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Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-
and-mouth disease underline the need for improved understanding of the factors promoting the spread of these
pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7
avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to
estimate key parameters determining the spread of highly transmissible animal diseases between farms based on
outbreak data. The method allows for the identification of high-risk areas for propagating spread in an
epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability
of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how
an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction
numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show
that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local
control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be
brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an
estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and
emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of
farms.
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Introduction

Outbreaks of highly contagious animal infections such as
foot-and-mouth disease, classical swine fever, and highly
pathogenic avian influenza traditionally have been and
continue to be important loss factors in production animals
throughout the world. In recent years, several large epidemics
have occurred with serious socioeconomic consequences [1–
3] and, in the case of highly pathogenic avian influenza
viruses of the H5 and H7 subtypes, also with possible public
health implications [4–7]. Improved understanding of the
factors facilitating the introduction and subsequent spread of
these viruses is crucial for effective control. An important
common characteristic of these past epidemics is that a large
fraction of farm infections occurred through local spread
between nearby farms [8–14].

To explain the observed patterns of infection of highly
pathogenic avian influenza virus between farms, and to be
able to evaluate the potential effectiveness of control
measures, we adopt a phenomenological modelling approach.
Similar approaches have been used in modelling studies of
the interfarm spread and the effectiveness of control
measures during the foot-and-mouth epidemic in the United
Kingdom in 2001 [8,9,14–18]. The present analysis allows us to
produce geographic risk maps for the spread of highly
pathogenic avian influenza virus between poultry farms.
These risk maps are based on the calculation of a local
reproduction number, and are constructed so as to apply to a
given intervention strategy.

For estimation of the model parameters, we use an

extensive dataset that was collected during an outbreak of a
highly pathogenic H7N7 avian influenza virus in The Nether-
lands in 2003. Shortly after the detection of virus circulation,
the Dutch authorities undertook an aggressive control
strategy that consisted of an animal movement ban and
enhanced biosecurity measures in the affected regions,
tracing and screening of suspected flocks, and culling of
infected and contiguous flocks. In all, 241 commercial flocks
became infected during a period of 9 wk, and more than 30
million birds died by infection and culling.
A striking characteristic of the 2003 epidemic was that

most of the infected farms were confined to two areas with a
high density of poultry farms. In fact, it was noted that
proximity to an infected herd was a significant risk factor for
acquiring infection [19]. This is illustrated by Figure 1, which
shows a map of The Netherlands with the physical locations
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of all 5,360 commercial poultry farms. Farms that remained
free of infection during the epidemic are indicated by a
yellow dot, and those that were infected are represented by a
black dot. The figure shows that most infections were
confined to a large poultry-dense area of approximately
1,000 farms in the central part of The Netherlands (the
Gelderse Vallei), and a smaller poultry-dense area of almost
400 farms in the south of The Netherlands.

As a first step to gain further insight into the spatial
transmission characteristics of the 2003 epidemic, we plot in
Figure 2A the between-farm distances of all potential trans-
mission events (i.e., new infections being caused by candidate
source farms). The figure shows that the majority of the
potential transmission events were within a radius of 25 km
around infected farms, suggesting that infection probabilities
decrease with between-farm distance. This suggestion is
corroborated in Figure 2B, in which we plot for each distance
category the fraction of farms that are potentially infected by
an infected farm, averaged over all infected farms. Notice the
small hump at a distance of 90–110 km in both panels, which
arises due to the distance between the two infection clusters.

Our more detailed analyses below confirm that the
probability of infection decreases strongly as the distance
between farms increases. In fact, the probability that a farm
that is close to an infected farm (0–2 km) will be infected by
that farm is 1%–2%, while farms that are further away from
an infected farm (.10 km) have a probability of less than
0.05% of being infected by that farm. Our analyses also reveal
that there are two high-risk poultry-dense areas in The
Netherlands in which an introduction of highly pathogenic
avian influenza virus is likely to cause a major epidemic. In
these areas, targeted control strategies such as vaccination or
culling of farms within a ring of 1–2 km around affected
premises are unlikely to be effective in containing an
epidemic. On the other hand, culling in a wider ring of 3–5
km may be effective, although the number of farms that has
to be culled around each infected farm may become very
large (.100 per infected farm).

