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Abstract.
Background: Prior studies have found a reduced risk of dementia of any etiology following influenza vaccination in
selected populations, including veterans and patients with serious chronic health conditions. However, the effect of influenza
vaccination on Alzheimer’s disease (AD) risk in a general cohort of older US adults has not been characterized.
Objective: To compare the risk of incident AD between patients with and without prior influenza vaccination in a large US
claims database.
Methods: Deidentified claims data spanning September 1, 2009 through August 31, 2019 were used. Eligible patients were
free of dementia during the 6-year look-back period and ≥ 65 years old by the start of follow-up. Propensity-score matching
(PSM) was used to create flu-vaccinated and flu-unvaccinated cohorts with similar baseline demographics, medication usage,
and comorbidities. Relative risk (RR) and absolute risk reduction (ARR) were estimated to assess the effect of influenza
vaccination on AD risk during the 4-year follow-up.
Results: From the unmatched sample of eligible patients (n = 2,356,479), PSM produced a sample of 935,887 flu–vaccinated-
unvaccinated matched pairs. The matched sample was 73.7 (SD, 8.7) years of age and 56.9% female, with median follow-up
of 46 (IQR, 29–48) months; 5.1% (n = 47,889) of the flu-vaccinated patients and 8.5% (n = 79,630) of the flu-unvaccinated
patients developed AD during follow-up. The RR was 0.60 (95% CI, 0.59–0.61) and ARR was 0.034 (95% CI, 0.033–0.035),
corresponding to a number needed to treat of 29.4.
Conclusion: This study demonstrates that influenza vaccination is associated with reduced AD risk in a nationwide sample
of US adults aged 65 and older.
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INTRODUCTION

The current estimate of Alzheimer’s disease (AD)
prevalence in the US exceeds 6 million people
[1]. While some evidence suggests the incidence
of dementia may be decreasing due to improve-
ments in average cardiovascular health, the number
of affected individuals is growing because of our
aging population [1, 2]. This increasing prevalence
has wide-ranging implications for patients with AD,
their families, and the health care system as a whole.
The majority of treatments currently approved offer
limited symptomatic relief. As such, the identifica-
tion of modifiable factors that prevent or delay AD
onset is critical [1, 2].

Mounting evidence indicates that systemic im-
mune responses can have lasting effects on the brain
and can influence AD risk and/or progression [3, 4].
A diverse range of microorganisms and infectious
diseases have been associated with an increased risk
and/or rate of cognitive decline, particularly among
older adults, including influenzal respiratory infec-
tions [5, 6], pneumonia [4, 7], herpes infections [7],
chronic periodontitis [8], urinary tract infections [4],
gastrointestinal infections [9], sepsis [4], and most
recently COVID-19 [10]. Prevention or attenuation
of microbe-related inflammation may therefore rep-
resent a rational strategy to delay or reduce the
risk of neurodegenerative disease. Consistent with
this hypothesis, studies have found a decreased
risk of dementia associated with prior exposure
to various adulthood vaccinations, including those
for tetanus, diphtheria, pertussis (Tdap) [11–13];
poliomyelitis [11]; tuberculosis [14, 15]; herpes
zoster (i.e., shingles) [6, 13, 16, 17]; and influenza
[11, 18–21].

Past studies of the association between influenza
vaccination and the incidence of AD have been
limited by small sample sizes; demographic homo-
geneity that is not representative of the general US
population; and/or study populations with specific
chronic health conditions (e.g., chronic kidney dis-
ease or chronic obstructive pulmonary disease) [11,
18–20, 22]. Additionally, all but one of these five
studies examined the association between influenza
vaccination and dementia of any cause; the only
study that examined the association with AD-specific
dementia used a relatively small sample (n = 3,865)
of older adults in Canada. A recent meta-analysis
of these studies (aggregated sample size of 292,157
patients) found that influenza vaccination mitigated
the risk of dementia [21].

