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COVID-19 is highly transmissible and containing outbreaks requires a rapid

and effective response. Because infection may be spread by people who are

pre-symptomatic or asymptomatic, substantial undetected transmission is

likely to occur before clinical cases are diagnosed. Thus, when outbreaks

occur there is a need to anticipatewhich populations and locations are at heigh-

tened risk of exposure. In thiswork,we evaluate the utility of aggregate human

mobility data for estimating the geographical distribution of transmission

risk. We present a simple procedure for producing spatial transmission risk

assessments from near-real-time population mobility data. We validate our

estimates against three well-documented COVID-19 outbreaks in Australia.

Two of these were well-defined transmission clusters and one was a commu-

nity transmission scenario. Our results indicate that mobility data can be a

good predictor of geographical patterns of exposure risk from transmission

centres, particularly in outbreaks involving workplaces or other environments

associated with habitual travel patterns. For community transmission

scenarios, our results demonstrate that mobility data add the most value to

risk predictions when case counts are low and spatially clustered. Our

method could assist health systems in the allocation of testing resources, and

potentially guide the implementation of geographically targeted restrictions

on movement and social interaction.

1. Introduction
Similar to other respiratory pathogens such as influenza, the transmission of

SARS-CoV-2 occurs when infected and susceptible individuals are co-located

and have physical contact, or exchange bioaerosols or droplets [1,2]. Behavioural

modification in response to symptom onset (i.e. self-isolation) can act as a spon-

taneous negative feedback on transmission potential by reducing the rate of

such contacts, making epidemics much easier to control and monitor. However,

COVID-19 (the disease caused by SARS-CoV-2 virus) has been associated with

relatively long periods of pre-symptomatic viral shedding (approx. 5–10 days),

during which time case ascertainment and behavioural modification are unlikely

[3,4]. In addition, many cases are characterized by mild symptoms, despite long

periods of viral shedding [5]. Transmission studies have demonstrated that

asymptomatic and pre-symptomatic transmission hampers control of SARS-

CoV-2 [6–8]. Pre-symptomatic and asymptomatic transmission has also been

documented systematically in several residential care facilities in which
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surveillancewas essentially complete [9,10]. Currently, there are

no prophylactic pharmaceutical interventions that are effective

against SARS-CoV-2 transmission. Therefore, interventions

based on social distancing and infection control practices have

constituted the operative framework, applied in innumerable

variations around the world, to combat the COVID-19

pandemic.

Social distancing policies directly target human mobility.

Therefore, it is logical to suggest that data describing aggre-

gate travel patterns would be useful in quantifying the

complex effects of policy announcements and decisions [11].

The ubiquity of mobile phones and public availability of

aggregated near-real-time movement patterns has led to sev-

eral such studies in the context of the ongoing COVID-19

pandemic [12–14]. One source of mobility data is the social

media platform Facebook, which offers users a mobile app

that includes location services at the user’s discretion. These

services document theGPS locations of users, which are aggre-

gated as origin–destination (OD) matrices and released for

research purposes through the Facebook Data For Good

Program. The raw data are stored on a temporary basis and

aggregated in such a way as to protect the privacy of individ-

ual users [15]. Several studies have used subsets of this data for

analysis of the effects of COVID-19 social distancing restric-

tions [16–19]. In addition, other sources of mobility data

have been used to quantify the positive association between

human travel, case importation, and local prevalence of

COVID-19 after the disease emerged in the Chinese city of

Wuhan and subsequently spread to other regions [20–22].

In this work, we complement these studies by addressing

the question: to what degree can real-time mobility patterns

estimated from aggregate mobile phone data inform short-

term predictions of COVID-19 transmission risk? Here, we

examine outbreaks and population flows approximately

three orders of magnitude smaller than those investigated

previously in studies focused on the Chinese context

[20,21]. On this scale, it is less clear whether strong associ-

ations between mobility and transmission risk will still be

observable from the available data.

