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Abstract. Modern risk management calls for an understanding of stochastic de-
pendence going beyond simple linear correlation. This paper deals with the static
(non-time-dependent) case and emphasizes the copula representation of depen-
dence for a random vector. Linear correlation is a natural dependence measure
for multivariate normally and, more generally, elliptically distributed risks but
other dependence concepts like comonotonicity and rank correlation should also
be understood by the risk management practitioner. Using counterexamples the
falsity of some commonly held views on correlation is demonstrated; in general,
these fallacies arise from the naive assumption that dependence properties of the
elliptical world also hold in the non-elliptical world. In particular, the problem of
finding multivariate models which are consistent with prespecified marginal dis-
tributions and correlations is addressed. Pitfalls are highlighted and simulation
algorithms avoiding these problems are constructed.

1. Introduction

1.1. Correlation in finance and insurance. In financial theory the notion of
correlation is central. The Capital Asset Pricing Model (CAPM) and the Arbitrage
Pricing Theory (APT) (Campbell, Lo, and MacKinlay 1997) use correlation as a
measure of dependence between different financial instruments and employ an ele-
gant theory, which is essentially founded on an assumption of multivariate normally
distributed returns, in order to arrive at an optimal portfolio selection. Although
insurance has traditionally been built on the assumption of independence and the
law of large numbers has governed the determination of premiums, the increasing
complexity of insurance and reinsurance products has led recently to increased ac-
tuarial interest in the modelling of dependent risks (Wang 1997); an example is
the emergence of more intricate multi-line products. The current quest for a sound
methodological basis for integrated risk management also raises the issue of corre-
lation and dependence. Although contemporary financial risk management revolves
around the use of correlation to describe dependence between risks, the inclusion
of non-linear derivative products invalidates many of the distributional assump-
tions underlying the use of correlation. In insurance these assumptions are even
more problematic because of the typical skewness and heavy-tailedness of insurance
claims data.

Recently, within the actuarial world, dynamic financial analysis (DFA) and dy-
namic solvency testing (DST) have been heralded as a way forward for integrated
risk management of the investment and underwriting risks to which an insurer (or
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bank) is exposed. DFA, for instance, is essentially a Monte Carlo or simulation-
based approach to the joint modelling of risks (see e.g. Cas (1997) or Lowe and
Stanard (1997)). This necessitates model assumptions that combine information on
marginal distributions together with ideas on interdependencies. The correct im-
plementation of a DFA-based risk management system certainly requires a proper
understanding of the concepts of dependence and correlation.

1.2. Correlation as a source of confusion. But correlation, as well as being
one of the most ubiquitous concepts in modern finance and insurance, is also one
of the most misunderstood concepts. Some of the confusion may arise from the
literary use of the word to cover any notion of dependence. To a mathematician
correlation is only one particular measure of stochastic dependence among many. It
is the canonical measure in the world of multivariate normal distributions, and more
generally for spherical and elliptical distributions. However, empirical research in
finance and insurance shows that the distributions of the real world are seldom in
this class.
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Figure 1. 1000 random variates from two distributions with iden-
tical Gamma(3,1) marginal distributions and identical correlation
ρ = 0.7, but different dependence structures.

As motivation for the ideas of this paper we include Figure 1. This shows 1000
bivariate realisations from two different probability models for (X, Y ). In both mod-
els X and Y have identical gamma marginal distributions and the linear correlation
between them is 0.7. However, it is clear that the dependence between X and Y in
the two models is qualitatively quite different and, if we consider the random vari-
ables to represent insurance losses, the second model is the more dangerous model
from the point of view of an insurer, since extreme losses have a tendency to occur
together. We will return to this example later in the paper, see Section 5; for the
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time-being we note that the dependence in the two models cannot be distinguished
on the grounds of correlation alone.

The main aim of the paper is to collect and clarify the essential ideas of depen-
dence, linear correlation and rank correlation that anyone wishing to model depen-
dent phenomena should know. In particular, we highlight a number of important
fallacies concerning correlation which arise when we work with models other than
the multivariate normal. Some of the pitfalls which await the end-user are quite
subtle and perhaps counter-intuitive.

We are particularly interested in the problem of constructing multivariate dis-
tributions which are consistent with given marginal distributions and correlations,
since this is a question that anyone wanting to simulate dependent random vectors,
perhaps with a view to DFA, is likely to encounter. We look at the existence and
construction of solutions and the implementation of algorithms to generate random
variates. Various other ideas recur throughout the paper. At several points we look
at the effect of dependence structure on the Value-at-Risk or VaR under a partic-
ular probability model, i.e. we measure and compare risks by looking at quantiles.
We also relate these considerations to the idea of a coherent measure of risk as
introduced by Artzner, Delbaen, Eber, and Heath (1999).

We concentrate on the static problem of describing dependence between a pair or
within a group of random variables. There are various other problems concerning the
modelling and interpretation of serial correlation in stochastic processes and cross-
correlation between processes; see Boyer, Gibson, and Loretan (1999) for problems
related to this. We do not consider the statistical problem of estimating correlations
and rank correlation, where a great deal could also be said about the available
estimators, their properties and their robustness, or the lack of it.

Another statistical aspect which we do not cover in this paper is the issue of
fitting copulas to data. For this important practical question there are a number of
references. Frees and Valdez (1998), and Klugman and Parsa (1999) take an actu-
arial point of view, whereas Genest and Rivest (1993), Genest, Ghoudi, and Rivest
(1995), and Capéraà, Fougères, and Genest (1997) develop the general statistical
theory of fitting copulas.

1.3. Organization of paper. In Section 2 we begin by discussing joint distribu-
tions and the use of copulas as descriptions of dependence between random variables.
Although copulas are a much more recent and less well known approach to describ-
ing dependence than correlation, we introduce them first for two reasons. First,
they are the principal tool we will use to illustrate the pitfalls of correlation and
second, they are the approach which in our opinion affords the best understanding
of the general concept of dependence.

In Section 3 we examine linear correlation and define spherical and elliptical
distributions, which constitute, in a sense, the natural environment of the linear
correlation. We mention both some advantages and shortcomings of correlation.
Section 4 is devoted to a brief discussion of some alternative dependence concepts
and measures including comonotonicity and rank correlation. Three of the most
common fallacies concerning linear correlation and dependence are presented in
Section 5. In Section 6 we explain how vectors of dependent random variables may
be simulated using correct methods.
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2. Copulas

Probability-integral and quantile transforms play a fundamental role when work-
ing with copulas. In the following proposition we collect together some essential
facts that we use repeatedly in this paper. The notation X ∼ F means that the
random variable X has distribution function F .

Proposition 1. Let X be a random variable with distribution function F . Let F−1

be the quantile function of F , i.e.

F−1(α) = inf{x|F (x) ≥ α},
α ∈ (0, 1). Then

1. For any standard-uniformly distributed U ∼ U(0, 1) we have F−1(U) ∼ F .
This gives a simple method for simulating random variates with distribution
function F .

2. If F is continuous then the random variable F (X) is standard-uniformly dis-
tributed, i.e. F (X) ∼ U(0, 1).

Proof. In most elementary texts on probability.

2.1. What is a copula? The dependence between the real-valued random vari-
ables X1, . . . , Xn is completely described by their joint distribution function

F (x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn].

The idea of separating F into a part which describes the dependence structure and
parts which describe the marginal behaviour only, has led to the concept of a copula.

Suppose we transform the random vector X = (X1, . . . , Xn)t component-wise to
have standard-uniform marginal distributions, U(0, 1)1. For simplicity we assume to
begin with that X1, . . . , Xn have continuous marginal distributions F1, . . . , Fn, so
that this can be achieved by using the probability-integral transformation T : Rn →
Rn, (x1, . . . , xn)t 7→ (F1(x1), . . . , Fn(xn))t. The joint distribution function C of
(F1(X1), . . . , Fn(Xn))t is then called the copula of the random vector (X1, . . . , Xn)t

or the multivariate distribution F . It follows that

F (x1, . . . , xn) = P[F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)]

= C(F1(x1), . . . , Fn(xn)). (1)

Definition 1. A copula is the distribution function of a random vector in Rn with
uniform-(0, 1) marginals. Alternatively a copula is any function C : [0, 1]n → [0, 1]
which has the three properties:

1. C(x1, . . . , xn) is increasing in each component xi.
2. C(1, . . . , 1, xi, 1, . . . , 1) = xi for all i ∈ {1, . . . , n}, xi ∈ [0, 1].
3. For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have:

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(x1i1 , . . . , xnin) ≥ 0, (2)

where xj1 = aj and xj2 = bj for all j ∈ {1, . . . , n}.
These two alternative definitions can be shown to be equivalent. It is a par-

ticularly easy matter to verify that the first definition in terms of a multivariate
distribution function with standard uniform marginals implies the three properties
above: property 1 is clear; property 2 follows from the fact that the marginals

1Alternatively one could transform to any other distribution, but U(0, 1) is particularly easy.
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are uniform-(0, 1); property 3 is true because the sum (2) can be interpreted as
P[a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn], which is non-negative.

For any continuous multivariate distribution the representation (1) holds for a
unique copula C. If F1, . . . , Fn are not all continuous it can still be shown (see
Schweizer and Sklar (1983), Chapter 6) that the joint distribution function can
always be expressed as in (1), although in this case C is no longer unique and we
refer to it as a possible copula of F .

The representation (1), and some invariance properties which we will show shortly,
suggest that we interpret a copula associated with (X1, . . .Xn)t as being the depen-
dence structure. This makes particular sense when all the Fi are continuous and the
copula is unique; in the discrete case there will be more than one way of writing the
dependence structure. Pitfalls related to non-continuity of marginal distributions
are presented in Marshall (1996). A recent, very readable introduction to copulas
is Nelsen (1999).

2.2. Examples of copulas. For independent random variables the copula trivially
takes the form

Cind(x1, . . . , xn) = x1 · . . . · xn. (3)

We now consider some particular copulas for non-independent pairs of random vari-
ables (X, Y ) having continuous distributions. The Gaussian or normal copula is

CGa
ρ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

1

2π(1− ρ2)1/2
exp

{
−(s2 − 2ρst + t2)

2(1− ρ2)

}
dsdt, (4)

where −1 < ρ < 1 and Φ is the univariate standard normal distribution func-
tion. Variables with standard normal marginal distributions and this dependence
structure, i.e. variables with d.f. CGa

ρ (Φ(x),Φ(y)), are standard bivariate normal
variables with correlation coefficient ρ. Another well-known copula is the Gumbel
or logistic copula

CGu
β (x, y) = exp

[
−
{

(− log x)1/β + (− log y)1/β
}β]

, (5)

where 0 < β ≤ 1 is a parameter which controls the amount of dependence between
X and Y ; β = 1 gives independence and the limit of CGu

β for β → 0+ leads to perfect
dependence, as will be discussed in Section 4. This copula, unlike the Gaussian, is
a copula which is consistent with bivariate extreme value theory and could be used
to model the limiting dependence structure of component-wise maxima of bivariate
random samples (Joe (1997), Galambos (1987)).

The following is a simple method for generating a variety of copulas which will
be used later in the paper. Let f, g : [0, 1] → R with

∫ 1

0
f(x)dx =

∫ 1

0
g(y)dy = 0

and f(x)g(y) ≥ −1 for all x, y ∈ [0, 1]. Then h(x, y) = 1 + f(x)g(y) is a bivariate
density function on [0, 1]2. Consequently,

C(x, y) =

∫ x

0

∫ y

0

h(u, v)dudv = xy +

(∫ x

0

f(u)du

)(∫ y

0

g(v)dv

)
(6)

is a copula. If we choose f(x) = α(1− 2x), g(y) = (1− 2y), |α| ≤ 1, we obtain, for
example, the Farlie-Gumbel-Morgenstern copula C(x, y) = xy[1 +α(1−x)(1− y))].
Many copulas and methods to construct them can be found in the literature; see
for example Hutchinson and Lai (1990) or Joe (1997).
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2.3. Invariance. The following proposition shows one attractive feature of the cop-
ula representation of dependence, namely that the dependence structure as summa-
rized by a copula is invariant under increasing and continuous transformations of
the marginals.

