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Abstract

This paper studies the adverse price effects of convergence trading. I assume two assets with

identical cash flows traded in segmented markets. Initially, there is gap between the prices of the

assets, because local traders face asymmetric temporary shocks. In the absence of arbitrageurs,

the gap remains constant until a random time when the difference across local markets disappears.

While arbitrageurs’ activity reduces the price gap, it also generates potential losses: the price gap

widens with positive probability at each time instant. With the increase of arbitrage capital on

the market, the predictability of the dynamics of the gap decreases, and the arbitrage opportunity

turns into a risky speculative bet. In a calibrated example I show that the endogenously created

losses alone can explain episodes when arbitrageurs lose most of their capital in a relatively short

time.

JEL classification: G10, G20, D5.

Keywords: Convergence trading; Limits to arbitrage; Liquidity crisis

1 Introduction

It has been widely observed that prices of fundamentally very similar assets can differ significantly.

Perhaps the best known examples are the so-called “Siamese twin stocks” (e.g. Royal Dutch Petroleum

/Shell Transport and Trade, Unilever NV/Unilever PC, SmithKline Beckman/Beecham Group) which

represent claims on virtually identical cash-flows, yet their price differential fluctuates substantially

around the theoretical parity.1 Financial institutions speculating on the convergence of prices of

similar assets (whom I will loosely refer to as “arbitrageurs”) can suffer large losses if diverging prices

force them to unwind some of their positions. The spectacular collapse of the Long-Term Capital

∗Email address: p.kondor@lse.ac.uk. This paper is part of my PhD thesis. I am grateful for the guidance of Hyun
Shin and Dimitri Vayanos and the helpful comments from Péter Benczúr, Margaret Bray, Markus Brunnermeier, Darrell
Duffie, Doug Diamond, Zsuzsi Elek, Antoine Faure-Grimaud, Miklós Koren, John Moore, Andrei Shleifer, Jakub Steiner,
Jeremy Stein, Gergely Ujhelyi, Pietro Veronesi, Wei Xiong and seminar participants at Berkeley, Central Bank of Hungary
(MNB), CEU, Chicago, Columbia, Harvard, HEC, INSEAD, LBS, LSE, MIT, NYU, Princeton, Stanford, UCL, Wharton
and the 2005 European Winter Meeting of the Econometric Society in Istanbul. All remaining errors are my own. I
gratefully acknowledge the EU grant “Archimedes Prize” (HPAW-CT-2002-80054), the GAM Award and the financial
support from the MNB.

1See Lamont and Thaler (2003) and Froot and Dabora (1999) for details.
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Management hedge fund in 1998 is frequently cited as an example of this phenomenon.2 In this paper

I argue that the possibility of similar episodes is an equilibrium consequence of the competition of

arbitrageurs with limited capital. In contrast to previous models,3 the presented mechanism is not a

result of the amplification of exogenous adverse shocks. Instead, it is based on an efficiency argument.

Arbitrageurs’ competition generates the possibility of losses, because without these the investment

opportunity would be too attractive to exist in equilibrium. In a calibrated example I show that these

endogenously created losses alone can explain episodes when arbitrageurs lose most of their capital in

a relatively short time.

I present an analytically tractable, stochastic, general equilibrium model of convergence trading.

I assume two assets with identical cash flows traded in a local market each. The two markets are

segmented for local traders. Initially, there is a gap between the prices of the assets because local

traders’ hedging needs differ. In each time instant the difference across local markets disappears

with positive probability. Therefore, in the absence of arbitrageurs, the gap remains constant until

a random time when it disappears. I label this interval with asymmetric local demand a window of

arbitrage opportunity. Arbitrageurs can profit from the temporary presence of the window by taking

opposite positions in the two markets. Arbitrageurs have limited capital. To take a position, they have

to be able to collateralize their potential losses. If their trades did not affect prices, the development

of the gap would provide a one-sided bet as prices could only converge. However, by trading, they

endogenously determine the size of the gap as long as the window is open. At the same time, arbi-

trageurs have to decide how to allocate their capital over time given the uncertain characteristics of

future arbitrage opportunities, i.e., the development of the price gap.4 Thus, there is interdependence

between arbitrageurs’ optimal strategies and the pattern of future arbitrage opportunities.

The main result of this paper is that in the unique robust equilibrium, arbitrageurs’ individually

optimal strategies generate losses in the form of widening price gaps. Essentially, opportunities which

2For detailed analysis of the LTCM crisis see e.g. Edwards (1999), Loewenstein (2000), MacKenzie (2003). Although
after the collapse of the LTCM many market participants made changes to their risk-management systems to avoid similar
events, it is clear that financial markets are still prone to similar liquidity crises. A recent example is the turbulence in
May 2005 connected to the price differential between General Motors stocks and bonds:

“The big worry is that an LTCM-style disaster is occurring with hedge funds as they unwind GM
debt/stock trade (a potential Dollars 100bn trade across the industry) at a loss, causing massive redemptions
from convert arb funds, forcing them to unwind other trades, and so on, leading to a collapse of the debt
markets and then all financial markets.” (Financial Times, US Edition, May 23, 2005)

3Apart from the seminal paper of Shleifer and Vishny (1997) and the following literature on limits to arbitrage (e.g.
Xiong, 2001, Kyle and Xiong, 2001, Gromb and Vayanos, 2002), there is also a related literature which concentrates on
endogenous risk as a result of amplification due to financial constraints (e.g. Danielsson and Shin, 2002, Danielsson et
al. 2002, 2004, Morris and Shin, 2004, Bernardo and Welch, 2004). Relatedly, Brunnermeier and Pedersen (2005) show
that predatory trading of non-distressed traders can also amplify exogenous liquidity shocks.

4My focus on the timing of arbitrage trades connects this work to Abreu and Brunnermeier (2002, 2003). However,
my problem is different. They analyze a model in which the development of the gap between a price of an asset and its
fundamental value is exogenously given and informational asymmetries cause a coordination problem in strategies over
the optimal time to exit the market. In the model of this paper, information is symmetric, arbitrageurs want to be on
the market when others are not (i.e., there is strategic substitution instead of complementarity), and my focus is the
endogenous determination of the price gap. Furthermore, I do not model a bubble, but the endogenous development of
a price gap, which cannot increase above a certain level.
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are “too attractive” have to be eliminated in equilibrium. In particular, in each time instant the

expected gains and expected losses provided by the dynamics of the gap have to be such that arbi-

trageurs are indifferent about when to invest a particular unit of capital. Otherwise, no arbitrageur

would choose the dominated times. If there were an interval when the gap did not widen when the

window remained open, investing in the starting point of this interval would dominate saving capital

for later points. This is so because in this hypothetical case, the investment opportunity is not getting

more profitable, and there is the additional risk that the window closes during the interval. But if

arbitrageurs do not save capital for later time points, the gap will widen.5 Hence, the competition of

arbitrageurs transforms the price process in a fundamental way. Without arbitrageurs the price gap

could only converge. While arbitrageurs’ activity reduces the price gap, it also generates potential

losses: the price gap keeps widening for arbitrarily long with positive probability. The robust equilib-

rium is selected from a large number of possible equilibria by a simple selection method. This is the

only equilibrium which is compatible with the presence of arbitrarily small holding cost like a shorting

fee.

I demonstrate with the help of a calibrated example that the losses created by the competition of

arbitrageurs can be quantitatively substantial. In particular, these endogenous losses alone are enough

to cause arbitrageurs to lose most of their capital in a relatively short time with positive probability.

The robust equilibrium illustrates how arbitrageurs’ competition transforms the arbitrage oppor-

tunity. The change of the gap is highly predictable when arbitrageurs are not present on the market:

prices can only converge, just the time of the convergence is uncertain. When arbitrageurs enter the

market, divergence of price will be possible and the predictability of the change of the gap decreases.

The more active arbitrage-capital enters the market, the more similar the dynamics of the gap gets

to a martingale process of unpredictable gap changes. Thus, arbitrageurs’ competition transforms the

arbitrage opportunity into a standard speculative bet where the probability weighted gains exceed the

probability weighted losses less and less. This implies that the presence of price differentials between

very similar assets does not imply the lack of arbitrage activity. In the robust equilibrium, the gap is

never fully eliminated and occasionally can be substantial. The valid question to valuate the activity

of arbitrageurs is to what extent the dynamics of the price gap is predictable.

The analytical tractability of my model stems from the reduced state space in the presented

structure. The state of the window influences the distribution of the price gap in a trivial manner. If

the window closes in a given time instant, then the price gap jumps to zero at that time and the world

ends. It is thus sufficient to characterize the path of the price gap conditional on an open window.

This results in a one-dimensional system, where one state variable, time (or equivalently the aggregate

level of capital at that point in time) determines the equilibrium development of the price gap and

the aggregate portfolio of arbitrageurs.

The model belongs to the literature on general equilibrium analysis of risky arbitrage (e.g., Gromb

5Interestingly, the argument is similar to the text-book mechanism of full elimination of price discrepancies by risk-
neutral arbitrageurs with unlimited capital. There, price discrepancies providing positive expected profit would attract
large investments and would be eliminated. In my case, price gaps which cannot diverge would be similarly attractive
possibilities and would be eliminated. This mechanism provides “limited-arbitrage-free prices”.
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and Vayanos, 2002, Zigrand, 2004, Xiong, 2001, Kyle and Xiong, 2001, Basak and Croitoru, 2000).

However, to the best of my knowledge, this paper is the first to show that competition of arbitrageurs

alone can generate losses. In contrast to previous models focusing on potential losses in convergence

trading (Shleifer and Vishny, 1997, Xiong, 2001, Gromb and Vayanos, 2003, Liu and Longstaff, 2004),

my mechanism is not based on the amplification of exogenous shocks by the capital constraint. Instead,

it is based on an efficiency argument. The reason for my unique finding is that this is the first attempt

to analyze the price effect of arbitrageurs whose dynamic portfolio choice is influenced by uncertain

future arbitrage possibilities over a long time span. Shleifer and Vishny (1997) and Gromb and

Vayanos (2002) touch upon one of the elements of the presented mechanism. Allowing uncertainty

of future opportunities in one period only, they show that arbitrageurs may be reluctant to take a

maximal position as they fear that they will make losses when the arbitrage possibility will be the most

attractive. I show that allowing uncertainty over a longer time span, this consideration is sufficient to

transform the price process in a systematic way.

In spirit, my paper is close to Liu and Longstaff (2004) who argue that arbitrage with limited

capital might lead to substantial losses. However, in their model, this is a result of an exogenously

defined price process, while my focus is on the determination of the price process. The closest paper

to the stochastic structure of the model presented here is Xiong (2001) as he also considers arbitrage

possibilities which are available for an uncertain time span. However, a crucial difference is that in his

model, because of arbitrageurs’ specific preferences, the uncertainty over future arbitrage opportunities

does not influence the decisions of arbitrageurs. Furthermore, his results rely mostly on numerical

results, while my equilibrium can be fully characterized analytically.

This paper proceeds as follows. In section 2, I present the structure of the model. In section 3, I

derive the unique robust equilibrium. In section 4, I discuss the results and in section 5, I analyze the

robustness of the equilibrium. Finally, I conclude.

2 A simple model of risky arbitrage

The structure of the model is based on three groups of agents: two groups of local traders in each of

two markets and a group of arbitrageurs taking positions on both markets. A temporary asymmetry

in the demand curves of local traders creates an arbitrage opportunity. As the asymmetry disappears

in finite time with probability 1, so does the arbitrage opportunity. As arbitrageurs can take positions

on both markets, they can exploit the price discrepancy. They are the focus of my analysis. They

have limited capital so they have to decide how to allocate it over time given the distribution of future

arbitrage opportunities, i.e., the development of the price gap in the future. Their strategies in turn

determine the development of the price gap through market clearing. Hence, there is interdependence

between the distribution of future arbitrage opportunities and the individual strategies of arbitrageurs.

