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RISK MEASURES AND CAPITAL REQUIREMENTS FOR PROCESSES
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In this paper we propose a generalization of the concepts of convex and coherent risk
measures to a multiperiod setting, in which payoffs are spread over different dates. To
this end, a careful examination of the axiom of translation invariance and the related
concept of capital requirement in the one-period model is performed. These two issues
are then suitably extended to the multiperiod case, in a way that makes their operative
financial meaning clear. A characterization in terms of expected values is derived for
this class of risk measures and some examples are presented.
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1. INTRODUCTION

Recently, a growing literature has been devoted to an axiomatic theory of risk mea-
sures. In particular, a set of four desirable properties that every sound or, better, coherent
risk measure should satisfy has been proposed by Artzner et al. (1999) and a repre-
sentation result in terms of expected values has been derived under a mild continuity
assumption by Delbaen (2000). Subsequently, Föllmer and Schied (2002) and indepen-
dently Frittelli and Rosazza Gianin (2002) broadened the class of coherent risk measures,
defining convex risk measures and extending them to Delbaen’s representation result.
The setting of this theory is commonly said to be static, since the financial positions
are described by random variables and no temporal dimension is involved in the risk
measurement.

The scope of this paper is to generalize this theory to a dynamic setting, in which the
financial positions are described by discrete-time stochastic processes. The reason for this
extension is dictated by the undeniable fact that in current financial practice risky payoffs
are usually spread over different dates. Moreover, the temporal order of the various
subsequent payoffs is relevant both on a psychological and an operative level. This aspect
seems to be neglected by a common methodology to measure riskiness of payoff streams,
namely the application of a static risk measure to the sum of all properly discounted
payoffs. We will deal with this issue in Section 6. We assume throughout the paper that
every future amount is properly discounted, so that interest rates will not formally enter
our modeling.

Some earlier papers, such as Artzner et al. (2001), Pflug (2001), Riedel (2002), and Q2

Weber (2004) have addressed this extension at different degrees of generality and within
different financial interpretations of the processes. All these papers extend in a common,
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natural way, three out of the four coherency axioms proposed by Artzner et al. (1999) in
the static setting, namely convexity, monotonicity, and positive homogeneity. However,
they propose different generalizations of the fourth axiom, that of translation invariance,
which in the static setting states that

ρ(X + α) = ρ(X ) − α ∀X ∈ L, α ∈ R,(TI)

where L is a space of random variables and ρ : L → R is a risk measure.
In this paper we take quite a different route since, rather than proposing a new definition

of translation invariance, we introduce a general functional form for a risk measure, which
we call a capital requirement and which can be applied to a number of different cases.
Here, we briefly explain the main idea, referring to Section 3 for a rigorous formulation.
It is easy to observe that any map ρ : L → R (interpreted as a static risk measure) satisfies
(TI) if and only if it is a simple capital requirement, i.e.,

ρ(X ) = ρA(X ) � inf{α ∈ R | X + α ∈ A},
for some set A ⊂ L. From the operative viewpoint, the definition of ρA can be interpreted
as follows. Once the set A, collecting all acceptable positions, has been fixed, the agent is
naturally interested in the minimal sum α which has to be set aside, may be invested in a
risk-free account, in order that the overall final position X + α is acceptable. Formally,
we can also write

ρA(X ) = ρA,C,π (X ) � inf{π (Y) ∈ R | Y ∈ C, X + Y ∈ A},(CR)

where C = R ⊂ L and π : C → R is defined by π (α) = α. Broadly speaking, the set C
collects all positions achievable by means of permitted hedging strategies and π (Y) ∈ R

is the initial cost of a particular element Y ∈ C. Observe that the financial meaning of the
map ρA,C,π is clear even if we allow for different specifications of the set C and the map
π . For instance, the agent could be allowed to trade on an underlying market. In this
case C could be the set of all replicable claims and π the (unique) no-arbitrage pricing
rule on C; in particular, if A is the cone of nonnegative random variables, then ρA,C,π (−X )
coincides with the super-replication price of the claim X . Moreover, this scheme can be
applied to different objects, other than random variables. Indeed, in this paper we will
be mainly interested in the case when L is a space of processes. Whatever the financial
objects described by the space L are, the map ρA,C,π , which we call the capital require-
ment associated to A, C, and π , provides a possible operative quantification of risk. In
connection with the notion of capital requirement formulated in (CR), we address the
following specific issues, first at an abstract level and then applying the results to a space
of bounded processes that we are most interested in

1. Properties. In the static setting it is known that properties on the accept-
ability set A yield (coherency) properties on the associated simple capital
requirement ρA. For instance, convexity ofA ensures convexity of the map ρA. In
Section 3, under suitable assumptions on π and C, we extend this result to general
capital requirements. In the multiperiod setting (see Section 4) we also introduce
simple sufficient conditions ensuring that the map ρA,C,π is finite-valued, and we
discuss their financial meaning.

2. Translation invariance. As we mentioned, in the static setting the property of
translation invariance fully characterizes the functional form of a simple capi-
tal requirement. In the general setting, this is no more true. However, we show
that, under a suitable condition, an appropriate modification of the translation
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invariance property (Definition 3.4) fully characterizes general capital require-
ments (see Propositions 3.6 and 4.10).

3. Representation. If a simple capital requirement ρA is convex and monotone—i.e.,
it is a convex risk measure—then, under a proper continuity condition, it can be
written as

ρA(X ) = sup
Q�P

{−EQ X − F(Q)},(1.1)

where F(Q) � supX∈A{−EQ X } ∈ R ∪ {+∞}. The representation (1.1) is essen-
tially due to the convexity property (see Frittelli and Rosazza Gianin (2002)),
but the presence of the normalized dual functional (i.e., the representation in
terms of expected values, where EQ1 = 1) depends on the property (TI) and
therefore cannot be extended to the dynamic setting in an direct way. We will
derive a similar, but much more general result for general capital requirements
(see Proposition 3.9). In particular, when L is a space of bounded processes, the
expected values EQX are possibly weighted by some constants c ∈ (0, 1], and
F contains a second term, depending on π and C, which vanishes in the static
setting, when C = R and π = id.

4. Credit constraint and the relevance of the payoffs temporal order. In the framework
of processes, we present a relevant example of a capital requirement in which,
through a careful specification of C, a credit line is imposed on the agent’s hedg-
ing activity. This capital requirement will have the following representation (see
Section 6):

ρA,C,π (X) = sup
(c,Q)∈B

{
−

N∑
n=1

cn EQn Xn − G(c, Q)

}
,(1.2)

where X = (X1, . . . ,XN) is the payoff stream; Xn is the random payoff at
time tn; G is a penalty function and B � {(cn, Qn)N

n=1 | cn ∈ R+, Qn is a P −
a.c. probability on (�,Fn)}. In this example we clarify the relevance of the order Q3
of the payoffs Xn when assessing the risk of X and show that this feature is due to
the presence of the decreasing sequence (cn) ∈ (0, 1], which we allow to be different
from the sequence constantly equal to 1. This can be useful to treat and study cap-
ital requirements for which ρA,C,π (X) > ρA,C,π (Y) when X = (−1, 1, X3, . . . , XN)
and Y = (1, −1, X3, . . . ,XN) (to drastically simplify, one can also take Xn = 0
for all n ≥ 3). Recall that we are always assuming zero interest rate, so that the
previous phenomenon can only be ascribed to temporal risk aversion.

The paper is structured as follows. In Section 2 we briefly review the main definitions
and results about convex risk measures and simple capital requirements. Particular em-
phasis is given to the interpretation of translation invariant maps as capital requirements.
Moreover, a new result concerning utility-based risk measures is presented. In Section 3
we develop, in the abstract setting of locally convex topological vector spaces, the mathe-
matical notion of capital requirement. In Section 4 we specialize the results of Section 3 to
discrete-time processes. In Sections 5 we will present an example of a capital requirement
under a constraint on the decision timing of the agent’s hedging activity and Section 6
is devoted to the discussion of the credit constraint example sketched above. Finally, in
Section 7 we show how to construct the set A when dealing with processes and propose
some concrete examples.
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2. THE ONE-PERIOD SETTING

2.1. Coherency Axioms

Let T > 0 be a fixed future date and (�,F, P) a probability space, whereF is interpreted
as the information available in T . The space L∞ = L∞(�,F, P) collects all random
variables, modeling a (bounded) financial position. With this term, one usually means:
(1) a net payoff or (2) a portfolio market value in T or even (3) the change of this value
between 0 and T . Positive values of X ∈ L∞ correspond to (relative) gains, while negative
values correspond to (relative) losses.