To address this question,we develop a straightforwardpro-

cedure to generate a relative estimate of the spatial distribution

of future transmission risk based on current case data or

locations of known transmission centres. To critically evaluate

the performance of our procedure, we retrospectively generate

risk estimates based on data from three outbreaks that occurred

in Australia when there was little background transmission.

We do not attempt to compute precise forecasts or predictions

of case incidence, which would require a transmission model.

Instead, we focus on differences in observed case counts

between regions and investigate the degree to which they cor-

relate with differences in observed mobility patterns. Our

intention is to examine the utility of aggregate mobility data

in generating spatial assessments of outbreak risk without pre-

cise definitions or models of disease dynamics. While we

acknowledge that first-order factors determining transmission

between infected and susceptible hosts may dominate local

disease dynamics, the hypothesis motivating this work is

that mobility between locations is an important determinant

with respect to transmission over large, spatially distributed

populations.

The initial wave of infections in Australia began in early

March 2020, and peaked on 28 March with 469 new cases.

The epidemic was suppressed through widespread social

distancing measures which escalated from bans on gatherings

of more than 500 people (imposed on 16 March) to a nation-

wide ‘lockdown’ which began on 29 March and imposed a

ban on gatherings of more than three people. By late April,

daily incidence numbers had dropped to fewer than 10 per

day [23]. The outbreaks we examine occurred during the

subsequent period over which these general suppression

measures were progressively relaxed. One of these occurred

in aworkplace over several weeks, one began during a gather-

ing at a social venue, and one was a community transmission

scenario with no single identified outbreak centre, which

marked the beginning of Australia’s ‘second wave’ (which is

ongoing as of August 2020). The term ‘community trans-

mission’ refers to situations in which multiple transmission

chains have been detected with no known links identified

from contact tracing and no specific transmission centres are

clearly identifiable.

In each case, we use the Facebook mobility data that were

available during the early stages of the outbreak to estimate

future spatial patterns of relative transmission risk. We then

examine the degree to which these estimates correlate with the

subsequently observed case data in those regions. Our results

indicate that the accuracy of our estimates varies with outbreak

context, with higher correlation for the outbreak centred on a

workplace, and lower correlation for the outbreak centred on a

social gathering. In the community transmission scenario with-

out a well-defined transmission locus, we compare the risk

prediction based on mobility data to a null prediction based

only on active case numbers. Our results indicate that mobility

is more informative during the initial phases of the outbreak,

when detected cases are spatially localized and many areas

have no available case data.

2. Methods
Our general method is to use an OD matrix based on Facebook

mobility data to estimate the diffusion of transmission risk

based on one or more identified outbreak sources. The data pro-

vided by Facebook comprise the number of individuals moving

between locations occupied in subsequent 8 h intervals. For an

individual user, the location occupied is defined as the most fre-

quently visited location during the 8 h interval. More details on

the raw data, the aggregation and pre-processing performed by

Facebook before release, and our pre-processing steps can be

found in the electronic supplementary material.

COVID-19 case data are made publicly available by most

Australian state health authorities on the scale of Local Govern-

ment Areas (LGAs). In these urban and suburban regions, LGA

population densities typically vary from approximately 0.2 × 103

to 5 × 103 residents per km2, but can be low as 20 residents

per km2 in the suburban fringe where LGAs contain substantial

parkland and agricultural zones. The output of our method is a

relative risk estimate for each LGA based on their potential for

local transmission. The general method is as follows:

1. Construct the prevalence vector p, a column vector with one

element for each locationwith avalue corresponding to the trans-

mission centre status of that location. For point-outbreaks in

areas with no background transmission, we use a vector with a

value of 1 for the location containing the transmission centre

and 0 for all other locations. For outbreaks with transmission

in multiple locations, we construct p using the number of

active cases as reported by the relevant public health agency.