First, I describe the available assets in the economy, then I introduce traders and finally I present

arbitrageurs.
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2.1 Assets

There are two markets represented by two islands, i = A, B. On each island a single risky asset is

traded. I will call them A−asset and B−asset respectively. Both assets are in zero net supply. The two
assets of the two islands have identical payoff structure: both pay an R̃ (td) dividend regularly, at each

time of td = ∆d, 2∆d...., where R̃(td) is random, i.i.d., and distributed according to the cumulative

distribution function F
³
R̃
´
of bounded support with mean E

³
R̃
´
and ∆d is an arbitrary positive

constant. Time is infinite and, except of the discrete timing of the dividend payments, the time of the

model, t, is continuous. A riskless bond with a zero net return is available on both islands as a storage

technology.

2.2 Local traders and the window of arbitrage opportunity

Each island is inhabited by a continuum of local traders: A-traders live on island A and B-traders live

on island B. Each local trader can trade only with the asset on her own island6 and they are price

takers. In the main text, I take local traders’ demand curves as the primitives of the model. I provide

possible microfoundations for the demand curve in Appendix A.1.

The inverse demand curve of a representative local trader on island i in a given time t is

pi (t) = di
¡
θi (t) , p̃i (h)h>t

¢
for i = A,B where θi (t) is the demand for the asset for the given price and p̃i (h)h>t is a stochastic

function representing the possible prices in the future. The arbitrage possibility arises because demand

curves differ initially across the two islands. Demand curves differ until a random time t̃. In particular,

for any t < t̃

dA
¡
θi (t) , p̃A (h)h>t

¢
= pA (t) > pB (t) = dB

¡
θi (t) , p̃B (h)h>t

¢
,

i.e., for the same possible future prices A-traders are willing to hold the same amount of assets only

for a higher price. At time t̃, demand curves jump to the same level to

dc
¡
θi (t) , p̃c (h)h>t

¢
= pA (t) = pB (t) = dc

¡
θi (t) , p̃c (h)h>t

¢
where p̃c (h)h>t is the stochastic function of future prices when demand curves coincide. I call the

interval between time 0 and t̃ a window of arbitrage opportunity of random length. I also use the

term that the window is open before time t̃ and closes at time t̃. The distribution of t̃ is exponential:

given that the window is still open, the hazard rate, δ, that the window closes is constant in time.

To endogenize price process when the window is closed, in Appendix A.1 I allow for the possibility of

reopening windows. However, in the main text I focus only on the first window, so for all practical

purposes, we can think of the random time t̃ as the end of the model-time and the price of the asset

6As my focus is not the source of the arbitrage possibility, I take market segmentation for local traders as given.
Gromb and Vayanos (2002) and Zigrand (2004) use similar assumptions. Nieuwerburgh and Veldkamp (2005) provide a
mechanism which results in endogenous market segmentation.
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when the window is closed, pA
¡
t̃
¢
= pB

¡
t̃
¢
= pc, as an exogenous constant. This treatment simplifies

the exposition without changing the results.

From the point of view of the analysis, the exact cause of the temporary difference in the demand

curves is immaterial. It can be an asymmetric shock to risk-aversion, to local traders’ income or any

other type of demand shock.7 The structure intends to catch the intuition that prices of similar assets

which are traded by different groups of traders can temporarily differ if arbitrageurs do not eliminate

the price gap. The focus of this analysis is the activity of arbitrageurs in such cases.

To be able to concentrate on arbitrageurs’ activity, it is necessary to keep the behavior of local

traders as simple as possible. An important simplification is that the inverse demand functions of

local traders do not have backward looking components.

Assumption 1 The inverse demand curves di
¡
θi (t) , p̃ (h)h>t

¢
do not depend on past holdings of local

traders or past prices, θi (u) , p (u), for u < t, and i = A,B.

This assumption implies that the analysis abstracts away from the wealth effects of past gains or

losses on local traders’ demand. In the microfoundation provided in Appendix A.1, these features are

justified by new local traders entering in each time instant with fixed trading horizon. However, the

intuition of the main results would also go through with more general demand functions.

Assumption 1 and the i.i.d. distribution of dividends imply that the only source of uncertainty

influencing prices will be the state of the window.8 Hence, the conditional distribution of future prices

p̃i (h)h>t given that t < t̃ is characterized by pc and a deterministic function, pi (h)h>t:

p̃i (h)h>t |t<t̃ =
(

pi (h)h>t w.p. e−δh

pc w.p 1− e−δh

)

where pi (h)h>t is the price in island i at time h if the window is still open. Hence, we can write inverse

demand functions as

pi (t) = di
¡
θi (t) , pi (h)h>t , p

c
¢
. (1)

Naturally, all realized prices depend on the equilibrium actions of different groups of agents.

For a moment, let us assume that there are no arbitrageurs who trade between markets, so each

market has to clear separately. I will refer to this case as autarchy. In autarchy, the aggregate supply

of the risky asset which has to be held on each island is zero unit. It is natural to suspect that the

price process will remain constant if neither the quantity, θ, nor the state of the window changes, i.e.

in autarchy θi (t) = 0 and pi (t) ≡ pi∗ . Hence, autarchy prices of pA∗, pB∗ are given as the solution of

7 In the appendix, an example is provided where initially local traders have different, non-tradable, stochastic endow-
ments which imply different hedging needs. This difference in the endowments disappears in period t̃.

8This would not be true if arbitrageurs, who give the other side of the market, were allowed to use the same external
randomization device to coordinate their actions. As I discuss it at the presentation of the arbitrageurs, I rule this
possibility out.
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the following equations

pA∗ = dA
¡
0, pA∗, pc

¢
(2)

pB∗ = dB
¡
0, pB∗, pc

¢
(3)

where the constants as the second arguments of the demand functions denote constant functions.

The next assumption states that autarchy prices are well defined. This is guaranteed in the example

provided in Appendix A.1.

Assumption 2 There is a unique solution, pA∗, pB∗ of equations (2)-(3) for pc and pB∗ < pc < pA∗.

In the absence of arbitrageurs, the gap between the prices of the two assets is constant. In

particular, g∗ ≡ pA∗ − pB∗, when the window is open and it is 0 when the gap is closed. Without loss

of generality I will assume that g∗ > 0. Since in autarchy the gap is constant until the uncertain time

when it closes, it would provide a safe and very profitable bet for anyone who could trade on both

markets.

The following assumptions ensure that the inverse demand curves are well behaving.

Assumption 3 For any future prices, pc, pi (h)h>t where pA (h)h>t , p
B (h)h>t ∈

£
pB∗, pA∗

¤
, there

exists a positive, finite, minimal θ̄ = θ̄
¡
pA (h)h>t , p

B (h)h>t
¢
such that

dA
¡
θ̄, pA (h)h>t , p

c
¢
− dB

¡
−θ̄, pB (h)h>t , pc

¢
= 0.

Assumption 4 Let us define θ̄max as

θ̄
max

= max
pA(h)h>t,p

B(h)h>t∈[pB∗,pA∗]
θ̄
¡
pA (h)h>t , p

B (h)h>t
¢
.

Then the inverse demand functions, di
¡
θi (t) , pi (h)h>t , p

c
¢
, i = A,B exist, continuous and differen-

tiable in t for any θA (t) ∈
£
θ̄
max

, 0
¤
, θB (t) ∈

£
0,−θ̄max

¤
and pA (h)h>t , p

B (h)h>t ∈
£
pB∗, pA∗

¤
.

Assumption 5 Let us suppose that there is a θ+ which satisfies

pA+ − pB+ = dA
¡
θ+, pA+, pc

¢
− dB

¡
−θ+, pB+, pc

¢
where the constants as the second arguments of the demand functions denote constant functions. Then

pA+ − pB+ > g∗ implies θ+ < 0 and pA+ − pB+ < 0 implies θ+ > 0. Furthermore, for every such θ+

there are sufficiently small open sets around θ+ and pi+ that the inverse demand function is continuous

in these sets.

Assumption 6 Suppose that
³
pi+ (h)h≥t , p

c, θi+ (t)
´
and

³
pi− (h)h≥t , p

c, θi− (t)
´
are two combina-

tions of prices and quantities which satisfy the demand function for trader i.and θA+ (t) , θA− (t) ∈£
0, θ̄

max¤
, θB+ (t) , θB− (t) ∈

£
−θ̄max, 0

¤
and pi+ (h)h>t , p

i− (h)h>t ∈
£
pB∗, pA∗

¤
. If for all h > t
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which ∂di(·)
∂pi(h)

6= 0, the distribution of possible pay-offs p̃i+ (h) − p (t) + R̃h stochastically dominates

p̃i− (h)− p (t) + R̃h in the first order sense, then θi+ (t) > θi− (t) .

Assumption 3 is an innocuous requirement that the price gap can be eliminated with sufficiently

large, opposite positions on the two markets. Assumption 4 defines a relevant domain where continuous

inverse demand functions have to exist. Assumption 5 is a week regularity requirement which has

to hold outside of this relevant domain of the inverse demand functions. It requires that as long as

arbitrageurs keep selling the expensive A asset and buying the cheap B asset and the price gap remains

constant if the window survives, the gap cannot increase above g∗. Similarly, as long as arbitrageurs

do the opposite, the price of the B-asset cannot exceed the price of the A-asset. Although, I will use

Assumption 6 in other ways in the proofs too, its main role is that it directly implies the following

lemma.

Lemma 1 For any θA (t) ∈
£
θ̄
max

, 0
¤
, θB (t) ∈

£
0,−θ̄max

¤
and pA (h)h>t , p

B (h)h>t ∈
£
pB∗, pA∗

¤
,

∂di(·)
∂θi(t)

< 0.

This Lemma shows that inverse demand functions are downward sloping in the relevant domain.

In Appendix A.1 I show that Assumptions 1-6 are automatically satisfied under some standard

assumptions about the utility functions of local traders.

2.3 Arbitrageurs

Because of the asymmetric demand shocks on the two markets, if markets on the two islands clear

separately, there will be a price differential of g∗ between asset prices, although the assets have

identical dividend structure. Arbitrageurs can reduce this gap by taking positions on both markets.

Arbitrageurs are the model-equivalent of global hedge funds with the resources and the expertise to

discover such price anomalies and to take positions in distant local markets. Arbitrageurs live forever,

they are risk neutral and operate in a competitive environment: they are small and they have a unit

mass. Arbitrageurs take positions xi (t) on island i = A,B. To keep our analysis simple I assume that

arbitrageurs face symmetric local markets in the following sense.

Assumption 7 If pA (h)− pc = pc − pB (h) for all h > t then

dA
¡
x (t) , pA (h)h>t , p

c
¢
− pc = pc − dB

¡
−x (t) , pB (h)h>t , pc

¢
.

Furthermore, E
³
R̃ (td)

´
= 0.

The main reason to make this assumption is to ensure that arbitrageurs take exactly opposite

positions on the two markets, i.e., xA (t) = −xB (t) = x (t) . If markets are symmetric, choosing an

optimal strategy for one of the markets and doing the exact opposite on the other markets must be

optimal. This property makes the model much more tractable without the loss of any significant
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intuitive content.9 A possible interpretation of this property is that arbitrageurs engage in market

neutral arbitrage trades. I call the composite asset of one long unit of the B-asset and one short unit

of the A-asset the gap asset. I will show that in equilibrium x (t) is non-negative, i.e., arbitrageurs

always buy the cheap asset and sell the more expensive one. I will label such strategy as short selling

x (t) unit of the gap.