On a general level, a risk measure is any mapρ : L∞ → R. Artzner et al. (1999) proposed
four axioms that every sound or, in their terminology, coherent risk measure should satisfy.
They are

1. Monotonicity: X ≥ Y implies ρ(X) ≤ ρ(Y ).
2. Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X , Y ∈ L∞ and

λ ∈ [0, 1].
3. Positive homogeneity: ρ(λX) = λρ(X) for any X ∈ L∞ and λ ≥ 0.
4. Translation invariance: ρ(X + α) = ρ(X) − α for any X ∈ L∞ and α ∈ R.

REMARK 2.1. Actually, in the original formulation of the four axioms in Artzner
et al., convexity is replaced by subadditivity, i.e., ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X ,
Y ∈ L∞. However it can be easily proved that these two properties are equivalent under
homogeneity (see Frittelli and Rosazza Gianin 2002).

The economic rationale behind monotonicity and convexity is clear. The assumption
of homogeneity, instead, is debatable from the financial viewpoint, since homogeneous
risk measures seem to fail to detect liquidity risk. Föllmer and Schied (2002) and, inde-
pendently, Frittelli and Rosazza Gianin (2002) defined the broader notion of convex risk
measure, by dropping the hypothesis of homogeneity, while keeping the other three.

2.2. Simple Capital Requirements

The translation invariance axiom identifies coherent/convex risk measures as a subset
of an important class of risk measures that have a clear operative meaning: that of capital
requirements. Broadly speaking, a capital requirement is the minimal amount α which has
to be invested in a risk-free instrument, in such a way that the modified final position X +
α is acceptable. Plainly, the practical interpretation of this scheme relies on the nature of
X (payoff, market value, etc.). A precise formulation can be given as follows: A nonempty
subset A ⊂ L∞, collecting all acceptable or sustainable future positions, is fixed by the
agent or by an external regulator and it is called the acceptability set.

DEFINITION 2.2. Let A be an acceptability set. The quantity

ρA(X ) � inf{α ∈ R | X + α ∈ A},(2.1)

provided it is finite for any X ∈ L∞, defines a risk measure called the simple capital
requirement associated to A.

The following result, which was essentially pointed out by Föllmer and Schied (2002),
is immediate to prove, but it is conceptually crucial in comprehending translation
invariance.

PROPOSITION 2.3. A risk measure ρ is translation invariant if and only if it is a simple
capital requirement, i.e., ρ = ρA for some A ⊂ L∞.
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Proof . See, for instance, Propositions 4.6 and 4.7 in Föllmer and Schied (2004). �

DEFINITION 2.4. A set A is monotone if X ≥ Y ∈ A implies X ∈ A. It is a positive cone
if X ∈ A implies λX ∈ A for any λ ≥ 0.

As A collects the acceptable positions, then it is natural to assume that it is monotone
and convex. It can also be a positive cone, but this further assumption is questionable, as
it was the positively homogeneity property of ρ.

PROPOSITION 2.5. If A is monotone (respectively convex, respectively a positive cone,
respectively, σ (L∞, L1) closed), then ρA, provided it is finite, is monotone (respectively
convex, respectively, positive homogeneous, respectively, σ (L∞, L1) lower semicontinuous).
If A is monotone, convex and σ (L∞, L1) closed then ρA admits the representation (1.1).

Proof . See proposition 4.7 and theorem 4.31 in Föllmer and Schied (2004). �

REMARK 2.6. It is not difficult to prove that ρA is finite valued wheneverA is monotone
and satisfies

∃γ ∈ R such that X ≤ γ implies X /∈ A.(2.2)

Compare this last property with the more general Assumption B in Section 4.3.

REMARK 2.7. Plainly it is possible to define coherent/convex risk measures and capital
requirements on spaces of possibly unbounded random variables, such as Lp(�,F, P)
for p ∈ [1, +∞] or even in L0(�,F, P), the space of all finite valued random variables. The
results above hold as well. However we remind that the space Lp(P), when p ∈ [1, +∞),
strictly depends on the probabilistic model P, contrary to L∞ and L0, and this can be
seen as a flaw. Moreover Delbaen (2000) proved that there are no coherent risk measures
on L0, whenever the probability space is non-atomic. More recently, Cheridito, Delbaen,
and Kupper (2004b) extended this negative result to convex risk measures.

2.3. Examples of Simple Capital Requirements

We provide here some examples of acceptability sets and capital requirements, which
have appeared in recent literature or used in current practice. Even though we restrict
to L∞, some examples, such as Value at Risk, can be defined on spaces of possibly
unbounded random variables. Note that all acceptance sets below satisfy (2.2).

1. A = {X ∈ L∞ | X ≥ m}, where m ∈ R is a given lower bound on the possible
losses. Note that A is monotone and convex and it is the smallest acceptability
set containing m. The corresponding simple capital requirement is then a convex
risk measure and it is easily computed: ρA(X ) = m − ess.inf X.

2. A = Aα = {X ∈ L∞ | P(X < 0) ≤ α} for a fixed α ∈ (0, 1). The resulting simple
capital requirement that is usually defined on the whole L0 is the Value at Risk at
level α, denoted by VaRα, the most widespread risk measure in current practice.
For any X , VaRα(X) coincides with the opposite of the upper quantile of order
α of X . The set A is monotone and a positive cone, but it is not convex. Indeed,
it is well known that VaRα is not a convex map.

3. A = Aα = {X ∈ L∞ | EP(XIA) ≥ 0 ∀A ∈ F s.t. P(A) > α} for a fixed α ∈ (0, 1).
In this case A is a monotone and convex positive cone. The simple capital re-
quirement is a coherent risk measure and coincides with the Worst Conditional
Expectation as defined by Artzner et al. (1999), namely
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WCEα(X ) = sup{−E(X | A) | A ∈ F, P(A) > α}.
4. A = {X ∈ L∞ | EPm X ≥ 0 for m = 1, . . . , M, EQn X ≥ F(Qn), for n = 1, . . . , N},

where every Pm ∼ P is a valuation measure (for example an equivalent martingale
measures in an incomplete market) and every Qn � P is a stress test measures
with associated floors F(Qn) < 0. The set A is evidently monotone and convex;
it is a positive cone provided all floors vanish. This example has been proposed
in Carr, Geman, and Madan (2001).

5. If A ⊂ L∞ is an acceptability set and K is the convex cone of bounded attainable
claims at zero cost in an incomplete market model, we define AK � {X ∈ L∞ |
X + f ∈ A for a f ∈ K}. Then a payoff is acceptable for AK if, trading on the
market with a zero initial investment, we can make X acceptable for A. This
example goes back to Föllmer and Schied (2002).

2.4. On Utility-Based Simple Capital Requirements

Another important class of examples stems from the theory of expected utility. Let u
be a utility function satisfying

u : R → R is concave, strictly increasing and u(0) = 0.