Proposition 2. If (X1, . . . , Xn)t has copula C and T1, . . . , Tn are increasing con-
tinuous functions, then (T1(X1), . . . , Tn(Xn))t also has copula C.

Proof. Let (U1, . . . , Un)t have distribution function C (in the case of continuous
marginals FXi take Ui = FXi(Xi)). We may write

C(FT1(X1)(x1), . . . , FTn(Xn)(xn))

= P[U1 ≤ FT1(X1)(x1), . . . , Un ≤ FTn(Xn)(xn)]

= P[F−1
T1(X1)(U1) ≤ x1, . . . , F

−1
Tn(Xn)(Un) ≤ xn]

= P[T1 ◦ F−1
X1

(U1) ≤ x1, . . . , Tn ◦ F−1
Xn

(Un) ≤ xn]

= P[T1(X1) ≤ x1, . . . , Tn(Xn) ≤ xn].

Remark 1. The continuity of the transformations Ti is necessary for general ran-
dom variables (X1, . . . , Xn)t since, in that case, F−1

Ti(Xi)
= Ti◦F−1

Xi
. In the case where

all marginal distributions of X are continuous it suffices that the transformations
are increasing (see also Chapter 6 of Schweizer and Sklar (1983)).

As a simple illustration of the relevance of this result, suppose we have a prob-
ability model (multivariate distribution) for dependent insurance losses of various
kinds. If we decide that our interest now lies in modelling the logarithm of these
losses, the copula will not change. Similarly if we change from a model of percentage
returns on several financial assets to a model of logarithmic returns, the copula will
not change, only the marginal distributions.

3. Linear Correlation

3.1. What is correlation? We begin by considering pairs of real-valued, non-
degenerate random variables X, Y with finite variances.

Definition 2. The linear correlation coefficient between X and Y is

ρ(X, Y ) =
Cov[X, Y ]√
σ2[X]σ2[Y ]

,

where Cov[X, Y ] is the covariance between X and Y , Cov[X, Y ] = E[XY ]−E[X]E[Y ]
and σ2[X], σ2[Y ] denote the variances of X and Y .

The linear correlation is a measure of linear dependence. In the case of indepen-
dent random variables, ρ(X, Y ) = 0 since Cov[X, Y ] = 0. In the case of perfect
linear dependence, i.e. Y = aX + b a.s. or P[Y = aX + b] = 1 for a ∈ R \ {0},
b ∈ R, we have ρ(X, Y ) = ±1. This is shown by considering the representation

ρ(X, Y )2 =

σ2[Y ]−min
a,b
E[(Y − (aX + b))2]

σ2[Y ]
. (7)

In the case of imperfect linear dependence, −1 < ρ(X, Y ) < 1, and this is the case
when misinterpretations of correlation are possible, as will later be seen in Section 5.
Equation (7) shows the connection between correlation and simple linear regression.
The right hand side can be interpreted as the relative reduction in the variance of
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Y by linear regression on X, The regression coefficients aR, bR, which minimise the
squared distance E[(Y − (aX + b))2] are given by

aR =
Cov[X, Y ]

σ2[X]
,

bR = E[Y ]− aRE[X].

Correlation fulfills the linearity property

ρ(αX + β, γY + δ) = sgn(α · γ)ρ(X, Y ),

when α, γ ∈ R \ {0}, β, δ ∈ R. Correlation is thus invariant under positive affine
transformations, i.e. strictly increasing linear transformations.

The generalisation of correlation to more than two random variables is straight-
forward. Consider vectors of random variables X = (X1, . . . , Xn)t and Y =
(Y1, . . . , Yn)t in Rn. We can summarise all pairwise covariances and correlations
in n × n matrices Cov[X,Y] and ρ(X,Y). As long as the corresponding variances
are finite we define

Cov[X,Y]ij := Cov[Xi, Yj],

ρ(X,Y)ij := ρ(Xi, Yj) 1 ≤ i, j ≤ n.

It is well known that these matrices are symmetric and positive semi-definite. Often
one considers only pairwise correlations between components of a single random vec-
tor; in this case we set Y = X and consider ρ(X) := ρ(X,X) or Cov[X] := Cov[X,X].

The popularity of linear correlation can be explained in several ways. Correla-
tion is often straightforward to calculate. For many bivariate distributions it is a
simple matter to calculate second moments (variances and covariances) and hence
to derive the correlation coefficient. Alternative measures of dependence, which we
will encounter in Section 4 may be more difficult to calculate.

Moreover, correlation and covariance are easy to manipulate under linear op-
erations. Under affine linear transformations A : Rn → Rm, x 7→ Ax + a and
B : Rn → Rm, x 7→ Bx+ b for A,B ∈ Rm×n, a, b ∈ Rm we have

Cov[AX + a,BY + b] = ACov[X,Y]Bt.

A special case is the following elegant relationship between variance and covariance
for a random vector. For every linear combination of the components αtX with
α ∈ Rn,

σ2[αtX] = αtCov[X]α.

Thus, the variance of any linear combination is fully determined by the pairwise
covariances between the components. This fact is commonly exploited in portfolio
theory.

A third reason for the popularity of correlation is its naturalness as a measure of
dependence in multivariate normal distributions and, more generally, in multivariate
spherical and elliptical distributions, as will shortly be discussed. First, we mention
a few disadvantages of correlation.

3.2. Shortcomings of correlation. We consider again the case of two real-valued
random variables X and Y .

• The variances of X and Y must be finite or the linear correlation is not defined.
This is not ideal for a dependence measure and causes problems when we
work with heavy-tailed distributions. For example, the covariance and the
correlation between the two components of a bivariate tν-distributed random
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vector are not defined for ν ≤ 2. Non-life actuaries who model losses in different
business lines with infinite variance distributions must be aware of this.
• Independence of two random variables implies they are uncorrelated (linear

correlation equal to zero) but zero correlation does not in general imply inde-
pendence. A simple example where the covariance disappears despite strong
dependence between random variables is obtained by taking X ∼ N (0, 1),
Y = X2, since the third moment of the standard normal distribution is zero.
Only in the case of the multivariate normal is it permissable to interpret un-
correlatedness as implying independence. This implication is no longer valid
when only the marginal distributions are normal and the joint distribution is
non-normal, which will also be demonstrated in Example 1. The class of spher-
ical distributions model uncorrelated random variables but are not, except in
the case of the multivariate normal, the distributions of independent random
variables.
• Linear correlation has the serious deficiency that it is not invariant under non-

linear strictly increasing transformations T : R → R. For two real-valued
random variables we have in general

ρ(T (X), T (Y )) 6= ρ(X, Y ).

If we take the bivariate standard normal distribution with correlation ρ and
the transformation T (x) = Φ(x) (the standard normal distribution function)
we have

ρ(T (X), T (Y )) =
6

π
arcsin

(ρ
2

)
, (8)

see Joag-dev (1984). In general one can also show (see Kendall and Stu-
art (1979), page 600) for bivariate normally-distributed vectors and arbitrary

transformations T, T̃ : R→ R that

|ρ(T (X), T̃ (Y ))| ≤ |ρ(X, Y )|,
which is also true in (8).

3.3. Spherical and elliptical distributions. The spherical distributions extend
the standard multivariate normal distribution Nn(0, I), i.e. the distribution of in-
dependent standard normal variables. They provide a family of symmetric distri-
butions for uncorrelated random vectors with mean zero.

Definition 3.
A random vector X = (X1, . . . , Xn)t has a spherical distribution if for every orthog-
onal map U ∈ Rn×n (i.e. maps satisfying UU t = U tU = In×n)

UX =d X. 2

The characteristic function ψ(t) = E[exp(ittX)] of such distributions takes a
particularly simple form. There exists a function φ : R≥0 → R such that ψ(t) =
φ(ttt) = φ(t21+. . .+t2n). This function is the characteristic generator of the spherical
distribution and we write

X ∼ Sn(φ).

If X has a density f(x) = f(x1, . . . , xn) then this is equivalent to f(x) = g(xtx) =
g(x2

1 + . . .+x2
n) for some function g : R≥0 → R≥0, so that the spherical distributions

are best interpreted as those distributions whose density is constant on spheres.

2We standardly use =d to denote equality in distribution.
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Some other examples of densities in the spherical class are those of the multivariate
t-distribution with ν degrees of freedom f(x) = c(1+xtx/ν)−(n+ν)/2 and the logistic
distribution f(x) = c exp(−xtx)/[1 + exp(−xtx)]2, where c is a generic normalizing
constant. Note that these are the distributions of uncorrelated random variables but,
contrary to the normal case, not the distributions of independent random variables.
In the class of spherical distributions the multivariate normal is the only distribution
of independent random variables, see Fang, Kotz, and Ng (1987), page 106.

The spherical distributions admit an alternative stochastic representation. X ∼
Sn(φ) if and only if

X =d R ·U, (9)

where the random vector U is uniformly distributed on the unit hypersphere Sn−1 =
{x ∈ Rn|xtx = 1} in Rn and R ≥ 0 is a positive random variable, independent
of U (Fang, Kotz, and Ng (1987), page 30). Spherical distributions can thus be
interpreted as mixtures of uniform distributions on spheres of differing radius in
Rn. For example, in the case of the standard multivariate normal distribution
the generating variate satisfies R ∼

√
χ2
n, and in the case of the multivariate t-

distribution with ν degrees of freedom R2/n ∼ F (n, ν) holds, where F (n, ν) denotes
an F-distribution with n and ν degrees of freedom.

Elliptical distributions extend the multivariate normal Nn(µ,Σ), i.e. the distri-
bution with mean µ and covariance matrix Σ. Mathematically they are the affine
maps of spherical distributions in Rn.

Definition 4. Let T : Rn → Rn,x 7→ Ax + µ, A ∈ Rn×n, µ ∈ Rn be an affine map.
X has an elliptical distribution if X = T (Y) and Y ∼ Sn(φ).

Since the characteristic function can be written as

ψ(t) = E[exp(ittX)] = E[exp(itt(AY + µ))]

= exp(ittµ) exp(i(Att)tY) = exp(ittµ)φ(ttΣt),

where Σ := AAt, we denote the elliptical distributions

X ∼ En(µ,Σ, φ).

For example, Nn(µ,Σ) = En(µ,Σ, φ) with φ(t) = exp(−t2/2). If Y has a density
f(y) = g(yty) and if A is regular (det(A) 6= 0 so that Σ is strictly positive-definite),
then X = AY + µ has density

h(x) =
1√

det(Σ)
g((x− µ)tΣ−1(x− µ)),

and the contours of equal density are now ellipsoids.
Knowledge of the distribution of X does not completely determine the elliptical

representation En(µ,Σ, φ); it uniquely determines µ but Σ and φ are only determined
up to a positive constant3. In particular Σ can be chosen so that it is directly
interpretable as the covariance matrix of X, although this is not always standard.
Let X ∼ En(µ,Σ, φ), so that X =d µ+AY where Σ = AAt and Y is a random vector
satisfying Y ∼ Sn(φ). Equivalently Y =d R·U, where U is uniformly distributed on
Sn−1 and R is a positive random variable independent of U. If E[R2] <∞ it follows

3If X is elliptical and non-degenerate there exists µ, A and Y ∼ Sn(φ) so that X =d AY + µ,
but for any λ ∈ R \ {0} we also have X =d (A/λ)λY + µ where λY ∼ Sn(φ̃) and φ̃(u) := φ(λ2u).
In general, if X ∼ En(µ,Σ, φ) = En(µ̃, Σ̃, φ̃) then µ = µ̃ and there exists c > 0 so that Σ̃ = cΣ and
φ̃(u) = φ(u/c) (see Fang, Kotz, and Ng (1987), page 43).
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that E[X] = µ and Cov[X] = AAtE[R2]/n = ΣE[R2]/n since Cov[U] = In×n/n.

By starting with the characteristic generator φ̃(u) := φ(u/c) with c = n/E[R2] we
ensure that Cov[X] = Σ. An elliptical distribution is thus fully described by its
mean, its covariance matrix and its characteristic generator.

