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Abstract

Background Higher body mass index (BMI) and waist-to-hip ratio (WHR) increase the risk of cardiovascular disease, but

the extent to which this is mediated by blood pressure, diabetes, lipid traits, and smoking is not fully understood.

Methods Using consortia and UK Biobank genetic association summary data from 140,595 to 898,130 participants pre-

dominantly of European ancestry, Mendelian randomization mediation analysis was performed to investigate the degree to

which systolic blood pressure (SBP), diabetes, lipid traits, and smoking mediated an effect of BMI and WHR on the risk of

coronary artery disease (CAD), peripheral artery disease (PAD) and stroke.

Results The odds ratio of CAD per 1-standard deviation increase in genetically predicted BMI was 1.49 (95% CI 1.39 to

1.60). This attenuated to 1.34 (95% CI 1.24 to 1.45) after adjusting for genetically predicted SBP (proportion mediated 27%,

95% CI 3% to 50%), to 1.27 (95% CI 1.17 to 1.37) after adjusting for genetically predicted diabetes (41% mediated, 95% CI

18% to 63%), to 1.47 (95% CI 1.36 to 1.59) after adjusting for genetically predicted lipids (3% mediated, 95% −23% to

29%), and to 1.46 (95% CI 1.34 to 1.58) after adjusting for genetically predicted smoking (6% mediated, 95% CI −20% to

32%). Adjusting for all the mediators together, the estimate attenuated to 1.14 (95% CI 1.04 to 1.26; 66% mediated, 95% CI

42% to 91%). A similar pattern was observed when considering genetically predicted WHR as the exposure, and PAD or

stroke as the outcome.

Conclusions Measures to reduce obesity will lower the risk of cardiovascular disease primarily by impacting downstream

metabolic risk factors, particularly diabetes and hypertension. Reduction of obesity prevalence alongside control and

management of its mediators is likely to be most effective for minimizing the burden of obesity.

Background

Cardiovascular disease (CVD) is the leading cause of death

and disability worldwide [1]. Obesity can contribute

towards CVD risk through effects on hyperglycaemia,

hypertension, dyslipidaemia, and smoking behaviour [2–5].

The global prevalence of obesity has more than tripled in

the last 40 years, with an even greater rise in incidence

amongst children [6]. It is estimated that by 2030,

approximately half of the US population will be obese [7].

While obesity prevention remains the priority, there are also

treatments available to effectively manage the downstream

mediators through which obesity causes CVD [8–11].

Understanding such pathways is therefore paramount to

reducing cardiovascular risk.

Obesity can be measured by various means. It is

defined by the World Health Organisation as a body mass

index (BMI) greater than or equal to 30 kg/m2 [12],

although this cut-off threshold can vary between different
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populations. However, BMI is not a direct measure of

adiposity and is also correlated with fat-free mass [12].

Assessment of obesity using the waist-to-hip ratio (WHR)

is less subject to influence from height and muscle mass

and is positively associated with cardiovascular risk in

individuals with a normal BMI [13, 14]. Thus, BMI and

WHR represent distinct measures of body fat that may

differentially affect the risk of CVD outcomes. Conven-

tional observational studies have shown that the rela-

tionship between obesity measures such as BMI and WHR

with CVD is attenuated when adjustment is made for

cardiometabolic risk factors such as blood pressure, lipid

traits or measures of glycaemia [15]. This has allowed for

estimation of the proportion of the effect of obesity that is

mediated through these intermediates [15]. However, such

observational analysis is vulnerable to bias from envir-

onmental confounding factors and measurement error,

both of which can result in underestimation of the pro-

portion of effect mediated [16, 17]. The Mendelian ran-

domization (MR) approach uses genetic variants as

instruments for studying the effect of modifying an

exposure on an outcome and has now been extended to

perform mediation analyses [16, 18]. Such use of genetic

variants whose allocation is not affected by environmental

confounding factors means that MR estimates are less

vulnerable to confounding from environmental factors.