For instance, we are considering linear (u(x) = ax with a > 0) or exponential utility
functions (u(x) = 1 − e−γ x for a coefficient γ > 0 describing risk aversion). An agent
whose preference structure is defined by the expected utility functional U(X) = EPu(X)
can naturally define the following acceptability set:

Au � {X ∈ L∞ | EPu(X ) ≥ EPu(X∗)},
where X∗ is a reference acceptable position. For formal simplification only we assume
that X∗ = 0, so that EPu(X∗) = 0. Thanks to the hypothesis on u, the set Au is monotone
and convex. The associated capital requirement,

ρu(X ) = inf{α ∈ R | EPu(X + α) ≥ 0},
is a finite valued map (see Föllmer and Schied 2002) and, of course, a convex risk measure.
Also, the hypotheses on u yield ρu(0) = 0. When u is linear, then ρu(X) = −EPX , while in
the case of exponential utility, ρu is called an entropic risk measure. In this case we write
ρu = ργ , making the dependence on γ explicit; a simple computation shows that

ργ (X ) = 1
γ

log EPe−γ X.(2.3)

The following well-known dual representation holds:

ργ (X ) = sup
Q�P

{
−EQ X − 1

γ
H(Q | P)

}
,(2.4)

where H(Q | P) is the relative entropy of Q with respect to P. In the last section we will
apply the following result that is shown in proposition 3.10 by Barrieu and El Karoui
(2005):

lim
γ→∞ ργ (X ) = sup

Q�P:H(Q|P)<∞
{−EQX }.(2.5)

Basing on some experimental evidence, it has been argued that a measure of risk in
general should not be considered, up to a sign, as an utility functional (see Brachinger
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and Weber 1997). In the proposition below we give a partial support to this statement
showing that the preference structure defined by EPu(·) does not coincide with the reverse
ordering provided by ρu, unless u is linear or exponential.

PROPOSITION 2.8. Under the above assumptions on u, the following properties are
equivalent:

1. for any X, Y ∈ L∞ : EPu(X) ≥ EPu(Y ) if and only if ρu(X) ≤ ρu(Y );
2. u is linear or exponential.

Proof .

2 ⇒ 1. We only have to check the validity of 1 in the two cases. When u is linear,
this is trivial. When u(x) = 1 − e−γ x, γ > 0, then EPu(X) ≥ EPu(Y ) if and
only if EPe−γ X ≤ EPe−γ Y . We then conclude, thanks to (2.3).

1 ⇒ 2. If 1 holds, then plainly there exists a strictly decreasing function f : R → R

such that EPu(X) = f (ρu(X)) for any X ∈ L∞. In particular, for any α ∈ R

we have u(α) = EPu(α) = f (ρu(α)) = f (−α), that is f (α) = u(−α) and this
means

EPu(X ) = u(−ρu(X )), ∀ X ∈ L∞.

Since u is strictly increasing, we can apply u−1 on both sides of the previous
equation, obtaining

CEu(X ) � u−1 EPu(X ) = −ρu(X ), ∀ X ∈ L∞,

where CEu is the certainty equivalent. By translation invariance of ρu we
have

CEu(X + α) = CEu(X ) + α, ∀ X ∈ L∞, α ∈ R.(2.6)

We then conclude by applying the Kolmogorov-Nagumo-de Finetti theorem
on associative means (see de Finetti 1931) stating that (2.6) holds if and only
if u is linear or exponential. �

3. GENERAL CAPITAL REQUIREMENTS

3.1. The Definition

We introduce in this section a general notion of capital requirement, generalizing the
formulation (2.1) to a broader setting. Let L be a vector space whose elements describe
financial positions. For instance, L can be a space of random variables, of deterministic
functions, of stochastic processes and so on. We assume that L is endowed with a partial
vector order “≤.”

Let A ⊂ L, C ⊂ L and π : C → R be fixed.

DEFINITION 3.1. The (general) capital requirement associated to A, C, and π is the
map ρA,C,π : L → R defined by

ρA,C,π (x) � inf{π (y) ∈ R | y ∈ C, x + y ∈ A}, x ∈ L,(3.1)

provided it is finite valued.
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In the next section we will provide some sufficient conditions for the finiteness of the
map ρA,C,π , when L is a space of bounded processes. For the time being, we assume that
all capital requirements in this section are finite valued.

Clearly, when L is a space of random variables, C = R and π = id, then ρA,C,π coincides
with the simple capital requirement ρA. The economic interpretation of the quantity in
(3.1) is as follows. The set A collects all acceptable positions, while C is the set of all
positions which may be attained by means of permitted hedging strategies. Both A and C
may be specified by an external regulator. The real amount π (x) is the initial cost of the
strategy leading to x; for instance it can be a market price of a claim or an amount that is
invested in a saving account. The quantity ρA,C,π (x) is then the minimal cost of a hedging
strategy leading to y ∈ C which transform the original position x ∈ L into an admissible
one, i.e., x + y ∈ A. In this section, we will not insist on the economic interpretation of
(3.1), rather, we concentrate on some mathematical aspects, referring to Scandolo (2004)
for some examples.

REMARK 3.2. A natural generalization of the concept introduced in the above defini-
tion is given by:

ρν,C,π (x) � inf{π (y) + ν(x + y) | y ∈ C}, x ∈ L,

where ν : L → R∪ {+∞} is a convex functional that replaces in (3.1) the support
functional δA of the acceptance set A. In this paper we will deal only with capital require-
ments in Definition (3.1), which are based on acceptance sets, and leave this generalization
for further investigation.

3.2. Properties

Some natural properties of the characteristic sets A and C and of the mapping π can
be transferred to properties of the associated capital requirement.

PROPOSITION 3.3. Let ρA,C,π be the capital requirement associated to A, C, and π .

1. If π is a convex map and A and C are convex sets, then ρA,C,π is a convex map.
2. If A is a monotone set, i.e., x ≥ x′ ∈ A implies x ∈ A, then ρA,C,π is monotone

decreasing with respect to the partial order in L.
3. If π is positively homogeneous and A and C are positive cones, then ρA,C,π is a

positively homogeneous map.

Proof .

1. Let x, x′ ∈ L and λ ∈ [0, 1]. If y, y′ ∈ C are such that x + y, x′ + y′ ∈ A, then
convexity of A and C yields ŷ � λy + (1 − λ)y′ ∈ C and ŷ + λx + (1 − λ)x′ ∈ A.
Since π is convex, we then have

λρA,C,π (x) + (1 − λ)ρA,C,π (x′)

= inf{λπ (y) + (1 − λ)π (y′) | y, y′ ∈ C, x + y, x′ + y′ ∈ A}
≥ inf{π (λy + (1 − λ)y′) | y, y′ ∈ C, x + y, x′ + y′ ∈ A}
≥ inf{π (ŷ) | ŷ ∈ C, ŷ + λx + (1 − λ)x′ ∈ A}
= ρA,C,π (λx + (1 − λ)x′),

i.e., ρA,C,π is a convex map.
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2. Let x, x′ ∈ L with x ≥ x′. Monotonicity of A yields the inclusion {y ∈ C | x′ +
y ∈ A} ⊆ {y ∈ C | x + y ∈ A} and ρA,C,π (x) ≤ ρA,C,π (x′) easily follows.

3. Let x ∈ L and λ > 0. Since A and C are positive cones, then z ∈ A if and only
if λz ∈ A and similarly for C. Therefore

λρA,C,π (x) = inf{λπ (y) = π (λy) | y ∈ C, x + y ∈ A}
= inf{π (λy) | λy ∈ C, λx + λy ∈ A}
= inf{π (ŷ) | ŷ ∈ C, λx + ŷ ∈ A} = ρA,C,π (λx). �

3.3. The Translation Invariance Property

We begin with an abstract property inspired by translation invariance in the static
setting.

DEFINITION 3.4. A map ρ : L → R is translation invariant with respect to (W, π ),
where W ⊆ L and π : W → R if

ρ(x + z) = ρ(x) − π (z) ∀x ∈ L, z ∈ W.(3.2)

When L is a space of random variables, then the classical notion of translation invari-
ance corresponds to the specification W = R and π = id. If the map ρ has the meaning
of a risk measure, the general property introduced above can be explained as follows.
The set W collects a set of financial instruments and π is their cost or price. Then (3.2)
states that if a long position z is added to the original position x, then the riskiness de-
creases exactly by the price of z. We will adopt the following notation: if f : A → R,
then f (A) � { f (a) | a ∈ A} ⊆ R.

PROPOSITION 3.5. Let π be linear. Any general capital requirement ρA,C,π is translation
invariant with respect to (W, π ), where W � {z ∈ C | y ± z ∈ C ∀y ∈ C}.