Methods

Data
The analyses rely on the availability of two pieces of

information. The first is the spatial locations of all farms that
are at risk of infection and subsequent transmission to
uninfected farms. The second is an assessment of the infection
status (uninfected, infected but not yet infectious, infected
and infectious, removed) of each farm during the epidemic.
While the former data are relatively easy to retrieve and can
be collected before or after an epidemic, the latter require a
considerable effort of data collection during the epidemic. In
short, as the epidemic unfolded, an attempt was undertaken
to record for all infected farms the key demographic
characteristics (number of barns, number of animals, type of
animals, age of the animals) and data of epidemiological
interest (number of dead animals per day, number of sick
animals per day, food and water intake per day). By no means
could all of the above information be collected for all farms,
although the day at which mortality first increased and the
moment of culling were reported for all farms. In our
analyses, farms were assumed to be infected 6 d before the
day on which mortality first increased. Upon infection, each
farm then remained latently infected for 2 d, after which it
was assumed to be infectious until culling. For a more detailed
description of the epidemic, including detailed case reports of
the first five infected premises, we refer to [19–20].
Technically, the infection data are collected in an n 3 tmax

infection matrix C ¼ (cij), the elements of which contain the
infection status of all n farms during the tmax days of the
epidemic. For the Dutch outbreak we have n¼ 5,360 and tmax

¼ 78 [19]. On each day, a farm is classified as susceptible (S),
being infected on that day (B), infected but not infectious (E),

Figure 1. Map of The Netherlands Indicating the Physical Locations of All

5,360 Commercial Poultry Farms

Farms that were infected during the 2003 epidemic of avian influenza are
represented by black dots, and farms that were not infected are
represented by yellow dots.
doi:10.1371/journal.pcbi.0030071.g001
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Author Summary

Modern approaches in the epidemiology of infectious diseases
include the use of mechanistic mathematical models to analyze and
predict the dynamics of disease transmission. Modelling work during
the massive epidemic of foot-and-mouth-disease in 2001 in Great
Britain has provided an important example of how such analyses can
be performed whilst an epidemic unfolds, predicting the effective-
ness of intervention efforts and thus helping to inform policy-
making. In this article, we use the example of highly pathogenic
avian influenza in poultry to set out a computational approach
yielding risk maps for the spread of highly transmissible livestock
diseases. In these risk maps, geographic areas are identified in which
a given intervention strategy fails to control the spread of the
disease between farms. Using the epidemiological data of a large
avian influenza epidemic in The Netherlands in 2003, this approach
yields an estimate of the distance-dependent transmission proba-
bility. From this transmission probability, the transmission potential
is calculated for all farms in The Netherlands, leading to the
identification of two high-risk areas, defined as clusters of farms with
transmission potential exceeding unity. The risk map concept is an
instrument suitable for analyses of epidemic control options both
during crisis and in peacetime.

Risk Maps for Avian Influenza



infectious (I), or removed (R). Hence, cij ¼ S if farm i is still
susceptible on day j, cij ¼ B if it is infected on day j, etc. As
discussed and evaluated in [19], there is some uncertainty in
the infection dates and days on which farms have become
infectious. Below, we evaluate the sensitivity of our results to
assumptions leading to the infection matrix C. The infection
data from the infected farms can be downloaded from
Dataset S1.

The farm location data take the form of a list of n 2-D
Euclidean location vectors ri ¼ (xi, yi). From this list we
construct an n 3 n distance matrix D that contains the
pairwise distances between farms. For reasons of privacy we
cannot make the data file containing the exact locations of all
farms in The Netherlands available (but see [21] for ways of
constructing an approximate dataset).

Modelling Approach and Reproduction Numbers
The model is defined on a farm level (i.e., farms are the

individual units). These individual units differ by their

location and infection status, and are considered identical
in all other respects. This simplification (in particular,
ignoring differences in farm size) is made because more
detailed modelling introduces additional parameters that
cannot be estimated with sufficient precision to add further
insight into the spatial transmission risk. The infection matrix
C discussed above specifies how each farm’s status (S, B, E, I, or
R) developed through time during the epidemic in 2003. The
model assumes that the probability p(rij) that an uninfected
farm j will be infected by an infected farm i depends only on
the infectious period Ti of farm i and on the (Euclidean)
distance rij¼ jri� rjj between the farms, and is given by P(rij)¼
1 � exp(�h(rij)Ti). The function h(rij) is called the transmission
kernel, and is defined as the infection hazard posed by farm i to
farm j as a function of interfarm distance [8,9,14,18]. In the
next section, we describe how the transmission kernel h(rij) is
estimated from the data matrices C and D.
With estimates of the transmission kernel at hand, a risk

map can be constructed in the following way. At every farm
location we calculate the (basic) reproduction number R,
which equals the expected number of secondary infections
caused by one infected farm in the early stages of an epidemic
(i.e., before the depletion of susceptible farms starts to play a
role). If R . 1, the pathogen is able to cause a major epidemic,
while it cannot if R , 1. If we denote the density of farms at a
distance r from a focal farm i by qi(r), then standard
arguments show that the reproduction number of farm i is
to a good approximation given by