In conclusion, current evidence suggests that in-
fluenza vaccination lowers the risk of dementia,
but a study of influenza vaccination and risk of
AD specifically in a large sample that is represen-
tative of the general US population has not been
reported. We therefore sought to examine the relation
between influenza vaccination and AD risk in a large,
nationally distributed study population of insured 65-
and-older adults in the US. We tested the hypothesis
that influenza vaccination reduces the risk of AD in
older adults.

METHODS

Data source and study period

The database population was obtained from the
Optum® Clinformatics® Data Mart (CDM). The
CDM contains medical claims, pharmacy claims,
administrative claims, and laboratory result data for
privately insured or Medicare Advantage with Part
D enrollees who have both medical and prescription-
drug coverage. Claims data are verified, adjudicated,
adjusted, and de-identified prior to inclusion in CDM.
Mortality data derived from hospital discharge claims
and from external linkage to the Social Security
Administration Death Master File is appended to
the CDM prior to de-identification. CDM data avail-
able for this study spanned September 2009 through
September 2019.

The look-back period was defined as September
1, 2009, through August 31, 2015; the follow-up
period spanned September 1, 2015, through August
31, 2019. A look-back duration of 6 years was used
in response to a recent study that found a statistically
significant relationship between influenza vaccina-
tion and incident dementia only after ≥ 6 influenza
vaccinations [20]. As explained in the Statistical
Methods subsection, the current study’s primary
analysis examined influenza vaccination during the
follow-up period as a binary exposure (i.e., zero
versus ≥ 1 influenza vaccinations). In contrast, the
secondary analysis considered the total number of
flu vaccinations received during the look-back period,
so the threshold effect found by Wiemken et al. [20]
was particularly relevant to the secondary analysis.
The number of medically indicated influenza vacci-
nations during a given period is defined by the number
of annual flu seasons during that period; therefore, the
look-back duration was set at 6 years.
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Sample selection

Figure 1 illustrates the following sample selection
methodology. Patients were eligible for inclusion if
they had ≥ 1 record with an ICD code during the
look-back period and ≥ 2 records with an ICD code
during the follow-up period. Patients were excluded
if their age at the start of follow-up was less than
65 years, if they had a diagnosis of mild cognitive
impairment (MCI), encephalopathy, or dementia of
any cause during the look-back period, or if they filled
a prescription for a medication indicated for AD (i.e.,
donepezil, galantamine, rivastigmine, or memantine)
during the look-back period. Patients younger than 65
at the start of follow-up were excluded because this
is the age at which AD incidence becomes appre-
ciable [1]. The ICD codes and drug names used for
the exclusion criteria are provided in Supplementary
Table 1.

Exposure measurement

The period in which influenza vaccinations were
counted differed between the primary and secondary
analyses. For the primary analysis, influenza vaccina-
tions were measured during the follow-up period and
were counted only if they preceded the date of AD
onset, censoring, or the end of the follow-up period,
whichever occurred first. For the secondary analy-
sis, influenza vaccinations were measured during the
look-back period.

Intranasal vaccine formulations were not counted
in this study because the intranasal formulation is
only indicated for patients 2 to 49 years old and
because its mechanism of action (i.e., live atten-
uated) is significantly different from those of the
intramuscular influenza vaccines (i.e., inactivated
or recombinant) [23]. The drug names and admin-
istrative codes (e.g., CPT codes) used to identify
intramuscular influenza vaccinations are provided in
Supplementary Table 1.

Outcome measurement

Incident AD was defined as two or more AD-
related records (either an AD diagnosis code or a
pharmacy claim for any of the four medications
primarily indicated for AD) in a 12-month period.
The date of AD onset was defined as the date of
the first record in the 12-month period. The case-
identification algorithm for incident AD required at
least two AD-related records in order to reduce mis-
classification caused by clerical error.