2. Construct an OD matrix M, where the value of a component

Mij gives the number of travellers starting their journey at
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location i (row index) and ending their journey at location j

(column index). To approximately match the pre-symptomatic

period of COVID-19, we average the ODmatrix over the mobi-

lity data provided by Facebook during the 7 day period

preceding the identification of the targeted transmission

centre. By averaging over an appropriate time interval, the

OD matrix is built to represent mobility during the initial

stages of the outbreak, when undocumented transmission

may have been occurring. The choice of appropriate time

interval varied by scenario, as described below.

3. Multiply the ODmatrix by the prevalence vector to produce an

unscaled risk vector r with a value for each location

corresponding to the aggregate strength of its outgoing con-

nections to transmission centres, weighted by the prevalence

in each transmission centre. This is re-scaled to give the relative

transmission risk for each region Ri. In other words, we treat

the OD matrix as analogous to the stochastic transition

matrix in a discrete-time Markov chain, and compute the

unscaled vector of risk values r as

r ¼ Mp, (2:1)

so that r is approximately proportional to the average inter-

action rate between susceptible individuals from location

i and infected individuals located in the outbreak centres.

These approximate interaction rates are then re-scaled to give

relative risk values Ri between 0 and 1:

Ri ¼
riP
j r j

: (2:2)

For point-outbreaks, this is simply

Ri ¼
MikP
j M jk

, (2:3)

where k is the column index of the single outbreak location.

The numerator is the number of individuals travelling from

region i to the outbreak centre, and the denominator is the

total number of travellers into the outbreak centre over all

origin locations j.

In addition to the typical assumptions about equilibrium

mixing (in the absence of more detailed interaction data),

this interpretation is subject to the assumption that the strength

of transmission in each centre is proportional to the number of

active cases in that location. This assumption is consistent with

the observation that the majority of individuals start and end

their journeys in the same locations, but there is not sufficient

data to unequivocally determine the relationship between

transmission risk within an area and active case numbers in

the resident population of that area. Therefore, it is appropriate

to think of our method as a heuristic approach to estimating

transmission risk based only on qualitative information

about epidemiological factors and informed by near-real-

time estimates of mobility patterns. These are derived from a

biased sample of the population (a subset of Facebook

users), and aggregated to represent movement between

regions containing of the order of 103 to 105 individuals.

2.1. Context-specific factors
Outbreaks occur in different contexts, some of which may suggest

use of external data sources to infer at-risk sub-populations. Such

inference can be used to refine spatial risk prediction.

For example, the workplace outbreak we investigated

occurred in a meat processing facility, where the virus spread

among workers at the plant and their contacts. To adapt the gen-

eral method to this context, we averaged OD matrices over the

subset of our data capturing the transition between nighttime

and daytime locations, as an estimate of work-related travel. In

addition, we examined the effect of including industry of

employment statistics as an additional risk factor. In this case,

we used data collected by the Australian Bureau of Statistics

(ABS) to estimate the proportion of meat workers by residence

in each LGA, and weighted the outgoing traveller numbers by

the proportion associated with the place of origin.

The resulting relative risk value Ri is a crude estimate of the

probability that an individual:

— travelled from origin location i into the region containing the

outbreak centre;

— travelled during the period when many cases were pre-

symptomatic and no targeted intervention measures had

been applied;

— made their trip(s) during the time of day associated with

travel to work; and

— were part of the specific subgroup associated with the out-

break centre (in this case, those employed in meat-processing

occupations).

The variation described above is specific for workplace out-

breaks in which employees are infected, but could be generally

applied to any context where a defined subgroup of the popu-

lation is more likely to be associated (e.g. school children,

aged-care workers etc.), or in which habitual travel patterns

associated with particular times of day are applicable. In prin-

ciple, this approach could be used to incorporate the effects of

localized intervention policies or risk factors not directly related

to mobility, such as limitations on gathering size, demographic

factors affecting transmission risk (i.e. age distribution), or vacci-

nation status of subpopulations. Here, in the context of the Cedar

Meatworks outbreak, we focus on an occupation-related risk

factor because of its assumed relationship with mobility between

home and work. In the other two scenarios we investigate, no

context-specific factors are incorporated.