Proof . First observe that if z ∈ W , then y ∈ C if and only if y − z ∈ C. Therefore, for
any x ∈ L it holds

ρA,C,π (x + z) = inf{π (y) ∈ R | y ∈ C, x + z + y ∈ A}
= inf{π (y′ − z) ∈ R | y′ − z ∈ C, x + y′ ∈ A}
= inf{π (y′) − π (z) ∈ R | y′ ∈ C, x + y′ ∈ A}
= ρA,C,π (x) − π (z). �

We now generalize Proposition 2.3 and characterize those maps that admit a represen-
tation as capital requirements. If ρ : L → R we set Aρ � {x ∈ L | ρ(x) ≤ 0}.

PROPOSITION 3.6. Let ρ : L → R be translation invariant with respect to some (W, π )
and assume that ρ(L) ⊆ π (W). Then ρ = ρAρ ,W,π .

Proof . We have, for any x ∈ L,

ρAρ ,W,π (x) = inf{π (y) ∈ R | y ∈ W, ρ(x + y) ≤ 0}
= inf{π (y) ∈ R | y ∈ W, ρ(x) ≤ π (y)} = ρ(x). �
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3.4. A Dual Representation Result

We address here the representability of a capital requirement in terms of linear func-
tionals, which generalizes the corresponding representation of risk measures. Assume
that L is endowed with a locally convex topology τ compatible with a dual pair 〈L,
L′〉, where L′ is a second vector space. If φ ∈ L′, then we will write φ(x) instead of
〈x, φ〉.

DEFINITION 3.7. A map ρ : L → R is τ -lower semicontinuous if the set {x ∈ L | ρ(x) ≤
α} is τ -closed for any α ∈ R.

REMARK 3.8. Let ρ : L → R be translation invariant with respect to some (W, π ) and
assume that ρ(L) ⊆ π (W). From Proposition 3.6 it follows that ρ is τ -lower semicontin-
uous if Aρ is τ -closed.

We already stated in Proposition 3.3 the sufficient conditions under which a capital
requirement is a convex map.

PROPOSITION 3.9. Let A, C, and π be fixed. If ρA,C,π is convex and τ -lower semicon-
tinuous, then, for any x ∈ L

ρA,C,π (x) = sup
φ∈D

{−φ(x) − γA(φ) − γC,π (φ)},(3.3)

where

γA(φ) � sup
x∈A

{−φ(x)}(3.4)

γC,π (φ) � sup
y∈C

{φ(y) − π (y)}(3.5)

D � dom γA ∩ dom γC,π � DA ∩ DC,π .(3.6)

Proof . The map ρA,C,π is convex and lower semicontinuous with respect to a topology
compatible with 〈L, L′〉, hence the Fenchel-Moreau Theorem yields

ρA,C,π (x) = sup
φ∈L′

{−φ(x) − ρ∗
A,C,π (−φ)

}
,

where ρ∗
A,C,π is the convex-conjugated of ρA,C,π . Moreover we have

ρ∗
A,C,π (−φ) � sup

x∈L
{−φ(x) − ρA,C,π (x)}

= sup
x∈L

{−φ(x) − inf{π (y) ∈ R | y ∈ C, x + y ∈ A}}

= sup{−φ(x) − π (y) | x ∈ L, y ∈ C, x + y ∈ A}
= sup{−φ(z − y) − π (y) | y ∈ C, z ∈ A}
= sup{−φ(z) + φ(y) − π(y) | z ∈ A, y ∈ C}
= sup

x∈A
{−φ(x)} + sup

y∈C
{φ(y) − π (y)}.

Finally, observe that only those functionals in D do enter the representation. �
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We see that the acceptance set A enters in the above representation only through its
associated penalty function γA(φ), while the set C of positions from permitted hedging
strategies and the cost functional π determine the second penalty function γC,π (φ).

If B ⊆ L is a convex subset, then its recession cone 0+B is defined by (see Rockafellar
1970)

0+B � {v ∈ L | x + λv ∈ B, ∀x ∈ B, λ ≥ 0}.(3.7)

Note that 0+B is a (positive) convex cone containing 0 and that 0+B ⊆ B provided 0 ∈ B. It
indicates the possible directions in which B is “unbounded”; therefore, it may well reduce
to {0}. A map ψ : B → R is super-linear if ψ(x + y) ≥ ψ(x) + ψ(y) for any x, y ∈ B
such that x + y ∈ B and if ψ(λx) ≥ λψ(x) for any λ ≥ 0 and x ∈ B such that λx ∈ B.
Changing the inequalities we can define sublinear maps. In particular, any linear form is
both super-linear and sublinear.

LEMMA 3.10.

(1) Let ψ be super-linear on B. If supx∈B ψ(x) < +∞, then

ψ(y) ≤ 0 ∀y ∈ 0+B.

(2) If A is monotone, then DA ⊆ L′
+ � {φ ∈ L′ | φ(x) ≥ 0 ∀x ∈ L+}.

(3) If π is sub-linear, then DC,π ⊆ {φ ∈ L′ | φ(y) ≤ π (y) ∀y ∈ 0+C}.
Proof .

(1) Assume that ψ(y) > 0 for some y ∈ 0+B. Then

sup
x∈B

ψ(x) ≥ sup
λ≥0

ψ(x + λy) ≥ ψ(x) + sup
λ≥0

ψ(λy) ≥ ψ(x) + sup
λ≥0

λψ(y) = +∞.

(2) It is easy to prove that A is monotone, i.e., x ≥ y ∈ A ⇒ x ∈ A, if and only
if L+ ⊆ 0+A. If φ ∈ DA, then by (1), it follows −φ(y) ≤ 0 for any y ∈ L+ ⊆ 0+A.

(3) The map ψ = φ − π satisfies the hypothesis in (1). It then follows ψ(y) ≤ 0 for
any y ∈ 0+C and we conclude. �

The next proposition will be useful in the following sections.

PROPOSITION 3.11. Let π be sublinear, C convex, A convex and monotone. If the convex
map ρA,C,π is τ -lower semicontinuous, then (3.3) holds true and

D ⊆ {
φ ∈ L′

+ | φ(y) ≤ π (y)∀y ∈ 0+C
}
.

If in addition C is a positive cone and π (0) = 0, then γC vanishes on D.

Proof . We have to just put together Propositions 3.3 and 3.9, Lemma 3.10 (2) and
(3) and observe that every sublinear map is convex. If C is a positive cone, then 0+C = C.
Henceforth γC,π ≤ 0 on D just by definition. However, the equality is actually attained
as 0 ∈ 0+C = C and φ(0) − π (0) = 0 for any φ ∈ L′. �

4. THE MULTI-PERIOD SETTING

We now turn our attention to a multiperiod setting, in which the financial positions to
be considered also have a temporal dimension described by stochastic processes instead
of simple random variables. Q4
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4.1. Set-Up

A set of subsequent dates (tn)N
n=1 is fixed, with 0 = t0 < tn < tn+1 for any n ≥ 1 and

tN = T . We therefore add to the probability space (�,F, P), a filtration F = (Fn)N
n=0,

where Fn describes the information available at date tn. Naturally, we will assume that F0

is trivial and that FN = F ; if X is a random variable, we will write X ∈ R to say that X
is F0-measurable. The set,

Pn � {Q is a probability on (�,Fn) such that Q � P},(4.1)

collects all probabilistic models for the uncertainty to date tn. Let L0 = L0(�,F, P, F)
be the space of (discrete-time) adapted processes starting in t1, i.e.,

L0 �
{
X = (X1, . . . , XN)

∣∣ Xn ∈ L0(�,Fn, P) ∀ n
}
,

and, for any p ∈ [1, +∞], define

Lp �
{
X ∈ L0

∣∣ Xn ∈ Lp(�,Fn, P) ∀ n
}
.

We set 0 = (0, . . . , 0), 1 = (1, . . . , 1) and, for any fixed n between 1 and N, en =
(0, . . . , 1, . . . , 0), where 1 occupies the nth position. We will write X ≥ Y for Xn ≥ Yn ∀ n.