Note that if arbitrageurs were not financially constrained, the strategy of short selling the gap

would be riskless and would lead to unbounded profit. However, because of the financial constraints

specified below, sometimes arbitrageurs are forced to liquidate before the prices of the assets converge,

which can (and in equilibrium will) lead to losses. In effect, their strategy is neutral only to the

random payoff of the assets, R̃ (td), but not to the endogenous fluctuations of relative prices caused

by the random time of t̃ and arbitrageurs’ trades. Consequently, their arbitrage strategy is risky.

When the window is closed, demand curves in the two markets coincide, the arbitrage opportunity

disappears and arbitrageurs stay inactive. This validates our treatment of the price pc as a constant.

I focus on the dynamic strategies of arbitrageurs during the interval of the open window of arbitrage

opportunity. From the assumptions on the demand of traders, it is simple to construct the inverse

demand function for the gap asset

f
¡
x̄ (t) , pA (h)h>t , p

B (h)h>t
¢
≡ dA

¡
x̄ (t) , pA (h)h>t , p

c
¢
− dB

¡
−x̄ (t) , pB (h)h>t , pc

¢
which determines the gap g (t) ≡ pA (t)− pB (t) as a function of arbitrageurs’ aggregate position x̄ (t)

and future prices given that the window is still open. To keep the notation clear, I use g̃ (t) for the

size of the gap as a stochastic function while g (t) will denote the realized gap in the case that t < t̃.

Thus, the conditional distribution of g̃ (h)h>t given that the window was open in time t is

g̃ (h)h>t |t<t̃ =
(

0 w.p 1− e−δh

g (h) w.p. e−δh

)
.

Because of Assumption 7, prices on the two markets will be always symmetric:

g (t) = 2
¡
pA (t)− pc

¢
.

Thus, we can use the simpler notation of

g (t) = f
¡
x̄ (t) , g (h)h>t

¢
.

The assumptions on local demand curves also imply the most important properties of f (·) . The inverse
demand function for the gap asset, f

¡
x̄ (t) , g (h)h>t

¢
exists and continuous if x̄ (t) ∈

h
0, θ

max
i
and

9The example of the microfoundation provided in Appendix A.1 satisfies this property. Both Xiong (2001) and
Gromb and Vayanos (2002) make assumptions to ensure that arbitrageurs do not take asymmetric positions across local
markets. It simplifies the analysis substantially, because it implies that arbitrageurs’ trades are neutral to the uncertainty
of assets’ payoff, R̃ (td) . Xiong (2001) makes a direct assumption, while Gromb and Vayanos (2002) assume that traders
have CARA utility and opposite endowment shocks very similarly to the structure in our example in Appendix A.1.
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g (h)h>t ∈ [0, g∗] and it is decreasing in x̄ (t) . If there is no arbitrage activity either at present or in

the future, the gap is g∗. Thus, in terms of f (·) , the autarchy price is given as g∗ = f (0, g∗).

Each arbitrageur starts her activity with the same amount of capital10, v (0) = v̄0, where v̄0 is also

the aggregate capital available in the economy at time 0. They do not get any extra funds as long as

the window is open.11 Arbitrageurs need funds for their activity because they are required to fully

collateralize their potential losses. This implies a intertemporal budget constraint. An arbitrageur

can follow a strategy of taking positions {x (t)}t≥0 as long as the window is open only if her level of
capital at any t < t̃

v (t) = v̄0 −
Z t

0
x (t) ġ (t)

would remain positive regardless of the closing time of the window, t̃. In other words, the marked-

to-market value of arbitrageurs’ portfolios together with their capital always has to be non-negative.

This assumption can also be regarded as a formalization of endogenous margin requirements or VaR

constraints. This constraint is clearly endogenous. When potential losses are large, arbitrageurs need

to present more cash to be able to take positions of a given size. This endogeneity will play an

important role in the analysis.

We are looking for a rational expectation equilibrium of the problem. In this equilibrium, both local

traders and arbitrageurs maximize their utility for given prices and both local markets clear. There

are two sources of uncertainty in this model.12 Both risky assets pay the random dividend R̃ (td)

and the window disappears in the random time t̃. However, the structure of the model implies that

we can reduce the stochastic problem into a deterministic one. First, Assumption 1 implies that the

demand curves of local traders are independent of the realized dividend, R̃ (td) . Similarly, Assumption

7 implies that R̃ (td) will not influence arbitrageurs’ pay-off, because it cancels out from the value of

their portfolio. Hence, the only relevant source of uncertainty is the state of the window. At the same

time, it is clear what happens when the window is closed. The gap disappears, arbitrageurs do not

take any positions and local markets clear independently. Consequently, to find the equilibrium we

only have to find the conditional values of the equilibrium variables for each time t given that the

window is still open at that time, t < t̃. Thus, the problem of arbitrageurs reduces to

J (v (0)) = max
x(t)

Z ∞

0
δe−δt(g(t)x (t) + v(t))dt (4)

s.t. v̇ (t) = −x (t) ġ (t) , v (0) = v0

0 ≤ v (t) .

10There is no significance of v (0) being the same across arbitrageurs. The analysis would be virtually the same if the
initial capital was distributed in any other way.
11 In section 5 I will relax this assumption.
12 I do not allow for an exogenous randomization device which could be used by arbitrageurs to coordinate their

random actions. Hence, it is not possible that all arbitrageurs decide to do simultaneously a certain action with a given
probability and another action with some other probability. This would be an additional source of uncertainty in the
model.
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The maximand shows that if the window closes at t, the arbitrageur gains g(t)x (t) profit on her current

holdings and she gets her cumulated profit or loss, v (t) . The final pay-off at this event is weighted by

the corresponding value of the density function, δe−δt. The first constraint shows the dynamics of the

capital level of the arbitrageur. In each time instant, the capital level is adjusted for the current gains

or losses, x (t) ġ (t) . The last inequality is the collateralization constraint. It shows that arbitrageurs

are not allowed to take a position which could make them go bankrupt in any state of the world, given

that their liabilities were marked to market.

As the solution of problem (4), we are looking for a function {x (t)}t≥0 that for any t this function
is continuous13 in a non-zero measure set containing t, where x (t) is the conditionally optimal portfolio

at t given that the window is still open, t < t̃. This strategy has to be optimal given the conditional gap

path {g (t)}t≥0 which is continuous and differentiable everywhere. It is an equilibrium if the aggregate
positions {x̄ (t)}t≥0 support this conditional gap path,

f
¡
x̄ (t) , g (h)h>t

¢
= g (t) , (5)

i.e., both local markets clear.

In the next section I present the equilibrium.

3 The robust equilibrium

In this section I present the unique robust equilibrium of the model. I proceed in two steps. In first

part, I show that generally the model has a continuum of equilibria. In the second part I show that

only one of these equilibria is robust to a simple and plausible perturbation of the model. Namely, if

arbitrageurs have to pay an arbitrarily small shorting fee for their portfolio holdings, all equilibria is

eliminated but one. I discuss the implications of this robust equilibrium in section 4.

3.1 Equilibria in general

When arbitrageurs choose their strategy, they have to solve an intertemporal capital allocation prob-

lem. Each time, each of them has to decide which proportion of her capital to commit to the arbitrage

at that time instant and which proportion save for later. The danger of saving capital for later is that

the window might close today, and the arbitrageur might miss out on the opportunity. The danger

of committing the capital today is that if the window gets wider the arbitrageur will have less capital

for investing exactly when the possibility would be more profitable.14

13This is a weak condition on the smoothness of x (t). It allows discrete changes in the conditional trading strategy
x (t), but it rules out the possibility that x (t) is discontinuous in any t from both directions. For example, the trader
can trade only on Tuesday, but cannot trade only in a single moment of Tuesday. This condition is sufficient to ensure
that the collateralization constraint implies a finite limit on traders’ position in equilibrium.
14The provided arguments build on the fact that the aggregate position x̄ (t) is always non-negative i.e. arbitrageurs

never speculate on the widening of the gap. We will show in the formal proof why it is the case. The intuition relies on
the point that x̄ (t) < 0 would be consistent only with a bubble path of {g (t)}t≥0. But a bubble path is not consistent
with the finite level of aggregate capital of arbitrageurs.
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I argue that the aggregate investment plan {x̄ (t)}t≥0 and the conditional gap path {g (t)}t≥0 in
all but one equilibria (including the only robust equilibrium) are characterized by the following three

intuitive conditions.

1. The gap path, {g (t)}t≥0 , has to be such that each arbitrageur has to be indifferent when to
invest a dollar, because investing any time gives the same positive expected profit.

2. The level of aggregate positions,{x̄ (t)}t≥0 , has to be such that markets clear for the given gap
path, i.e., f

¡
x̄ (t) , g (h)h>t

¢
= g (t) for all t.

3. The sum of all possible aggregate losses exactly drains up the aggregate capital of arbitrageursZ ∞

0
x̄ (t) ġ (t) dt = v0, (6)

i.e., the intertemporal budget constraint is binding.

These three conditions are sufficient to describe equilibria, because of the following logic. The first

condition describes gap paths where each arbitrageur is indifferent how to allocate her money in time.

Such indifference paths are possible, because arbitrageurs are risk-neutral. If investment in any time

instant gives the same expected profit, they will be indifferent. With the help of the market clearing

conditions, we can figure out the aggregate levels of investment which are consistent with each g (t).

If arbitrageurs have enough capital to follow this investment strategy in the aggregate, i.e., it does not

violate the aggregate budget constraint, the strategy will be feasible on the individual level as well.

For example, each arbitrageur might follow the same strategy. In this particular case the aggregate

variables coincide with the individual ones. Note also that if all the three conditions are satisfied,

the strategy must be optimal for the given prices. Increasing investment level at some time points is

impossible because the budget constraint is binding. Cutting back positions in some time points to

be able to increase positions in other time points is pointless as investing any time instant give the

same expected profit. Decreasing some positions to save some capital and not committing it to any

time points is suboptimal, because there is positive expected profit for any strategy.

Unless v0 is very large15, these three conditions describe a continuum of conditional gap paths which

are all increasing and converge to a finite positive level less than or equal to g∗. The conditional gap

path typically has an S shape: convex for small t and concave for large t. The qualitative properties of

two of these paths are shown in Figure 1 together with the corresponding paths of conditional average

positions. Remember that the gap shows the conditional variables. In reality, only the beginning

of the paths will be observed. For example, if the window closed at t̃ = 1, we would observe the

increasing path from g (0) to g (1) and then the gap would jump back to 0 at time 1. Hence, the

increasing pattern implies that as long as the window survives, the gap must increase and the average

15When v̄0 is very large, there is no gap path, {g (t)}t≥0 and corresponding average position path, {x̄ (t)}t≥0 which
would imply ∞

0
x̄ (t) ġ (t) = v̄0 . It is so, because the left hand side of the budget constraint is bounded from above.

Arbitrageurs cannot lose more than g∗θ̄max for any gap path where θ̄max is the maximal position which is needed to push
down the gap to 0 defined in Assumption 4.
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arbitrageur must suffer losses of x̄ (t) ġ (t) > 0. The increasing pattern is a consequence of the required

indifference along the path. Let us suppose that between time t and time t+∆t the conditional gap

path does not increase. Then all arbitrageurs would invest only in t and no one would save money

until t+∆t. The reason is that in this case the arbitrage opportunity is not getting more profitable by

t+∆t, but there is the chance that the window closes in the mean time. So any arbitrageur who saves

capital for t +∆t would risk missing out on the arbitrage opportunity without any compensation in

returns. The gap has to increase if the window remains open to compensate those arbitrageurs who

were ready to save some capital instead of investing it right away.16

It is important to see that the three conditions of the equilibrium determines only the average

positions, x̄ (t) . Individual positions are arbitrary, as long as the average is x̄ (t) . Thus, the equilibrium

is consistent with a scenario where each arbitrageur follows the aggregate strategy. Alternatively, the

equilibrium is equally consistent with another scenario, where , for example, each arbitrageur belongs

to one of two groups. A μ proportion of arbitrageurs invest only before a fixed time point t0 and

they lose all their capital if the window is longer than t0. They are the “early birds”. The rest of the

arbitrageurs wait until t0 and invest only then.17 They are the “crisis-hunters”. If the positions of

“early birds” and “crisis-hunters” are x̄EB (t) = x̄(t)
μ for all t ≤ t0 and x̄CH (t) = x̄(t)

1−μ for all t > t0

respectively and t0 is defined by Z t0

0
x̄ (t) dt = μv0,

then this scenario is consistent with the equilibrium.