Furthermore, the use of genetic variants that are asso-

ciated with the exposure (BMI or WHR) in large popu-

lations including individuals of different ages means that

their association estimates are typically less vulnerable to

measurement error or variation related to the timing of

measurement [16].

The increasing availability of large-scale genome-wide

association study (GWAS) data has greatly facilitated MR

analyses considering cardiovascular risk factors and out-

comes. In this study, we aimed to use such data within the

MR framework to investigate the role of blood pressure,

diabetes, fasting glucose, lipid traits, and smoking in

mediating the effect of BMI and WHR on coronary artery

disease (CAD), peripheral arterial disease (PAD) and

stroke risk.

Methods

Ethical approval, data availability, code availability
and reporting

The data used in this work are publicly available and the

studies from which they were obtained are cited. All these

studies obtained relevant participant consent and ethical

approval. The results from the analyses performed in this

work are presented in the main manuscript or its

supplementary files. All code used for this work is

available upon reasonable request to the corresponding

author. This paper has been reported based on recom-

mendations by the STROBE-MR Guidelines (Research

Checklist) [19]. The study protocol and details were not

pre-registered.

Data sources

Genetic association estimates for BMI and WHR were

obtained from the GIANT Consortium GWAS meta-

analysis of 806,834 and 697,734 European-ancestry indi-

viduals, respectively [20]. Genetic association estimates

for systolic blood pressure (SBP) were obtained from a

GWAS of 318,417 White British individuals in the UK

Biobank, with the correction made for any self-reported

anti-hypertensive medication use by adding 10 mmHg to

the mean SBP measured from two automated recordings

that were taken 2 min apart at baseline assessment [21].

Previous methodological work has supported that the

addition of a constant value to the observed blood pressure

in individuals taking antihypertensive medication as a

strategy that optimises statistical power while minimising

bias [22]. Genetic association estimates for lifetime

smoking (referred to hereon as smoking) were obtained

from a GWAS of 462,690 European-ancestry individuals

in the UK Biobank [23]. A lifetime measure of smoking

was created based on self-reported age at initiation, age at

cessation and cigarettes smoked per day [23]. Genetic

association estimates for liability to diabetes came from

the DIAGRAM Consortium GWAS meta-analysis of

74,124 cases and 824,006 controls, all of the European

ancestry [24]. Genetic association estimates for plasma

fasting glucose were obtained by using PLINK software to

carry out a meta-analysis of MAGIC Consortium GWAS

summary data from separate analyses of 67,506 men and

73,089 women who were not diabetic [25, 26]. Genetic

association estimates for fasting serum low-density lipo-

protein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C) and triglycerides were obtained from

the Global Lipids Genetics Consortium GWAS of 188,577

European-ancestry individuals [27]. Genetic association

estimates for CAD were obtained from the CARDIo-

GRAMplusC4D Consortium 1000G multi-ethnic GWAS

(77% European-ancestry) of 60,801 cases and 123,504

controls [28]. Genetic association estimates for PAD were

obtained from the Million Veterans Programme multi-

ethnic (72% European-ancestry) GWAS of 31,307 cases

and 211,753 controls [29]. Genetic association estimates

for stroke were obtained from the MEGASTROKE multi-

ethnic (86% European-ancestry) GWAS of 67,162 cases

(of any stroke) and 454,450 controls [30]. Population

characteristics and specific trait definitions relating to all
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these summary genetic association estimates are available

in their original publications. For the analyses performed

in this current work, genetic variants from different studies

were aligned by their effect alleles and no exclusions were

made for palindromic variants. Only variants for which

genetic association estimates were available for all the

traits being investigated in any given analysis were con-

sidered. In order to maintain consistency in the variants

employed as instruments across different analyses, proxies

were not used.