4.2. Risk Measures for Processes

We can interpret a process in L0 in three different ways

� X is a payoff stream: Xn is the net payoff liquidated to an agent at time tn. As in
the one-period setting, positive as well as negative values are allowed and positive
values correspond to gains.

� X̂ is the evolution of a cumulated payoff : X̂n = ∑n
i=1 Xi , where X is a payoff

stream.
� X̃ is the evolution of a portfolio value: X̃n = Vn , where Vn is the market (or book,

or liquidation) value of a portfolio at time tn. Also, X̃n could be considered as the
relative change: X̃n = Vn − V0.

Whatever the interpretations of the processes are, we can define a risk measure on L∞

as any map ρ : L∞ → R that assigns to each position X ∈ L∞ its riskiness ρ(X). Three
out of the four coherency axioms listed in Section 2 can be immediately generalized to
the multiperiod setting. They are

1. Monotonicity: X ≥ Y implies ρ(X) ≤ ρ(Y).
2. Convexity: ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y) for any X, Y ∈ L∞ and λ ∈

[0, 1].
3. Positive homogeneity: ρ(λX) = λρ(X), for any X ∈ L∞ and λ ≥ 0.

The economic motivation of the above three properties is the same as in the one-period
case and, similarly, criticism may apply to homogeneity. Even though these axioms are
reasonable under any of the financial interpretation of the processes, we stress that from
now on we adopt only the interpretation of X as a payoff stream.

REMARK 4.1. There is clearly a one-to-one correspondence between risk measures
for payoff streams and for cumulated sums. Indeed, if ρ acts on payoff streams,
then ρc(X̂) � ρ(X̂1, X̂2 − X̂1, . . . , X̂N − X̂N−1) acts on cumulated sums; conversely, if



mafi˙285 MAFI.cls July 5, 2006 16:13

RISK MEASURES AND CAPITAL REQUIREMENTS 601

ρc acts on cumulated sums, then ρ(X) � ρc(X1, X1 + X2, . . . ,
∑N

n=1 Xn) acts on payoff
streams. This correspondence preserves convexity and homogeneity. Note that if ρc is
monotone (X̂ ≥ Ŷ implies ρc(X̂) ≤ ρc(Ŷ)) then also ρ(X) � ρc(X̂) is monotone. How-
ever, the converse is in general not true. Hence, monotonicity of ρ (defined on payoff
streams) is weaker than monotonicity of ρc (defined on cumulated payoffs).

REMARK 4.2. The definitions of translation invariance and capital requirement we will
give below are tailor-made for the case of payoff streams. Artzner et al. (2004) discuss
the interpretation of X as a portfolio value, proposing a different and formally simpler
notion of translation invariance and capital requirement (see also Remark 4.9).

4.3. A Class of Capital Requirements for Processes

We propose here a class of capital requirements for processes, specializing the defini-
tion (CR) and assuming that the agent has no access to an underlying market, but only
to a saving account. We choose to call them standard capital requirements, since they
correspond to the simplest financial framework, as we will see. In the present setting and
within definition (3.1), this class corresponds to the specifications

C ⊆
{

Y ∈ L∞
∣∣∣∣∣

N∑
n=1

Yn ∈ R

}
,

π (Y) �
N∑

n=1

Yn ∈ R, for Y ∈ L∞.

Denoting

L∞
 �

{
X ∈ L∞

∣∣∣∣∣
N∑

n=1

Xn ∈ R

}
,

we thus consider maps ρA,C : L∞ → R of the form

ρA,C(X) � inf

{
N∑

n=1

Yn ∈ R
∣∣ Y ∈ C ⊆ L∞

 , X + Y ∈ A
}

.(4.2)

DEFINITION 4.3. The standard capital requirement associated to A ⊆ L∞ and C ⊆ L∞


is the map ρA,C defined by (4.2), provided it is finite valued (see below). When C = L∞


we will simply write ρA.

Observe that when N = 1, then these capital requirements coincide with those of
Definition 2.2.

The acceptability set of processes A ⊂ L∞, which collects all payoff streams that are
deemed sustainable is fixed, maybe by an external regulator. We will provide some concrete
examples in Section 5; for the time being we make a natural monotonicity assumption
on A, which has the same economic rationale as in the one-period setting.

ASSUMPTION A. The set A is monotone, i.e., X ≥ Y ∈ A implies X ∈ A.

4.3.1. Operative Meaning. In order to explain the operative meaning of the Defini-
tion 4.3, we begin with the capital requirements ρA. At time t0, an agent who faces a
payoff stream X ∈ L∞ can invest in a saving account the sum V0 ∈ R and then plan a
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disinvestment strategy Y ∈ L∞. When Yn is positive, then it represents the amount that
will be disinvested from the bank account at time tn. When Yn is negative, then −Yn > 0
is the amount that will be invested at time tn. We stress that Yn is in principle a random
quantity, meaning that the agent decides its amount according to future information (up
to time tn). In any case, the process Y is an additional payoff stream and the agent seeks
for those Y that make the overall stream acceptable, i.e.,

X + Y = (X1 + Y1, . . . , XN + YN) ∈ A.(4.3)

Starting with an initial investment V0 and adopting the strategy Y ∈ L∞, the value of
the account in tn, n ≥ 1, is given by

Vn(Y, V0) = Vn−1(Y, V0) − Yn = V0 −
n∑

i=1

Yi .(4.4)

In principle, the account may take negative values at any date, in particular V0 may be
negative. This means that the agent is allowed to take out a loan. However, since the loan
has to be repaid back before the last date, the account value cannot be negative at the
last date, i.e.,

VN(Y, V0) = V0 −
N∑

n=1

Yn ≥ 0.(4.5)

An agent is clearly interested in the minimal initial endowment V0 that admits a disin-
vestment strategy Y ∈ L∞ satisfying (4.3) and (4.5), i.e., in the quantity

ρ̂A(X) � inf
{
V0 ∈ R

∣∣ ∃ Y ∈ L∞ s.t. VN(Y, V0) ≥ 0, X + Y ∈ A
}
.(4.6)

PROPOSITION 4.4. Under Assumption A, the maps ρ̂A and ρA coincide.

Proof . As a first step, note that

ρA(X) = inf
{
V0 ∈ R

∣∣ ∃ Y ∈ L∞ s.t. VN(Y, V0) = 0, X + Y ∈ A
}
.

Then the inequality ρ̂A ≤ ρA is trivial. Conversely, fix V0 ∈ R and assume that Y ∈ L∞

satisfies (4.3) and (4.5). Define Y′ ∈ L∞ as Y ′
n � Yn for any n ≤ N − 1 and Y ′

N �
YN + VN(Y, V0) ≥ YN , so that VN(Y′, V0) = 0. Since Y′ ≥ Y, by monotonicity of A
we have X + Y′ ∈ A, so that Y′ too satisfies (4.3) and (4.5) and the inequality “≥” is
proved. �

The subspace L∞
 collects all strategies that provide a complete disinvestment of the

initial endowment V0 = ∑N
n=1 Yn and repay back every debt. However, within the same

operative scheme, a regulation could restrict the set of permitted disinvestment strategies
to C ⊂ L∞

 , leading the agent to consider more general standard capital requirements ρA,C
as defined in (4.2).

4.3.2. The Finiteness of the Map ρA,C . Consider two other natural assumptions, on A
and C, respectively.

ASSUMPTION B. There exists γ ∈ R such that
∑N

n=1 Xn ≤ γ implies X /∈ A.

This assumption says that a payoff stream whose cumulated value is too low is not
acceptable and therefore it seems highly reasonable. We stress that, on the contrary, the
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“symmetric” property (a payoff process with high enough cumulated value is acceptable)
is much less reasonable from a financial point of view. The second assumption concerns
the set of permitted strategies.

ASSUMPTION C. The set C contains CR+ � {Y ∈ L∞
 | Yn ∈ R, Yn ≥ 0 ∀n}.