We now consider some of the reasons why correlation and covariance are natu-
ral measures of dependence in the world of elliptical distributions. First, many of
the properties of the multivariate normal distribution are shared by the elliptical
distributions. Linear combinations, marginal distributions and conditional distri-
butions of elliptical random variables can largely be determined by linear algebra
using knowledge of covariance matrix, mean and generator. This is summarized in
the following properties.

• Any linear combination of an elliptically distributed random vector is also
elliptical with the same characteristic generator φ. If X ∼ En(µ,Σ, φ) and
B ∈ Rm×n, b ∈ Rm, then

BX + b ∼ Em(Bµ+ b, BΣBt, φ).

It is immediately clear that the components X1, . . . , Xn are all symmetrically
distributed random variables of the same type4.
• The marginal distributions of elliptical distributions are also elliptical with

the same generator. Let X =

(
X1

X2

)
∼ En(Σ, µ, φ) with X1 ∈ Rp, X2 ∈ Rq,

p + q = n. Let E[X] = µ =

(
µ1

µ2

)
, µ1 ∈ Rp, µ2 ∈ Rq and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

accordingly. Then

X1 ∼ Ep(µ1,Σ11, φ), X2 ∼ Eq(µ2,Σ22, φ).

• We assume that Σ is strictly positive-definite. The conditional distribution of

X1 given X2 is also elliptical, although in general with a different generator φ̃:

X1|X2 ∼ Ep(µ1.2,Σ11.2, φ̃), (10)

where µ1.2 = µ1 + Σ12Σ−1
22 (X2 − µ2), Σ11.2 = Σ11 − Σ12Σ−1

22 Σ21. The distribu-

tion of the generating variable R̃ in (9) corresponding to φ̃ is the conditional
distribution√

(X− µ)tΣ−1(X− µ)− (X2 − µ2)tΣ−1
22 (X2 − µ2)

∣∣∣X2.

Since in the case of multivariate normality uncorrelatedness is equivalent to

independence we have R̃ =d

√
χ2
p and φ̃ = φ, so that the conditional distribu-

tion is of the same type as the unconditional; for general elliptical distributions
this is not true. From (10) we see that

E[X1|X2] = µ1.2 = µ1 + Σ12Σ−1
22 (X2 − µ2),

so that the best prediction of X1 given X2 is linear in X2 and is simply the
linear regression of X1 on X2. In the case of multivariate normality we have
additionally

Cov[X1|X2] = Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21,

4Two random variables X und Y are of the same type if we can find a > 0 and b ∈ R so that
Y =d aX + b.
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which is independent of X2. The independence of the conditional covariance
from X2 is also a characterisation of the multivariate normal distribution in
the class of elliptical distributions (Kelker 1970).

Since the type of all marginal distributions is the same, we see that an elliptical
distribution is uniquely determined by its mean, its covariance matrix and knowl-
edge of this type. Alternatively the dependence structure (copula) of a continuous
elliptical distribution is uniquely determined by the correlation matrix and knowl-
edge of this type. For example, the copula of the bivariate t-distribution with ν
degrees of freedom and correlation ρ is

Ct
ν,ρ(x, y) =

∫ t−1
ν (x)

−∞

∫ t−1
ν (y)

−∞

1

2π(1− ρ2)1/2

{
1 +

(s2 − 2ρst+ t2)

ν(1− ρ2)

}−(ν+2)/2

dsdt,

(11)

where t−1
ν (x) denotes the inverse of the distribution function of the standard uni-

variate t-distribution with ν degrees of freedom. This copula is seen to depend only
on ρ and ν.

An important question is, which univariate types are possible for the marginal
distribution of an elliptical distribution in Rn for any n ∈ N? Without loss of
generality, it is sufficient to consider the spherical case (Fang, Kotz, and Ng (1987),
pages 48–51). F is the marginal distribution of a spherical distribution in Rn for
any n ∈ N if and only if F is a mixture of centred normal distributions. In other
words, if F has a density f , the latter is of the form,

f(x) =
1√
2π

∫ ∞
0

1

σ
exp

(
− x2

2σ2

)
G(dσ),

where G is a distribution function on [0,∞) with G(0) = 0. The corresponding
spherical distribution has the alternative stochastic representation

X =d S · Z,
where S ∼ G, Z ∼ Nn(0, In×n) and S and Z are independent. For example, the
multivariate t-distribution with ν degrees of freedom can be constructed by taking
S ∼
√
ν/
√
χ2
ν .

3.4. Covariance and elliptical distributions in risk management. A fur-
ther important feature of the elliptical distributions is that these distributions are
amenable to the standard approaches of risk management. They support both the
use of Value-at-Risk as a measure of risk and the mean-variance (Markowitz) ap-
proach (see e.g. Campbell, Lo, and MacKinlay (1997)) to risk management and
portfolio optimization.

Suppose that X = (X1, . . . , Xn)t represents n risks with an elliptical distribution
and that we consider linear portfolios of such risks

{Z =

n∑
i=1

λiXi | λi ∈ R}

with distribution FZ . The Value-at-Risk (VaR) of portfolio Z at probability level α
is given by

VaRα(Z) = F−1
Z (α) = inf{z ∈ R : FZ(z) ≥ α};

i.e. it is simply an alternative notation for the quantile function of FZ evaluated at
α and we will often use VaRα(Z) and F−1

Z (α) interchangeably.
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In the elliptical world the use of VaR as a measure of the risk of a portfolio Z
makes sense because VaR is a coherent risk measure in this world. A coherent
risk measure in the sense of Artzner, Delbaen, Eber, and Heath (1999) is a real-
valued function % on the space of real-valued random variables only depending on
the probability distribution5, which fulfills the following (sensible) properties:

A1. (Monotonicity). For any two random variables X ≥ Y : %(X) ≥ %(Y ).
A2. (Subabdditivity). For any two random variables X and Y we have

%(X + Y ) ≤ %(X) + %(Y ).
A3. (Positive homogeneity). For λ ≥ 0 we have that %(λX) = λ%(X).
A4. (Translation invariance).

For any a ∈ R we have that %(X + a) = %(X) + a.

In the elliptical world the use of any positive homogeneous, translation-invariant
measure of risk to rank risks or to determine optimal risk-minimizing portfolio
weights under the condition that a certain return is attained, is equivalent to the
Markowitz approach where the variance is used as risk measure. Alternative risk
measures such as VaRα or expected shortfall, E[Z|Z > VaRα(Z)], give different
numerical values, but have no effect on the management of risk. We make these
assertions more precise in Theorem 1.

Throughout this paper for notational and pedagogical reasons we use VaR in its
most simplistic form, i.e. disregarding questions of appropriate horizon, estimation
of the underlying profit-and-loss distribution, etc. However, the key messages stem-
ming from this oversimplified view carry over to more concrete VaR calculations in
practice.

Theorem 1. Suppose X ∼ En(µ,Σ, φ) with σ2[Xi] <∞ for all i. Let

P = {Z =
n∑
i=1

λiXi | λi ∈ R}

be the set of all linear portfolios. Then the following are true.

1. (Subadditivity of VaR.) For any two portfolios Z1, Z2 ∈ P and 0.5 ≤ α < 1,

VaRα(Z1 + Z2) ≤ VaRα(Z1) + VaRα(Z2).

2. (Equivalence of variance and positive homogeneous risk measurement.) Let %
be a real-valued risk measure on the space of real-valued random variables which
depends only on the distribution of a random variable X. Suppose this measure
satisfies A3. Then for Z1, Z2 ∈ P

%(Z1 − E[Z1]) ≤ %(Z2 − E[Z2]) ⇐⇒ σ2[Z1] ≤ σ2[Z2].

3. (Markowitz risk-minimizing portfolio.) Let % be as in 2 and assume that A4 is
also satisfied. Let

E = {Z =

n∑
i=1

λiXi | λi ∈ R,
n∑
i=1

λi = 1,E[Z] = r}

be the subset of portfolios giving expected return r. Then

argminZ∈E %(Z) = argminZ∈E σ
2[Z].

Proof. The main observation is that (Z1, Z2)t has an elliptical distribution so Z1,
Z2 and Z1 + Z2 all have distributions of the same type.

5Positive values of these random variables should be interpreted as losses; this is in contrast to
Artzner, Delbaen, Eber, and Heath (1999), who interpret negative values as losses.
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1. Let qα be the α-quantile of the standardised distribution of this type. Then

VaRα(Z1) = E[Z1] + σ[Z1]qα,

VaRα(Z2) = E[Z2] + σ[Z2]qα,

VaRα(Z1 + Z2) = E[Z1 + Z2] + σ[Z1 + Z2]qα.

Since σ[Z1 + Z2] ≤ σ[Z1] + σ[Z2] and qα ≥ 0 the result follows.
2. Since Z1 and Z2 are random variables of the same type, there exists an a > 0

such that Z1 − E[Z1] =d a(Z2 − E[Z2]). It follows that

%(Z1 − E[Z1]) ≤ %(Z2 − E[Z2]) ⇐⇒ a ≤ 1 ⇐⇒ σ2[Z1] ≤ σ2[Z2].

3. Follows from 2 and the fact that we optimize over portfolios with identical
expectation.

While this theorem shows that in the elliptical world the Markowitz variance-
minimizing portfolio minimizes popular risk measures like VaR and expected short-
fall (both of which are coherent in this world), it can also be shown that the
Markowitz portfolio minimizes some other risk measures which do not satisfy A3
and A4. The partial moment measures of downside risk provide an example. The
kth (upper) partial moment of a random variable X with respect to a threshold τ
is defined to be

LPMk,τ (X) = E
[
{(X − τ)+}k

]
, k ≥ 0, τ ∈ R.

Suppose we have portfolios Z1, Z2 ∈ E and assume additionally that r ≤ τ , so
that the threshold is set above the expected return r. Using a similar approach to
the preceding theorem it can be shown that

σ2[Z1] ≤ σ2[Z2] ⇐⇒ (Z1 − τ) =d a(Z2 − τ)− (1− a)(τ − r),
with 0 < a ≤ 1. It follows that

LPMk,τ(Z1) ≤ LPMk,τ(Z2) ⇐⇒ σ2[Z1] ≤ σ2[Z2],

from which the equivalence to Markowitz is clear. See Harlow (1991) for an empir-
ical case study of the change in the optimal asset allocation when LPM1,τ (target
shortfall) and LPM2,τ (target semi-variance) are used.

4. Alternative dependence concepts

We begin by clarifying what we mean by the notion of perfect dependence. We
go on to discuss other measures of dependence, in particular rank correlation. We
concentrate on pairs of random variables.

4.1. Comonotonicity. For every copula the well-known Fréchet bounds apply
(Fréchet (1957))

max{x1 + · · ·+ xn + 1− n, 0}︸ ︷︷ ︸
C`(x1,... ,xn)

≤ C(x1, . . . , xn) ≤ min{x1, . . . , xn}︸ ︷︷ ︸
Cu(x1,... ,xn)

; (12)

these follow from the fact that every copula is the distribution function of a random
vector (U1, . . . , Un)t with Ui ∼ U(0, 1). In the case n = 2 the bounds C` and Cu are
themselves copulas since, if U ∼ U(0, 1), then

C`(x1, x2) = P[U ≤ x1, 1− U ≤ x2]

Cu(x1, x2) = P[U ≤ x1, U ≤ x2],
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so that C` and Cu are the bivariate distribution functions of the vectors (U, 1−U)t

and (U,U)t respectively.
The distribution of (U, 1−U)t has all its mass on the diagonal between (0, 1) and

(1, 0), whereas that of (U,U)t has its mass on the diagonal between (0, 0) and (1, 1).
In these cases we say that C` and Cu describe perfect positive and perfect negative
dependence respectively. This is formalized in the following theorem.

Theorem 2. Let (X, Y )t have one of the copulas C` or Cu.6 (In the former case
this means F (x1, x2) = max{F1(x1) + F2(x2) − 1, 0}; in the latter F (x1, x2) =
min{F1(x1), F2(x2)}.) Then there exist two monotonic functions u, v : R → R and
a real-valued random variable Z so that

(X, Y )t =d (u(Z), v(Z))t,

with u increasing and v decreasing in the former case and with both increasing in
the latter. The converse of this result is also true.