Following the maximum principle18, the optimal decision is formally described by the first order

condition

δg (t) = J 0 (v (t)) ġ (t) (7)

where J 0 (v (t)) is the marginal value function in t which changes according to the differential equation

J̇ 0 (v (t)) = J 0 (v (t)) δ − δ. (8)

16A similar intuition for the increasing gap path is that it shows the increasing premium which arbitrageurs require
to sacrifice their liquid capital. As the window gets longer, future opportunities are getting better. Thus, arbitrageurs
need more premium to invest instead of waiting.
The idea that financially constrained agents require a premium for sacrificing future investment possibilities is not

new. It has gained popularity in corporate risk management (e.g. Froot et al. 1993, Holmström and Tirole, 2001) and
in investment theory (e.g., Dixit and Pindyck, 1994) as well. All these works emphasized that assets should be more
valuable if they provide free cash flow in states when investment possibilities are better. This point was also made in
Gromb and Vayanos (2002) in relation to the fact that arbitrageurs might not invest fully in the arbitrage expecting
better opportunities in the future. My additional contribution is to show the implication of this idea to the dynamic
pattern of this premium and its consequences on the expected profit and risk of arbitrage over time.
This intuition shows also that the driving mechanism of the model is based on the hedging component of asset demand

identified in Merton (1971). The mechanism of Xiong (2001) and Kyle and Xiong (2001) is orthogonal to the mechanism
of this model as they abstract away from the hedging component by assuming traders with logarithmic utility functions.
17 Intuitively, this would correspond to a threshold-strategy of entering the market if and only if the gap reaches g (t0) .
18See, e.g., the economist-friendly presentation in Obstfeld (1992).
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Figure 1: The increasing curves show the qualitative features of the conditional gap paths, {g (t)}t≥0 in
two possible equilibria. The solid curve represents the equilibrium with the limit of limt→∞ g (t) = g∗

while the dashed curve shows another equilibrium where limt→∞ g (t) = g∞ < g∗. The decreasing
curve represents the conditional average position path {x (t)}∞t=0 corresponding to the first conditional
gap path. It must go to 0 and it must be positive. Its monotonicity is not guaranteed.

The first order condition is a way to express our indifference requirement, if we rewrite it as

δ
1

ġ (t)
g (t) = J 0 (v (t)) .

The left hand side has the intuitive content of the expected profit of investing a unit of capital today.

Loosely speaking, one dollar buys a position of the size 1
ġ(t) for the arbitrageur, because this is the

maximal position she can collateralize with the dollar. The window closes in the next instant with

a hazard rate of δ so a position of 1
ġ(t) gives δ

1
ġ(t)g (t) expected profit. The right hand side shows

that if she does not invest this unit of capital, she gets the expected future profit per unit of capital,

J 0 (v (t)) .

As the next theorem states the linear differential equations (7) and (8) together with the boundary

conditions implied by the intertemporal budget constraint (6) and the market clearing condition (5)

give simple solutions for the conditional gap paths. I delegate the proof to Appendix A.2.

Theorem 1 There is a critical value v̄max0 that for any v̄0 ∈ (0, v̄max0 ), the model has a continuum

of equilibria characterized by the conditional gap path, {g (t)}t≥0 and conditional investment path,
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{x̄ (t)}t≥0 . In all of these equilibria, {g (t)}t≥0 is monotonically increasing and it is given in the form
of

g (t) =
g∞g0

g∞e−δt + g0 (1− eδt)
.

The value g∞ ∈ (0, g∗] is the limit of the path, and each feasible g∞ determines an equilibrium. The

path {g (t)}t≥0 pins down the equilibrium aggregate investment levels, {x̄ (t)}t≥0 , by the market clearing
condition (5).

A given g∞ is feasible, if v̄0 ∈ (0, v̄max,g∞0 ) where

v̄max,g∞0 = lim
g0→0

Z ∞

0
x (t) ġ (t) dt.

Furthermore, v̄max0 is defined as

v̄max0 ≡ sup
g∞∈(0,g∗]

v̄max,g∞0 .

Proof. The proof is in Appendix A.2.

It might seem counterintuitive that there are no equilibria where the gap remains constant at

a positive level. As arbitrageurs have limited capital, some readers might expect that arbitrageurs

would invest all their capital to the arbitrage which would push down the gap to a positive level. Then

arbitrageurs would hold the same position until the window closes. This would keep the gap at this

positive level as long as the window is open. The problem with this argument lies in the endogenous

nature of the capital constraint. Arbitrageurs are not constrained in the terms of the size of their

position. They are constrained in the terms of their capital level which they only have to use to

collateralize their potential losses. If there are no potential losses, they are not constrained at all. So

if the gap were constant in a given interval when the window is open, arbitrageurs could always invest

more at the beginning of this interval. This would push the level of the gap down at the beginning of

the interval in line with an increasing conditional gap path.

As the next theorem states, there is one equilibrium which violates one of the three conditions

described above. In this equilibrium the conditional gap path is not increasing, but constant at the

zero level, i.e., g (t) = 0 for all t. As this provide zero return on investment in any t, arbitrageurs are

indifferent between different timing strategies. Just as before, the aggregate positions are given by

the market clearing condition, 0 = f (x̄ (t) , 0). However, the budget constraint will not bind because

the sum of all potential losses in this equilibrium is 0. Arbitrageurs could increase their positions, but

there is no point to do so. The expected profit on any strategy is zero. The corresponding strategy

profile never violates the collateralization constraint, because arbitrageurs are not limited if there are

no potential losses.

Theorem 2 For any v̄0, there is an equilibrium where g (t) = 0 for all t. This is the only equilibrium

not described by Theorem 1.

Proof. The proof is in Appendix A.2.

Intuitively, the multiplicity of equilibria can be seen as a coordination problem. The g (t) = 0

equilibrium is achievable, but for this arbitrageurs should coordinate their future actions, i.e., they

15



have to push down the gap in all states. As a consequence, there are no losses in any state of the world,

arbitrageurs do not have to provide collateral for their trades and the equilibrium is consistent with

the budget constraint. Alternatively, if arbitrageurs coordinate on an equilibrium with positive and

increasing conditional gap path, the collateral constraint will be relevant because losses are possible. In

the following section, we will see that this coordination problem will disappear if a small and plausible

perturbation is introduced. Although the equilibrium where the gap is always fully eliminated seems

intuitive, this — similarly to all other equilibria but one — does not survive this equilibrium selection

mechanism. This will leave us with the unique robust equilibrium where the conditional gap path is

increasing and it converges to g∗.

3.2 Equilibrium selection

I introduce a small perturbation to the model to select one of the many possible equilibria. I assume

that there is a small positive unit cost, m, of short selling the gap. If an arbitrageur takes a position

of x (t) , she has to pay a cost of x (t)m. This is the carry cost of the position. We will see that this

modified version has a unique equilibrium for any positive v̄0 level. It will also turn out that as m→ 0

the equilibrium converges to the equilibrium of the m = 0 case where g∞ = g∗ and the conditional

gap path is

g (t) =
g∗g0

g∗e−δt + g0 (1− eδt)
.

This conditional gap path is the solid line in Figure 1. This is the robust equilibrium.

Intuitively, the main reason why an arbitrarily small exogenous holding cost eliminates all but

one equilibria lies in the budget constraint. In any equilibria but the one where the conditional gap

path converges to g∗, arbitrageurs commit to invest at non-diminishing level for arbitrarily long. This

would require to keep betting on the convergence of the price gap even if prices have been diverging

for a long time. Even if the cost of investing is very small, sustaining such strategy for a very long

time will be extremely costly. An arbitrageur with limited capital cannot commit to such a strategy.19

Formally, the sum of all potential losses,Z ∞

0
x̄ (t) (ġ (t) +m) dt, (9)

will converge only if limt→∞ x̄ (t) = 0. This implies that the conditional gap path must converge to g∗.

It is also intuitive to follow the construction of the unique equilibrium when m > 0.20 The level of

19The presence of holding costs provides the simplest but not the only explanation of why arbitrageurs cannot hold
on to their loss-making positions for arbitrarily long. In a more detailed model another explanation would be that if
an arbitrageur suffers ongoing losses for a long time, her reputation of being a talented arbitrageur will be damaged.
Eventually, this will result in capital withdrawals. This idea is related to performance based arbitrage in Shleifer and
Vishny (1997), and explored in detail in the context of this model in Kondor (2006).
20 I do not consider the case where m is negative, i.e., arbitrageurs holding opposite position in two markets incur a

net profit even if prices are unchanged. In contrast, Plantin and Shin (2005) analyze a set up with negative m with the
illustration of carry trades in foreign exchange markets. They show that speculative dynamics can arise, i.e., in terms of
this model, arbitrageurs may bet on the divergence of prices instead of the convergence. The assumption of m ≥ 0 rules
this possibility out in this model.
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m is arbitrary as long as it is small in the following sense:

δg∗ > m. (10)

This perturbation changes Problem (4) only to the extent that the constraint for the development of

the capital level is modified to v̇ (t) = − (ġ (t) +m)x (t) . The qualitative features of this equilibrium

are shown on Figure 2. The graph shows that if the window survives until time T , from time T on

arbitrageurs do not take any positions and the conditional gap remains at the autarchy level g∗ as

long as the window remains open. Otherwise, the equilibrium is very similar to the equilibria with

increasing conditional gap paths described in the previous section. Before T, the conditional gap path

monotonically increases. The conditional gap path typically has an S shape here as well: convex for

small t and concave for large t.
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Figure 2: The qualitative features of the equilibrium conditional gap path, {g (t)}t≥0 , and the average
position of arbitrageurs, {x̄ (t)}t≥0. The average position path is not guaranteed to be monotonic.
Both variables are plotted conditionally on the window of arbitrage opportunity being still open at
time t.

The equilibrium is constructed backwards. The first point to make that there must be a T that

arbitrageurs lose all their capital if the window lasts at least T interval long. Thus, g (t) = g∗ for all

t ≥ T if t < t̃. We know already that with positive holding cost, the gap path must approach g∗, i.e.,

limt→∞ g (t) = g∗. In the case of m = 0, this was consistent with a gap path, where all arbitrageurs

were indifferent between the time of their investment and still g (t) < g∗ for all t. This is not the
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case when m > 0. The reasoning is based on the fact that if m > 0, for each dollar capital, the

trader’s position cannot exceed 1
m regardless of the gap path. Thus, the profit on each unit of capital

is bounded by g∗

m from above. Therefore, as t increases and g (t) approaches g∗, the difference between

the return on a dollar invested at t or at t + ∆ decreases and approaches 0. Thus, there will be a

time T when the compensation for waiting until T +∆ is not sufficient to outweigh the risk that with

probability
¡
1− eδ∆

¢
the window closes between the two time points. If the market tomorrow and

today is very similar, there is no point to wait and risk missing out on the opportunity. So arbitrageurs

decide to invest all their capital at T and risk to lose all this capital if the window survives longer.

Hence, x̄ (t) = 0 and g (t) = g∗ for all t > T.