The specific ICD codes used to define incident AD
are provided in Supplementary Table 1. Although AD
empirically accounts for nearly 80% of all demen-
tia cases among persons 65 and older [1], studies of
administrative datasets have found that the propor-
tion of dementia cases with AD-specific diagnostic
codes is far lower than expected and that nonspe-
cific dementia codes (e.g., for unspecified or “senile”
dementia) are the most common dementia-related
diagnostic codes in these datasets [24–27]. For exam-
ple, a study of the entire Medicare fee-for-service
beneficiary population from 2011 to 2013 found that,
among beneficiaries with ≥ 1 ICD code for demen-
tia, 46.1% had ≥ 1 code for nonspecific dementia but
no codes for a specific dementia subtype (e.g., AD),
29.0% had a code for nonspecific dementia and a
code for AD, and only 4.5% had ≥ 1 AD code and
zero nonspecific dementia codes [27]. Therefore, we
included the ICD codes for nonspecific dementias in
the case-identification algorithm for incident AD.

Covariate measurement

For each covariate, the last measurement within
the look-back period was used as the baseline value.
Covariates included demographics, physical and psy-
chiatric comorbidities, sustained use of medications
potentially related to probability of influenza vac-
cination and/or incident AD (either directly as an
effect of the medication or indirectly as an indicator
of a relevant comorbidity), number of routine well
visits during the look-back period, and total num-
ber of health care encounters during the look-back
period (as a proxy for overall healthcare utilization
rate); detailed variable definitions with relevant codes
are provided in Supplementary Table 1. These spe-
cific covariates mirror those used in a recent study
of influenza vaccination and dementia incidence in a
US Veterans Affairs (VA) cohort [20]; use of similar
covariates between that study and ours facilitated a
comparison of findings.

Statistical methods

For the primary analysis, we estimated the average
treatment effect in the treated (ATT) of flu vacci-
nation on AD risk using propensity-score-matched
cohorts. As a secondary analysis, we performed a
time-to-event analysis using the unmatched sample.
Table 1 and Fig. 2 provide an overview of the primary
and secondary analyses. For each analysis, E-values
for the point estimates and confidence intervals were
computed to assess the magnitude of unmeasured
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Fig. 1. Flowchart of Sampling Methodology. AD, Alzheimer disease; CDM, Clinformatics Data Mart; ICD, International Classification of Diseases. aAD diagnoses included dementia due
to AD, unspecified dementia, and “senile” dementia. bAD medications were donepezil, galantamine, rivastigmine, and memantine. cExclusionary diagnoses were mild cognitive impairment,
encephalopathy, and dementia (of any cause).
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Table 1
Comparison of Primary and Secondary Analysis Methodologies

Sample used Period during which
influenza
vaccinations were
measured (i.e., the
exposure period)

Exclusion criteria (in addition to those
described in Fig. 1)

Model covariates

Primary Analysis:
ATT Estimation
Using PSM

Propensity-score
matched

Follow-up • Excluded patients if any of the
following variables were missing from
the data set: geographic region, race, or
sex. The number of patients missing
each of these variables is provided in
Table 2.

The propensity score
model included all
covariates shown in
Table 2.

Secondary Analysis:
Time-to-Event
Model

Unmatched Look-back • Excluded patients if any of the
following variables were missing from
the data set: geographic region
(n = 1,934), race (n = 212,757), or sex
(n = 197).

The competing-risks
time-to-event model
included all covariates
shown in Table 2 except
for the following:

• Excluded patients who received more
than 6 influenza vaccinations during
the 6-year look-back period (n = 31).

• Geographic region
• Number of health care

visits during the
look-back period

• Number of routine
“well visit”
examinations during the
look-back period

• Excluded patients who received zero
influenza vaccinations during the
look-back period but ≥ 1 influenza
vaccinations during the follow-up
period (n = 587,726).