Proof. The proof for the second case is given essentially in Wang and Dhaene (1998).
A geometrical interpretation of Fréchet copulas is given in Mikusinski, Sherwood,
and Taylor (1992). We consider only the first case C = C`, the proofs being similar.
Let U be a U(0, 1)-distributed random variable. We have

(X, Y )t =d (F−1
1 (U), F−1

2 (1− U))t = (F−1
1 (U), F−1

2 ◦ g (U))t,

where F−1
i (q) = infx∈R{Fi(x) ≥ q}, q ∈ (0, 1) is the quantile function of Fi, i = 1, 2,

and g(x) = 1 − x. It follows that u := F−1
1 is increasing and v := F−1

2 ◦ g is
decreasing. For the converse assume

(X, Y )t =d (u(Z), v(Z))t,

with u and v increasing and decreasing respectively. We define
A := {Z ∈ u−1((−∞, x])}, B := {Z ∈ v−1((−∞, y])}. If A ∩ B 6= ∅ then the
monotonicity of u and v imply that

P[A ∪B] = P[Ω] = 1 = P[A] + P[B]− P[A ∩B]

and hence P[A ∩ B] = P[u(Z) ≤ x, v(Z) ≤ y] = F1(x) + F2(y) − 1. If A ∩ B = ∅,
then F1(x) + F2(y)− 1 ≤ 0. In all cases we have

P[u(Z) ≤ x, v(Z) ≤ y] = max{F1(x) + F2(y)− 1, 0}.

We introduce the following terminology.

Definition 5. [Yaari (1987)] If (X, Y )t has the copula Cu (see again footnote 6)
then X and Y are said to be comonotonic; if it has copula C` they are said to be
countermonotonic.

In the case of continuous distributions F1 and F2 a stronger version of the result
can be stated:

C = C` ⇐⇒ Y = T (X) a.s., T = F−1
2 ◦ (1− F1) decreasing, (13)

C = Cu ⇐⇒ Y = T (X) a.s., T = F−1
2 ◦ F1 increasing. (14)

6If there are discontinuities in F1 or F2 so that the copula is not unique, then we interpret C`
and Cu as being possible copulas.
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4.2. Desired properties of dependence measures. A measure of dependence,
like linear correlation, summarises the dependence structure of two random variables
in a single number. We consider the properties that we would like to have from this
measure. Let δ(·, ·) be a dependence measure which assigns a real number to any
pair of real-valued random variables X and Y . Ideally, we desire the following
properties:

P1. δ(X, Y ) = δ(Y,X) (symmetry).
P2. −1 ≤ δ(X, Y ) ≤ 1 (normalisation).
P3. δ(X, Y ) = 1 ⇐⇒ X, Y comonotonic;

δ(X, Y ) = −1 ⇐⇒ X, Y countermonotonic.
P4. For T : R→ R strictly monotonic on the range of X:

δ(T (X), Y ) =

{
δ(X, Y ) T increasing,
−δ(X, Y ) T decreasing.

Linear correlation fulfills properties P1 and P2 only. In the next Section we see that
rank correlation also fulfills P3 and P4 if X and Y are continuous. These properties
obviously represent a selection and the list could be altered or extended in various
ways (see Hutchinson and Lai (1990), Chapter 11). For example, we might like to
have the property

P5. δ(X, Y ) = 0 ⇐⇒ X, Y are independent.

Unfortunately, this contradicts property P4 as the following shows.

Proposition 3. There is no dependence measure satisfying P4 and P5.

Proof. Let (X, Y )t be uniformly distributed on the unit circle S1 in R2, so that
(X, Y )t = (cosφ, sinφ)t with φ ∼ U(0, 2π). Since (−X, Y )t =d (X, Y )t, we have

δ(−X, Y ) = δ(X, Y ) = −δ(X, Y ),

which implies δ(X, Y ) = 0 although X and Y are dependent. With the same
argumentation it can be shown that the measure is zero for any spherical distribution
in R2.

If we require P5, then we can consider dependence measures which only assign
positive values to pairs of random variables. For example, we can consider the
amended properties,

P2b. 0 ≤ δ(X, Y ) ≤ 1.
P3b. δ(X, Y ) = 1 ⇐⇒ X, Y comonotonic or countermonotonic.
P4b. For T : R→ R strictly monotonic δ(T (X), Y ) = δ(X, Y ).

If we restrict ourselves to the case of continuous random variables there are de-
pendence measures which fulfill all of P1, P2b, P3b, P4b and P5, although they
are in general measures of theoretical rather than practical interest. We introduce
them briefly in the next Section. A further measure which satisfies all of P1, P2b,
P3b, P4b and P5 (with the exception of the implication δ(X, Y ) = 1 =⇒ X, Y
comonotonic or countermonotonic) is monotone correlation,

δ(X, Y ) = sup
f,g

ρ(f(X), g(Y )),

where ρ represents linear correlation and the supremum is taken over all monotonic
f and g such that 0 < σ2(f(X)), σ2(g(Y )) < ∞ (Kimeldorf and Sampson 1978).
The disadvantage of all of these measures is that they are constrained to give non-
negative values and as such cannot differentiate between positive and negative de-
pendence and that it is often not clear how to estimate them. An overview of
dependence measures and their statistical estimation is given by Tjøstheim (1996).
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4.3. Rank correlation.

Definition 6. Let X and Y be random variables with distribution functions F1

and F2 and joint distribution function F . Spearman’s rank correlation is given by

ρS(X, Y ) = ρ(F1(X), F2(Y )), (15)

where ρ is the usual linear correlation. Let (X1, Y1) and (X2, Y2) be two independent
pairs of random variables from F , then Kendall’s rank correlation is given by

ρτ (X, Y ) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (16)

For the remainder of this Section we assume that F1 and F2 are continuous dis-
tributions, although some of the properties of rank correlation that we derive could
partially be formulated for discrete distributions. Spearman’s rank correlation is
then seen to be the correlation of the copula C associated with (X, Y )t. Both ρS
and ρτ can be considered to be measures of the degree of monotonic dependence be-
tween X and Y , whereas linear correlation measures the degree of linear dependence
only. The generalisation of ρS and ρτ to n > 2 dimensions can be done analogously
to that of linear correlation: we write pairwise correlations in a n× n-matrix.

We collect together the important facts about ρS and ρτ in the following theorem.

Theorem 3. Let X and Y be random variables with continuous distributions F1

and F2, joint distribution F and copula C. The following are true:

1. ρS(X, Y ) = ρS(Y,X), ρτ (X, Y ) = ρτ (Y,X).
2. If X and Y are independent then ρS(X, Y ) = ρτ (X, Y ) = 0.
3. −1 ≤ ρS(X, Y ), ρτ (X, Y ) ≤ +1.

4. ρS(X, Y ) = 12
∫ 1

0

∫ 1

0
{C(x, y)− xy}dxdy.

5. ρτ (X, Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

6. For T : R → R strictly monotonic on the range of X, both ρS and ρτ satisfy
P4.

7. ρS(X, Y ) = ρτ (X, Y ) = 1 ⇐⇒ C = Cu ⇐⇒ Y = T (X) a.s. with T
increasing.

8. ρS(X, Y ) = ρτ (X, Y ) = −1 ⇐⇒ C = C` ⇐⇒ Y = T (X) a.s. with T
decreasing.

Proof. 1., 2. and 3. are easily verified.

4. Use of the identity, due to Höffding (1940)

Cov[X, Y ] =

∫ ∞
−∞

∫ ∞
−∞
{F (x, y)− F1(x)F2(y)} dxdy (17)

which is found, for example, in Dhaene and Goovaerts (1996). Recall that
(F1(X), F2(Y ))t have joint distribution C.

5. Calculate

ρτ (X, Y ) = 2P[(X1 −X2)(Y1 − Y2) > 0]− 1

= 2 · 2
∫∫∫∫

R4

1{x1>x2}1{y1>y2} dF (x2, y2) dF (x1, y1)− 1

= 4

∫∫
R2

F (x1, y1) dF (x1, y1)− 1

= 4

∫∫
C(u, v) dC(u, v)− 1.
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6. Follows since ρτ and ρS can both be expressed in terms of the copula which is
invariant under strictly increasing transformations of the marginals.

7. From 4. it follows immediately that ρS(X, Y ) = +1 iff C(x, y) is maximized
iff C = Cu iff Y = T (X) a.s. Suppose Y = T (X) a.s. with T increasing,
then the continuity of F2 ensures P[Y1 = Y2] = P[T (X1) = T (X2)] = 0, which
implies ρτ (X, Y ) = P[(X1 − X2)(Y1 − Y2) > 0] = 1. Conversely ρτ (X, Y ) = 1
means P ⊗ P[(ω1, ω2) ∈ Ω × Ω|(X(ω1) − X(ω2))(Y (ω1) − Y (ω2)) > 0}] = 1.
Let us define sets A = {ω ∈ Ω|X(w) ≤ x} and B = {ω ∈ Ω|Y (w) ≤ y}.
Assume P[A] ≤ P[B]. We have to show P[A ∩ B] = P[A]. If P[A \ B] > 0
then also P[B \ A] > 0 and (X(ω1) − X(ω2))(Y (ω1) − Y (ω2)) < 0 on the set
(A \ B) × (B \ A), which has measure P[A \ B] · P[B \ A] > 0, and this is a
contradiction. Hence P[A\B] = 0, from which one concludes P[A∩B] = P[A].

8. We use a similar argument to 7.

In this result we have verified that rank correlation does have the properties P1,
P2, P3 and P4. As far as P5 is concerned, the spherical distributions again pro-
vide examples where pairwise rank correlations are zero, despite the presence of
dependence.

Theorem 3 (part 4) shows that ρS is a scaled version of the signed volume enclosed
by the surfaces S1 : z = C(x, y) and S2 : z = xy. The idea of measuring dependence
by defining suitable distance measures between the surfaces S1 and S2 is further
developed in Schweizer and Wolff (1981), where the three measures

δ1(X, Y ) = 12

∫ 1

0

∫ 1

0

|C(u, w)− uv|dudv

δ2(X, Y ) =
(

90

∫ 1

0

∫ 1

0

|C(u, w)− uv|2dudv
)1/2

δ3(X, Y ) = 4 sup
u,v∈[0,1]

|C(u, v)− uv|

are proposed. These are the measures that satisfy our amended set of properties
including P5 but are constrained to give non-negative measurements and as such
cannot differentiate between positive and negative dependence. A further disadvan-
tage of these measures is statistical. Whereas statistical estimation of ρS and ρτ from
data is straightforward (see Gibbons (1988) for the estimators and Tjøstheim (1996)
for asymptotic estimation theory) it is much less clear how we estimate measures
like δ1, δ2, δ3.

The main advantages of rank correlation over ordinary correlation are the invari-
ance under monotonic transformations and the sensible handling of perfect depen-
dence. The main disadvantage is that rank correlations do not lend themselves to
the same elegant variance-covariance manipulations that were discussed for linear
correlation; they are not moment-based correlations. As far as calculation is con-
cerned, there are cases where rank correlations are easier to calculate and cases
where linear correlations are easier to calculate. If we are working, for example,
with multivariate normal or t-distributions then calculation of linear correlation is
easier, since first and second moments are easily determined. If we are working
with a multivariate distribution which possesses a simple closed-form copula, like
the Gumbel or Farlie-Gumbel-Morgenstern, then moments may be difficult to de-
termine and calculation of rank correlation using Theorem 3 (parts 4 and 5) may
be easier.
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4.4. Tail Dependence. If we are particularly concerned with extreme values an
asymptotic measure of tail dependence can be defined for pairs of random variables
X and Y . If the marginal distributions of these random variables are continuous
then this dependence measure is also a function of their copula, and is thus invariant
under strictly increasing transformations.

Definition 7. Let X and Y be random variables with distribution functions F1

and F2. The coefficient of (upper) tail dependence of X and Y is

lim
α→1−

P[Y > F−1
2 (α) | X > F−1

1 (α)] = λ,

provided a limit λ ∈ [0, 1] exists. If λ ∈ (0, 1] X and Y are said to be asymptotically
dependent (in the upper tail); if λ = 0 they are asymptotically independent.

