

far contracts. For each contract, we specify a roll period (typically 3–6 days prior to expiry for

noncommodities, and the roll period for the GSCI for commodities), measuring the total number

of minutes with at least one valid trade in them for both the near and far contract. Once the number

of valid minute bars for the far contract exceeds the near contract over a trading day, or we reach

the end of the roll period, we consider that day to be the roll date.50

Once we have a roll date, we seek to line up the two contracts before switching our reference

from “near” to “far.” Omitting the last 5 minutes of the trading day to avoid any possible end-of-day

effects, we find the last (nearest to the close) minute bar where both contracts have at least one

trade in order to switch between contracts. This ensures that both contracts have nonstale prices

at the time of the change. We use all returns from the near contract up to and including the roll

minute bar and then use returns from the far contract after that.

A.1.2 Liquidity plots and “sanity” Filters

To begin, we use the Financial Calendars (FinCal) to provide market open and close times for some

of the market sessions dating back to the year 2000. For assets with data prior to 2000, or assets

outside the FinCal database, we rely on so-called “liquidity plots,” in which for each minute of

the day, we plot the proportion with at least one trade. As the resultant liquidity plots for the four

representative assets and 3 years given in Figure A1 show, this effectively delineate the periods of

the day when the markets are actively operating.

49 For example, rather than having a single asset representing the S&P 500 index, we have data for a series of
different S&P 500 index futures contracts and a roll rule that we specify to connect them into a single return
series.

50 Since we only seek to compute daily RV ’s, it is possible to determine the occurrence of a roll date ex post and
splice return sequences from both the near and the far contracts at the end of the trading day.
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Risk Everywhere: Modeling and Managing Volatility

Figure A1

Liquidity plots

This figure shows the proportion of business days in the relevant year (2004, 2009, or 2014) that have at least
one trade in any given minute in the 24-hour day (GMT). For instance, a value of 1.0 shows for that particular
minute in the day, all business days in that year had at least one valid trade, and a value of 0.5 would mean that
only half of the days had at least one valid trade in that minute.

We also apply some mild “sanity” filters to identify valid minute bars. To begin, all valid minute

bars must have at least one recorded trade over the course of the minute. In addition, we omit data

when:

- The bid or the ask price is less than zero.

- The ask price is less than or equal to the bid price.

- The bid-ask spread is greater than 1% of the bid price.

- The bid size or the ask size is less than zero.

- The recorded trade price is less than zero.

Finally, based on the rolling medians of the past three returns, we omit any data point associated

with a return more than 1% away from the median centered on that minute bar. This effectively

removes any data points that cause very large moves in one direction followed by an immediate

large reversal. This filter generally removes fewer than five data points per year per asset.

A.1.3 Volatility signature plots

Our choice of intraday sampling frequency � for the high-frequency returns used in the construction

of the realized volatilities is guided by the volatility signature plots first proposed by Andersen,

Bollerslev, Diebold, and Labys (2000). Intuitively, in the absence of any contaminating market

microstructure influences, the time-series sample mean of the daily RVt ’s provides an unbiased

estimate for the true daily unconditional variance for the active part of the trading day. If, on the

other hand, the RVt ’s are calculated from too high a sampling frequency 1/� to render the basic

assumption of an arbitrage-free price process a good description of the discretely sampled intraday

price process, the time-series sample mean of RVt will not provide an unbiased estimate of the true
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Figure A2

Signature plots

This figure shows the average daily realized volatility for a given year (2004, 2009, or 2014) as the sampling
frequency varies.

daily variance. Hence, by plotting the sample mean of RVt as a function of the sampling frequency

of the underlying high-frequency returns, it is possible to determine an appropriate choice of �.

This choice could obviously differ across assets and time. However, guided by the inflection points

visible in most of the signature plots for each of the individual assets, as directly illustrated by the

plots for the four representative assets and 3 years given in Figure A2, 5-minute naturally emerge

as an appropriate common choice.

A.2. Robustness Checks and Additional Empirical Results

Our main empirical findings are based on “centered” risk models, forecasting the realized variation

one month ahead, using the lagged RV s for the whole day. This appendix briefly discusses the

sensitivity to each of these assumptions and modeling choices. We will focus our comparisons on

the HExp model. The Online Appendix provides more detailed results for the other dynamic risk

models along with additional robustness checks.

A.2.1 “Centered” versus “uncentered” risk model forecasts

Our “centering” of the dynamic risk models formally alter the models relative to their “uncentered”

counterparts. Specifically, rewriting the generic “centered” risk model in (3) with only RVt+1 on

the left-hand side, the “intercept” on the right-hand side becomes (1−b1 −b2 − ...)RV LR
t =(1−

b(1))RV LR
t . This time-varying “intercept” obviously differs from the time-invariant b0 intercept

in the more standard risk model (2). Only by using the unconditional sample variance for the full

sample, say RV LR
T , in place of the expanding RV LR

t , would the full in-sample OLS and panel

regression estimates of the dynamic bi coefficients be the same for the two models.
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Risk Everywhere: Modeling and Managing Volatility

Meanwhile, the information structure implicit in the “centered” risk models is more compatible

with the practical uses of the models, in that only current information is used in the construction

of forecasts. Importantly, this translates into the actual forecast performance of the differently

formulated models. For instance, while the “uncentered” version of the HExp model performs

better than the “centered” version in-sample with 0.8% higher average R2 for the mega-based

model, the out-of-sample R2 for the same mega-based model is 0.6% higher for the “centered”

model. This same general conclusion holds true for all of the other risk models.