The set CR+ collects all deterministic strategies that involve only pure disinvestments,
in particular 0, the “do-nothing” strategy. In particular, this means that Vn(Y, V0) ≥
0, Y ∈ CR+ , as it is easy to see. Since these strategies are the simplest ones and do not involve
any exposure versus any counterpart, it is natural to include them in any specification
of C.

PROPOSITION 4.5. Under Assumptions A and B (respectively A and C) it holds
ρA,C(X) > −∞ (respectively < +∞) for any X ∈ L∞.

Proof . Let A and B hold with constant γ ∈ R. For any given X ∈ L∞, we claim that

ρA,C(X) ≥ α � γ −
N∑

n=1

‖Xn‖∞ > −∞.(4.7)

Indeed, if Y ∈ C is such that
∑N

n=1 Yn < α, then
∑N

n=1(Xn + Yn) ≤ ∑N
n=1(‖Xn‖∞ + α) =

γ . By A it follows that X + Y /∈ A and (4.7) is proved.
Let now A and C hold. Fix Z ∈ A and let us prove that for any X ∈ L∞

ρA,C(X) ≤
N∑

n=1

(‖Xn‖∞ + ‖Zn‖∞) < +∞.(4.8)

Indeed, define Yn � ‖Xn‖∞ + ‖Zn‖∞ ≥ 0 for any n, observing that Xn + Yn ≥
‖Zn‖∞ ≥ Zn. Then Y ∈ CR+ ⊆ C by C and X + Y ≥ Z ∈ A by A. Finally,

∑N
n=1 Yn =∑N

n=1(‖Xn‖∞ + ‖Zn‖∞), hence (4.8). �

4.3.3. Additional Properties. Consider the following additional assumptions on A
and C:

ASSUMPTION D. The sets A and C are convex.

ASSUMPTION E. The sets A and C are positive cones.

Assumption D seems to be reasonable: the convex combination of two acceptable
streams or permitted strategies should be acceptable or permitted as well. On the contrary,
Assumption E is debatable, since in some cases multiplying an acceptable stream by a
large (positive) constant may introduce liquidity risk. We will see below an important
example in which C is not a positive cone.

PROPOSITION 4.6. Under Assumption A (respectively D, respectively E) ρA,C is mono-
tone (respectively convex, respectively positively homogeneous).

Proof . Since the map π is linear on C, these are immediate consequences of Propo-
sition 3.3. �

4.4. Translation Invariance

Here, we are specializing to the present setting, the general notion of translation in-
variance introduced in the previous section.
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DEFINITION 4.7. A map ρ : L∞ → R is translation invariant with respect to a
given W ⊆ L∞

 , or simply W-invariant, if

ρ(X + Z) = ρ(X) −
N∑

n=1

Zn ∀ X ∈ L∞, Z ∈ W.(4.9)

REMARK 4.8. This property clearly coincide with translation invariance with respect
to (W, π ) as in Definition 3.4, when π (Z) = ∑N

n=1 Zn . If N = 1 and W = L∞
 � R, then

we recover the classical definition of translation invariance.

REMARK 4.9. Riedel (2004) and Weber (2003) propose, as a part of the definition Q5

of a dynamic risk measure, a common definition of translation invariance for the risk
measurement at time t0. In the present terminology, they require that a risk measure
is W-invariant for the set W = CR+ defined in the Assumption C above.

PROPOSITION 4.10. Let W ⊆ L∞
 be a subspace containing CR+ . Then a risk measure ρ

is W-invariant if and only if ρ ≡ ρA,W for some A ⊆ L∞.

Proof . Let A ⊂ L∞. Since W is a subspace, then W = W ′ � {Z ∈ W | Y ± Z ∈
W ∀Y ∈ W}. Moreover, π is linear so that we can apply Proposition 3.5, deducing
that ρ = ρA,W is W-invariant. Conversely, let ρ be W-invariant. Since W is a subspace
and contains CR+ , then λe1 ∈ W for any λ ∈ R, so that π (W) ⊆ {λ = π (λe1) | λ ∈ R} = R.
Hence the conditions of Proposition 3.6 are surely met and we conclude that ρ = ρA,W
for some A. �

4.5. The Dual Representation

For any pair p, q ∈ [1, +∞] of conjugated exponents the nondegenerate bilinear form

〈X, Z〉 �
N∑

n=1

EP(Xn Zn), X ∈ Lp, Z ∈ Lq .(4.10)

puts Lp and Lq in natural duality. The following Lemma will be useful below; we omit
the standard proof.

LEMMA 4.11. In the duality 〈L∞,L1〉, a linear form φ is nonnegative if and only if it
can be written as

φ(X) = φc,Q(X) �
N∑

n=1

cn EQn Xn,(4.11)

where (c, Q) ∈ B � {(cn, Qn)N
n=1 | cn ∈ R+, Qn ∈ Pn∀ n}.

Let τ be a topology compatible with the duality 〈L∞,L1〉. Remind that 0+C denotes
the recession cone of C as defined in (3.7).

PROPOSITION 4.12. Under the Assumptions A to D and if ρA,C is τ -lower semicontinuous
then

ρA,C(X) = sup
(c,Q)∈BC

{
−

N∑
n=1

cn EQn Xn − γA(c, Q) − γC(c, Q)

}
, ∀ X ∈ L∞,(4.12)
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where

γA(c, Q) � sup
Y∈A

{
−

N∑
n=1

cn EQn Yn

}
,

γC(c, Q) � sup
Y∈C

{
N∑

n=1

(cn EQn Yn − Yn)

}
,

BC �
{

(c, Q) ∈ B
∣∣∣∣∣

N∑
n=1

(cn EQn Yn − Yn) ≤ 0, ∀ Y ∈ 0+C
}

.

Proof . By Assumptions A to D, we know that ρA,C is finite valued, convex, and mono-
tone. Representation (4.12) is then a consequence of Proposition 3.11 and of Lemma 4.11
above. �

REMARK 4.13. Representation results similar to (4.12), in which the penalty function
splits into two parts, have been derived by Föllmer and Schied (2002) for a convex risk
measure in a one-period model, when an underlying financial market is available, and by
Staum (2004) who considers bid/ask prices in an abstract setting.

5. A MEASURABILITY CONSTRAINT

In this section we restrict the set of permitted disinvestment strategies by introducing a
measurability constraint. Sometime, a regulator wants the disinvestment strategy of the
agent to be planned at the initial date t0 or, at least, by a specified date tM , with 0 ≤ M ≤
N. Therefore, we now consider the following subset of permitted strategies:

C = CM �
{
Y ∈ L∞



∣∣ Yn is FM-measurable ∀ n ≥ M
}
.

Note that CN−1 = CN = L∞
 and that, for any M, CM is a subspace and therefore 0+CM =

CM. Let A ⊂ L∞ and set ρA,M � ρA,CM, as defined in (4.2) above. We specialize the dual
representation in (4.12) to this class of capital requirements.

PROPOSITION 5.1. Let 0 ≤ M ≤ N − 2. Assume thatA is convex, monotone, and satisfies
assumption B and that ρA,M is lower semicontinuous. Then it holds

ρA,M(X) = sup
Q∈QM

{
−EQM

[∑
n≤M

Xn

]
−

∑
n≥M+1

EQn Xn − γA(Q)

}
,(5.1)

where QM � {(QM, QM+1, . . . , QN) |Qn ∈ Pn, Qn|FM ≡ QM ∀n ≥ M} and

γA(Q) � sup
Y∈A

{
−EQM

[∑
n≤M

Yn

]
−

∑
n≥M+1

EQn Yn

}
.(5.2)

Proof . Under the hypotheses of the Proposition and due to the particular form of CM,
Assumptions A to D are satisfied. Since ρA,M is τ -lower semicontinuous, we can apply
Proposition 4.12 in order to obtain representation (4.12). Below we refer to the notation
introduced in that proposition. Since CM is a positive cone containing 0, then by Propo-
sition 3.11 the term γC vanishes on BC . If (c, Q) ∈ BC , then cn = 1 for all n. Indeed, fix
n and observe that ±en ∈ CM. Therefore ±cn ∓ 1 ≤ 0, i.e., cn = 1. Next we prove that
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if (1, Q) ∈ BC , then for any n, Qn ≡ QM on Fn∧M. Indeed, fix n and A ∈ Fn∧M and ob-
serve that the two processes ±IAen ∓ IAeM belong to CM, since IA is FM-measurable and
the final cumulated sum vanishes in both cases. Therefore ±Qn(A) ∓ QM(A) ≤ 0, so that
Qn(A) = QM(A). Finally, we obtain (5.1) by noting that if n ≤ M and Qn ≡ QM on Fn ,
then EQn X = EQM X for any X ∈ L∞

n . �

REMARK 5.2. When M = N, i.e., when there is no constraint on the timing of choice,
then CN = L∞

 and (5.1) becomes

ρA,N(X) = ρA(X) = sup
Q�P

{
−EQ

[
N∑

n=1

Xn

]
− γA(Q)

}
,

where

γA(Q) � sup
Y∈A

{
−EQ

[
M∑

n=1

Yn

]}
.