As for rank correlation, this definition makes most sense in the case that F1 and
F2 are continuous distributions. In this case it can be verified, under the assumption
that the limit exists, that

lim
α→1−

P[Y > F−1
2 (α) | X > F−1

1 (α)]

= lim
α→1−

P[Y > VaRα(Y ) | X > VaRα(X)] = lim
α→1−

C(α, α)

1− α ,

where C(u, u) = 1−2u+C(u, u) denotes the survivor function of the unique copula
C associated with (X, Y )t. Tail dependence is best understood as an asymptotic
property of the copula.

Calculation of λ for particular copulas is straightforward if the copula has a
simple closed form. For example, for the Gumbel copula introduced in (5) it is
easily verified that λ = 2 − 2β, so that random variables with this copula are
asymptotically dependent provided β < 1.

For copulas without a simple closed form, such as the Gaussian copula or the
copula of the bivariate t-distribution, an alternative formula for λ is more useful.
Consider a pair of uniform random variables (U1, U2)t with distribution C(x, y),
which we assume is differentiable in both x and y. Applying l’Hospital’s rule we
obtain

λ = − lim
x→1−

dC(x, x)

dx
= lim

x→1−
Pr[U2 > x | U1 = x] + lim

x→1−
Pr[U1 > x | U2 = x].

Furthermore, if C is an exchangeable copula, i.e. (U1, U2)t =d (U2, U1)t, then

λ = 2 lim
x→1−

Pr[U2 > x | U1 = x].

It is often possible to evaluate this limit by applying the same quantile transform
F−1

1 to both marginals to obtain a bivariate distribution for which the conditional
probability is known. If F1 is a distribution function with infinite right endpoint
then

λ = 2 lim
x→1−

Pr[U2 > x | U1 = x] = 2 lim
x→∞

Pr[F−1
1 (U2) > x | F−1

1 (U1) = x]

= 2 lim
x→∞

Pr[Y > x | X = x],

where (X, Y )t ∼ C(F1(x), F1(y)).
For example, for the Gaussian copula CGa

ρ we would take F1 = Φ so that (X, Y )t

has a standard bivariate normal distribution with correlation ρ. Using the fact that
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Y | X = x ∼ N(ρx, 1− ρ2), it can be calculated that

λ = 2 lim
x→∞

Φ(x
√

1− ρ/
√

1 + ρ).

Thus the Gaussian copula gives asymptotic independence, provided that ρ < 1.
Regardless of how high a correlation we choose, if we go far enough into the tail,
extreme events appear to occur independently in each margin. See Sibuya (1961)
or Resnick (1987), Chapter 5, for alternative demonstrations of this fact.

The bivariate t-distribution provides an interesting contrast to the bivariate nor-
mal distribution. If (X, Y )t has a standard bivariate t-distribution with ν degrees
of freedom and correlation ρ then, conditional on X = x,(

ν + 1

ν + x2

)1/2
Y − ρx√

1− ρ2
∼ tν+1.

This can be used to show that

λ = 2tν+1

(√
ν + 1

√
1− ρ/

√
1 + ρ

)
,

where tν+1 denotes the tail of a univariate t-distribution. Provided ρ > −1 the
copula of the bivariate t-distribution is asymptotically dependent. In Table 1 we
tabulate the coefficient of tail dependence for various values of ν and ρ. Perhaps
surprisingly, even for negative and zero correlations, the t-copula gives asymptotic
dependence in the upper tail. The strength of this dependence increases as ν de-
creases and the marginal distributions become heavier-tailed.

ν \ ρ -0.5 0 0.5 0.9 1
2 0.06 0.18 0.39 0.72 1
4 0.01 0.08 0.25 0.63 1
10 0.0 0.01 0.08 0.46 1
∞ 0 0 0 0 1

Table 1. Values of λ for the copula of the bivariate t-distribution
for various values of ν, the degrees of freedom, and ρ, the correlation.
Last row represents the Gaussian copula.

In Figure 2 we plot exact values of the conditional probability P[Y > VaRα(Y ) |
X = VaRα(X)] for pairs of random variables (X, Y )t with the Gaussian and t-
copulas, where the correlation parameter of both copulas is ρ = 0.9 and the degrees
of freedom of the t-copula is ν = 4. For large values of α the conditional probabilities
for the t-copula dominate those for the Gaussian copula. Moreover the former tend
towards a non-zero asymptotic limit, whereas the limit in the Gaussian case is zero.

4.5. Concordance. In some situations we may be less concerned with measuring
the strength of stochastic dependence between two random variables X and Y and
we may wish simply to say whether they are concordant or discordant, that is,
whether the dependence between X and Y is positive or negative. While it might
seem natural to define X and Y to be positively dependent when ρ(X, Y ) > 0 (or
when ρS(X, Y ) > 0 or ρτ (X, Y ) > 0), stronger conditions are generally used and we
discuss two of these concepts in this Section.
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Figure 2. Exact values of the conditional probability P[Y >
VaRα(Y ) | X = VaRα(X)] for pairs of random variables (X, Y )t with
the Gaussian and t-copulas, where the correlation parameter in both
copulas is ρ = 0.9 and the degrees of freedom of the t-copula is ν = 4.

Definition 8. Two random variables X and Y are positive quadrant dependent
(PQD), if

P[X > x, Y > y] ≥ P[X > x]P[Y > y] for all x, y ∈ R. (18)

Since P[X > x, Y > y] = 1−P[X ≤ x]+P[Y ≤ y]−P[X ≤ x, Y ≤ y] it is obvious
that (18) is equivalent to

P[X ≤ x, Y ≤ y] ≥ P[X ≤ x]P[Y ≤ y] for all x, y ∈ R.

Definition 9. Two random variables X and Y are positively associated (PA), if

E[g1(X, Y )g2(X, Y )] ≥ E[g1(X, Y )]E[g2(X, Y )] (19)

for all real-valued, measurable functions g1 und g2, which are increasing in both
components and for which the expectations above are defined.

For further concepts of positive dependence see Chapter 2 of Joe (1997), where
the relationships between the various concepts are also systematically explored. We
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note that PQD and PA are invariant under increasing transformations and we verify
that the following chain of implications holds:

Comonotonicity⇒ PA⇒ PQD⇒ ρ(X, Y ) ≥ 0, ρS(X, Y ) ≥ 0, ρτ (X, Y ) ≥ 0. (20)

If X and Y are comonotonic, then from Theorem 2 we can conclude that
(X, Y ) =d (F−1

1 (U), F−1
2 (U)), where U ∼ U(0, 1). Thus the expectations in (19)

can be written as

E[g1(X, Y )g2(X, Y )] = E[g̃1(U)g̃2(U)]

and

E[g1(X, Y )] = E[g̃1(U)] , E[g2(X, Y )] = E[g̃2(U)],

where g̃1 and g̃2 are increasing. Lemma 2.1 in Joe (1997) shows that

E[g̃1(U)g̃2(U)] ≥ E[g̃1(U)]E[g̃2(U)],

so that X and Y are PA. The second implication follows immediately by taking

g1(u, v) = 1{u>x}

g2(u, v) = 1{v>y}.

The third implication PQD⇒ ρ(X, Y ) ≥ 0, ρS(X, Y ) ≥ 0 follows from the identity
(17) and the fact that PA and PQD are invariant under increasing transformations.
PQD⇒ ρτ (X, Y ) ≥ 0 follows from Theorem 2.8 in Joe (1997).

In the sense of these implications (20), comonotonicity is the strongest type of
concordance or positive dependence.

5. Fallacies

Where not otherwise stated, we consider bivariate distributions of the random
vector (X, Y )t.

Fallacy 1. Marginal distributions and correlation determine the joint distribution.

This is true if we restrict our attention to the multivariate normal distribution or
the elliptical distributions. For example, if we know that (X, Y )t have a bivariate
normal distribution, then the expectations and variances of X and Y and the corre-
lation ρ(X, Y ) uniquely determine the joint distribution. However, if we only know
the marginal distributions of X and Y and the correlation then there are many pos-
sible bivariate distributions for (X, Y )t. The distribution of (X, Y )t is not uniquely
determined by F1, F2 and ρ(X, Y ). We illustrate this with examples, interesting in
their own right.

Example 1. Let X and Y have standard normal distributions and let assume
ρ(X, Y ) = ρ. If (X, Y )t is bivariate normally distributed, then the distribution
function F of (X, Y )t is given by

F (x, y) = CGa
ρ (Φ(x),Φ(y)).

We have represented this copula earlier as a double integral in (4). Any other copula
C 6= CGa

ρ gives a bivariate distribution with standard normal marginals which is not
bivariate normal with correlation ρ. We construct a copula C of the type (6) by
taking

f(x) = 1{(γ,1−γ)}(x) +
2γ − 1

2γ
1{(γ,1−γ)c}(x)

g(y) = −1{(γ,1−γ)}(y)− 2γ − 1

2γ
1{(γ,1−γ)c}(y),
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where 1
4
≤ γ ≤ 1

2
. Since h(x, y) disappears on the square [γ, 1− γ]2 it is clear that

C for γ < 1
2

and F (x, y) = C(Φ(x),Φ(y)) is never bivariate normal; from symmetry
considerations (C(u, v) = C(1−u, v), 0 ≤ u, v ≤ 1) the correlation irrespective of γ
is zero. There are uncountably many bivariate distributions with standard normal
marginals and correlation zero. In Figure 3 the density of F is shown for γ = 0.3;
this is clearly very different from the joint density of the standard bivariate normal
distribution with zero correlation.

-2

 0

2

X

-2

 0

2

Y

 0
0.

1
0.

2
Z

Figure 3. Density of a non-bivariate normal distribution which has
standard normal marginals.

Example 2. A more realistic example for risk management is the motivating exam-
ple of the Introduction. We consider two bivariate distributions with Gamma(3,1)
marginals (denoted G3,1) and the same correlation ρ = 0.7, but with different de-
pendence structures, namely

FGa(x, y) = CGa
ρ̃ (G(x),G(y)),

FGu(x, y) = CGu
α (G(x),G(y)),

where CGa
ρ̃ is the Gaussian dependence structure and CGu

β is the Gumbel copula
introduced in (5). To obtain the desired linear correlation the parameter values
were set to be ρ̃ = 0.71 and β = 0.54 7.

In Section 4.4 we showed that the two copulas have quite different tail dependence;
the Gaussian copula is asymptotically independent if ρ̃ < 1 and the Gumbel copula
is asymptotically dependent if β < 1. At finite levels the greater tail dependence of
the Gumbel copula is apparent in Figure 1. We fix u = VaR0.99(X) = VaR0.99(Y ) =

7These numerical values were determined by stochastic simulation.
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G−1
3,1(0.99) and consider the conditional exceedance probability P[Y > u | X > u]

under the two models. An easy empirical estimation based on Figure 1 yields

P̂FGa [Y > u | X > u] = 3/9,

P̂FGu [Y > u | X > u] = 12/16.

In the Gumbel model exceedances of the threshold u in one margin tend to be
accompanied by exceedances in the other, whereas in the Gaussian dependence
model joint exceedances in both margins are rare. There is less “diversification” of
large risks in the Gumbel dependence model.

Analytically it is difficult to provide results for the Value-at-Risk of the sum
X + Y under the two bivariate distributions,8 but simulation studies confirm that
X + Y produces more large outcomes under the Gumbel dependence model than
the Gaussian model. The difference between the two dependence structures might
be particularly important if we were interested in losses which were triggered only
by joint extreme values of X and Y .