Instrument selection

To estimate the total effect of BMI and WHR, respectively

on the considered cardiovascular outcomes, instruments

were selected as single-nucleotide polymorphisms (SNPs)

that associated with BMI or WHR at genome-wide sig-

nificance (P < 5 × 10−8) and were in pair-wise linkage

disequilibrium (LD) r2 < 0.001. The percentage variance in

BMI and WHR explained by the variants selected as their

respective instruments was estimated as previously

described [31]. To select instruments for mediation ana-

lysis, all SNPs related to the considered exposure (BMI or

WHR) or mediators at genome-wide significance were

pooled and clumped to pairwise LD r2 < 0.001 based on

the lowest P-value for association with any trait. All

clumping was performed using the TwoSampleMR pack-

age in R [32].

Total effects

Random-effects inverse-variance weighted (IVW) MR

was used as the main analysis for estimating the total

effects of genetically predicted BMI and genetically

predicted WHR respectively on each of the considered

CVD outcomes [33]. The contamination-mixture

method, weighted median and MR-Egger were used in

sensitivity analyses to explore the robustness of the

findings to potential pleiotropic effects of the variants

[34–36]. The contamination-mixture model makes the

assumption that MR estimates from valid instruments

follow a normal distribution that centres on the true

causal effect estimate, while those calculated from

invalid instrument variants follow a normal distribution

centred on the null [35]. This allows for a likelihood

function to be specified and maximized when allocating

each variant to one of the two mixture distributions [35].

The weighted median approach orders the MR estimates

from individual variants by their magnitude weighted for

their precision and selects the median as the overall MR

estimate, calculating standard error by bootstrapping

[34]. MR-Egger regresses the variant-outcome associa-

tion estimates against the variant-exposure association

estimates, weighted for the precision of the variant-

outcome estimates [36]. It gives a valid MR estimate and

test for the presence of directional pleiotropy in scenarios

where any direct effect of the variants on the outcome is

not correlated to their association with the exposure [36].

The MendelianRandomization package (version 0.4.2) in

R (version 3.6.3) was used for performing the IVW,

contamination-mixture, weighted median MR and MR-

Egger analyses [37].

Mediation analysis

To estimate the direct effect of genetically predicted BMI

and genetically predicted WHR on each of the three con-

sidered CVD outcomes that were not being mediated by the

investigated intermediary risk factors, summary data mul-

tivariable MR was performed [38–40]. Specifically, the

orientations of all genetic association estimates were har-

monized and the variant-outcome genetic association esti-

mates were regressed on the variant-exposure and variant-

mediator estimates, weighted for the precision of the

variant-outcome association, with the intercept fixed to zero

[40]. Using this approach, adjustment was made for

genetically predicted SBP, diabetes, smoking and lipid traits

(LDL-C, HDL-C and triglycerides together) in turn, and

finally including all mediators together in a joint model. In a

sensitivity analysis, genetically predicted diabetes was

excluded from this joint model to remove any bias that

might be introduced because of its binary nature [41]. For

analyses considering genetically predicted fasting glucose

in non-diabetics instead of genetically predicted diabetes,

the corresponding genetic association data were substituted.

Diabetes and fasting glucose were not included together in

the same model.

Multivariable MR mediation analysis was performed to

estimate the proportion of the effect of BMI and WHR

respectively on CAD, PAD and stroke that was mediated

through each of the considered risk factors, and also all of

them together [16]. Specifically, the direct effect of

genetically predicted BMI and genetically predicted WHR

respectively were divided by their total effect and sub-

tracted from 1, with standard errors estimated using the

propagation of error method [16, 18].

Independent effects of genetically predicted BMI
and WHR

The direct effects of genetically predicted BMI and

genetically predicted WHR on the considered CVD out-

comes that are not mediated through each other were

measured by including only these two traits together as

exposures in the summary data multivariable MR model

described above.

1430 D. Gill et al.



Results

Total effects

The variants selected as instruments for BMI and WHR

explain 5.7% and 3.6% of their variance respectively.

Considering total effects, there was consistent evidence

across the IVW, contamination-mixture, weighted median

and MR-Egger methods that both higher genetically pre-

dicted BMI and higher genetically predicted WHR

increased CAD, PAD and stroke risk (Supplementary Fig.