A.2.2 Other forecast horizons

The results discussed in the main text all pertain to monthly predictions. We also implemented the

same risk models for both shorter (daily and weekly) and longer (60 days) prediction horizons.

Consistent with the results for the monthly predictions, the differences in the in-sample R2s are

generally fairly small across the different risk models. Also, while the individually estimated

models necessarily result in the highest in-sample R2’s, the mega-based estimation that restricts

the coefficients to be the same across all assets typically results in the best performing models

out-of-sample. Interestingly, the largest (in a relative sense) improvements in the R2’s compared to

the original HAR model manifest over longer horizons, indirectly underscoring the importance of

including longer-run volatility factors and properly “centering” the risk models when forecasting

further into the future.

A.2.3 Risk models based on daily returns versus intraday realized volatilities

As noted above, the monthly out-of-sample predictive R2’s for the RV -based risk models reported

in Table 5 easily exceed those based on monthly past realized volatilities constructed from daily

squared returns or simple EWMA of the lagged daily squared returns. To further investigate whether

these improvements arise from better risk modeling or better risk measurements, or both, we

implement the identical suite of risk models and predictive R2s using the daily squared returns

in place of the daily RV s. Not surprisingly, benchmarking the performance of the models against

the sum of the daily squared returns results in more “noisy” and systematically lower R2s. More

important, the risk models based on realized volatilities systematically outperform the identical

risk models based on risk factors constructed from daily squared returns. The out-of-sample R2

for the mega HExp model, for example, improves from 44.0% with the daily squared returns to

47.3% with daily RV s, directly underscoring the informational advantages afforded by the use of

the more accurate daily realized volatility measures.

A.2.4 Intraday and overnight risk models

As discussed in Section 1.3, ample empirical evidence dating back to at least French and Roll

(1986) shows that volatility tends to be lower during nontrading hours than during the active part

of the trading day.51 The daily RV s employed in our risk models simply add the intraday variation

to the overnight squared returns to obtain an estimate of the volatility for the whole day. However,

different dynamic dependencies may be at work intraday and overnight. To investigate whether

implicitly restricting the dynamics to be the same result in inferior forecasts, we implement separate

risk models for the intraday and overnight components. Our results confirm that it is generally

more difficult to predict the overnight volatility compared to the volatility for the active part of the

trading day. Meanwhile, the HExp model that performed the best for predicting the daily RV s,

also performs the best for separately predicting the intraday and overnight volatility components.

51 French and Roll (1986) argue that private information revealed through the process of trading may help explain
these differences. Recent work by Boudoukh, Feldman, Kogan, and Richardson (2016) uses textual analysis to
identify specific types of public “news” and finds that the ratio of overnight variation to within-day variation also
varies importantly with the intensity of the “news,” suggesting that public information account for a nontrivial
portion of the return variation as well.
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Figure A3

Utility vs. R2 for static, 21-day RV , and HExpGl Models

This figure shows the average out-of-sample 20-day realized utility on the y-axis versus the out-of-sample R2 on
the x-axis. Each data point corresponds to an individual asset for one of the three color-coded risk models. The
three different risk models considered are the static expanding window average RV (red), 21-day RV (black),
and the HExpGl (blue) using mega-panel coefficients.

Importantly, combining the forecasts from the separately estimated models for the intraday and

overnight volatilities to obtain a forecast for the whole day, or month, do not result in obviously

superior out-of-sample forecasts compared to the risk models for the daily RV s. For example,

combining individually estimated HExp models for the intraday and overnight volatilities results

in an average out-of-sample R2 of 46.8%, compared to the average R2 of 47.3% for the single

mega HExp model.

A.2.5 Volatility versus variance forecasting

Investment decisions and risk measurements often depend on functions of the future variance, as

opposed to the future variance itself. As discussed in Section 3.3, the different risk models are easily

modified to accommodate this by replacing RV h
t+h on the left-hand side with the volatility object of

interest. In so doing, the RV s and variance risk factors on the right-hand side in the models are also

naturally replaced by the same transformations. Implementing, such transformed versions of the

risk models for forecasting

√

RV h
t+h again confirms our general conclusions. While the individually

estimated risk models necessarily result in the highest R2’s in-sample, the mega models that restrict

the dynamic coefficients to be the same systematically result in the best out-of-sample volatility

forecasts.

A.3. Relation between Utility and R2

The discussion in the main text formally highlights the nonlinear relationship that exists between

the predictive R2s and the realized utilities. Figure A3 empirically illustrates this relationship for

three of the different risk models.
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