Example 3. The Value-at-Risk of linear portfolios is certainly not uniquely deter-
mined by the marginal distributions and correlation of the constituent risks. Sup-
pose (X, Y )t has a bivariate normal distribution with standard normal marginals
and correlation ρ and denote the bivariate distribution function by Fρ. Any mixture
F = λFρ1 + (1 − λ)Fρ2 , 0 ≤ λ ≤ 1 of bivariate normal distributions Fρ1 and Fρ2

also has standard normal marginals and correlation λρ1 + (1−λ)ρ2. Suppose we fix
−1 < ρ < 1 and choose 0 < λ < 1 and ρ1 < ρ < ρ2 such that ρ = λρ1 + (1− λ)ρ2.
The sum X + Y is longer tailed under F than under Fρ. Since

PF [X + Y > z] = λΦ

(
z

2(1 + ρ1)

)
+ (1− λ)Φ

(
z

2(1 + ρ2)

)
,

and

PFρ [X + Y > z] = Φ

(
z

2(1 + ρ)

)
,

we can use Mill’s ratio

Φ(x) = 1− Φ(x) = φ(x)

(
1

x
+ O

(
1

x2

))
to show that

lim
z→∞

PF [X + Y > z]

PFρ [X + Y > z]
=∞.

Clearly as one goes further into the respective tails of the two distributions the Value-
at-Risk for the mixture distribution F is larger than that of the original distribution
Fρ. By using the same technique as Embrechts, Klüppelberg, and Mikosch (1997)
(Example 3.3.29) we can show that, as α→ 1−,

VaRα,F (X + Y ) ∼ 2(1 + ρ2) (−2 log(1− α))1/2

VaRα,Fρ(X + Y ) ∼ 2(1 + ρ) (−2 log(1− α))1/2 ,

so that

lim
α→1−

VaRα,F (X + Y )

VaRα,Fρ(X + Y )
=

1 + ρ2

1 + ρ
> 1,

8See Müller and Bäuerle (1998) for related work on stop-loss risk measures applied to bivariate
portfolios under various dependence models. A further reference is Albers (1999).
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irrespective of the choice of λ.

Fallacy 2. Given marginal distributions F1 and F2 for X and Y , all linear corre-
lations between -1 and 1 can be attained through suitable specification of the joint
distribution.

This statement is not true and it is simple to construct counterexamples.

Example 4. LetX and Y be random variables with support [0,∞), so that F1(x) =
F2(y) = 0 for all x, y < 0. Let the right endpoints of F1 and F2 be infinite,
supx{x|F1(x) < 1} = supy{y|F2(y) < 1} = ∞. Assume that ρ(X, Y ) = −1, which
would imply Y = aX + b a.s., with a < 0 and b ∈ R. It follows that for all y < 0,

F2(y) = P[Y ≤ y] = P[X ≥ (y − b)/a] ≥ P[X > (y − b)/a]

= 1− F1((y − b)/a) > 0,

which contradicts the assumption F2(y) = 0.

The following theorem shows which correlations are possible for given marginal
distributions.

Theorem 4. [Höffding (1940) and Fréchet (1957)] Let (X, Y )t be a random vec-
tor with marginals F1 and F2 and unspecified dependence structure; assume 0 <
σ2[X], σ2[Y ] <∞. Then

1. The set of all possible correlations is a closed interval [ρmin, ρmax] and for the
extremal correlations ρmin < 0 < ρmax holds.

2. The extremal correlation ρ = ρmin is attained if and only if X and Y are coun-
termonotonic; ρ = ρmax is attained if and only if X and Y are comonotonic.

3. ρmin = −1 iff X and −Y are of the same type; ρmax = 1 iff X and Y are of
the same type.

Proof. We make use of the identity (17) and observe that the Fréchet inequalities
(12) imply

max{F1(x) + F2(y)− 1, 0} ≤ F (x, y) ≤ min{F1(x), F2(y)}.
The integrand in (17) is minimized pointwise, if X and Y are countermonotonic
and maximized if X and Y are comonotonic. It is clear that ρmax ≥ 0. However,
if ρmax = 0 this would imply that min{F1(x), F2(y)} = F1(x)F2(y) for all x, y.
This can only occur if F1 or F2 is degenerate, i.e. of the form F1(x) = 1{x≥x0}
or F2(y) = 1{y≥y0}, and this would imply σ2[X] = 0 or σ2[Y ] = 0 so that the
correlation between X and Y is undefined. Similarly we argue that ρmin < 0. If
F`(x1, x2) = max{F1(x)+F2(y)−1, 0} and Fu(x1, x2) = min{F1(x), F2(y)} then the
mixture λF` + (1−λ)Fu, 0 ≤ λ ≤ 1 has correlation λρmin + (1−λ)ρmax. Using such
mixtures we can construct joint distributions with marginals F1 and F2 and with
arbitrary correlations ρ ∈ [ρmin, ρmax]. This will be used in Section 6

Example 5. Let X ∼ Lognormal(0, 1) and Y ∼ Lognormal(0, σ2), σ > 0. We wish
to calculate ρmin and ρmax for these marginals. Note that X and Y are not of the
same type although logX and log Y are. It is clear that ρmin = ρ(eZ , e−σZ) and
ρmax = ρ(eZ , eσZ), where Z ∼ N (0, 1). This observation allows us to calculate ρmin

and ρmax analytically:

ρmin =
e−σ − 1√

(e− 1)(eσ2 − 1)
,
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ρmax =
eσ − 1√

(e− 1)(eσ2 − 1)
.

These maximal and mininal correlations are shown graphically in Figure 4. We
observe that limσ→∞ ρmin = limσ→∞ ρmax = 0.
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Figure 4. ρmin and ρmax graphed against σ.

This example shows it is possible to have a random vector (X, Y )t where the cor-
relation is almost zero, even though X and Y are comonotonic or countermonotonic
and thus have the strongest kind of dependence possible. This seems to contra-
dict our intuition about probability and shows that small correlations cannot be
interpreted as implying weak dependence between random variables.

Fallacy 3. The worst case VaR (quantile) for a linear portfolio X+Y occurs when
ρ(X, Y ) is maximal, i.e. X and Y are comonotonic

As we had discussed in Section 3.3 it is common to consider variance as a measure
of risk in insurance and financial mathematics and, whilst it is true that the variance
of a linear portfolio, σ2(X + Y ) = σ2(X) + σ2(Y ) + 2ρ(X, Y )σ(X)σ(Y ), is maximal
when the correlation is maximal, it is in general not correct to conclude that the
Value-at-Risk is also maximal. For elliptical distributions it is true, but generally
it is false.

Suppose two random variables X and Y have distribution functions F1 and F2 but
that their dependence structure (copula) is unspecified. In the following theorem
we give an upper bound for VaRα(X + Y ).

Theorem 5. [Makarov (1981) and Frank, Nelsen, and Schweizer (1987)]

1. For all z ∈ R,

P[X + Y ≤ z] ≥ sup
x+y=z

C`(F1(x), F2(y)) =: ψ(z).
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This bound is sharp in the following sense: Set t = ψ(z−) = limu→z− ψ(u).
Then there exists a copula, which we denote by C(t), such that under the dis-
tribution with distribution function F (x, y) = C(t)(F1(x), F2(y)) we have that
P[X + Y < z] = ψ(z−).9

2. Let ψ−1(α) := inf{z | ψ(z) ≥ α}, α ∈ (0, 1), be the generalized inverse of ψ.
Then

ψ−1(α) = inf
C`(u,v)=α

{F−1
1 (u) + F−1

2 (v)}.

3. The following upper bound for Value-at-Risk holds:

VaRα(X + Y ) ≤ ψ−1(α).

This bound is best-possible.

Proof. 1. For any x, y ∈ R with x+ y = z application of the lower Fréchet bound
(12) yields

P[X + Y ≤ z] ≥ P[X ≤ x, Y ≤ y] ≥ C`(F1(x), F2(y)).

Taking the supremum over x + y = z on the right hand side shows the first
part of the claim.

The proof of the second part will be a sketch. We merely want to show how
C(t) is chosen. For full mathematical details we refer to Frank, Nelsen, and
Schweizer (1987). We restrict ourselves to continuous distribution functions F1

and F2. Since copulas are distributions with uniform marginals we transform
the problem onto the unit square by defining A = {(F1(x), F2(y))|x+ y ≥ z}
the boundary of which is s = {(F1(x), F2(y))|x + y = z}. We need to find a
copula C(t) such that

∫∫
A
dC(t) = 1 − t. Since F1 and F2 are continuous, we

have that ψ(z−) = ψ(z) and therefore t ≥ u + v − 1 for all (u, v) ∈ s. Thus
the line u+ v− 1 = t can be considered as a tangent to s and it becomes clear
how one can choose C(t). C(t) belongs to the distribution which is uniform on
the line segments (0, 0)(t, t) and (t, 1)(1, t). Therefore

C(t)(u, v) =

{
max{u+ v − 1, t} (u, v) ∈ [t, 1]× [t, 1],

min{u, v} otherwise.
(21)

Since the set (t, 1)(1, t) ⊂ A has probability mass 1− t we have under C(t) that
P[X + Y ≥ z] =

∫∫
A
dC(t) ≥ 1− t and therefore P[X + Y < z] ≤ t. But since

t is a lower bound for P[X + Y < z] it is necessary that P[X + Y < z] = t.
2. This follows from the duality theorems in Frank and Schweizer (1979).
3. Let ε > 0. Then we have

P[X + Y ≤ ψ−1(α) + ε] ≥ ψ(ψ−1(α) + ε) ≥ α.

Taking the limit ε → 0+ this yields P[X + Y ≤ ψ−1(α)] ≥ α and therefore
VaRα(X + Y ) ≤ ψ−1(α). This upper bound cannot be improved. Again, take

ε > 0. Then if (X, Y )t has copula C(ψ−1(α)−ε/2) one has

P[X + Y ≤ ψ−1(α)− ε] ≤ P[X + Y < ψ−1(α)− ε/2]

= ψ((ψ−1(α)− ε/2)−) ≤ ψ(ψ−1(α)− ε/2) < α

and therefore VaRα(X + Y ) > ψ−1(α)− ε.

9In general there is no copula such that P[X + Y ≤ z] = ψ(z), not even if F1 and F2 are both
continuous; see Nelsen (1999).
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Remark 2. The results in Frank, Nelsen, and Schweizer (1987) are more general
than Theorem 5 in this paper. Frank, Nelsen, and Schweizer (1987) give lower
and upper bounds for P[L(X, Y ) ≤ z] where L(·, ·) is continuous and increasing in
each coordinate. Therefore a best-possible lower bound for VaRα(X + Y ) also ex-
ists. Numerical evaluation methods of ψ−1 are described in Williamson and Downs
(1990). These two authors also treat the case where we restrict attention to par-
ticular subsets of copulas. By considering the sets of copulas D = {C|C(u, v) ≥
u v, 0 ≤ u, v ≤ 1}, which has minimal copula Cind(u, v) = u v, we can derive bounds
of P[X + Y ≤ z] under positive dependence (PQD as defined in Definition 8). Mul-
tivariate generalizations of Theorem 5 can be found in Li, Scarsini, and Shaked
(1996).
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Figure 5. ψ−1(α)(max. VaR) graphed against α.

In Figure 5 the upper bound ψ−1(α) is shown for X ∼ Gamma(3, 1) and Y ∼
Gamma(3, 1), for various values of α. Notice that ψ−1(α) can easily be analytically
computed analytically for this case since for α sufficiently large

ψ−1(α) = inf
u+v−1=α

{F−1
1 (u) + F−1

2 (v)} = F−1
1 ((α+ 1)/2) + F−1

1 ((α+ 1)/2).

This is because F1 = F2 and the density of Gamma(3, 1) is unimodal, see also
Example 6. For comparative purposes VaRα(X + Y ) is also shown for the case
where X, Y are independent and the case where they are comonotonic. The latter
is computed by addition of the univariate quantiles since under comonotonicity
VaRα(X + Y ) = VaRα(X) + VaRα(Y ). 10 The example shows that for a fixed

10This is also true when X or Y do not have continuous distributions. Using Proposition 4.5
in Denneberg (1994) we deduce that for comonotonic random variables X + Y = (u + v)(Z)
where u and v are continuous increasing functions and Z = X + Y . Remark 1 then shows that
VaRα(X + Y ) = (u+ v)(VaRα(Z)) = u(VaRα(Z)) + v(VaRα(Z)) = VaRα(X) + VaRα(Y ).
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α ∈ (0, 1) the maximal value of VaRα(X + Y ) is considerably larger than the value
obtained in the case of comonotonicity. This is not surprising since we know that
VaR is not a subadditive risk measure (Artzner, Delbaen, Eber, and Heath 1999)
and there are situations where VaRα(X + Y ) > VaRα(X) + VaRα(Y ). In a sense,
the difference ψ−1(α)− (VaRα(X)+VaRα(Y )) quantifies the amount by which VaR
fails to be subadditive for particular marginals and a particular α. For a coherent
risk measure %, we must have that %(X + Y ) attains its maximal value in the case
of comonotonicity and that this value is %(X)+%(Y ) (Delbaen 1999). The fact that
there are situations which are worse than comonotonicity as far as VaR is concerned,
is another way of showing that VaR is not a coherent measure of risk.