The observation that by T , arbitrageurs would be happy to invest all their remaining capital

implies that the marginal value function at T is given by this strategy is

J 0 (v (T )) = δ

µ
g∗ −m

m
+ 1

¶
= δ

g∗

m
.

Hence, with the help of the perturbed versions of (7) and (8)

J̇ 0 (v (t)) = J 0 (v (t)) δ − δ

δg (t) = J 0 (v (t)) (ġ (t) +m)

and with the boundary condition g (T ) = g∗, we can construct the equilibrium conditional gap path

backwards from time T. This path will be monotonously increasing and makes each arbitrageur indif-

ferent when to invest before T.

The last remaining question is where we should stop with this process: what is the value of T? Time

T is pinned down by the budget constraint. In equilibrium, if the window survives, by T arbitrageurs

have to use up all their capital to validate the definition of T , i.e.,Z T

0
x̄ (t) (ġ (t) +m) = v̄0. (11)

The proof of the next theorem ensures that this procedure indeed leads to a unique equilibrium.

Theorem 3 There is a unique equilibrium in the economy in terms of average positions, which consists

of a time T, a path of average positions {x̄ (t)}t≥0 and a conditional gap path {g (t)}t≥0 . The equilibrium
is characterized by the following expressions:

g (t) = g∗ and x̄ (t) = 0 for t ≥ T

g (t) =
m1

δ

¡
1− e−δ(T−t)

¢
+ e−δ(T−t)

³
g∗ δg

∗

m + (δg∗ −m) (T − t)
´

1 + δg∗−m
m e−δ(T−t)

for t < T (12)
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and

f
¡
x̄ (t) , g (h)h>t

¢
= g (t) for t < T (13)Z T

0
x̄ (t) (ġ (t) +m) = v̄0. (14)

Furthermore, {g (t)}Tt=0 is strictly monotonically increasing in t.

Proof. Details of the proof are in Appendix A.2.

After the construction of the equilibrium with m > 0, it might be unsurprising that as m diminish,

T increases without bound and the equilibrium converges to the equilibrium described in Theorem 1

with g∞ = g∗. After all, the equilibrium with m > 0 is also determined by the indifference condition,

the market clearing condition and the budget constraint and we also know that any arbitrarily small

holding cost rules out any equilibria where limt→∞ g (t) 6= g∗. This is why I call the equilibrium where

g∞ = g∗ the robust equilibrium of the system. This result is summarized in the next Proposition.

Theorem 4 If v̄0 ∈ (0, v̄max,g
∗

0 ), as m → 0, the equilibrium of the perturbed system with m > 0

converges to the equilibrium described in Theorem 1 where

g (t) =
g∗g0

g∗e−δt + g0 (1− eδt)
. (15)

Proof. The proof is in Appendix A.2.

In the next section I discuss the properties of the robust equilibrium.

4 Discussion

The main observation of this model is that arbitrageurs’ individually optimal strategies transform

the arbitrage opportunity in a systematic way. First of all, arbitrageurs create their own potential

losses. Remember that in the presented set up, if arbitrageurs were not present on the market, the gap

between the prices could never increase. Hence, the first arbitrageur who could bet (without affecting

prices) on the convergence would make a sure profit without having the chance of suffering a loss in

any time point. However, as soon as a positive mess of arbitrageurs enters the market, each time when

the window remains open, the gap increases. The average arbitrageur loses some capital.

It is interesting to contrast the presence of endogenous losses with the intuition of other models

of limits to arbitrage, e.g., Shleifer and Vishny (1997), Xiong (2001), Gromb and Vayanos (2002) and

Liu and Longstaff (2004). They all emphasize that arbitrageurs might lose money because they might

be forced to liquidate early if the gap widens. However, in those models the initial widening of the gap

happens for reasons which are exogenous to the arbitrageurs’ strategies. In particular, it is a result

of noise traders trading against fundamentals (Shleifer and Vishny, 1997, Xiong, 2001, Gromb and

Vayanos, 2002) or an exogenously specified price process (Liu and Longstaff, 2004). These models

focus on different mechanisms which amplify the first exogenous shock. In contrast, the mechanism of
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my model is not based on an amplification argument. If arbitrageurs do not trade, the price gap cannot

widen in any way. The possibility of diverging prices is the equilibrium consequence of arbitrageurs’

individually optimal actions.

The mechanism of this model is based on an efficiency argument. In this respect, the model bears

some resemblance to the standard text-book case for efficient markets. In the text-book equilibrium,

different prices for assets with the same cash-flows cannot exist, because they would provide a very

attractive opportunity for arbitrageurs. Thus, arbitrageurs would instantly make large bets on the

convergence, which would automatically eliminate the anomaly by pushing the prices to the same

level. The robust equilibrium gap path of my model is sustained by a similar mechanism. Along

the gap path, each arbitrageur is indifferent when to invest. However, if in any time, the gap were

above the equilibrium path, it would provide a very attractive opportunity for the arbitrageurs. All

of them would prefer to save money until this time instant and invest all if the window is still open.

But this would push back the gap to the equilibrium level. Similarly, no one would invest at times in

which the gap is below the equilibrium path, which would increase the gap at that time point up to

the equilibrium level. The main difference here compared to the text-book case is that the aggregate

capital level of arbitrageurs is limited, so the gap is not fully eliminated. In this sense, we can label

the equilibrium price gap as “limited-arbitrage-free prices”.21

Probably, the most intuitive way to see how arbitrageurs’ action transforms the arbitrage oppor-

tunity is to have a look on the effect on the predictability of the gap. As we expect from an arbitrage

opportunity, in autarchy the expected change of the gap is highly predictable from the current gap:

g (t) = g∗ > e−δhg∗ = e−δhg (t+ h) = E (g̃ (t+ h) |g̃ (t) = g∗)

i.e., prices are expected to converge. In the robust equilibrium, from equation (15)

g (t) = g (t+ h)M t,h (v̄0) (16)

with

M t,h (v̄0) =
g∗e−δ(t+h) + g0

¡
1− e−δ(t+h)

¢
g∗e−δt + g0 (1− e−δt)

where M t,h (v̄0) depends on v̄0 through g0.

In following proposition, we will see that although the difference

g (t)−E (g̃ (t+ h) |g̃ (t) = g (t)) =
³
M t,h (g0)− e−δh

´
g (t+ h) (17)

is always positive, it is decreasing and goes to zero as the level of capital increases towards its maximum,

v̄max,g
∗

0 . Thus, although the gap is always expected to decrease, as more and more arbitrageurs enter

21Another potentially important difference here compared to the text-book case is that arbitrageurs have to compare
current prices with expected future prices to decide on their actions. In the text-book arbitrage trades they only have
to realize a mismatch in contemporaneous prices. Thus, possibly the presented mechanism requires more sophisticated
arbitrageurs. As real-world equivalents of arbitrageurs are hedge funds, which are the institutions considered to be among
the most sophisticated investors, this should not be a problem.
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the market, the gap approaches a martingale process. Arbitrageurs’ competition with limited capital

turns arbitrage opportunities into standard speculative bets where the probability-weighted gains are

— almost — equal to the probability weighted losses.

Proposition 1 In the robust equilibrium

1. for any fixed t, ∂g(t)∂v̄0
, ∂J

0(v(t))
∂v̄0

, ∂(g(t)−E(g̃(t+h)|g̃(t)=g(t)))∂v̄0
< 0 and

2. as v̄0 → v̄max,g
∗

0 , g (t) approaches a martingale

lim
v̄0→v̄max,g

∗
0

g (t) = e−δhg (t+ h) = E (g̃ (t+ h) |g̃ (t) = g (t)) .

Proof. It is clear from the proof of Theorem 1 that ∂g0
∂v̄0

< 0 and lim
v̄0→v̄max,g

∗
0

g0 = 0. All statements

of the proposition are straightforward consequences of this fact and equations (16), (15) and

J 0 (v (t)) = 1 +
g0

g∗ − g0
eδt (18)

from the proof of Theorem 1.

The fact that more arbitrage-capital in the market pushes the arbitrage opportunity into the

direction of a standard speculative asset also sheds some new light on pricing anomalies like “Siamese

twin stocks”22. This model suggests that if we believe that arbitrageurs have limited capital, we should

not valuate positive gaps between very similar assets as the lack of arbitrage activity. The gap is never

fully eliminated by arbitrageurs. What we should check is to what extent these price gaps move in a

predictable way. If there is a strong mean reversion then it indeed suggests a week arbitrage activity.

However, if the gap process moves in a rather unpredictable way, it is a sign of active influence of

rational arbitrageurs.

Another way to look at the effect of arbitrageurs’ competition on prices is to analyze the expected

profit of arbitrage. Note that the value function at time 0, J (v0) is the expected profit of an arbitrageur

by definition and

J (v0) = J 0 (v0) v0 =
g∗

g∗ − g0
v0

where the last equation comes from expression (18). From Proposition 1, it is clear that more aggregate

arbitrage-capital decreases the available expected profit. This is quite intuitive if we think of the

aggregate level of capital as the measure of arbitrageurs who know about the arbitrage opportunity.

If the arbitrage opportunity is widely known among potential arbitrageurs then they all enter the

market and the available profit is reduced by the competition. But if only few arbitrageurs find a

new opportunity, they can expect large expected profit. This is also consistent with the reduction of

predictability when the arbitrage capital is high in the market. Less predictable prices provide less

expected profit.

22See Lamont and Thaler (2003) and Froot and Dabora (1999) for details.
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Given its level of abstraction, it might be surprising that — under certain circumstances — this

model can also generate the skewed distribution of returns observed in the data. In particular, in

the robust equilibrium the distribution of the average arbitrageur’s total return is skewed toward the

left23 if the level of aggregate positions is decreasing, ∂x̄(t)∂t < 0.24 This is so, because in this case, the

realized return on capital of the average arbitrageur given that the window closes at t̃,
x̄(t̃)g(t̃)+v̄(t̃)

v̄0
,

is decreasing with the length of the window. Intuitively, the average arbitrageur loses capital as the

window gets longer if her position decreases, because if she liquidates a part of her portfolio as the gap

widens, she suffers losses on the liquidated units. She makes a net gain if the window closes instantly

as v̄0+g0x̄(0)
v0

> 1, but if the window is long enough, she loses most of her capital. Since longer windows

occur with smaller probability, the average arbitrageur will make a positive net return with large

probability and larger losses with smaller probability during each window. The next lemma shows the

formal result.

Proposition 2 The density function of the average arbitrageur’s gross return in each opportunity is

given by

ψ

Ã
x̄
¡
t̃
¢
g
¡
t̃
¢
+ v̄

¡
t̃
¢

v̄0

!
= δe−δt̃ for all t̃ > 0

where
x̄(t̃)g(t̃)+v̄(t̃)

v̄0
is decreasing in t̃ if ∂x(t)

∂t < 0 and limt→∞
x̄(t̃)g(t̃)+v̄(t̃)

v̄0
= 0. Thus, if ∂x(t)

∂t < 0, this

distribution is skewed toward the left.

Proof. The statement is the direct consequence of the exponential distribution of t̃ and

∂ (x̄ (t) g (t) + v̄ (t))

∂t
=

∂v̄ (t)

∂t
+

∂x̄ (t)

∂t
g (t) +

∂g (t)

∂t
x̄ (t) =

∂x̄ (t)

∂t
g (t) .

In the next section, I present a calibrated example to quantify the risk and level of endogenous

losses in equilibrium.