1). The confidence intervals of the MR-Egger estimates

were wider than for the other methods, consistent with its

lower statistical power [42]. The MR-Egger intercept did

not provide evidence to suggest directional pleiotropy in

any analysis (P > 0.05 in all analyses). In the main IVW MR

analysis, the odds ratio per 1-standard deviation (SD)

increase in genetically predicted BMI (4.81 kg/m2) for CAD

risk was 1.49 (95% confidence interval [CI] 1.39 to 1.60),

for PAD risk was 1.70 (95% CI 1.58 to 1.82), and for stroke

risk was 1.22 (95% CI 1.15 to 1.29). For a 1-SD increase in

genetically predicted WHR (0.09), this was 1.54 (95% CI

1.38 to 1.71) for CAD risk, 1.55 (95% CI 1.40 to 1.71) for

PAD risk, and 1.30 (95% CI 1.21 to 1.40) for stroke risk.

Mediation analysis

There was attenuation in the associations of genetically

predicted BMI and genetically predicted WHR with the

three CVD outcomes after adjusting for genetically pre-

dicted SBP, diabetes, lipid traits (LDL-C, HDL-C and tri-

glycerides together) and smoking, either separately or in the

same joint model (Fig. 1). The 49% (95% CI 39% to 60%)

increased risk of CAD conferred per 1-SD increase in

genetically predicted BMI attenuated to 34% (95% CI 24%

to 45%) after adjusting for genetically predicted SBP, to

27% (95% CI 17% to 37%) after adjusting for genetically

predicted diabetes, to 47% (95% CI 36% to 59%) after

adjusting for genetically predicted lipids, and to 46% (95%

CI 34% to 58%) after adjusting for genetically predicted

smoking. Adjusting for all the mediators together in the

same model, the association attenuated to 14% (95% CI 4%

to 26%).

The percentage attenuation in the total effects of

genetically predicted BMI and WHR respectively on the

three CVD outcomes after adjusting for the mediators is

depicted in Fig. 2. For the effect of genetically predicted

BMI on CAD risk, 27% (95% CI 3% to 50%) was mediated

by genetically predicted SBP, 41% (95% 18% to 63%) was

mediated by genetically predicted diabetes, 3% (−23% to

29%) was mediated by genetically predicted lipids, and 6%

(95% CI −20% to 32%) was mediated by genetically pre-

dicted smoking. All the mediators together accounted for

66% (95% CI 42% to 91%) of the total effect of genetically

predicted BMI on CAD risk.

A joint model including all considered mediators

except genetically predicted diabetes was also constructed

(Supplementary Fig. 2). Adjusting together for all the

mediators except genetically predicted diabetes, the

association of genetically predicted BMI with CAD risk

attenuated from odds ratio 1.49 (95% CI 1.39 to 1.60) to

1.27 (95% CI 1.16 to 1.40).

There was little change in the association of either

genetically predicted BMI or genetically predicted WHR

with risk of the three CVD outcomes after adjusting for

genetically predicted fasting glucose in non-diabetic indi-

viduals (Fig. 3).

Independent effects of genetically predicted BMI
and WHR

Both genetically predicted BMI and genetically predicted

WHR had direct effects on CAD, PAD and stroke after

mutual adjustment (Fig. 4). The increased CAD risk

attributed to a 1-SD higher genetically predicted BMI

attenuated from 49% (95% CI 39% to 60%) to 32% (95%

CI 20% to 45%) after adjusting for genetically predicted

WHR, and the increased CAD risk attributed to a 1-SD

higher genetically predicted WHR attenuated from 54%

(95% CI 38% to 71%) to 33% (95% CI 18% to 50%) after

adjusting for genetically predicted BMI.