Ri ¼ 2p
Z‘

0

qiðrÞpðrÞrdr ð1Þ

For more accurate approximations taking into account the
effects of local depletion of susceptible farms we refer to
(Boender GJ, Meester R, Gies TJA, de Jong MCM, unpublished
data). If farm density were constant (qi ¼ q), the individual
reproduction numbers are identical, and the above expres-
sion simplifies to

R ¼ 2pq
Z‘

0

pðrÞrdr ð2Þ

The integrand p(r)r in the above expression determines the
contribution of farms at distance r to the reproduction
number. Notice that the reproduction number in the above
equation is proportional to the farm density. The critical
farm density qc is given by the solution of the equation R¼ 1.
Using the above result for R, this yields

qc ¼ 2p
Z‘

0

pðrÞrdr

0
@

1
A
�1

ð3Þ

The above equations show that, under certain assumptions,
the reproduction number can be translated into a farm
density and vice versa. In particular, the threshold condition
R ¼ 1 for epidemic spread translates into a critical farm
density.
The above theoretical considerations assume that farm

density is constant. This is hardly ever true in practice, and we
need to take into account the actual distribution of farms. For

Figure 2. Distance Distribution of Potential Transmission Events

(A) The frequency distribution of the distances of potential infection
events. Notice that the majority of potential infections occur within a
radius of 25 km around an infected farm.
(B) The proportion of farms infected within different distance categories
from a potential source farm, averaged over all possible source farms
(i.e., over all farms confirmed positive during the 2003 epidemic).
doi:10.1371/journal.pcbi.0030071.g002
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a specific distribution of farms and assuming a stochastic
infectious period Ti the reproduction number Ri of farm i is
given by

Ri ¼ E
X
j 6¼i

pðrijÞ

2
4

3
5 ¼ X

j 6¼i
1� E e�hðrijÞTi

h i� �
; ð4Þ

where the index runs across all farms in the population
except the focal farm.

Equation 4 gives the expected number of infections caused
by an infected farm in the early stages of an outbreak. For
completeness, we note that not only the expected number of
infections (i.e., the reproduction numbers) but also the
complete offspring distribution (i.e., the distribution of the
number of farms infected by a single infected farm) in the
early stages of an epidemic can be determined by simulation
using the elements in the summation of Equation 4. It
appears that the resulting distributions are almost indistin-
guishable from Poisson distributions with parameters Ri

(unpublished data). This phenomenon can be explained
theoretically if the individual farm contributions are deter-
mined by a (inhomogeneous) Poisson process. In our model,
this condition would hold true if the farm locations are
generated by a (inhomogeneous) Poisson process. Simulations
show that for the Dutch farm data, the Poisson approxima-
tion gives an excellent description of the actual offspring
distribution, even though the farm locations are highly
overdispersed (unpublished data).

If the infectious periods are drawn from a parametric
distribution, an explicit expression for Ri can usually be
obtained. For instance, if the infectious periods arise from a
common gamma distribution with shape parameter c and
scale parameter T/c, then the reproduction number of farm i
is given by

Ri ¼
X
j 6¼i

1� c
cþ ThðrijÞ

� �c� �
; ð5Þ

where T and 1=
ffiffi
c
p

are the mean and variance of the infectious
period probability distribution, respectively. Here the special
cases of a fixed or exponentially distributed infectious period
are obtained by letting c ! ‘ or by taking c¼ 1, respectively.

Below, we obtain a risk map for epidemic spread by
drawing a map in which all commercial poultry farms are
indicated by a dot, representing those farms with Ri . 1 by a
red dot. This identifies high-risk areas as red areas on the
map.

Parameter Estimation
To obtain quantitative estimates for the local reproduction

numbers, we need estimates of both the transmission kernel
h(rij) and the (distribution of the) infectious period Ti.

The infectious periods at the farm level were obtained
from the infection matrix C. The mean infectious period of
the 241 farms that were infected was 7.47 d (95% CI ¼ (7.2–
7.8). On the basis of these data we took T¼7.47 and c¼11.1 in
Equation 5.

We estimate the transmission kernel h(rij) from the data
matrices C and D by means of maximum likelihood [8,14,18].
In line with previous studies [9,14], we parameterised the
transmission kernel using a three-parameter logistic expres-
sion:

hðrÞ ¼ h0
1þ ðr=r0Þa

: ð6Þ

To evaluate the performance of the transmission kernel
specified by Equation 6, we considered a number of
alternative functions, and compared the performance of the
kernel specified by Equation 6 with the alternatives on the
basis of Akaike’s Information Criterion (AIC) [22]. The results
are discussed below.
To derive the likelihood function, we define the force of

infection ki(t) on a susceptible farm i by:

kiðtÞ ¼
X
j 6¼i

hðrjiÞ 1 ½ j is infectious� ð7Þ

(1 represents the indicator function). The force of infection
determines the probability qi(t) that a hitherto susceptible
farm i is infected on day t,

qiðtÞ ¼ 1� e�kiðtÞ; ð8Þ

and the probability ri(t) that farm i remains uninfected up to
day t,

riðtÞ ¼ e�
Pt�1

s¼1 kiðsÞ: ð9Þ

Using Equations 8–9, the likelihood function takes the
following form:

L ¼
Y
k2K

rkðtmaxÞ
Y
l2K

rlðtcul;lÞ
Y
m2M

rmðtinf ;mÞqmðtinf ;mÞ; ð10Þ

where the set K contains all farms that remained uninfected
and that were not culled, K contains the farms that were not
infected but that were culled (at times tcul,l), and M contains
the farms that were infected (at times tinf,m). In practice, it is
computationally more efficient to use the log-likelihood
‘ ¼ log(L) instead of the likelihood L. Using Equations 8–10,
the log-likelihood can be written in terms of the forces of
infection as follows:

‘ ¼�
X
k2K

Xtmax�1

t¼1
kkðtÞ �

X
l2K

Xtcul;l�1
t¼1

klðtÞ �
X
m2M

Xtinf ;m�1
t¼1

kmðtÞ

þ
X
m2M

log 1� e�kmðtinf ;mÞ
h i

: ð11Þ

The maximum likelihood estimates of the parameters of
interest (h0, r0, and a) are readily obtained by maximization of
Equation 11. The confidence bounds of the parameters (Table
1) are calculated using profile likelihoods. The 95% con-
fidence bounds of the transmission kernel shown in Figure 2
are calculated by determining, at any given distance, the
range of values spanned by the kernel when the kernel
parameters run across the 95% confidence volume (as
determined by the profile likelihood). Below we comment
on the sensitivity of the results with respect to the spatial
range of the farms that were included in the estimation
procedure.
Mathematica 5.2 (Wolfram, http://www.wolfram.com) was

used for all data processing, modelling, and statistical
analyses. Figures 2 and 3 were produced using SigmaPlot
10.0 (Systat Software, http://www.systat.com). Figures 1, 4, and
5 were also produced using Mathematica 5.2.

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e710707

Risk Maps for Avian Influenza



Results

High-Risk Areas for Epidemic Spread
Table 1 shows the parameter estimates of the transmission

kernel describing the transmission rate from infected to
uninfected farms as a function of interfarm distance, and
Figure 3 displays the transmission kernel for these parameter
estimates. The transmission rate decreases from an estimated
2.1 3 10�3 (d�1) in the direct neighbourhood of an infected
farm to 1.6 3 10�3 (d�1) at 1 km, and to 6.1 3 10�3 (d�1) at 10
km distance. This implies that the probability that a given
farm will be infected if it is at 0 km, 1 km, or 10 km from an
infected farm is approximately 0.016, 0.012, and 4.6 3 10�4 if
the infectious period is 7.5 d. Figure 3 also shows the
uncertainty associated with the estimate of the transmission
kernel. At short distances the uncertainty is largest because
the number of datapoints is lower here as there are far fewer
farms at short distances than there are at long distances.

Figure 4 shows a risk map of The Netherlands based on the
kernel estimate of Figure 3. Farms in yellow are expected to
produce fewer than one new infection if infected (i.e., Ri , 1),
while farms in red are expected to produce more than one
new infection if infected (Ri . 1). Farms in pink do not have a
reproduction number larger than 1 for the maximum
likelihood estimate of the transmission kernel, but do have
a reproduction number exceeding 1 for the 95% confidence
upper bound of the transmission kernel in Figure 3. Areas in
which farms with Ri . 1 predominate are at risk of epidemic
spread, while an epidemic cannot occur in areas in which
farms with Ri , 1 prevail.

The analysis shows that there are two areas in The
Netherlands that are at risk of a locally propagating epidemic
after a virus introduction: one large area in the central part
of the country comprising 913 farms (95% confidence bounds
of the high-risk area: 685–1,065) and one small area in the
south of 61 farms (95% confidence bounds of the high-risk
area: 0–206). In those two areas the local density of poultry
farms is such that an infected farm is expected to produce a
substantial number of subsequent infections.