Methods that did not differ between the primary and secondary analyses (i.e., outcome and covariate measurements) are not shown in this
table. ATT, average treatment effect in the treated; PSM, propensity score matching.

confounding that would be necessary to fully explain
the observed association between influenza vacci-
nation and AD risk [28, 29]. Tests of statistical
significance were two-tailed with � = 0.05. Python
v3.8.8 (Python Software Foundation) with package
‘causalML’ v0.11.1 [30] was used for data process-
ing and the primary analysis. R v3.5.1 (R Core Team,
2018) with package ‘cmprsk’ v2.2-7 [31] was used
for the secondary analysis.

Primary analysis: ATT estimation using
propensity score matching

To balance the distribution of measured base-
line covariates between patients receiving and not
receiving influenza vaccinations during the follow-up
period, we estimated propensity scores for influenza
vaccination based on all baseline covariates (see Sup-
plementary Table 1 for variable definitions) using a
logistic regression model [28]. Patients without data
for geographic region, sex, or race were excluded
prior to estimation of propensity scores; the number
of patients missing each of these variables is provided
in Table 2. Via one-to-one greedy nearest-neighbor
matching without replacement, the estimated propen-
sity scores were used to match each flu-vaccinated

patient with a patient who did not receive an
influenza vaccine during the follow-up period. A
caliper width of 0.2 standard deviations of the logit
of the propensity score was used for matching [32].
To assess adequate balancing of baseline covariates,
the standardized mean difference (SMD) was calcu-
lated for each covariate before and after propensity
score matching (PSM). By convention, SMD < 0.10
was used to identify well-balanced covariates
[28].

Using the propensity-matched cohorts, the associ-
ation between receipt of influenza vaccination and
incident AD was assessed via estimation of rela-
tive risk (RR) and absolute risk reduction (ARR),
and 95% confidence intervals were constructed using
methods that account for the pairwise dependence of
propensity-matched samples [33, 34].

As a sensitivity analysis, another set of RR and
ARR estimates was obtained after the ICD codes
for nonspecific and “senile” dementias were removed
from the case-detection algorithm; similarly, a third
set of estimates was obtained after expanding the out-
come of interest from AD to the broader category of
AD and related dementias (ADRD) [35]. The spe-
cific ICD codes used for each sensitivity analysis are
provided in Supplementary Table 1.
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Fig. 2. Overview of Primary and Secondary Analysis Designs. AD, Alzheimer disease; ATT, average treatment effect in the treated; ICD,
International Classification of Diseases; PSM, propensity score matching. aVaccinations were not considered if preceded by a diagnosis code
or medication record for AD. bThe results of Step 6 are shown in Table 3.
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Table 2
Baseline Characteristics of Patients With and Without Influenza Vaccination During the Follow-up Period, Before and After PSM

Panel 1: before propensity Panel 2: after propensity
score matching score matching

No flu ≥1 flu SMD No flu ≥1 flu SMD
vaccinations vaccinations vaccinations vaccinations

during follow-up during follow-up during follow-up during follow-up
(n = 1,170,868) (n = 1,185,611) (n = 935,887) (n = 935,887)

Age in y, mean (SD) 73.5 (6.3) 73.6 (6.0) –0.010 73.7 (6.3) 73.7 (6.0) –0.005
Sex

Unknown 155 0.0% 42 0.0% 0.011 NA NA NA NA NA
Female 654,908 55.9% 685,979 57.9% –0.039 533,387 57.0% 531,644 56.8% 0.004
Male 515,805 44.1% 499,590 42.1% 0.039 402,500 43.0% 404,243 43.2% –0.004

Race
Unknown 104,390 8.9% 108,367 9.1% –0.008 NA NA NA NA NA
Asian 48,038 4.1% 41,722 3.5% 0.031 33,448 3.6% 41,453 4.4% –0.044
Black 112,278 9.6% 98,902 8.3% 0.044 93,670 10.0% 86,405 9.2% 0.026
Hispanic 132,946 11.4% 88,556 7.5% 0.133 100,921 10.8% 90,949 9.7% 0.035
White 773,216 66.0% 848,064 71.5% –0.119 707,848 75.6% 717,080 76.6% –0.023