While we make no explicit assumptions about spatial hetero-

geneity of disease dynamics, our choice to integrate mobility data

for the 7 days preceding each risk estimate, along with our

decision to validate these estimates against raw case reports

implicitly assumes spatially homogeneous temporal lags between

the events associated with transmission and those corresponding

to subsequent case ascertainment. To test the potential sensitivity

of our results to this implicit assumption, we examined the tem-

poral autocorrelation of the mobility matrices used in our study

(electronic supplementary material, figure S3). This analysis

revealed a very high level of temporal consistency in relative

mobility volumes between OD pairs. Because mobility patterns

are consistent in time, the risk estimate at time t is not sensitive

to the particular choice of integration interval as long as that inter-

val is at least 7 days to account for weekly fluctuations in

behaviour between weekend and weekday travel.

3. Results
For each of the three outbreak scenarios, we present the

mobility-based estimates of the relative transmission risk

distribution, and a time-varying correlation between our

estimate and the case numbers ascertained through contact tra-

cing and testing programmes. For details of these correlation

computations, see the electronic supplementary material.

3.1. Cedar Meats
3.1.1. Scenario
Cedar Meats is an abattoir (slaughterhouse and meat packing

facility) in Brimbank, Victoria. It is located in the western area

of Melbourne. It was the locus of one of the first sizeable
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outbreaks in Australia after the initial wave of infections had

been suppressed through wide-spread physical distancing

interventions. Meat processing facilities are particularly high-

risk work environments for transmission of SARS-CoV-2, so

it is perhaps unsurprising that the first large outbreak occurred

in this environment [24,25]. It began at a timewhen community

transmission in the region was otherwise undetected. As the

transmission cluster grew, it was thoroughly traced and sub-

sequently controlled. The contact-tracing effort included (but

was not limited to) intensive testing of staff, each of which

required a negative test before returning to work, 14-day

isolation periods for all exposed individuals, and daily

follow-up calls with every close contact. The outbreak was

officially recognized on 29 April, when four cases were con-

firmed in workers at the site and, according to media reports,

Victoria Department of Health and Human Services (DHHS)

informed the meatworks of these findings [26]. The outbreak

was first mentioned in the daily COVID-19 updates from Vic-

toria DHHS on 2 May, when the number of confirmed cases

associated with the cluster had risen to eight [27].

The Cedar Meats outbreak began when it was introduced

into the workplace, where it subsequently spread to a large

number of staff, and members of their households. We there-

fore selected for the distribution of travellers that may have

been travelling to work in the area of Cedar Meats during

the period over which undetected transmission was likely.

Specifically, we generated mobility risk maps based on trips

into the Brimbank region for the nighttime→ daytime OD

matrix, averaged over the period between 21 April and 27

April 2020. We note that while there were only two SARS-

CoV-2 positive cases associated with the cluster during this

period (in two different areas), 43 cases were detected in

the following week with infected individuals residing in 14

different locations.

As our estimate of transmission risk between Brimbank

and other LGAs, we compute the risk value Ri as the pro-

portion of individuals arriving in Brimbank from any other

Victorian LGA i during the nighttime→ daytime OD

matrix. These values were computed with equation (2.3)

and are shown as a directed network in figure 1a. Because

the outbreak occurred in an abattoir, we also explored the

effect of weighting mobility by a context-specific factor: the

proportion of employed persons with occupations in meat

processing (figure 1b).

3.1.2. Risk estimates and validation with case numbers
The geographical distribution of relative transmission risk due

to mobility into Brimbank during the nighttime→ daytime

transition is presented in figure 2a, while the distribution gen-

erated by including both mobility and the proportion of meat

workers in each LGA is shown in figure 2b.