4.1 A calibrated example

A simple calibration exercise is illustrated by Figure 3. The increasing curves show three conditional

gap paths of the robust equilibrium corresponding to three different δ values (δ = − ln 14 , − ln
1
2 ,

23 I analyze the arbitrageurs’ total return during a window of arbitrage opportunity, instead of their period per period
return. On one hand it is reasonable as the observed skewness of hedge funds’ returns in the empirical literature (e.g.
Agarwal and Naik, 2004) comes from monthly or quarterly data, while in the calibration exercise of the next section
the expected length of a window ranges from 10 to 25 days. On the other hand, the fact that the length of a window
is a random variable while returns in the empirical literature are calculated for a fixed interval makes the interpretation
harder. For results on the distribution of returns for a fixed interval, more structure would be needed on the distribution
of arbitrage opportunities an arbitrageur can find during a fixed interval. However, as long as the interval is long relative
to the expected length of a window, the result is expected to hold.
24Although it seems reasonable that the increasing gap is supported by decreasing positions, it is not necessarily true

for all inverse demand functions.
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− ln 34)25. The decreasing curves show the total gross return of the average arbitrageur for different δ
values given that the window closes in t̃,

x̄(t̃)g(t̃)+v̄(t̃)
v̄0

. I use the CARA-symmetric framework defined

in Appendix A.1.1 for the specification of the inverse demand function f
¡
x̄ (t) , g (h)h>t

¢
. I choose

parameters26 which imply g∗ = 1.03. With these parameters Assumptions 1-3 are satisfied.27 For the

calibration I assume that each unit interval corresponds to a week. Then I choose the aggregate level

of capital, v̄0, in each case in a way to ensure that the annualized return of an average arbitrageur

following the optimal strategy corresponds to the historical average return of hedge funds between

1994 and 2000 (see Agarwal and Naik, 2004).28

The main lesson from the calibration exercise is that even in the limit equilibrium, price effects

from the competition of arbitrageurs alone can explain episodes when arbitrageurs lose most of their

capital relatively fast. Consistently with Theorem 1 and Lemma 2, Figure 3 illustrates that the longer

the window the wider the gap and the larger the loss of the average arbitrageur. In particular, the total

gross return on capital exceeds one only, if the window closes early. Hence, arbitrageurs make a positive

profit only in these large probability cases. If the window survives longer, the average arbitrageur loses

a larger proportion of her capital. The following two tables quantify our observations.

weeks δ = − ln 14 δ = − ln 12 δ = − ln 34
0% 3 5 10

50% 5.5 9.5 19.5

90% 10 12.5 27

% δ = − ln 14 δ = − ln 12 δ = − ln 34
0% 0.7 2.2 4.8

50% 0.01 1 0.3

99% 10−7 0.01 0.05

The first table shows the minimum length of the window (rounded to the nearest half unit) which is

necessary to wipe out a given proportion of the initial capital of arbitrageurs, while the second table

shows the corresponding probabilities of these events. For example, the second cell of first row in the

first table shows that if δ = − ln 12 and the window remains open for at least 5 weeks, the average
arbitrageur will make a negative net return. The same cell in the second table shows that this happens

with the probability of 2.2%. The second cell in the second row of both tables show that if the window

is still open after two and a half months, the average arbitrageur loses 50% of her initial capital and

the probability of this event is 1%. This may seem a small probability event, but it is important

to note that this is the probability of such crisis if arbitrageurs bet in a single window of arbitrage

opportunity. When δ = − ln 12 , the expected length of a window is about 10 days. Most probably

arbitrageurs would take positions in a large number of subsequent windows in each year. Hence, the

probability that one of these windows is long enough to generate a crisis with substantial losses can

be significant.

25These δ values imply that the window survives any unit interval with probability 1
4
, 1
2
and 3

4
respectively.

26 In terms of the example in the appendix, I choose a level of absolute risk aversion of α = 0.4, the size of the
endowment shock is ω = 1, and the dividend R̃ (td) is 1 or −1 with equal probability.
27 I show in Appendix A.1.1 how to determine g∗ from the primitives and how to ensure that Assumptions 1-3 are

satisfied.
28The annualized return is calculated by valuating the marginal value function at period 0 and by using the fact that

expected length of the window is 1/δ weeks by the properties of the exponential distribution. In each case the annualized
net return is 17.23%. The Matlab 7.0 code of the calibration exercise is available on request from the author.
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Figure 3: The increasing curves show the conditional gap paths of the robust equilibrium, g(t), while
the decreasing curves show the realized gross return on capital, x̄(t)g(t)+v̄(t)

v̄(0) , if the window closes at

t for three different δ values (δ = − ln 14 , no marks, δ = − ln
1
2 , stars, δ = − ln

3
4 , triangles). The

inverse demand function f
¡
x (t) , {g (h)}h>t

¢
and g∗ = 1.03 is determined by the CARA-symmetric

framework with parameters α = 0.4, ω = 1, R = 1. Aggregate level of capital v̄0 is chosen in a way
that the expected return of the average hedge fund matches its empirical counterpart in Agarwal and
Naik (2004).

Finally, Figure 4 illustrates the distribution of the total gross return of the average arbitrageur

in a window of arbitrage opportunity for the case of δ = − ln 0.75. The distributions for the other
two cases are very similar. The figure demonstrates — consistently with Lemma 2 — that the average

arbitrageur will make a small profit most of the time, while she will make large losses infrequently.

5 Robustness

The main observation of this model is that arbitrageurs following their individually optimal strategies

create losses endogenously. Their competition does not eliminate the price gap fully, but reduces the

predictability of relative price movements: transforms the arbitrage opportunity into a speculative bet.

I expect that this result is robust to a wide range of set-ups, but I consider three of the assumptions
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Figure 4: The distribution of realized returns of the average arbitrageur for an arbitrage opportunity
for the case of δ = − ln 34 .

particularly important for this result. The first one is that the duration of the window of arbitrage

opportunity is uncertain and, in particular, that it can be arbitrarily long. An example for the

departure from this assumption is Gromb and Vayanos (2002). They assume a window with a fixed

length, i.e., the gap disappears after an exogenously fixed interval. They show — in contrast to my

result — that the gap path will typically decrease in that case. The other critical assumption is that

arbitrageurs take both prices and the probability of convergence as given. Zigrand (2004) presents

a model where there is imperfect competition among arbitrageurs, while Abreu and Brunnermeier

(2002,2003) analyze the case where arbitrageurs are strategic and the time of convergence is determined

in equilibrium. The third important assumption is that there is no capital inflow into the market

during the window of arbitrage opportunity. In this section, I focus on the implications of relaxing

this assumption.

The effect of more flexible capital supply in the industry depends on the exact way it is introduced.

One view is that as the gap gets wider, the arbitrage opportunity gets more profitable, so we should

expect more capital to enter into the industry.29 I will focus on this argument in the next section

29A similar argument would be that as time goes by more arbitrageurs learn about the opportunity, so the aggregate
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and show that in certain scenarios the equilibrium remains virtually unchanged, even if there is a

positive relationship between profitability and the level of the entering capital. Another argument

is related to the agency view of the arbitrage sector. Hedge funds (arbitrageurs) get their capital

from investors who delegate their portfolio decisions hoping that hedge funds know and have access

to better opportunities. However, their investors do not have exact information on the abilities and

opportunities of hedge funds. Hence, investors use arbitrageurs’ past performance as a signal about

their abilities. If this effect is strong, there might even be a capital outflow from the market when the

gap increases as this is the time when arbitrageurs lose money. Here I do not consider this case, but

in Kondor (2006) I adjust the current set up with a formal model of this agency problem and analyze

the additional effects on arbitrageurs’ strategies and equilibrium prices in detail.

5.1 Partially flexible capital supply: reaching for yield

Let us suppose that there is a positive relationship between the expected profit in the arbitrage market

and the level of capital inflow in a given time point. The idea is that there is an external pool of

investors who are faced with different costs or outside options. Each time they decide whether to

enter the arbitrage market for the given prices and future opportunities. As the arbitrage market gets

more profitable, more investors decide to join. This is consistent with the anecdotal evidence that

fund managers enter more risky markets when safer opportunities do not provide sufficient profit, i.e.,

they “reach for yield”. The simplest formalization for such a relationship is to assume that there is

one such pool of potential entrants of unit measure with aggregate capital v̄E and they all enter if

the expected profit per unit of capital from the arbitrage opportunity exceeds the threshold J+. I

will show that as long as v̄E or J+ is relatively small, this extension does not change the qualitative

properties of the equilibrium.

The idea is related to the fact that the equilibrium of the model is consistent with a scenario

when arbitrageurs follow heterogeneous strategies. For example, there might be early birds, who

concentrate their investments into early time points and lose all their capital if the window survives

longer, while there might also be crisis-hunters who are sitting on the sideline and waiting for long

windows when early birds already lost their capital and the gap is wider. Only the measure of

arbitrageurs following different strategies has to be consistent with the aggregate investment level

described by the equilibrium. Notice, that crisis-hunters in the original set-up and new entrants in the

current extension are following the exact same strategy. They enter the market only when the gap is

wide enough. Thus, we only have to make sure that the measure of new entrants is consistent with the

equilibrium. Then, new entrants can play the role of crisis-hunters while incumbents will concentrate

their investment on the early times.

The following proposition states the result.

Proposition 3 Suppose that a unit measure of incumbents with aggregate capital level v̄I enter the

arbitrage market at time 0 and a unit measure of new entrants with aggregate capital level v̄E enter

capital level of arbitrageurs increases.
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the market only if the expected gross return reaches the J+ threshold. Let {v̄ (t)}t≥0 be the path of
aggregate capital in the robust equilibrium in which v̄0 = v̄E + v̄I and τ the time in which v̄ (τ) = v̄E.

If

J+ ≤ J 0 (v (τ)) (19)

the robust equilibrium with new entrants coincides with the robust equilibrium without new entrants

where v̄0 = v̄E + v̄I .

Proof. Let κ the time when J 0 (v (κ)) = J+. Thus κ ≤ τ This will be the time when new entrants

enter. Let ∆v̄ = v̄ (κ)− v̄E, where ∆v̄ ≥ 0 because J 0 (v (t)) is increasing in t. Let μ = ∆v̄
v̄E+∆v̄

. Then

if {x̄ (t)}t≥0 is the path of equilibrium positions without new entrants when v̄0 = v̄E + v̄I , then the

aggregate investment levels

x̄I (t) = x̄ (t) and x̄E (t) = 0 for all t < κ

x̄I (t) = μx̄ (t) and x̄E (t) = (1− μ) x̄ (t) for all t ≥ κ

are consistent with the equilibrium with new entrants, because the indifference condition and the

market clearing condition holds andZ ∞

0
x̄E (t) ġ (t) =

Z ∞

κ
x̄E (t) ġ (t) = (1− μ)

Z ∞

κ
x̄ (t) ġ (t) =

v̄E

v̄E +∆v̄
v̄ (κ) = v̄EZ ∞

0
x̄I (t) ġ (t) =

Z κ

0
x̄ (t) ġ (t) +

Z ∞

κ
μx̄ (t) ġ (t) = v̄0 − v̄ (κ) +

∆v

v̄E +∆v̄
v̄ (κ) = v̄I .

It should be clear that by the same argument as in the case of one group of potential entrants,

there can be several group of new entrants each of them entering at different threshold as long as

the aggregate capital of each of these groups is small enough. Thus, a general positive relationship

between new capital and profitability is consistent with the equilibrium. However, two points are

critical in this argument. The first one is that the outside pool of capital cannot be too large. If (19)

did not hold, all the increasing equilibria of Theorem 1 would disappear and we would end up with the

only equilibrium of Theorem 2 which is not robust. The second point is that the relationship between

profitability and new entrants is deterministic in this extension. Incumbents expect new entrants, this

is why they concentrate their activity on the early time points. However, this point is not critical.

One could imagine a stochastic relationship where a wider gap increases the chance of larger capital

entry. Thus, the larger the gap the larger the chance that it will be shut down by outside arbitrageurs.