Suppose we define a measure of diversification by

D = (VaRα(X) + VaRα(Y ))−VaRα(X + Y ),

the idea being that comonotonic risks are undiversifiable (D = 0) but that risks
with weaker dependence should be diversifiable (D > 0). Unfortunately, Theorem
5 make it clear that we can always find distributions with linear correlation strictly
less than the (comonotonic) maximal correlation (see Theorem 4) that give negative
diversification (D < 0). This weakens standard diversification arguments, which say
that “low correlation means high diversification”. As an example Table 2 gives the
numerical values of the correlations of the distributions yielding maximal VaRα(X+
Y ) for X, Y ∼ Gamma(3, 1).

α 0.25 0.5 0.75 0.8 0.85 0.9 0.95 0.99
ρ -0.09 0.38 0.734 0.795 0.852 0.901 0.956 0.992

Table 2. Correlations of the distributions giving maximal VaRα(X + Y ).

It might be supposed that VaR is in some sense asymptotically subadditive, so
that negative diversification disappears as we let α tend to one, and comonotonicity
becomes the worst case. The following two examples show that this is also wrong.

Example 6. The quotient VaRα(X+Y )/(VaRα(X)+VaRα(Y )) can be made arbi-
trarily large. In general we do not have limα→1− ψ

−1(α)/(VaRα(X)+VaRα(Y )) = 1.
To see this consider Pareto marginals F1(x) = F2(x) = 1−x−β , x ≥ 1, where β > 0.
We have to determine infu+v−1=α{F−1

1 (u) + F−1
2 (v)}. Since F1 = F2, the function

g : (α, 1)→ R≥0, u 7→ F−1
1 (u) + F−1

2 (α+ 1− u)

is symmetrical with respect to (α + 1)/2. Since the Pareto density is decreasing,
the function g is decreasing on (α, (α+ 1)/2] and increasing on [(α+ 1)/2, 1); hence
g((α+1)/2) = 2F−1

1 ((α+1)/2) is the minimum of g and ψ−1(α) = 2F−1
1 ((α+1)/2).

Therefore

VaRα(X + Y )

VaRα(X) + VaRα(Y )
≤ ψ−1(α)

VaRα(X) + VaRα(Y )

=
F−1

1 ((α+ 1)/2)

F−1
1 (α)

=
(1− α+1

2
)−1/β

(1− α)−1/β
= 21/β .

The upper bound 21/β, which is irrespective of α, can be reached.

Example 7. Let X and Y be independent random variables with identical distri-
bution F1(x) = 1 − x−1/2, x ≥ 1. This distribution is extremely heavy-tailed with
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no finite mean. Consider the risks X + Y and 2X, the latter being the sum of
comonotonic risks. We can calculate

P[X + Y ≤ z] = 1− 2
√
z − 1

z
< P[2X ≤ z],

for z > 2. It follows that

VaRα(X + Y ) > VaRα(2X) = VaRα(X) + VaRα(Y )

for α ∈ (0, 1), so that, from the point of view of VaR, independence is worse than
perfect dependence no matter how large we choose α. VaR is not sub-additive for
this rather extreme choice of distribution and diversification arguments do not hold;
one is better off taking one risk and doubling it than taking two independent risks.
Diversifiability of two risks is not only dependent on their dependence structure
but also on the choice of marginal distribution. In fact, for distributions with
F1(x) = F2(x) = 1 − x−κ, κ > 0, we do have asymptotic subadditivity in the case
κ > 1. That means VaRα(X +Y ) < VaRα(X) + VaRα(Y ) if α large enough. To see
this use lemma 1.3.1 of Embrechts, Klüppelberg, and Mikosch (1997) and the fact
that 1−F1 is regularly varying of index −κ (for an introduction to regular variation
theory see the appendix of the same reference).

6. Simulation of Random Vectors

There are various situations in practice where we might wish to simulate depen-
dent random vectors (X1, . . . , Xn)t. In finance we might wish to simulate the future
development of the values of assets in a portfolio, where we know these assets to be
dependent in some way. In insurance we might be interested in multiline products,
where payouts are triggered by the occurrence of losses in one or more dependent
business lines, and wish to simulate typical losses. The latter is particularly im-
portant within DFA. It is very tempting to approach the problem in the following
way:

1. Estimate marginal distributions F1, . . . , Fn,
2. Estimate matrix of pairwise correlations ρij = ρ(Xi, Xj), i 6= j,
3. Combine this information in some simulation procedure.

Unfortunately, we now know that step 3 represents an attempt to solve an ill-posed
problem. There are two main dangers. Given the marginal distributions the corre-
lation matrix is subject to certain restrictions. For example, each ρij must lie in an
interval [ρmin(Fi, Fj), ρmax(Fi, Fj)] bounded by the minimal and maximal attainable
correlations for marginals Fi and Fj . It is possible that the estimated correlations
are not consistent with the estimated marginals so that no corresponding multi-
variate distribution for the random vector exists. In the case where a multivariate
distribution exists it is often not unique.

The approach described above is highly questionable. Instead of considering
marginals and correlations separately it would be more satisfactory to attempt a di-
rect estimation of the multivariate distribution. It might also be sensible to consider
whether the question of interest permits the estimation problem to be reduced to a
one-dimensional one. For example, if we are really interested in the behaviour of the
sum X1 + · · ·+Xn we might consider directly estimating the univariate distribution
of the sum.
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6.1. Given marginals and linear correlations. Suppose, however, we are re-
quired to construct a multivariate distribution F in Rn which is consistent with
given marginals distributions F1, . . . , Fn and a linear correlation matrix ρ. We
assume that ρ is a proper linear correlation matrix, by which we mean in the re-
mainder of the paper that it is a symmetric, positive semi-definite matrix with
−1 ≤ ρij ≤ 1, i, j = 1, . . . , n and ρii = 1, i = 1, . . . , n. Such a matrix will always
be the linear correlation matrix of some random vector in Rn but we must check
it is compatible with the given marginals. Our problem is to find a multivariate
distribution F so that if (X1, . . . , Xn)t has distribution F the following conditions
are satisfied:

Xi ∼ Fi, i = 1, . . . , n, (22)

ρ(Xi, Xj) = ρij, i, j = 1, . . . , n. (23)

In the bivariate case, provided the prespecified correlation is attainable, the con-
struction is simple and relies on the following.

Theorem 6. Let F1 and F2 be two univariate distributions and ρmin and ρmax the
corresponding minimal and maximal linear correlations. Let ρ ∈ [ρmin, ρmax]. Then
the bivariate mixture distribution given by

F (x1, x2) = λF`(x1, x2) + (1− λ)Fu(x1, x2), (24)

where λ = (ρmax − ρ)/(ρmax − ρmin), F`(x1, x2) = max{F1(x1) + F2(x2)− 1, 0} and
Fu(x1, x2) = min{F1(x1), F2(x2)}, has marginals F1 and F2 and linear correlation
ρ.

Proof. Follows easily from Theorem 4.

Remark 3. A similar result to the above holds for rank correlations when ρmin and
ρmax are replaced by -1 and 1 respectively.

Remark 4. Also note that the mixture distribution is not the unique distribution
satisfying our conditions. If ρ ≥ 0 the distribution

F (x1, x2) = λF1(x1)F2(x2) + (1− λ)Fu(x1, x2), (25)

with λ = (ρmax − ρ)/ρmax also has marginals F1 and F2 and correlation ρ. Many
other mixture distributions (e.g. mixtures of distributions with Gumbel copulas) are
possible.

Simulation of one random variate from the mixture distribution in Theorem 6 is
achieved with the following algorithm:

1. Simulate U1, U2 independently from standard uniform distribution,
2. If U1 ≤ λ take (X1, X2)t = (F−1

1 (U2), F−1
2 (1− U2))t,

3. If U1 > λ take (X1, X2)t = (F−1
1 (U2), F−1

2 (U2))t.

Constructing a multivariate distribution in the case n ≥ 3 is more difficult.
For the existence of a solution it is certainly necessary that ρmin(Fi, Fj) ≤ ρij ≤
ρmax(Fi, Fj), i 6= j, so that the pairwise constraints are satisfied. In the bivariate
case this is sufficient for the existence of a solution to the problem described by (22)
and (23), but in the general case it is not sufficient as the following example shows.

Example 8. Let F1, F2 and F3 be Lognormal(0, 1) distributions. Suppose that
ρ is such that ρij is equal to the minimum attainable correlation for a pair of
Lognormal(0, 1) random variables (≈ −0.368) if i 6= j and ρij = 1 if i = j. This
is both a proper correlation matrix and a correlation matrix satisfying the pairwise
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constraints for lognormal random variables. However, since ρ12, ρ13 and ρ23 are
all minimum attainable correlations, Theorem 4 implies that X1, X2 and X3 are
pairwise countermonotonic random variables. Such a situation is unfortunately
impossible as is is clear from the following proposition.

Proposition 4. Let X, Y and Z be random variables with joint distribution F and
continuous marginals F1, F2 and F3.

1. If (X, Y ) and (Y, Z) are comonotonic then (X,Z) is also comonotonic and
F (x, y, z) = min{F1(x), F2(y), F3(z)}.

2. If (X, Y ) is comonotonic and (Y, Z) is countermonotonic then (X,Z) is coun-
termonotonic and F (x, y, z) = max{0,min{F1(x), F2(y)}+ F3(z)− 1}.

3. If (X, Y ) and (Y, Z) are countermonotonic then (X,Z) is comonotonic and
F (x, y, z) = max{0,min{F1(x), F3(z)}+ F2(y)− 1}

Proof. We show only the first part of the proposition, the proofs of the other parts
being similar. Using (14) we know that Y = S(X) a.s. and Z = T (Y ) a.s. where
S, T : R → R are increasing functions. It is clear that Z = T ◦ S(X) a.s. with
T ◦S increasing, so that X and Z are comonotonic. Now let x, y, z ∈ R and because
also (X,Z) is comonotonic we may without loss of generality assume that F1(x) ≤
F2(y) ≤ F3(z). Assume for simplicity, but without loss of generality, that Y = S(X)
and Z = T (Y ) (i.e. ignore almost surely). It follows that {X ≤ x} ⊆ {Y ≤ y} and
{Y ≤ y} ⊆ {Z ≤ z} so that

F (x, y, z) = P[X ≤ x] = F1(x).

Example 9. Continuity of the marginals is an essential assumption in this propo-
sition. It does not necessarily hold for discrete distributions as the next counterex-
ample shows. Consider the multivariate two-point distributions given by

P[(X, Y, Z)t = (0, 0, 1)t] = 0.5,

P[(X, Y, Z)t = (1, 0, 0)t] = 0.5.

(X, Y ) and (Y, Z) are comonotonic but (X,Z) is countermonotonic.

The proposition permits us now to state a result concerning existence and unique-
ness of solutions to our problem given by in the special case where random variables
are either pairwise comonotonic or countermonotonic.

Theorem 7. [Tiit (1996)] Let F1, . . . , Fn, n ≥ 3, be continuous distributions and
let ρ be a (proper) correlation matrix satisfying the following conditions for all i 6= j,
i 6= k and j 6= k:

• ρij ∈ {ρmin(Fi, Fj), ρmax(Fi, Fj)},
• If ρij = ρmax(Fi, Fj) and ρik = ρmax(Fi, Fk) then ρjk = ρmax(Fj , Fk),
• If ρij = ρmax(Fi, Fj) and ρik = ρmin(Fi, Fk) then ρjk = ρmin(Fj, Fk),
• If ρij = ρmin(Fi, Fj) and ρik = ρmin(Fi, Fk) then ρjk = ρmax(Fj, Fk).