To validate our estimate, we computed Spearman’s

correlation between this risk estimate for each region to the

time-dependent case count for each region documented over

the course of the outbreak (supplied by Victoria DHHS). We

use Spearman’s rather than Pearson’s correlation because

while we expect monotonic dependence between estimated

relative risk and case counts, we have no reason to expect

linear dependence or normally distributed errors. The outbreak

case datawere supplied as a time series of cumulative detected

cases in each LGA for each day of the outbreak. Therefore, we

present our correlation as a function of time from 29 April,

when recorded case numbers began to increase dramatically

(before 1May, the number of affected LGAswas too small com-

pute a confidence interval (n≤ 3)). As case numbers increase,

correlation between our risk estimates and case numbers stabil-

izes at approximately 0.75 using mobility only (figure 3a), and

at approx. 0.81 when including both mobility and meatworker

proportions in the risk computation (figure 3b). Due to privacy

limitations on release of case data, we do not present case

numbers by LGA for the Cedar Meats outbreak.

3.2. The Crossroads Hotel
3.2.1. Scenario
The next scenario we examine began with a single spreading

event that occurred during a large gathering at a social venue

in western Sydney. While workplaces have frequently been

the locus of COVID-19 clusters, many outbreaks have also

been sparked by social gatherings [28,29]. In urban environ-

ments, such outbreaks can prove more challenging to trace,

as the exposed individuals may be only transiently associated

with the outbreak location.

The Crossroads Hotel was the site of the first COVID-19

outbreak to occur in New South Wales after the initial wave

of infections was suppressed. The cluster was identified on

10 July 2020, during a period when new cases numbered

fewer than 10 notifications per day. However, the second

wave of community transmission in Victoria produced spora-

dic introductions in NSW, one of which led to a spreading

event at the Crossroads Hotel [30]. Based on media reports,

state contact-tracing data indicated that the cluster began on

the evening of 3 July, during a large gathering [31].

Unlike the Cedar Meats cluster, the Crossroads Hotel

scenario was not a workplace outbreak with transmission

occurring in the same context for a sustained time period,

but a single spreading event in a large social centre. For

this reason, to estimate relevant mobility patterns we aver-

aged trip numbers over all time-windows in our data

(daytime→ evening→ nighttime→ daytime) for the period

of 27 June–4 July. It was also necessary to perform some

pre-processing of the mobility data provided by Facebook

in order to correlate case data provided by New South

Wales Health to our mobility-based risk estimates due to sub-

stantial differences in the geographical boundaries used in

the respective data sets (see electronic supplementary

material, Technical Note). Aside from these minor differ-

ences, the method applied in this scenario is essentially the

same as the one described above for the Cedar Meats out-

break. Risk of transmission in an area is assessed as the

proportion of travellers who entered the outbreak location

from that area (see equation (2.3)).

3.2.2. Results
Correlation of our risk estimate to the number of cases in each

LGA as a function of time is shown in figure 4a. Heat maps of

estimated risk and case numbers are shown in figure 4b

and 4c, respectively. In this analysis, the available data did

not explicitly identify the outbreak to which each case was

associated; however, it did distinguish between cases associ-

ated with local transmission clusters and those associated

with international importation. Because the Crossroads Hotel

cluster was the only documented outbreak during this time,

we attribute to it all cluster-associated cases during the

period investigated. This assumption is anecdotally consistent
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with media reports that specify more detailed information

about the residential location of individuals associated with

the outbreaks. The COVID-19 case data for New South

Wales are publicly available [32].

3.3. Victoria: community transmission
3.3.1. Scenario
Both of the previous case studies considered scenarios in

which a localized outbreak occurred in the context of very

low or undetected community transmission. For our third

case study, we consider a scenario in which community trans-

mission had been detected across multiple suburbs in

metropolitan Melbourne. This began in Victoria during

June and July, after lifting of the social distancing restrictions

that suppressed the initial outbreak in March. When commu-

nity transmission was ascertained there were already active

cases in many regions around metropolitan Melbourne, and

no specific transmission centre was clearly identifiable

(although transmission is thought to have originated in

hotels used to quarantine arriving travellers).