Discussion

This study uses large-scale genetic association data within

the MR paradigm to investigate the role of SBP, diabetes,

lipid traits and smoking in mediating the effect of BMI and

WHR on CAD, PAD and stroke risk. The results support

that the majority of the effects of obesity on CVD are

mediated through these risk factors, with diabetes and

blood pressure being the most notable and accounting for

approximately one-third and one-quarter of the effect

respectively. In contrast, the analysis of genetically pre-

dicted fasting glucose in non-diabetic individuals did not

provide any evidence to support its role in mediating the

effect of obesity on CVD risk. Previous work has sup-

ported an effect of diabetes liability, fasting glucose and

glycated haemoglobin on CVD risk [43, 44]. Taken

together with our current findings, this suggests that obe-

sity may be affecting CVD risk by increasing diabetes

liability and non-fasting (postprandial) glucose levels.

Similarly, while lipid traits are known to affect CVD risk

[45], our current study suggests that obesity is conferring

only a small proportion of its effect on CVD risk through

this pathway. Consistent with this, previous work has

Risk factors mediating the effect of body mass index and waist-to-hip ratio on cardiovascular outcomes:. . . 1431



supported an effect of BMI on HDL-C and triglyceride

levels, but not LDL-C [44].

In our analyses, the sum of the estimated mediating

effects of the various risk factors considered individually

was comparable to their total mediating effect estimated

when considering them all together in the same model,

consistent with them acting through distinct mechanisms.

Including genetically predicted BMI and genetically pre-

dicted WHR in the same model produced evidence con-

sistent with these traits having direct effects on CVD risk

independently of each other. It follows that rather than

analysing BMI or WHR alone, they should be considered

together as they capture different aspects of adiposity.

Our findings have important clinical and public health

implications. Behavioural interventions to reduce obesity

can have inadequate long term effects [46], pharmacological

treatments may be limited by unfavourable adverse effect

profiles [47], and surgical procedures are often reserved for

only severe cases [48]. While preventing obesity remains

the priority, this work supports that the majority of its

cardiovascular consequences may also be managed by

effectively controlling its downstream mediators, most

notably diabetes and raised blood pressure, for which

effective pharmacological interventions are available. This

has relevance for the more than 640 million individuals

worldwide currently living with obesity [49], and the many

more forecasted to become obese in coming years [50].

Such holistic consideration of obesity together with its

mediators could contribute to a shift from the single-disease

focus of health systems towards prioritizing multi-morbidity

and promoting individual and societal wellness [51].

Our analyses were also suggestive of some possible

residual effect of BMI on CVD risk even after adjusting for

all the considered mediating risk factors, consistent with

metabolically healthy obesity still conferring increased

CVD risk [52]. In contrast, the investigation of WHR was

consistent with an absence of any direct effect on CVD risk

after accounting for all mediating risk factors together,

suggesting that WHR may be entirely influencing CVD

through downstream metabolic traits. Taken together, these

results suggest that unless the growing obesity epidemic is

effectively tackled, we risk undoing the large reductions in

Fig. 1 Direct effects of genetically predicted body mass index

(BMI) and genetically predicted waist-to-hip ratio (WHR) on

coronary artery disease (CAD), peripheral artery disease (PAD)

and stroke, estimated after adjusting for genetic liability to med-

iators separately and together in the same model. The y-axis details

the genetically predicted mediator(s) for which adjustments were

made. Blood pressure refers to systolic blood pressure. Lipids refer to

serum low-density lipoprotein cholesterol, high-density lipoprotein

cholesterol and triglycerides considered together in one model. CI

confidence interval, OR odds ratio, SD standard deviation.

1432 D. Gill et al.



CVD mortality achieved over past decades [1]. Population-

based approaches that decrease obesity by addressing key

upstream drivers such as poor diet and physical inactivity

have substantial potential for impact and are also effective

for reducing health inequalities [53, 54].

The results of our current study can be contrasted to

those from a large-scale observational analysis of 1.8 mil-

lion people across 97 studies [15, 55]. This previous work

estimated that 46% (95% CI 42% to 50%) of the excess risk

conferred by raised BMI on CAD and 76% (95% CI 65% to

Fig. 2 Proportion (as a percentage) of the respective effects of

genetically predicted body mass index (BMI) and genetically

predicted waist-to-hip ratio (WHR) on coronary artery disease

(CAD), peripheral artery disease (PAD) and stroke that are

mediated through the genetically predicted risk factors

individually and together. The y-axis details the genetically predicted

mediator(s) for which adjustment was made. Blood pressure refers to

systolic blood pressure. Lipids refer to serum low-density lipoprotein

cholesterol, high-density lipoprotein cholesterol and triglycerides

considered together in one model. CI confidence interval.