A comparison of Figure 1, which shows the farms that were
actually infected during the 2003 epidemic, and Figure 4,
which shows the areas (farms) that are calculated to have a
high risk of epidemic spread, shows that there is a good
agreement between the two. In fact, using the estimated
transmission kernel, 162 of the 241 infected farms are also
classified as being in a high-risk area by our method, while 79

of the infected farms were located in areas that are classified
as having a low risk of epidemic spread. The correspondence
improves further if one takes the 95% confidence upper
bound of the transmission kernel as the basis of analysis,
thereby adding a number of pink farms in Figure 4 to the
high-risk area (189 infections in high-risk areas versus 52 in
low-risk areas). Altogether, our classification scheme appears
to work very well in general, although there remain a number
of infected farms in areas that are classified as low-risk.
Fortunately, and as predicted by our method, these infections
in the low-density areas did not spark new outbreaks in the
low-density areas.
At this point we would like to note that, in order not to

miss or underestimate the size of high-risk areas close to the
Dutch border, we have incorporated the poultry farms in the
Belgian provinces and German administrative areas (NUTS2
administrative levels) bordering The Netherlands in our
calculations (both in the kernel estimation and in the risk-
map calculation). As we do not have access to location data
for the farms in these regions, we have approximated the
farm structure of these regions by generating random model
locations on the surface of these regions according to a
homogeneous Poisson point process. The total number of
model locations per region was matched to Eurostat data
(http://ec.europa.eu/eurostat) on the total numbers of farms
by region.
To investigate the robustness the above results, we

performed a suite of sensitivity analyses. We paid particular
attention to the functional form of the transmission kernel,
the range of farms included in the estimation procedure, the
assumptions leading to the infection data matrix, and the
assumed constancy of the transmission level over time. Below,
we discuss each of these aspects in turn.

Alternative Transmission Kernels
As a first step to investigate the sensitivity of the above

results we considered a number of different functions of
varying complexity for the transmission kernel. The per-
formance of the different kernels was evaluated on the basis
of the support received by AIC [22]. The results of the
analyses are summarized in Table 2. In general, the analyses
show that simpler kernels with only one or two parameters fit
the data significantly worse than our default three-parameter
logistic equation (i.e., Equation 6), which has by far the
highest support. This indicates that we avoided overfitting
the data.

Table 1. Maximum Likelihood Estimates of the Model Parameters

Analysis ĥ0 (day�1) r̂0 (km) â T̂ (day)

Default 0.0020 (0.0012–0.0039) 1.9 (1.1–2.9) 2.1 (1.8–2.4) 7.5 (7.2–7.8)

Extended range 0.0013 (0.0009–0.0021) 3.1 (2.3–4.1) 2.7 (2.5–3.0) 7.5 (7.2–7.8)

Short infectious period 0.0028 (0.0017–0.0049) 1.8 (1.1–2.9) 2.1 (1.8–2.4) 5.5 (5.2–5.8)

High-risk period 0.0078 (0.0037–0.030) 1.8 (0.65–2.9) 3.9 (2.4–6.9) 13.8 (11.4–16.2)

Low-risk period 0.00052 (0.00035–0.0011) 5.4 (2.8–9.2) 2.5 (2.0–3.1) 7.3 (7.1–7.6)

The parameters h0, r0, and a determine the transmission kernel (Equation 6), while T represents the infectious period at the farm level. 95% confidence intervals are given between
brackets. The first row gives the results for the default analysis discussed in the main text. The second row gives the parameter estimates for a model with an extended kernel range that
takes into account the density of farms in Europe outside of The Netherlands. The third row shows the results in case of a decrease in the infectious period at the farm level of two days.
The last two rows show the results of analyses in which the periods before and after March 1, 2003, are analyzed separately (high-risk period and low-risk period). The infectious periods of
the high-risk and low-risk periods are based on five and 236 farms, respectively.
doi:10.1371/journal.pcbi.0030071.t001
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Table 2 shows that of the distance-based models a kernel
without any distance dependence in the transmission risk
(h(r) ¼ h0) gives by far the worst fit to the data and has
negligible support in comparison with models that do include
some form of negative distance dependence. These results
imply that the risk of transmission is not constant but
decreases with interfarm distance. In particular, the results of
Table 2 indicate that models that do not allow a rapid
decrease of the transmission kernel at long distances perform
much worse than models in which the tail of the transmission
kernel quickly drops of to very low values (i.e., for which the
tail is at least of the order 1/ra where a . 2). This implies that
farms at very long distances contribute marginally to the farm
reproduction numbers, even though there are many more
farms at long than at short and intermediate distances.

To further investigate the sensitivity of our results, we
considered alternative transmission models in which the
transmission kernel does not depend on the Euclidean
distance between farms, but on the distance rank of infected
farms to susceptible farms, or the distance rank of susceptible
farms to infected farms (see [23] for still other alternatives]). In
a hypothetical situation where most of the transmission takes
place through human contacts between farms, such models
would be appropriate whenever there is a fixed rate at which
people visit neighbouring farms but are more likely to visit
nearby farms than those that are farther away. Simulations
based on estimates of the rank-based transmission kernels
show that these models are unable to capture the patterns of
infection of the Dutch epidemic (unpublished data). In
particular, these models predict that occasional infections in
the low-density areas will not remain isolated but cause new
clusters of epidemic spread in the low-density areas. Hence,
the rank-based models predict that epidemics that are started
in the high-density area in the central part of The Netherlands
will ultimately spread all over The Netherlands.