On 1 June 2020, Victoria DHHS reported 71 active COVID-

19 cases throughout the state, with four new cases. By 21 June,

this number had increased to 121 active cases (19 new) at

which point the state government initiated increased testing

for community transmission and re-introduction of limits on

large gatherings. Subsequently, the number of active cases

increased to 645 by 6 July, and localized lockdowns were
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Brimbank during the period spanning 21 April to 27 April 2020 (arrow width is proportional to commuter numbers, with the self-loop omitted). (b) The proportion

of employed persons in each location working in meat processing occupations as of the 2016 Census. The colour scale in (b) was generated using the method of

Jenks natural breaks.
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implemented in a set of 12 postcodes where peoplewere asked

to stay at home unless working or attending to essential activi-

ties. These targeted lockdowns were introduced in an attempt

to avoid general imposition of the measures, but they were

extended to the entirety of metropolitan Melbourne on

9 July, with continuing community transmission. These

events are documented in the online series of daily updates

provided by Victoria DHHS [33].

We examine whether the areas affected by community

transmission in late June and July could have been predicted

based on case numbers and mobility data that were available

in early June. Our goal is to examine whether the effectiveness

of mobility patterns in predicting relative transmission risk

from point outbreaks can extend to community transmission

scenarios in which outbreak sources are unknown.

In the community transmission scenario, as with the

Crossroads Hotel outbreak, there were no clear context-

dependent factors that suggested the use of other population

data. In contrast to the first two scenarios, community trans-

mission was occurring in multiple locations at the beginning

of our investigation period. For each day, the unscaled risk

estimate ri is the product of the OD matrix (averaged over

the preceding week) and the vector of active case numbers

in each location (see equation (2.1)). Therefore, in this case,

the relative risk value Ri represents the proportion of travel-

lers into all areas containing active cases, with the

5

3

2

8

1
10

6

9

7

4

(b)

proportion of 

travellers into Brimbank

0.000478–0.00155

0.00156–0.00819

0.00820–0.0136

0.0137–0.0276

0.0277–0.873

proportion of travellers 

into Brimbank times 

proportion of meat workers

0.00–2.37 × 10–6

2.38 × 10–6–8.51 × 10–6

8.52 × 10–6–1.80 × 10–5

1.81 × 10–5–1.06 × 10–4

1.07 × 10–4–7.28 × 10–3

6

2

3

1
109

8

4

5

7

(a)
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scales were generated using the method of Jenks natural breaks.
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contribution of each infected region weighted by the number

of active cases (see equation (2.2)).

For this scenario, we investigate the correlation between

relative risk estimates at time t, and incident case numbers

(notifications) at time t0, for all dates between 1 June and

21 July. We performed this more extensive analysis because

it was not clear at what point in the outbreak, if any, con-

ditions at time t would provide insight at a future time t0.

In particular, we investigate if and when the incorporation

of mobility data gives insight not provided by active case

numbers alone.

3.3.2. Results
The results of our correlation analysis for the Victoria com-

munity transmission scenario are shown in figure 5. The

correlations of incident cases (I) at time t0 with active case

numbers (C) and active cases combined with mobility (R) at

time t are shown in figure 5a and 5b, respectively.

The added contribution of the mobility data as a function

of t and t0 is shown in figure 5c, which shows the difference

between the mobility-based correlation value and the

correlation based on active case numbers alone.

The values in figure 5c test the hypothesis that, after some

delay, risk estimates incorporating mobility will correspond

more closely to the future distribution of infection incidence

than estimates made based only on active case numbers. Posi-

tive values support this hypothesis while values near or

below zero correspond to the null hypothesis that mobility

information does not improve risk estimates based on the dis-

tribution of active cases. Furthermore, by examining these

values as functions of the time of risk assessment (t) and

the time of case reports (t0), we gain some insight into the

temporal lag between the mobility-driven diffusion of disease

and the official reporting of cases. Here, the lag (t0 − t)

between observation of risk at time t and observation of

case incidence at time t0 integrates all sources of delay.