But this could be formalized by time-dependent q values which would not change the main qualitative

features of the equilibrium.
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6 Conclusion

In this paper I present an analytically tractable general equilibrium model of dynamic arbitrage. In

the presented model arbitrage opportunities arise because of a temporary pressure on local demand

curves of two very similar assets traded in segmented markets. The temporary demand pressure is

present for an uncertain, arbitrarily long time span, but disappears in finite time with probability one.

Risk-neutral arbitrageurs can take positions in both local markets, and have to decide how to allocate

their limited capital across uncertain future arbitrage opportunities. This allocation — together with

the uncertain duration of the local demand pressure — determines the future distribution of the price

gap between the two assets. Hence, the individually optimal intertemporal allocation of capital and

the distribution of future arbitrage opportunities are determined simultaneously in equilibrium.

I argued that competition among arbitrageurs with limited capital transforms the dynamic prop-

erties of arbitrage prices. In particular, even if the fundamental process is riskless in the sense that

the price gap could never widen, arbitrageurs’ activity introduces potential losses. Interestingly, the

intuition behind this result is similar to the text-book argument of why unconstrained arbitrageurs

eliminate price discrepancies. There, price discrepancies cannot exist, because they are so attractive

for arbitrageurs that they would eliminate them. I showed that when arbitrageurs are financially

constrained, there cannot be any time instant when there are no potential losses, because this would

be a too attractive arbitrage opportunity. Arbitrageurs would increase their positions in these times

relative to other times, which would create potential losses. While in the text-book case arbitrage-free

prices provide no opportunities to trade on the price differential of fundamentally identical assets, in

the presented case with “limited-arbitrage-free prices” arbitrageurs can trade on convergence of such

price gap but they also have to bear the risk of further price divergence.

Importantly, I highlighted that the presented mechanism is not based on amplification of an ex-

ternal shock. In the robust equilibrium, there are no exogenous reasons which would result in losses

for arbitrageurs in any states of the world. Arbitrageurs’ total losses are created endogenously. In a

calibrated example, I showed that in this case, arbitrageurs lose most of their capital with positive

probability in a relatively short time.

The model illustrates that the presence of price gaps between fundamentally very similar assets does

not necessarily indicate the lack of arbitrage activity, even if these gaps are occasionally substantial.

In the robust equilibrium, arbitrageurs with limited capital never fully eliminate price gaps. The main

effect of their activity is different. They transform the dynamics of the price gap so it will move in a

much less predictable way. Thus the arbitrage opportunity becomes much less profitable. Decreasing

the predictability of price differentials is the way how positive expected profits are traded away by

arbitrageurs.

The simplicity of the presented framework provides the potential of wide applicability to different

problems related to limited arbitrage. In Kondor (2006), I demonstrate this potential by building an

extension of career concerns on top of my structure. As future work I consider the applicability of this

model to a multi-asset set up to analyze contagion across markets and the effects of flight-to-quality

and flight-to-liquidity in times of market depression. I believe that the presented mechanism will shed
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more light on these issues.
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Appendix

A.1 Microfoundation of local traders’ behavior

In this appendix I provide a possible microfoundation of local traders’ behavior which is consistent with

Assumptions 1-7. First I show that a standard OLG set-up with general utility functions is sufficient

to satisfy Assumptions 1 and 2 and I give the necessary restriction on the utility function which makes

the structure consistent with Assumption 6. For Assumptions 3-7, more structure is needed. Thus

I present an example with CARA utilities which satisfy all assumptions. The reader may observe

that Assumption 7 is the most demanding. It is virtually equivalent with the requirement of the

negative exponential utility function in a representative agent framework. Although it might seem

too restrictive, this assumption is not critical for the main results of the paper. It only significantly

simplifies the analysis.

Let us suppose that each trader lives for a fixed interval of ∆d and a new generation of traders

is born in each time instant.30 As the assets pay a dividend once in each ∆d interval, each trader

receives a dividend payment exactly once in her lifetime. Each trader receives a lifetime endowment

and makes a buy-and-hold investment decision when born, and liquidates her investment and consumes

the proceeds just before she dies. Her lifetime endowment, ni (t) , consists of a constant wage, n, and

a non-tradable stochastic component which is correlated with the pay-off of the risky asset, R̃ (td). In

particular, the stochastic component pays ωiR̃ (td) units at each t if the window is open. Hence, the

value of her endowment just before she dies will be

ni (t) = n+ ωiR̃ (td) i = A,B

and ωB = ω0 6= ωA = ω00. The window closes when the stochastic component disappears, i.e., ωA =

ωB = 0.

Each young trader born at time t on island i makes the investment decision of buying θi (t) units

of the risk asset when born. In time t + ∆d when old, she liquidates her investment and consumes

her total income: the value of her endowment plus the proceeds of her investment decision. Each

of them values consumption according to a standard, strictly increasing and concave utility function

u (·). Hence, an i-trader, i = A,B, born at t in a window solves the problem

max
θi(t)

ER̃(td)

⎡⎣ ¡1− e−∆dδ
¢
u
³
n+ ωiR̃ (td) + θi (t)

³
R̃ (td) + pc (t+∆d)− pi (t)

´´
+

+e−∆dδu
³
n+ ωiR̃ (td) + θi (t)

³
R̃ (td) + pi (t+∆d)− pi (t)

´´ ⎤⎦ (20)

where the notation is the same as in the main text. The first order condition of this problem implicitly

determines the inverse demand curves pi (t) = di
¡
θi (t) , pi (t+∆d) , p

c (t+∆d)
¢
as long as the window

30The OLG formulation is a simplifying assumption to keep our model tractable. It is not necessary for our story to go
through. For example, infinitely lived agents of Lucas (1978) would be consistent with the intuition. However, this would
make the model much less tractable as in this case asset prices would depend on both future and present consumption,
so they would depend on past, present and future asset-holdings. This would complicate the analysis without providing
virtually any added value.
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is open. Note that this demand curve is a special case of (1), as it depends only on future price at

t+∆d.

Here, I endogenize the price when the window is closed, pc (t) . I assume that windows can reopen

but only after staying closed at least for an interval of ∆d. Hence, the window can change its state

only once in each trader’s lifetime. The new window will be one of two types. It will be either the

same as the first one, or it can be a reverse window, where the roles of the two groups of traders

are reversed, i.e., ωB = ω00 6= ωA = ω0. Conditional on a closed window, a new window of each type

opens with probability δc
2 in each time instant. This symmetric structure ensures that arbitrageurs do

not have any motivation to trade when the window is closed, which is consistent with the main text.

Hence, when the window is closed, traders born in t solve a very similar problem to (20):

maxER̃t

h³
−e−∆dδc

´
u
³
n+ θi (t)

³
R̃ (td) + pc (t+∆d)− pc (t)

´´i
+ (21)

+ER̃t

⎡⎣³1− e−∆d
δc
2

´⎛⎝ u
³
n+ θi (t)

³
R̃ (td) + pA (t+∆d)− pc (t)

´´
+

+u
³
n+ θi (t)

³
R̃ (td) + pB (t+∆d)− pc (t)

´´ ⎞⎠⎤⎦
i = A,B.

where I exploited the symmetry in our structure, i.e., that in both islands in one of the possible windows

the future price will be pA (t+∆d) and in the other window it will be pB (t+∆d) . The first order condi-

tion of this exercise gives the inverse demand function pc (t) = dc
¡
θi (t) , pA (t+∆d) , p

B (t+∆d) , p
c (t+∆d)

¢
.

With the help of the first order conditions of problems (20) and(21) the system (2)-(3) which

determines autarchy prices modifies to

pc =
1

2

¡
pA∗ + pB∗

¢
+
1

q
E
³
R̃
´
. (22)

pA∗ − pc =
E
³
u0
³
n+ ωAR̃ (td)

´
R̃ (td)

´
(1− e−δ∆d)E

³
u0
³
e+ ωAR̃ (td)

´´ (23)

pB∗ − pc =
E
³
u0
³
n+ ωBR̃ (td)

´
R̃ (td)

´
(1− e−δ∆d)E

³
u0
³
e+ ωBR̃ (td)

´´ (24)

after straightforward manipulations. It is simple to show that these three equations determine unique

and well defined autarchy prices of pA∗, pB∗ and pc values. As arbitrageurs do not trade when the

windows are closed pc (t+∆d) = pc (t) = pc, which is consistent with the main text.

The above structure satisfies Assumptions 1 and 2. However, since Fishburn and Porter (1976)

we know that agents with general utility functions might demand more of stochastically dominated

gambles. Thus, Assumption 6 might not hold. Hadar and Seo (1990) shows that a necessary and

sufficient condition for Assumption 6 to hold in the presented set up is that the relative risk aversion

is less than or equal to 1 for every possible consumption level W (t) .
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A.1.1 Example: the CARA-symmetric framework

Let us suppose that the utility of traders with consumption W (t+∆d) when old is u (W (t+∆d)) =

−e(−αW (t+∆d)), and R̃ (td) has a bivariate distribution. In each td, R̃ (td) is either R > 0 or −R with

equal probability and ωA = −ωB = −ω.
In this structure trader A choosing position θ (t) maximizes

−Ep̃A(t+∆d),R̃(td)
e−α((n−ωR̃(td)+θ(t)(R̃(td)+p̃

A(t+∆d)−pA(t)))) =

= −e−α(n−(pA(t)−pc)θ(t))Ep̃A(t+∆d)−pce
−α(θ(t)(p̃A(t+∆d)−pc))ER̃(td)

e−α(θ(t)−ω)R̃(td),

which is equivalent with maximizing

α
¡
n−

¡
pA (t)− pc

¢
θ (t)

¢
− ln

³³
1− e−δ∆d

´
+ e−δ∆de−α(θ(t)(p

A(t+∆d)−pc))
´
−

− ln 1
2

³
e−α(θ(t)−ω)R + eα(θ(t)−ω)R

´
.

This, and the analogous problem for trader B give the inverse demand curves

pA (t)− pc = pc − pB (t) =
g (t)

2
=

g(t+∆d)
2

(eδ∆d − 1) eαθ(t)
g(t+∆d)

2 + 1
+R

e−α(θ(t)−ω)R − eα(θ(t)−ω)R

e−α(θ(t)−ω)R + eα(θ(t)−ω)R
. (25)

Thus, the structure is symmetric in the sense of Assumption 7.

The autarchy prices are given by

pA∗ − pc = pc − pB =
g∗

2
= pi

¡
0, pA∗ − pc

¢
=

R eαωR−e−αωR
(eαωR+e−αωR)

1− 1
eδ∆d

> 0.

Because of pA (t)− pc = pc − pB (t) for any θ (t) , θ̄ = θ̄
¡
pAt+1, p

B
t+1

¢
the position which eliminates the

gap between current prices for given future prices, is given as the unique and positive solution of

g(t+∆d)
2

(eδ∆d − 1) e
α θ

g(t+∆d)
2

+ 1

= R
eα(θ−ω)R − e−α(θ−ω)R³
e−α(θ−ω)R + eα(θ−ω)R

´ . (26)

θ is well defined and positive, because the left hand side is a positive and monotonically decreasing

function in θ̄, while the right hand side is monotonically increasing in θ̄ and at θ = 0 the right hand

side is larger than the left hand side. Hence, Assumption 3 is satisfied. As the domain of right hand

side of (25) contains R+ for both arguments, Assumption 4 is also satisfied.

I show now that Assumption 5 holds for demand curve (25). I have to demonstrate that if θ+ is a
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solution of the equation

−
¡
1− e−δ∆d

¢
e
δ∆d+α θ+ g+

2

(1− e−δ∆d) e
δ∆d+α θ+ g+

2 + 1

g+

2
= R

eα(θ
+−ω)R − e−α(θ

+−ω)R³
e−α(θ

+−ω)R + eα(θ
+−ω)R

´ (27)

for a given g+ then g+ > g∗ implies θ+ < 0 and g+ < 0 implies θ+ > 0. Let us start with the first case.