Range of Farms Included in the Kernel Estimation
Our kernel estimates are based on all commercial farms in

The Netherlands. Since The Netherlands is a small country
(35,000 km2), this implies that the kernel parameter estimates

are based mainly on pairs of farms that are less than 150 km
apart. To investigate the sensitivity of the results to the range
of distances for which information is available, we have
repeated the kernel estimation using an extended dataset in
which the distribution of poultry farms outside The Nether-
lands was taken into account. Specifically, we approximated
Europe by one-half of an annular area of inner radius of 200
km and an outer radius of 1,600 km with a uniform poultry
farm density equal to the mean poultry farm density of the 24
non-Dutch European Union member states (http://ec.europa.
eu/eurostat) and re-estimated the transmission kernel.
The results show that the inclusion of farms outside of The

Netherlands (and the information that these had not been
infected) only marginally affects the estimated local repro-
duction numbers, yielding risk maps that are indistinguish-
able from those in Figures 4 and 5 (unpublished data).
However, we do find that the kernel parameter estimates are
changed considerably compared with the default analysis
(Table 1). This paradox arises due to neutralizing effects
between the three parameter shifts. The net result of the
changes in the three parameters is a mere lowering of the
long-distance tail of the transmission kernel, mostly due to
the higher estimated value for the parameter a. The kernel
hardly changes at short and intermediate distance scales,
which together are the dominant contributors to the local
reproduction numbers.

Figure 4. High-Risk Areas for Epidemic Spread of Avian Influenza Virus

Based on the Transmission Kernel of Figure 3

See Table 1 for parameter estimates. For each farm, an individual
reproduction number Ri is calculated on the basis of Equation 5. Infected
farms with Ri , 1 infect, on average, less than one susceptible farm and
pose no risk for epidemic spread (yellow dots). Infected farms with Ri . 1
are expected to infect more than one susceptible farm in the early stage
of an epidemic and thus constitute a risk of epidemic spread (red dots).
Pink dots represent farms with Ri , 1 for the maximum likelihood
estimate of the transmission kernel, but with Ri . 1 for the upper
boundary of the 95% kernel confidence area (Figure 3). Note that most of
the farms that were infected during the epidemic in The Netherlands in
2003 (Figure 1) are classified as high-risk farms.
doi:10.1371/journal.pcbi.0030071.g004

Figure 3. The Transmission Kernel as a Function of Interfarm Distance for

the Parameter Estimates of Table 1

The 95% confidence areas of the transmission kernel are represented by
the shaded area.
doi:10.1371/journal.pcbi.0030071.g003
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Uncertainty in the Temporal Course of the Epidemic
In the above analyses, we assumed perfect knowledge of the

course of the epidemic in The Netherlands in 2003. There is,
however, some uncertainty in the data with regard to the
infection matrix C, in particular with respect to the precise
moment of infection of infected farms. To investigate the
sensitivity of the results to assumptions underlying the
infection matrix, we carried out additional analyses in which
the moment of introduction was placed 2 d later than in our
default analyses (see [19] for details). The sensitivity analysis
(Table 1) shows that the decrease in the infectious period by 2
d is offset by a corresponding increase in the height of the
transmission kernel such that the individual farm-level
reproduction numbers remain roughly the same (unpub-
lished data). In particular, the baseline infection hazard
parameter h0 increases from an estimated 0.0020 d�1 in our
default scenario to 0.0028 d�1 in the additional analyses.
Hence, the sensitivity analysis indicates that although the
estimates of the parameters of the transmission kernel (in
particular the baseline infection hazard h0) are sensitive to
the moment of introduction and length of the infectious
period, the risk map of Figure 4 is remarkably insensitive to
the precise assumptions leading to the infection data matrix.
We observed the same phenomenon in our earlier nonspatial
analysis of the same epidemic [19].