These include both the natural period between transmission

and symptom onset, as well as the logistical delays associated
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with clinical presentation, testing, ascertainment and notifica-

tion. Our simple analysis does not allow us to decompose the

dynamics to assess different lag components separately.

To demonstrate the geographical distribution of cases and

the diffusion of risk based on mobility, figure 5d shows the

active case counts documented for 5 June, figure 5e shows

the corresponding distribution of transmission risk based on

mobility patterns from the preceding week, and figure 5f

shows the distribution of incident cases on 15 July. For refer-

ence, the maps in figure 5d–f correspond to the point

indicated by the intersection of dashed lines in figure 5a.

4. Discussion
The goal of this study was to develop and critically analyse

a simple procedure for translating aggregate mobility data

into estimates of the spatial distribution of relative trans-

mission risk from COVID-19 outbreaks. Our results indicate

that aggregate mobility data can be a useful tool in estimation

of COVID-19 transmission risk diffusion from locations where

active cases have been identified. The utility of mobility data

depends on the context of the outbreak and appears to be

more helpful in scenarios involving environments where con-

text indicates specific risk factors. The procedurewe presented

may also be useful during the early stages of community trans-

mission and could help determine the extent of selective

intervention measures.

In community transmission scenarios, mobility will

already have played a role in determining the distribution of

case counts when community transmission is detected. Our

results indicate that the insight added by the incorporation

of mobility data diminishes as case counts grow. However,

we also observed low correlations due to stochastic effects in

the Crossroads Hotel scenario. Taken together, these results

indicate that there is an optimal usage window that opens

when case counts are high enough for aggregate mobility

patterns to shed light on transmission patterns, and closes

when these transmission patterns begin to determine the dis-

tribution of active cases which then predict their own future

distribution with only limited information added by consider-

ing mobility. In addition, once case counts rise sufficiently to

trigger intervention policies, the local stringency of these

measures and adherence to them are likely to become primary

factors influencing the incidence of new cases [20,34].

Our examination of the second wave of community trans-

mission in Victoria showed that several weeks before it was

recognized, the spatial distribution of a small number of active

cases was indicative of the outbreak distribution more than 30

days later when interventions were introduced. This indication

improved slightly by including the diffusion of risk computed

from available mobility data. Qualitatively, this observation

indicates that even when case numbers were small, low-level

community transmission may have already been taking place

throughout the regionofmetropolitanMelbourne. This suggests

that earlier selective lockdown measures, extending beyond the

borders of regions in which cases had been identified, may have

been more effective at containing transmission.

This type of relative risk estimation procedure is relevant

to public health decisions relating to selective lockdown

measures or the imposition of mandated infection control

policies upon either the initial introduction of an infectious
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disease into a susceptible population or the resurgence of a

previously suppressed epidemic. Australia is currently (as

of August 2020) in the early phases of the latter scenario

and there is a need for policy decision frameworks aimed

at preventing resurgence of the epidemic while minimizing

economic consequences of further intervention. Importantly,

this study focused on relatively small-scale outbreaks that

all occurred within single administrative jurisdictions. For

scenarios involving case importation between different

administrative jurisdictions (i.e. international or interstate

travel), calculation of transmission risk must take into

account heterogeneity in the rates of case ascertainment

within each jurisdiction, as these can vary substantially [22].

4.1. Limitations
4.1.1. Privacy, anonymity and aggregation
It is essential that the use of mobility data for disease surveil-

lance complies with privacy and ethical considerations [11].