Observe that the right-hand side is a monotonically increasing function of θ+ while the left-hand side

is monotonically decreasing in θ+ for all g+. We know from the definition of g∗ that if g+ = g∗ then

θ+ = 0. Thus, if g+ > g∗ then

−
¡
1− e−δ∆d

¢
e
δ∆d+α θ+ g+

2

(1− e−δ∆d) e
δ∆d+α θ+ g+

2 + 1

g+

2
|θ+=0 < R

eα(θ
+−ω)R − e−α(θ

+−ω)R³
e−α(θ

+−ω)R + eα(θ
+−ω)R

´ |θ+=0.
Consequently, if g+ > g∗ θ+ must be negative to make the two sides of (27) equal. Similarly, the pair

g+ = 0, θ+ = ω satisfies (27). But if g+ < 0

−
¡
1− e−δ∆d

¢
e
δ∆d+α θ+ g+

2

(1− e−δ∆d) e
δ∆d+α θ+ g+

2 + 1

g+

2
|θ+=ω > R

eα(θ
+−ω)R − e−α(θ

+−ω)R³
e−α(θ

+−ω)R + eα(θ
+−ω)R

´ |θ+=ω = 0.
Thus, if g+ < 0, then θ+ must be larger than ω to make the two sides of (27) equal.

The last step is to check whether the relative risk aversion is less then or equal to 1 in the relevant

range of θ ∈
£
0, θ̄

max¤ and gt+1 ∈ [0, g∗] . This implies that

1

α
> n− ωR̃ (td) + θ (t)

³
R̃ (td) + p̃A (t+∆d)− pA (t)

´
has to hold for all R̃ (td) and θ ∈

£
0, θ̄

max¤ and gt+1 ∈ [0, g∗] . As the supports of all variables on the
right hand side are bounded, there must be a small enough α which makes the inequality hold.

A.2 Proofs

Proof of Theorems 1 and 2. The interior solutions of the dynamic system are characterized by

differential equations (8) and (7). First, let us check whether corner solutions are possible. In a corner

solution, there is a time T when the aggregate budget constraint binds and arbitrageurs cannot take

positions. However, if v̄ (T ) = 0, v̄ (T + τ) = 0 for all τ ≥ 0, because arbitrageurs cannot realize gains
without taking positions. Hence, if such a time point existed, x̄ (T + τ) = 0 and g (T + τ) = g∗ for

τ ≥ 0 as in autarchy. But observe, that the expected marginal profit in autarchy is infinity because
arbitrageurs’ positions are not constrained when ġ (t) = 0.Which is a contradiction as it would imply

that arbitrageurs would not save capital for investing at a time providing infinite marginal profit.

Thus we have only interior solutions.

By standard methods the general solution of the non-homogenous linear differential equation of
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(8) is

J 0 (v (t)) = 1 + c1e
δt

where c1 is a constant. Plugging in the general solution of (8) into (7) gives the homogenous linear

differential equation
ġ (t)

g (t)
=

δ

1 + c1eδt

with the general solution of

g (t) = c2
1

1 + c1eδt
eδt (28)

where c2 is a constant. Thus, limt→∞ g (t) = c2
c1
and g (0) = c2

1+c1
.

There is evidently an equilibrium, if g (t) = 0 for all t. This satisfies all the conditions with

c1 = c2 = 0 and the and the budget constraint in this case isZ ∞

0
x̄ (t) ġ (t) dt = 0 ≤ v̄0. (29)

To find other solutions, note that from the construction of the system, g (t) and ġ (t) must have

the same sign. Otherwise the gap can move only in one direction and arbitrageurs have a safe profit

opportunity. This would make them to increase their positions without bounds so g (t) would reach 0

by Assumption 3. Thus, c1 > 0.

Let us suppose first that c2 < 0. In this case, g (t) would be always negative, monotonically

increasing and would converge to the negative level c2
c1
. Let us suppose that there exist a {x̄ (t)}t≥0 ,

which supports this path. Because of the continuity of f
¡
x̄ (t) , g (h)h>t

¢
, there must be a large enough

T that for any T +τ , the market clearing aggregate investment levels {x̄ (t)}t≥T implied by the market
clearing condition

g (t) = f
¡
x̄ (t) , g (h)h>t

¢
would not change sign. As the limit of this path must be given by

c2
c1
= f

µ
x̄
¡
T+ + τ

¢
,
c2
c1

¶
< 0,

Assumption 5 implies that x̄ (T + τ) is positive for all τ ≥ 0. In this case the potential loss each time
on each unit is g (T + τ) hence, the budget constraint has the form ofZ ∞

T+τ
−x̄ (t) g (t) dt ≤ v̄0. (30)

But — as neither x̄ (t) nor g (t) converges to 0 — the left hand side is not convergent which is a

contradiction. Analogous arguments rule out the possibility of c2 > c1g
∗ where the aggregate positions

are negative by Assumption 5 at least after a fixed time T.

Thus, the only possibility is that c2
c1
= g∞ ∈ (0, g∗]. In this case all g (t) are positive and g (t) is

monotonically increasing. From g (0) = g0 and limt→∞ g (t) = g∞, we get c1 =
g0

g∞−g0 , c2 =
g0

g∞−g0 g∞,
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thus

gt =
g∞g0

g0 (1− e−δt) + g∞e−δt
(31)

J 0 (v (t)) = J 0 (t) = 1 +
g0

g∞ − g0
eδt. (32)

Observe, that if we compare local traders’ distribution of pay-offs in the autarchy case and when

0 < g (t) < g∗ is monotonically increasing, by Assumption 6, we have to conclude that x (t) ∈
³
0, θ

max
´

for all t. Thus the largest loss each time is ġ (t) . As the expected instantaneous profit is positive in

each time point, the budget constraint has to be strict:Z ∞

0
x̄ (t) ġ (t) dt = v̄0. (33)

The last step is to find a g0 as a function of v̄0 for a given g∞ to satisfy the budget constraint (33).

The path {g (t)}t≥0 will give the path {x̄ (t)}t≥0 by the market clearing condition. First note that for
a given g∞ if {g (t)}t≥0 is the path with g (0) = g0 and {g+ (t)}t≥0 is the path with a g (0) = g+0 where

g0 < g+0 then the two paths differ only in their starting points, i.e., there is a h that g
+ (t) = g (t+ h)

for all t. To see this, observe that as g (t) is continuous and monotonically increasing between g0 and

g∞ there must be a h that g (h) = g+0 . But then

g+ (t) =
g∞g

+
0

g∞e−δt + g+0 (1− e−δt)
=

g∞
g∞g0

g∞e−δh+g0(1−e−δh)

g∞e−δt +
g∞g0

g∞e−δh+g0(1−e−δh)
(1− e−δt)

=

= g0
g∞

e−δ(t+h)g∞ + g0(1− e−δ(t+h))
= g (h+ t) .

This implies thatZ ∞

0
x̄ (t) ġ (t) dt =

Z h

0
x̄ (t) ġ (t) dt+

Z ∞

0
x̄ (t) ġ+ (t) dt >

Z ∞

0
x̄ (t) ġ+ (t) dt,

thus
R∞
0 x̄ (t) ġ (t) dt is monotonically decreasing in g0 for any fixed g∞. Consequently, if

v̄max,g∞0 = lim
g0→0

Z ∞

0
x (t) ġ (t) dt,

for any v̄0 ∈ (0, v̄max,g∞0 ) there exists a single g0 thatZ ∞

0
x̄ (t) ġ (t) dt = v̄0.
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Proof of Theorem 3. Interior solutions of the dynamic system with m > 0 are given by

J̇ 0 (v (t)) = J 0 (v (t)) δ − δ (34)

δg (t) = J 0 (v (t)) (ġ (t) +m) . (35)

The general solution is

J 0 (v (t)) = 1 + c1e
δt (36)

g (t) =
m
¡
1
δ − eδtc1t

¢
+ eδtc2

1 + c1eδt
. (37)

It is clear that the budget constraint can only converge if limt→∞ x̄ (t) = 0 so limt→∞ g (t) = g∗. As

limt→∞
m( 1δ−e

δtc1t)+eδtc2
1+c1eδt

is not convergent, there cannot be an interior solution for all t. Hence, by large

enough T arbitrageurs will lose all their capital and we must have a corner solution of x̄ (T + τ) = 0

and g (T + τ) = g∗ for τ ≥ 0. As this implies a stationary environment and δ > 0, in this case

arbitrageurs would choose to invest all their capital in time T if they had any. Thus, J 0 (v (T )) = g∗ δ
m

and c1 =
δg∗−m
eδTm

. From g (T ) = g∗,

c2 = e−δT
µ
g∗δ

g∗

m
−m

1

δ
+ (δg∗ −m)T

¶
.

Consequently, for all 0 ≤ t < T

g (t) =
m1

δ

¡
1− e−δ(T−t)

¢
+ e−δ(T−t)

³
g∗ δg

∗

m + (δg∗ −m) (T − t)
´

1 + δg∗−m
m e−δ(T−t)

.

Observe that

∂g (t)

∂t
=
(δg −m) e−δ(T−t)

(δg−m)(1−e−δ(T−t))+δm(T−t)
m³

1 + δg−m
m e−δ(T−t)

´2 > 0.

Similarly to the proof of Theorem 1, we know that there is {x̄ (t)}t≥0 ∈ [0, θ
max
) which satisfy the

market clearing condition

g (t) = f
¡
x̄ (t) , g (h)h>t

¢
for all t. The last step is to find T. By definition of T , we know thatZ T

0
x̄ (t) (ġ (t) +m) dt = v̄0 (38)

must hold. Since g (t) depends on time only through T − t, the left hand side of (38) is monotonically

increasing in T. As

lim
T→0

Z T

0
x̄ (t) (ġ (t) +m) dt = 0

37



and

lim
T→∞

Z T

0
x̄ (t) (ġ (t) +m) dt =∞,

for any v̄0 > 0, there must be a unique T which satisfies (38).

Proof of Theorem 4. As I showed in the proof of Theorem 1, the robust equilibrium is given

by the general solution of differential equations (7)-(8), (28) and two boundary conditions. The first

one is limt→∞ g (t) = g∗ which gives c2 = g∗c1. The second one is the budget constraint (33). In the

proof, I defined g0 in terms of c1 and used (33) to pin down g0. An equivalent step is to pin down c1

by (33). Observe also that the unique equilibrium when m > 0 can be given by the following steps.

We know that for all t ≤ T the general solution is

g (t) =
m
¡
1
δ − eδtcm1 t

¢
+ eδtcm2

1 + cm1 e
δt

(39)

where I added subscriptm to the constants cm1 and c
m
2 to distinguish from the corresponding constants

in the robust equilibrium. Instead of expressing cm1 from the boundary condition

J 0 (v (T )) = 1 + cm1 e
δT = g∗

δ

m
,

we can equivalently express T as

T =
1

δ
ln

δg∗ −m

mcm1
.

Substituting T into (39), the boundary condition g (T ) = g∗ gives

cm2 = c1

Ã
δ (g∗)2

(δg∗ −m)
+m

1

δ
ln

δg∗ −m

mcm1

!
. (40)

Finally, cm1 is pinned down by the modified budget constraint after substituting (40) into (39):Z 1
δ
ln δg−m

mcm1

0
x (t) (ġ (t) +m) = v̄0. (41)

Observe that asm→ 0, the general solution (37) converges to (28), limm→0 cm2 = cm1 g
∗, limm→0 T =∞,

thus the left hand side of (41) converges to the left hand side of (33). Consequently, limm→0 cm1 = c1

and the equilibrium with m > 0 must converge to the robust equilibrium.
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