Geographic region
Unknown 1,280 0.1% 654 0.1% 0.018 NA NA NA NA NA
Northeast 167,514 14.3% 161,685 13.6% 0.019 135,590 14.5% 130,497 13.9% 0.016
North central 274,550 23.5% 278,747 23.5% –0.002 232,144 24.8% 222,573 23.8% 0.024
South 404,059 34.5% 462,133 39.0% –0.093 328,614 35.1% 368,816 39.4% –0.089
West 323,465 27.6% 282,392 23.8% 0.065 239,539 25.6% 214,001 22.9% 0.064

No. of healthcare visits during
look-backa, mean (SD)

46.5 (57.0) 47.0 (48.9) –0.010 47.7 (55.4) 47.7 (49.8) –0.001

No. of routine “well visit”
examinations, mean (SD)

1.5 (2.2) 1.7 (2.1) –0.092 1.6 (2.2) 1.6 (2.1) –0.004

Comorbidities
Asthma 117,412 10.0% 130,876 11.0% –0.033 98,715 10.6% 99,272 10.6% –0.002
Atrial fibrillation or flutter 131,648 11.2% 128,386 11.4% 0.013 104,695 11.2% 104,673 11.2% 0.000
B12 deficiency 65,802 5.6% 71,077 6.0% –0.016 55,246 5.9% 55,266 5.9% –0.001
Congestive heart failure 130,923 11.2% 104,514 8.8% 0.079 93,664 10.0% 93,861 10.0% –0.001
COPD 188,080 16.1% 176,394 14.9% 0.033 146,477 15.7% 146,107 15.6% 0.001
Hyperlipidemia 851,922 72.8% 936,251 79.0% –0.146 719,735 76.9% 718,331 76.8% 0.000
Hypertension 855,740 73.1% 893,509 75.4% –0.052 702,418 75.1% 700,488 74.9% 0.005
Ischemic heart disease 290,796 24.8% 285,539 24.1% 0.018 233,308 24.9% 233,304 24.9% –0.001
Obesity 210,346 18.0% 215,614 17.6% 0.011 167,640 17.9% 167,349 17.9% 0.001
Traumatic brain injury 9,100 0.8% 8,563 0.7% 0.006 7,133 0.8% 7,139 0.8% 0.000
Type II diabetes 333,821 28.5% 327,184 27.6% 0.021 265,516 28.4% 265,227 28.3% 0.007
Stroke 60,353 5.2% 49,507 4.2% 0.046 43,867 4.7% 43,838 4.7% 0.000
Alcohol use disorder 21,939 1.9% 16,519 1.4% 0.041 14,400 1.5% 14,273 1.5% 0.001
Anxiety disorderb 201,814 17.2% 203,499 17.2% 0.002 163,547 17.5% 163,481 17.5% 0.000
Depression 141,211 12.1% 139,616 11.8% 0.009 113,280 12.1% 113,073 12.1% 0.001
Substance use disorderc 19,358 1.7% 13,754 1.2% 0.042 12,343 1.3% 12,247 1.3% 0.001
Tobacco use 203,758 0.8% 202,909 17.1% 0.008 164,059 17.5% 164,106 17.5% 0.000

Medications (sustained used)
Anticholinergics 70,077 6.0% 75,400 6.4% –0.016 58,009 6.2% 60,333 6.5% –0.010
Antihypertensives 37,597 3.2% 32,355 2.7% –0.080 28,149 3.0% 27,923 3.0% 0.001
Antivirals 30,715 2.6% 34,875 2.9% –0.019 26,078 2.8% 26,243 2.8% –0.001
Glucocorticoids 190,126 16.2% 237,827 20.1% –0.099 170,030 18.2% 170,929 18.3% –0.003
Metformin 148,573 12.7% 159,701 13.5% –0.023 123,363 13.2% 123,219 13.2% 0.005
NSAIDs 220,128 18.8% 241,972 20.4% –0.041 184,875 19.8% 188,464 20.1% –0.010
Statins 466,550 39.9% 567,610 47.9% –0.162 405,127 43.1% 403,448 43.1% 0.004
Sulfonylureas 91,881 7.9% 87,800 7.4% 0.017 72,776 7.8% 72,947 7.8% 0.003