Due to this requirement, there will always be trade-offs

between the spatio-temporal resolution of aggregated mobi-

lity data and the completeness of the data set after curation,

which typically involves the addition of noise and the removal

of small numbers based on a specified threshold. To help

ensure users cannot be identified, Facebook removes OD

pairs with fewer than 10 unique users over the 8 h aggregation

period. The combination of this aggregation period with the

10-user threshold affects regional representation in the data

set, particularly in more sparsely populated areas. The final

product resulting from these choices contains frequently

updated and temporally specific mobility patterns for densely

populated urban areas, at the cost of incomplete data in spar-

sely populated regions. In general, increased temporal or

spatial resolution will reduce trip numbers in any given set

of raw data, which can have a dramatic impact on the

amount of informationmissing from the curated numbers [35].

4.1.2. Stochastic effects
The comparison of our results from the Cedar Meats outbreak

and those from the Crossroads Hotel cluster demonstrates that

the utility of aggregated mobility patterns in estimation of the

spatial distribution of relative risk depends on the context of

the outbreak, with more value in situations involving habitual

mobility such as commuting to and fromwork. Detailed exam-

ination of the inconsistencies between risk estimates and case

data from the Crossroads Hotel outbreak indicate that small

numbers of people travelling longer distanceswere responsible

for the relative lack of correspondence in that scenario. In

particular, news reports discussed instances of single individ-

uals who had travelled from the rural suburbs to visit the

Crossroads Hotel for the 3 July gathering who then infected

their family members. These scenarios were not consistent

with the risk predictions produced by the mobility patterns

into and out of the region and exemplify the limitations of

risk assessment based on aggregate behavioural data.

4.1.3. Sample bias
The mobility data provided by the Facebook Data For Good

Program represent a non-uniform and essentially uncharac-

terized sample of the population. While it is a large sample,

with aggregate counts of the order of 10% of ABS population

figures, the spatial bias introduced by the condition of mobile

app usage cannot be determined due to data aggregation and

anonymization. While it is possible to count the number of

Facebook users present in any location during the specified

time intervals, it is not possible to distinguish which of

those are located in their places of residence. In order to

account for the (possibly many) biases affecting the sample,

a detailed demographic study would be necessary that is

beyond the scope of the present work. A heat map (electronic

supplementary material, figure S1) of the average number of

Facebook users present during the nighttime period (2:00 to

10:00) as a proportion of the estimated resident population

reported by the ABS (2018 [36]) shows qualitative similarity

to the spatial distributions of active cases and relative risk

shown in figure 5d,e. This dual correspondence suggests the

presence of common factors affecting both representation in

the Facebook dataset and the risk of transmission. To investi-

gate the potential influence of spatial sampling bias on our

correlations, we performed a simple bias correction the

results of which are shown in electronic supplementary

material, figure S2. We did not include this bias correction

as a component of our general analysis because it is unclear

to what degree the correction is accurate, given a lack of

detailed information on the individuals represented in Face-

book user population data. That is, the bias correction we

tested may have introduced different, uncharacterized biases.

4.2. Future work
On a fundamental level, mobility patterns are responsible for

observed departures from continuum mechanics observed in

real epidemics [37]. Over the past two decades, due to public

health concern over the pandemic potential of SARS, MERS

and novel influenza, spatially explicit models of disease

transmission have become commonplace in simulations of

realistic pandemic intervention policies [38,39]. Such models

rely on descriptions of mobility patterns which are usually

derived from static snapshots of mobility obtained from

census data [35,40,41]. While this approach is justifiable

given the known importance of mobility in disease trans-

mission, it is also clear that the shocks to normal mobility

behaviour induced by the intervention policies of the

COVID-19 pandemic will not be captured by static treatments

of mobility patterns. To account for the dynamic effects of

intervention, several models have been developed to simulate

the imposition of social distancing measures through adjust-

ments to the strength of context-specific transmission factors

[42,43]. This type of treatment implicitly affects the degree of

mixing between regions without explicitly altering the top-

ology of the mobility network on which the model is based

and it is unclear whether such a treatment is adequate to cap-

ture the complex response of human population behaviour.

Given the results of our analysis, the incorporation of real-

time changes in mobility patterns could add policy-relevant

layers of realism to such models that currently rely on

static, sometimes dated, depictions of human movement.
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