Fig. 3 Direct effects of body mass index (BMI) and waist-to-hip

ratio (WHR) on coronary artery disease (CAD), peripheral artery

disease (PAD) and stroke, estimated after no adjustment and after

adjustment for genetically predicted fasting glucose in non-

diabetics. CI confidence interval, OR odds ratio, SD standard

deviation.
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91%) on stroke were mediated by effects on blood pressure,

glucose levels and lipid traits, with blood pressure being the

most important and mediation for stroke being greatest [15].

However, the approach and data used in our current study

offer a number of possible improvements. Our work

includes a greater repertoire of risk factors and CVD out-

comes than have been considered together previously

[15, 44], in particular, drawing on recently available GWAS

summary data to study smoking and PAD [23, 29]. MR

analysis uses randomly allocated genetic variants that

represent a lifelong cumulative liability to the traits for

which they serve as instruments and can therefore help

overcome the environmental confounding that may bias

conventional observational studies [16]. Consistent with

this, our MR results indicate that these risk factors mediate a

greater proportion of the effect of obesity than suggested by

previous conventional observational analyses [15]. Fur-

thermore, our MR estimates are comparable to those

obtained in previous MR studies considering BMI and

WHR as exposures and different types of CVD as the

outcome [44, 56, 57].

Also of relevance here, we considered a genetic liability

to diabetes and genetically predicted fasting glucose in

non-diabetic individuals as separate risk factors. Our

findings support the concept that obesity traits confer an

increased risk of CVD specifically through liability to

diabetes, rather than variation in fasting glucose levels

within the normal physiological range. This is important

because fasting glucose may have a non-linear association

with CVD risk [58], only having detrimental effects

beyond a certain point [59].

Our current study also has limitations. The aim of the

current work was to investigate the degree to which cardi-

ometabolic traits mediate the effects of BMI and WHR on

CVD outcomes, and our study did not extend to investigate

any possible role of BMI or WHR in mediating the effects

of the considered cardiometabolic traits on CVD risk. The

genetic association data used in this work are drawn from

predominantly European populations, and should therefore

be interpreted with caution when extrapolating to other

ethnic groups. Diabetes is a binary outcome, and as such

our consideration of genetically predicted diabetes could

introduce bias into the mediation analysis because not all

individuals possessing such genetic liability to develop

diabetes-related traits [41]. SBP was used as a proxy for

studying the effects of blood pressure more generally.

Given the high degree of phenotypic and genetic correlation

between blood pressure traits [60], this would seem unlikely

to affect the conclusions drawn. A theoretical weakness of

the MR approach relates to bias from pleiotropic effects of

the genetic variants incorporated as instruments for the traits

under study, whereby they may directly affect the outcome

through pathways independent of the exposure or mediators

being considered. Although such bias cannot be entirely

excluded, it is reassuring that we obtained similar MR

estimates for the total effect of BMI and WHR respectively

on the three CVD outcomes when performing the IVW,

contamination-mixture, weighted median and MR-Egger

methods that each make different assumptions concerning

the presence of pleiotropic variants [42]. Finally, there is

currently no available method for assessing instrument

strength within the two-sample multivariable MR setting,

and we could therefore not assess potential vulnerability to

weak instrument bias [38].

In conclusion, this work using the MR framework sug-

gests that the majority of the effects of obesity on CVD risk

are mediated through metabolic risk factors, most notably

diabetes and blood pressure. Comprehensive public health

measures that target the reduction of obesity prevalence

alongside control and management of its downstream

mediators are likely to be most effective for minimizing the

burden of obesity on individuals and health systems alike.
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