Frequency and percentage (of the column sample size) are provided for categorical variables; mean and standard deviation are provided
for continuous variables. Summary statistics for the “unknown” level of geographic region, race, and sex are absent from Panel 2 because
patients lacking any of those variables were excluded prior to propensity-score matching. See eTable 1 for complete variable definitions.
COPD, chronic obstructive pulmonary disease; NSAIDs, nonsteroidal anti-inflammatory drugs; SD, standard deviation; SMD, standardized
mean difference. aNumber of outpatient or inpatient health care encounters during the look-back period. bComposite of post-traumatic stress
disorder, panic disorder, anxiety disorder not otherwise specified, obsessive compulsive disorder, social phobia, and generalized anxiety
disorder. cComposite of substance use disorders involving any of the following: opioids; cannabis; sedatives, hypnotics, or anxiolytics;
cocaine; amphetamines or other stimulants; hallucinogens; inhalants; and/or other psychoactive substances, including polysubstance use.
d“Sustained use” was defined as ≥ 2 prescription claims in any 6-month period during the look-back period.
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Furthermore, to examine whether the ATT of
influenza vaccination on AD risk varied by length
of follow-up or age at the start of follow-up, we per-
formed three ad-hoc study designs with a look-back
duration of 2 years (and therefore a follow-up dura-
tion of 8 years) and/or age ≥ 75 years at the start of
follow-up. The sample selection, PSM, and ATT esti-
mation processes described above were repeated for
each of these ad-hoc designs.

Secondary analysis: Time-to-event model
A competing-risk regression model was used to

estimate the effect of the number of influenza vacci-
nations on the rate of incident AD during follow-up.
In contrast to the primary analysis in which influenza
vaccination was defined dichotomously (i.e., zero
versus ≥ 1 flu vaccinations during follow-up), the
time-to-event model defined influenza vaccination as
a discrete variable equal to the number of flu vacci-
nations received during the 6-year look-back period.
Because treatment (i.e., influenza vaccination) and
baseline covariates were both measured during the
look-back period in the time-to-event model, use of
propensity-matched groups was conceptually imper-
missible; therefore, the unmatched sample was used
for this analysis.

In addition to the exclusion criteria described in the
“Sample Selection” subsection, two other eligibility
criteria were applied for the time-to-event analysis.
Firstly, because influenza vaccination is indicated
once per annual flu season, patients who received
more than 6 influenza vaccines during the 6-year
look-back period were excluded; this exclusion crite-
rion is consistent with a recent study of flu vaccination
and dementia risk in a large VA cohort [20]. Sec-
ondly, following a per-protocol approach, patients
were excluded if they had zero influenza vaccina-
tions during the look-back period but ≥ 1 influenza
vaccinations during the follow-up period.

The competing-risks analysis used a Cox-type
proportional subdistribution hazard model, with
time–to–incident-AD diagnosis as the outcome of
interest and death as the competing-risk event.
Because the objective was to assess the effect of the
number of flu vaccinations on the cumulative inci-
dence function (CIF) for AD, we focused on the
subdistribution hazard instead of the cause-specific
hazard [36]. The model included the covariates listed
in Table 2 except for geographic region, number of
“well visits” during look-back, and overall number
of healthcare visits during look-back, which were

excluded due to a lack of a priori association with
AD risk. Collinearity among the included indepen-
dent variables was assessed through examination of
the pairwise correlation matrix (Supplementary Fig-
ure 1), which revealed 3 sets of highly correlated
covariates: hyperlipidemia and statins; type 2 dia-
betes, metformin, and sulfonylurea; and anxiety and
depression. Therefore, to reduce collinearity, a binary
indicator variable was created for each of these sets.
Each indicator variable was coded “yes” if any of its
constituent variables was coded “yes.”