High-Risk versus Low-Risk Periods
The above analyses assume that both the infectious period

at the farm level as well as the transmission kernel remained

constant throughout the epidemic. This, however, is only
approximately the case. Especially during the first week of the
epidemic there were no or hardly any control measures in
place, and the detection of infected farms was still imperfect
and slow. In line with our earlier nonspatial analyses [19], we
have therefore performed analyses of the period before and
after relevant control measures had been put in place (i.e., 1
March 2003). The results of the analyses, shown in Table 1,
illustrate that both the infectious period as well as the height
of the transmission kernel at short distances (,4 km) was
considerably higher in the high-risk period compared with
the low-risk period. On the other hand, at long distances (.4
km) the transmission kernel was somewhat higher in the low-
risk period compared with the high-risk period. This may
seem counterintuitive, but it should be noted that the
parameter estimates of the high-risk period were based on
a fairly small number of infected farms and on a small
number of days. The differences between the transmission
kernels of the two analyses may seem large (as judged by the
differences in the parameter estimates), but in fact the
transmission kernels are quite similar at the medium-range
distances (2–5 km) that contribute most to the local
reproduction numbers. The risk maps that are constructed
using the parameter estimates pertaining to the high-risk and
low-risk periods are much like the risk map for the analysis in
which the epidemic is analysed in one go. For instance, the
number of high-risk farms in the central area of The
Netherlands in the default analysis contained 913 farms (see
above), while the number of high-risk farms in the analyses of
the high-risk and low-risk periods contained 1,015 and 863
farms, respectively.

Local Containment
Besides a movement ban and biosecurity measures, there

are two potentially attractive local control measures: culling
of farms in the proximity of infected premises that have a
heightened risk of infection, and vaccination. We first
investigate the effectiveness of rapid culling of all farms in
a ring around infected farms. The effect of this measure can

Table 2. Evaluation of the Performance of Different Transmission
Kernels

Transmission Kernel AIC Model Weight

hðrÞ ¼ h0 3910.22 0

hðrÞ ¼ h0

1þr 3465.15 0

hðrÞ ¼ h0

1þr2 3678.87 0

hðrÞ ¼ h0

1þra 3094.24 0.16

hðrÞ ¼ h0

1þðr=r0Þa 3090.99 0.84

The first column gives the functional form of the transmission kernel. The second and
third columns represent AIC [22] and corresponding model weight, which can be
interpreted as the probability that the chosen model is the best among the ones
considered. The rows show the results of analyses using transmission kernels that increase
in complexity from top to bottom. The three-parameter transmission kernel in the bottom
row has the highest support and forms the basis of the analyses leading to Figures 3–5.
doi:10.1371/journal.pcbi.0030071.t002

Figure 5. High-Risk Areas for Epidemic Spread for Various Local Culling

Strategies in the Central High-Risk Area of The Netherlands

(A) Results for the default scenario (no culling).
(B) Results for a scenario with immediate culling of all farms within a
range of 1 km around an infected farm.
(C,D) Culling is carried out in a range of 3 km and 5 km around infected
farms, respectively. Farms in yellow pose no risk of epidemic spread for
the chosen control strategy, while farms in red constitute a risk of
epidemic spread even with the control strategy in place.
doi:10.1371/journal.pcbi.0030071.g005
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be described by reducing the height of the transmission
kernel of the infected farm and/or the length of the infectious
period of potential contact farms within the culling radius.
Here, we assume that culling occurs before any infected farm
in the culling ring starts spreading the infection to other
farms, so that the intervention can be described by setting the
transmission kernel of the infected farm to zero at distances
within the culling radius. Thus, the analyses below corre-
spond to a best-case scenario, and assume in effect that no
transmission takes place from farms within the culling radius.
This can probably only be achieved if ring culling is carried
out within a couple of days after infection of a focal farm.

Figure 5 shows the results of the analyses for the central
part of The Netherlands that was identified above as a major
high-risk area. Farms that do not constitute a risk are drawn
in yellow, while farms that pose a risk of epidemic spread are
depicted in red. The figure shows high-risk farms in case of no
culling (Figure 5A; compare with Figure 4), in case of culling
in a ring of radius 1 km (Figure 5B), and in case of culling in a
ring of radius 3 km or 5 km (Figure 5C and 5D). Culling of
farms in a ring of 1 km does not appear to be very effective, as
most farms that were classified as high-risk without culling
remain high-risk with a 1-km culling strategy in place. Culling
within a ring of 3 km in radius is more effective, although
there are still more than 100 farms that are classified as high-
risk (i.e., that are expected to produce more than one
subsequent infection once infected). Culling in a radius of 5
km is fully effective in the sense that with this control strategy
there are then no farms that are expected to produce more
than one subsequent infection once infected. The question
remains whether rapid culling of all farms in a radius of 5 km
around an infected farm is feasible logistically, as the number
of farms that have to be culled increases rapidly with the
culling radius. In fact, for the high-risk area in the central
part of The Netherlands, the average density of neighbour
farms exceeds 4 farms/km2 so that a 5-km ring culling strategy
would imply that for each infected farm more than 300 farms
have to be culled within a couple of days (p 3 r2 3 q¼ 3.14 3

25 3 4 ¼ 314). If the infection has spread already within this
high-risk area at the time of the first detection, this implies
that the majority of the approximately 913 farms in the area
would need to be culled. Apart from the logistic difficulties, it
would be difficult politically to decide in favor of such a
massive culling policy, as the Dutch Ministry of Agriculture,
Nature and Food Quality, in view of public opinion in The
Netherlands, has declared it their policy to resort to
emergency vaccination strategies instead.