In other words, ρA(X) = ρstatic(
∑N

n=1 Xn), where ρstatic is a suitable static risk measure. In
particular, the set Astatic ⊂ L∞ of random variables

Astatic =
{

N∑
n=1

Xn | X ∈ A
}

is an acceptability set of ρstatic.

6. A CREDIT CONSTRAINT

Here, we discuss another type of constraint. The regulator may impose a bound on the
loans that the agent can take out. If β ∈ [0, +∞] is such a bound (or credit line), the
corresponding set of permitted strategies is

C = Cβ �
{

Y ∈ L∞


∣∣∣∣∣
∑
n≥m

Yn ≥ −β ∀ m = 1, . . . , N

}
.(6.1)

If β = +∞ then no credit line constraints are considered and C∞ = L∞
 . Otherwise, the

regulator is requiring that, at any n = 1, . . . , N, the portfolio value Vn is greater than −β

and observe now that Vn = V0 − ∑
i≤n Yi = ∑N

i=1 Yi − ∑
i≤n Yi = ∑

i≥n+1 Yi .
We provide here the dual representation for this class of capital requirements,

setting ρ
β

A = ρA,Cβ , where A is an acceptability set.

PROPOSITION 6.1. Let β ∈ [0, +∞). Assume that A is convex, monotone, and satisfies
assumption B and that ρ

β

A is τ -lower semicontinuous. Then (4.12) holds and

BC ⊂
{

(c, Q) ∈ B | c1 ≤ 1,

(
c1

dQ1

dP
, . . . , cN

dQN

dP

)
is a P-supermartingale

}
.(6.2)

When β = 0, the term γC vanishes in BC .

Proof . The validity of (4.12) is guaranteed by the hypotheses as in the previous propo-
sition. We now prove that for any β ∈ [0, +∞)

0+Cβ =
{

Y ∈ L∞


∣∣∣∣∣
∑
n≥m

Yn ≥ 0 ∀ m = 1, . . . , N

}
.(6.3)



mafi˙285 MAFI.cls July 5, 2006 16:13

RISK MEASURES AND CAPITAL REQUIREMENTS 607

The “⊇” inclusion is immediate; let us prove “⊆”. If Y ∈ 0+Cβ , then for any X ∈ Cβ

we have X + Y ∈ Cβ . Since 0 ∈ Cβ we have 0+Cβ ⊆ Cβ ⊂ L∞
 . If Y ∈ 0+Cβ , then by

definition 0 + λY ∈ Cβ for all λ ≥ 0 so that for any m = 1, . . . , N, it holds

λ
∑
n≥m

Yn ≥ −β ∀λ ≥ 0,(6.4)

which readily yields
∑

n≥m Yn ≥ 0.
Let now (c, Q) ∈ BC . Since e1 ∈ 0+Cβ , it must hold c1 − 1 ≤ 0, i.e., c1 ≤ 1. Fix now n ≤

N − 1 and A ∈ Fn and define Y = −IAen + IAen+1, which clearly belongs to 0+Cβ . There-
fore it must hold −cnQn(A) + cn+1Qn+1(A) ≤ 0. Setting Zn � cn

dQn
dP , we can conclude that

for any n ≤ N − 1

EP Zn IA ≥ EP Zn+1 IA ∀A ∈ Fn,(6.5)

which is equivalent to say that Zn ≥ EP(Zn+1 |Fn), i.e., the process Z is a P-
supermartingale. Finally, if β = 0, then 0+Cβ is a positive cone containing 0 and we
recover that γC vanishes on BC by Proposition 3.11. �

REMARK 6.2. Note that, as a consequence of the supermartingale property, two nec-
essary conditions for a couple (c, Q) to enter the representation (4.12) in the case of credit
line are:

1. (cn)N
n=1 is a decreasing sequence. This broadly means that quantities that are

liquidated at the first dates matter more than those liquidated at the end, for the
sake of risk assessment.

2. If cn > 0, Qn(A) ≥ dnQn+1(A) for any A ∈ Fn , where dn � cn+1
cn

≤ 1 is independent
from A. In particular, if cn = cn+1, then Qn+1 ≡ Qn on Fn .

7. SOME EXAMPLES

We end this paper by considering, in the simplified setting of one intermediate date,
namely N = 2, some simple, instructive examples of acceptance sets for processes and
related capital requirements. We concentrate here on two relevant classes of acceptance
sets: those which can be written as a product of acceptance sets for random variables, and
those which are naturally defined, as in the static setting, on the basis of a time-additive
utility for processes.

7.1. Product-Type Acceptance Sets

Assume that A1 ⊂ L∞
1 and A2 ⊂ L∞

2 are two acceptance sets of random variables and
define A � A1 × A2 ⊂ L∞. Remind that ρA, ρA,0, and ρ

β

A(β ≥ 0) are the capital require-
ments associated to the sets of permitted strategies C = L∞

 , C0, and Cβ , respectively.
Denote with ρ1 and ρ2 the static capital requirements associated to A1 and A2.

PROPOSITION 7.1. Let A = A1 × A2, where A1 ⊂ L∞
1 and A2 ⊂ L∞

2 are monotone and
satisfy (2.2). Then ρA, ρA,0, and ρ

β

A are finite valued and monotone; moreover we can write

ρA(X1, X2) = inf{ρ2(X1 + X2 − Y) | Y ∈ A1}
ρA,0(X1, X2) = ρ1(X1) + ρ2(X2)

ρ
β

A(X1, X2) = max
[
−β, −β + inf

Y∈A1

(ess.inf (Y − X1)) , ρA(X1, X2)
]
.
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Proof . Assumption C is trivially satisfied in each of the three choices of C, while
assumptions A and B follow from the hypotheses we have made on A1 and A2. The
first part of the proposition is then a direct consequence of Propositions 4.5 and 4.6.
Concerning the explicit representations, we have

ρA(X1, X2) = inf
{
m ∈ R

∣∣ ∃Z ∈ L∞
1 s.t. X1 + Z ∈ A1, X2 + m − Z ∈ A2}

= inf{m ∈ R | ∃Y ∈ A1 s.t. X2 + m − (Y − X1) ∈ A2
}

= inf
Y∈A1

inf{m ∈ R | X2 + X1 − Y + m ∈ A2}

= inf
Y∈A1

ρ2(X1 + X2 − Y).

The other two representations are similarly proved. �

The simplest example of product-type acceptance set is

A = L∞
+ �

{
(X1, X2) ∈ L∞ ∣∣ X1, X2 ≥ 0

}
.

The hypotheses of the previous proposition are met and, after some standard calculation,
we have:

ρL∞+ (X1, X2) = −ess.inf (X1 + X2)

ρL∞+ ,0(X1, X2) = −ess.inf (X1) − ess.inf (X2)

ρ
β

L∞+
(X1, X2) = max[−β, −β − ess.inf (X1), −ess.inf (X1 + X2)].