Then there exists a unique distribution with marginals F1, . . . , Fn and correlation
matrix ρ. This distribution is known as an extremal distribution. In Rn there are
2n−1 possible extremal distributions.

Proof. Without loss of generality suppose

ρ1j =

{
ρmax(F1, Fj) for 2 ≤ j ≤ m ≤ n,

ρmin(F1, Fj) for m < j ≤ n,
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for some 2 ≤ m ≤ n. The conditions of the theorem ensure that the pairwise
relationship of any two margins is determined by their pairwise relationship to the
first margin. The margins for which ρ1j takes a maximal value form an equivalence
class, as do the margins for which ρ1j takes a minimal value. The joint distribution
must be such that (X1, . . . , Xm) are pairwise comonotonic, (Xm+1, . . . , Xn) are
pairwise comonotonic, but two random variables taken from different groups are
countermonotonic. Let U ∼ U(0, 1). Then the random vector

(F−1
1 (U), F−1

2 (U), . . . , F−1
m (U), F−1

m+1(1− U), . . . , F−1
n (1− U))t,

has the required joint distribution. We use a similar argument to the Proposition 4
and assume, without loss of generality, that

min
1≤i≤m

{Fi(xi)} = F1(x1), min
m<i≤n

{Fi(xi)} = Fm+1(x1).

It is clear that the distribution function is

F (x1, . . . , xn) = P[X1 ≤ x1, Xm+1 ≤ xm+1]

= max{0, min
1≤i≤m

{Fi(xi)}+ min
m≤i≤n

{Fi(xi)} − 1},

which in addition shows uniqueness of distributions with pairwise extremal correla-
tions.

Let Gj, j = 1, . . . , 2n−1 be the extremal distributions with marginals F1, . . . , Fn and
correlation matrix ρj . Convex combinations

G =
2n−1∑
j=1

λjGj , λj ≥ 0,
2n−1∑
j=1

λj = 1,

also have the same marginals and correlation matrix given by ρ =
∑2n−1

j=1 λjρj . If we
can decompose an arbitrary correlation matrix ρ in this way, then we can use a con-
vex combination of extremal distributions to construct a distribution which solves
our problem. In Tiit (1996) this idea is extended to quasi-extremal distributions.
Quasi-extremal random vectors contain sub-vectors which are extremal as well as
sub-vectors which are independent.

A disadvantage of the extremal (and quasi-extremal) distributions is the fact that
they have no density, since they place all their mass on edges in Rn. However, one
can certainly think of practical examples where such distributions might still be
highly relevant.

Example 10. Consider two portfolios of credit risks. In the first portfolio we have
risks from country A, in the second risks from country B. Portfolio A has a profit-
and-loss distribution F1 and portfolio B a profit-and-loss distribution F2. With
probability p the results move in the same direction (comonotonicity); with proba-
bility (1−p) they move in opposite directions (countermonotonicity). This situation
can be modelled with the distribution

F (x1, x2) = p ·min{F1(x1), F2(x2)}+ (1− p) ·max{F1(x1) + F2(x2)− 1, 0},

and of course generalized to more than two portfolios.
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6.2. Given marginals and Spearman’s rank correlations. This problem has
been considered in Iman and Conover (1982) and their algorithm forms the basis of
the @RISK computer program (Palisade 1997).

It is clear that a Spearman’s rank correlation matrix is also a linear correlation
matrix (Spearman’s rank being defined as the linear correlation of ranks). It is not
known to us whether a linear correlation matrix is necessarily a Spearman’s rank
correlation matrix. That is, given an arbitrary symmetric, positive semi-definite
matrix with unit elements on the diagonal and off-diagonal elements in the interval
[−1, 1], can we necessarily find a random vector with continuous marginals for which
this is the rank correlation matrix, or alternatively a multivariate distribution for
which this is the linear correlation matrix of the copula? If we estimate a rank
correlation matrix from data, is it guaranteed that the estimate is itself a rank
correlation matrix? A necessary condition is certainly that the estimate is a linear
correlation matrix, but we do not know if this is sufficient.

If the given matrix is a true rank correlation matrix, then the problem of the
existence of a multivariate distribution with prescribed marginals is solved. The
choice of marginals is in fact irrelevant and imposes no extra consistency conditions
on the matrix.

Iman and Conover (1982) do not attempt to find a multivariate distribution which
has exactly the given rank correlation matrix ρ. They simulate a standard multivari-
ate normal variate (X1, . . . , Xn)t with linear correlation matrix ρ and then transform
the marginals to obtain (Y1, . . . , Yn)t = (F−1

1 (Φ(Xi)), . . . , F
−1
n (Φ(Xn)))t.The rank

correlation matrix of Y is identical to that of X. Now because of (8)

ρS(Yi, Yj) = ρS(Xi, Xj) =
6

π
arcsin

ρ(Xi, Xj)

2
≈ ρ(Xi, Xj),

and, in view of the bounds for the absolute error,∣∣∣∣ 6π arcsin
ρ

2
− ρ
∣∣∣∣ ≤ 0.0181, ρ ∈ [−1, 1],

and for the relative error, ∣∣ 6
π

arcsin ρ
2
− ρ
∣∣

|ρ| ≤ π − 3

π
,

the rank correlation matrix of Y is very close to that which we desire. In the
case when the given matrix belongs to an extremal distribution (i.e. comprises only
elements 1 and −1) then the error disappears entirely and we have constructed the
unique solution of our problem.

This suggests how we can find a sufficient condition for ρ to be a Spearman’s rank
correlation matrix and how, when this condition holds, we can construct a distribu-
tion that has the required marginals and exactly this rank correlation matrix. We
define the matrix ρ̃ by

ρ̃ij = 2 sin
πρij

6
, (26)

and check whether this is a proper linear correlation matrix. If so, then the vec-
tor (Y1, . . . , Yn)t = (F−1

1 (Φ(Xi)), . . . , F
−1
n (Φ(Xn)))t has rank correlation matrix ρ,

where (X1, . . . , Xn)t is a standard multivariate normal variate with linear correla-
tion matrix ρ̃.

In summary, a necessary condition for ρ to be a rank correlation matrix is that it
is a linear correlation matrix and a sufficient condition is that ρ̃ given by (26) is a
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linear correlation matrix. We are not aware at present of a necessary and sufficient
condition.

A further problem with the approach described above is that we only ever con-
struct distributions which have the dependence structure of the multivariate normal
distribution. This dependence structure is limited as we observed in Example 2; it
does not permit asymptotic dependence between random variables.

6.3. Given marginals and copula. In the case where marginal distributions
F1, . . . , Fn and a copula C(u1, . . . , un) are specified a unique multivariate distri-
bution with distribution function F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) satisfying
these specifications can be found. The problem of simulating from this distribution
is no longer the theoretical one of whether a solution exists, but rather the tech-
nical one of how to perform the simulation. We assume the copula is given in the
form of a parametric function which the modeller has chosen; we do not consider
the problem of how copulas might be estimated from data, which is certainly more
difficult than estimating linear or rank correlations.

Once we have simulated a random vector (U1, . . . , Un)t from C, then the random
vector (F−1

1 (U1), . . . , F−1
n (Un))t has distribution F . We assume that efficient uni-

variate simulation presents no problem and refer to Ripley (1987),Gentle (1998) or
Devroye (1986) for more on this subject. The major technical difficulty lies now in
simulating realisations from the copula.

Where possible a transformation method can be applied; that is, we make use of
multivariate distributions with the required copula for which a multivariate simula-
tion method is already known. For example, to simulate from the bivariate Gaussian
copula it is trivial to simulate (Z1, Z2)t from the standard bivariate normal distri-
bution with correlation ρ and then to transform the marginals with the univariate
distribution function so that (Φ(Z1),Φ(Z2))t is distributed according to the desired
copula. For the bivariate Gumbel copula a similar approach can be taken.

Example 11. Consider the Weibull distribution having survivor function F 1(x) =
1 − F1(x) = exp

(
−xβ

)
for β > 0, x ≥ 0. If we apply the Gumbel copula to this

survivor function (not to the distribution function) we get a bivariate distribution
with Weibull marginals and survivor function

F (z1, z2) = P[Z1 > z1, Z2 > z2] = C(F 1(z1), F 1(z2)) = exp
[
−(z1 + z2)β

]
.

Lee (1979) describes a method for simulating from this distribution. We take
(Z1, Z2)

t = (US1/β , (1 − U)S1/β)t where U is standard uniform and S is a mix-
ture of Gamma distributions with density h(s) = (1 − β + βs) exp(−s) for s ≥ 0.
Then (F 1(Z1), F 1(Z2))t will have the desired copula distribution.

Where the transformation method cannot easily be applied, another possible
method involves recursive simulation using univariate conditional distributions. We
consider the general case n > 2 and introduce the notation

Ci(u1, . . . , ui) = C(u1, . . . , ui, 1, . . . , 1), i = 2, . . . , n− 1

to represent i–dimensional marginal distributions of C(u1, . . . , un). We write
C1(u1) = u1 and Cn(u1, . . . , un) = C(u1, . . . , un). Let us suppose now that
(U1, . . . , Un)t ∼ C; the conditional distribution of Ui given the values of the first
i−1 components of (U1, . . . , Un)t can be written in terms of derivatives and densities
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of the i–dimensional marginals

Ci(ui | u1, . . . , ui−1) = P[Ui ≤ ui | U1 = u1, . . . , Ui−1 = ui−1]

=
∂i−1Ci(u1, . . . , ui)

∂u1 · · ·∂ui−1

/∂i−1Ci−1(u1, . . . , ui−1)

∂u1 · · ·∂ui−1

,

provided both numerator and denominator exist. This suggests that in the case
where we can calculate these conditional distributions we use the algorithm:

• Simulate a value u1 from U(0, 1),
• Simulate a value u2 from C2(u2 | u1),
• Continue in this way,
• Simulate a value un from Cn(un | u1, . . . , un−1).

To simulate a value from Ci(ui | u1, . . . , ui−1) we would in general simulate u from
U(0, 1) and then calculate C−1

i (u | u1, . . . , ui−1), if necessary by numerical root
finding.

7. Conclusions

In this paper we have shown some of the problems that can arise when the con-
cept of linear correlation is used with non-elliptical multivariate distributions. In
the world of elliptical distributions correlation is a natural and elegant summary
of dependence, which lends itself to algebraic manipulation and the standard ap-
proaches of risk management dating back to Markowitz. In the non-elliptical world
our intuition about correlation breaks down and leads to a number of fallacies. The
first aim of this paper has been to suggest that practitioners of risk management
must be aware of these pitfalls and must appreciate that a deeper understanding of
dependence is needed to model the risks of the real world.

The second main aim of this paper has been to address the problem of simulating
dependent data with given marginal distributions. This question arises naturally
when one contemplates a Monte Carlo approach to determining the risk capital
required to cover dependent risks. We have shown that the ideal situation is when
the multivariate dependence structure (in the form of a copula) is fully specified by
the modeller. Failing this, it is preferable to be given a matrix of rank correlations
than a matrix of linear correlations, since rank correlations are defined at a copula
level, and we need not worry about their consistency with the chosen marginals.
Both correlations are, however, scalar-valued dependence measures and if there is
a multivariate distribution which solves the simulation problem, it will not be the
unique solution. The example of the Introduction showed that two distributions with
the same correlation can have qualitatively very different dependence structures and,
ideally, we should consider the whole dependence structure which seems appropriate
for the risks we wish to model.
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Zürich.

Denneberg, D. (1994): Non-additive Measure and Integral. Kluwer Academic Publishers, Dor-
drecht.

Devroye, L. (1986): Non-uniform Random Variate Generation. Springer, New York.
Dhaene, J., and M. J. Goovaerts (1996): “Dependency of risks and stop-loss order,” ASTIN
Bulletin, 26(2), 201–212.
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