As far as emergency vaccination around infected farms is
concerned, we note the following. On the one hand, it is
highly unlikely that vaccination can be effective once a highly
pathogenic virus has successfully been introduced in a
densely populated poultry region. The reason is that it takes
at least a week to vaccinate all susceptible poultry and an
additional 7–14 d before a vaccine provides effective
protection against infection and subsequent transmission
[24]. This time span would give the virus ample opportunity
to spread throughout the area. On the other hand,
vaccination is increasingly being considered as a possible
tool to prevent the successful introduction of the disease in
certain high-risk areas in case a highly pathogenic virus has
been detected at a certain distance from the area.

Discussion

In this paper we have presented an analysis of the spatial
transmission dynamics of highly pathogenic avian influenza
virus spread between farms by using an extensive dataset of
a major epidemic of H7N7 avian influenza virus in The
Netherlands in 2003. As the specific transmission route
responsible for infection is unknown for all of the infected
farms, we have adopted a phenomenological modelling
approach in which we do not distinguish between different
specific routes contributing to between-farm virus trans-
mission. This allows us to obtain quantitative estimates of
model transmission rate parameters that describe the
transmission risk between pairs of farms as a function of
distance.
We have shown how the estimation of the transmission

kernel naturally leads to estimates of a local reproduction
number, which allows one to map out the transmission risk
geographically. In this way, two poultry-dense areas at risk of
local epidemic spread are identified in The Netherlands. The
local reproduction number can be interpreted as a measure
of the local farm density or, more precisely, as a measure of
the density of farms surrounding a farm at a given location.
As a result, we may view the geographic risk map as a farm
density map. In particular, the critical farm density above
which epidemic spread is possible corresponds to a situation
where the local reproduction number equals the threshold
value 1.
The density of poultry farms happens to differ quite

strongly between the high-risk areas and elsewhere in The
Netherlands. For instance, while the average farm density in
the two areas that were classified in our analyses as high-risk
(913 farms) is about 3.8 farms/km2, the average density in the
remainder of The Netherlands (4,447 farms) was only about
0.5 farms/km2. This corresponds well with Equation 3, which
predicts that for the kernel estimate of Table 1 the critical
farm density in a spatially homogeneous population would be
2.9 farms/km2. As a result of the large differences in poultry
densities in The Netherlands, moderate changes in the
transmission kernel have very little effect on the important
features of the risk map, in particular the location and the
size of the high-risk areas. Due to this insensitivity, our results
are robust under variation of uncertain parameters.
By adjusting the transmission kernel, we have also

produced risk maps that evaluate the effectiveness of pre-
emptive ring culling around infected farms. These risk maps
show that pre-emptive culling within 3 km or less is unlikely
to be able to halt an unfolding epidemic in the high-risk
areas. In these areas, an epidemic can only be brought to an
end by the depletion of susceptible farms by infection or
massive culling. Our analyses indicate that in the high-density
areas in The Netherlands, ring culling is only effective (in the
sense that it can halt an unfolding epidemic) if the culling
radius is more than 3 km. On the other hand, our analyses
also show that in the remainder of The Netherlands (i.e., the
large low-density areas of Figure 3), pre-emptive culling is
probably not necessary to halt the disease from spreading
after a primary introduction.
An important open problem is whether culling or

vaccination programmes are able to reduce the total number
of animals that would die during an epidemic (by infection or
culling) compared with a strategy in which only a movement
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ban and biosecurity measures are put in place. During the
epidemic of the highly pathogenic H7N7 avian influenza virus
that wreaked havoc in The Netherlands in 2003, it was
decided, on the basis of the then-available epidemiological
and economic information and legislative constraints, to put
in place an aggressive control strategy in which culling
around infected premises was an integral part. Based on the
present analyses, we would expect that an introduction of a
highly pathogenic avian influenza virus in one of the poultry-
dense areas in The Netherlands cannot easily be contained,
and probably would affect a large fraction of the farms in
such a region. However, some form of preventive culling
around infected premises would still pay off, as it would
decrease the length and severity of the epidemic in this
region, and thereby also reduce the risk of spread of the
disease to other (high-density) areas.

Supporting Information

Dataset S1. Infection Status over Time of all 241 Farms That Were
Infected during the Epidemic of Highly Pathogenic H7N7 Avian
Influenza Virus in The Netherlands

Each line gives the infection status (S, B, E, I, R) per day per farm.
Found at doi:10.1371/journal.pcbi.0030071.sd001 (72 KB TXT).
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