7.2. Utility-Based Acceptance Sets

This class of examples generalizes utility-based static risk measures as defined in Sec-
tion 2.4. Assume that the agent’s preferences over payoff streams are described by a
time-additive expected utility functional

U(X1, X2) = EPu(X1) + bEPu(X2),(7.1)

where u : R → R is an utility function and b > 0. A natural acceptance set of processes
is then

A = {
(X1, X2) ∈ L∞ ∣∣ U(X1, X2) ≥ U

(
X∗

1, X∗
2

)}
,

where (X∗
1 , X∗

2 ) is a reference process. If we choose the exponential utility function uγ (x) =
1 − exp(−γ x), γ > 0, and (X∗

1 , X∗
2 ) = (0, 0), then we obtain, after standard calculations

A = {
(X1, X2) ∈ L∞ ∣∣ EPe−γX1 + bEPe−γX2 ≤ 1 + b

}
.(7.2)

Clearly, this is not a product-type acceptance set, so that we cannot apply Proposition 7.1.
Moreover, assumption B is not satisfied for any choice of γ and b. However, we show
below that choosing C = C0 or Cβ

0 = C0 ∩ Cβ , the resulting capital requirement is finite
valued and admits an explicit formulation. Let ργ the (static) entropic risk measure as
defined in Section 2, i.e.,

ργ (X ) = 1
γ

log EPe−γX.

PROPOSITION 7.2. LetAbe defined as in (7.2). For any fixed b,γ >0 and (X1, X2) ∈ L∞

it holds
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ρA,0(X1, X2) = ργ (X1) + ργ (X2) − 1
γ

log
(1 + b)2

4b
.(7.3)

Moreover, for any β ≥ 0,

ρ
β

A,0(X1, X2) = max[−β, ρ0,A(X1, X2)],(7.4)

where ρ
β

A,0 is the capital requirement associated to Cβ

0 = C0 ∩ Cβ .

Proof . For fixed b, γ, X1, X2, consider the following inequalities, where m, α, x ∈ R:

(∗)m,α EPe−γ (X1+α) + bEPe−γ (X2+m−α) ≤ 1 + b,

(∗∗)m,x be−γ m EPe−γ X2 x2 − (1 + b)x + EPe−γ X1 ≤ 0.

Putting x = eγα a standard computation shows that, for any fixed m ∈ R, (*)m,α is satisfied
for some α if and only if (**)m,x is satisfied for some x > 0, i.e., the equation,

be−γ m EPe−γ X2 x2 − (1 + b)x + EPe−γ X1 = 0,(7.5)

has two distinct solutions x1 < x2 and x2 > 0. The first condition is satisfied exactly when
the discriminant is strictly positive, i.e., when

0 < � = (1 + b)2 − 4bEPe−γ X2 EPe−γ X1 e−γ m,

which is equivalent to

m > ργ (X1) + ργ (X2) − 1
γ

log
(1 + b)2

4b
.(7.6)

The signs of the coefficients of the equation (7.5) guarantee that both solutions are
positive. Then we have

ρA,0(X1, X2) � inf{m ∈ R | ∃α ∈ R s.t. (*)m,α is satisfied}

= ργ (X1) + ργ (X2) − 1
γ

log
(1 + b)2

4b
.

For any β ≥ 0 we have, by definition

ρ
β

A,0(X1, X2) = inf{m ≥ −β ∈ R | ∃α ∈ R, α ≤ m + β s.t. (*)m,α is satisfied}.(7.7)

In addition to (7.6), in this case we are requiring also that x1 < eγ (m+β). However a lengthy,
but standard calculation shows that this requirement is satisfied under (7.6). Therefore,
(7.4) follows immediately from (7.7). �

REMARK 7.3. Since ργ admits the dual representation (2.4), we obtain

ρA,0(X1, X2) = sup
Q1,Q2�P

{−EQ1 [X1] − EQ2 [X2] − Fb,γ (Q1, Q2)},

where

Fb,γ (Q1, Q2) � 1
γ

{
(H(Q1 | P) + H(Q2 | P) − log

(1 + b)2

4b

}
∈ (−∞, +∞].

The parameter b enters the explicit formulation of ρA,0 only through the additive
term 1

γ
g(b) where
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g(b) = log
(1 + b)2

4b
, b > 0.

Observe that g(b−1) = g(b), g ≥ 0, g(1) = 0, g has a minimum in b = 1.
As in (2.5), we have

lim
γ→∞ ρA,0(X1, X2) = sup

Qi �P:H(Qi |P)<∞
{−EQ1 [X1] − EQ2 [X2]}.(7.8)

7.3. Comparison of Simple Binomial Trees

In this final section, we show that, by appropriately selecting the sets C and/or A it is
possible to point out some of the different characteristics of risk processes. Consider the
following five simple trees, assuming that the probability of each leaf is 1/4. The amounts
1 and −1 are expressed in some monetary units and are already discounted (so that we
may assume a zero interest rate).

A

−1

−1

1

1

1

1

B

1

1

−1

−1

−1

−1

C

−1

1

−1

−1

1

1

D

−1

1

1

1

−1

−1

E

−1

1

−1

1

−1

1

Observe that the trees A and B are deterministic and that C, D, and E have the same
marginal distributions, but the uncertainty resolves at time t1 in C and D and at time t2 in
E. Moreover, the expected cumulated final payoff, i.e., EP[X1 + X2], vanishes for all five
trees.

Let A � L∞
+ and

A′ � {(X1, X2) | EP[X1] ≥ 0 and EP[X2 |F1] ≥ 0},
Observe that A ⊂ A′.

We easily compute the following values for the capital requirements associated to the
above five trees:
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ρA ρA,0 ρ0
A ρ0.5

A ρ
β

A, β ≥ 1 ρA′ ρA′,0

A 0 0 1 0.5 0 0 0
B 0 0 0 0 0 0 0
C 2 2 2 2 2 0 1
D 0 2 1 0.5 0 0 1
E 2 2 2 2 2 0 0

Some comments about these numerical results are in order

1. The trees A and B differ only for the order of the payoffs: in A we have a pay-out
followed by a pay-in of the same amount, while the reversed flow is described by
B. If these fixed amounts (pay-out and pay-in) are large, for instance comparable
to the total wealth of the agent, then the tree A should be considered more risky
than B. Note that, within the examples we are considering, this is true only for ρ

β

A
when β = 0 or 0.5, i.e., when we introduce a sufficiently strict credit line. If β ≥ 1
the corresponding capital requirement is not able to distinguish between A and
B.

2. Observe that C, D, and E, which are not deterministic, are generally more risky
than A and B.

3. Note the different evaluation of the tree D given by ρA and ρA,0; ρA is lower since
it is possible to hedge efficiently (with random variables) the payoffs, while only
a constant hedge is permitted when computing ρA,0.

4. Looking at the trees C and E, we see that they both have the same “worst
scenario” constituted by the upper trajectory (−1, −1). When A � L∞

+ then
each risk measure ρA, ρA,0, ρ

β

A,0 gives the same evaluation: −ess.inf (X1 + X2) =
−ess.inf (X1) − ess.inf (X2) = 2. However, if we consider the risk measure ρA′,0
then it is possible to distinguish between C and E.

Next we compute, for some choices of (γ , b), the capital requirement ρA,0 when A is
the utility-based acceptance set defined in (7.2). Note that for any (γ, b), ρA,0 assigns, by
(7.3), the same value to A and B and, separately, to C, D, and E. The following table
resumes some computations for the trees C, D, and E for different values of b (rows) and
γ (columns).

γ = 0.5 γ = 1 γ = 2 γ = 10 γ → ∞
b = 0.50 0.245 0.750 1.266 1.850 2
b = 0.75 0.439 0.847 1.315 1.859 2
b = 1 0.480 0.868 1.325 1.861 2

The dependence on b (for a fixed γ ) is simple since it is described by g (see Remark 7.3).
In the last column we evaluate limγ→∞ ρA,0(X1, X2). Since we are in a finite probability
space, from the equation (7.8) we deduce that

lim
γ→∞ ρA,0(X1, X2) → −ess.inf (X1) − ess.inf (X2) = ρL∞+ ,0(X1, X2),

for any process (X1, X2).
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