The proportional-hazards assumption was as-
sessed for each covariate via examination of the
scaled Schoenfeld residuals over time. For any covari-
ate demonstrating a time-dependent pattern on the
Schoenfeld residuals plot, a time-covariate inter-
action term was added to the regression model.
Estimates of the subdistribution hazard ratio (sHR)
and 95% CI for the effect of influenza vaccination on
time-to-AD diagnosis were computed from the final
model.

Ethics approval

The Committee for the Protection of Human
Subjects (CPHS), the IRB of UTHealth, reviewed
and deemed this study non-human subjects research
because it used deidentified retrospective claims data.
CPHS therefore approved the study with a HIPAA
waiver and waiver of informed consent.

Data availability

The authors cannot make data and study materi-
als available to other investigators due to licensing
restriction; however, interested parties can license the
CDM by contacting Optum.

RESULTS

Baseline characteristics

1,185,611 flu-vaccinated and 1,170,868 flu-un-
vaccinated patients were identified after application
of the eligibility criteria in Fig. 1. Summary statis-
tics for the baseline characteristics of flu-vaccinated
and flu-unvaccinated patients before and after PSM
are shown in Table 2. After matching, SMDs for all
covariates were < 0.10, thereby satisfying the pre-
specified criterion for adequate balancing between
the treated and untreated cohorts.
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Table 3
Frequency of Incident AD Among Propensity-Score-Matched

Vaccinated and Unvaccinated Patients

Incident Incident
AD (+) AD (–)

≥1 flu vaccinations during follow-up 47,889 887,998
No flu vaccinations during follow-up 79,630 856,257

ATT estimation using PSM

After PSM, the vaccinated and unvaccinated
cohorts each consisted of 935,887 patients. The
median follow-up time prior to incident AD, death, or
censoring in the propensity-matched sample was 46
(IQR, 29–48) months. Table 3 shows the frequency
of incident AD among the propensity-score-matched
flu-vaccinated and flu-unvaccinated cohorts. The
ARR over the 4-year follow-up was 0.034 (95% CI,
0.033–0.035), corresponding to a number needed to
treat of 29.4 patients. The RR was 0.60 (95% CI,
0.59–0.61). E-values for the point estimate and CI
were 2.71 and 2.67, respectively.

For the sensitivity analyses, exclusion of the
nonspecific and “senile” dementia codes from the
case-detection algorithm for incident AD resulted
in an ARR of 0.016 (95% CI, 0.015–0.017) and an
RR of 0.65 (95% CI, 0.64–0.66); expansion of the
case-detection algorithm to include all ADRD diag-
nostic codes resulted in an ARR of 0.033 (95% CI,
0.032–0.034) and RR of 0.60 (95% CI, 0.59–0.61).
Results of the three ad-hoc ATT analysis designs (i.e.,
using a 2-year look-back duration and/or age ≥ 75 at
the start of follow-up) are shown in Supplementary
Table 2.

Time-to-event model

Supplementary Figure 2 shows the frequency
distribution of influenza vaccinations during the look-
back period in the unmatched sample used for the
time-to-event analysis. The median follow-up time in
the unmatched sample was 46 (IQR, 25–48) months.
Upon initial construction of the regression model,
examination of the Schoenfeld residual plots revealed
that 20 variables violated the proportional-hazards
assumption (see Supplementary Table 3); therefore,
time-covariate interaction terms for these variables
were added to the regression model.

The CIF curve of AD by number of influenza
vaccinations is shown in Fig. 3. The regression coef-
ficient, sHR, and 95% CI for each covariate and its
time-covariate interaction term (when applicable) are

Fig. 3. Estimated CIF Curve of Incident AD by Number of
Influenza Vaccinations. Quantitative results from the regression
model are presented in Supplementary Table 3.

shown in Supplementary Table 3. The sHR associated
with the number of influenza vaccinations was 0.76
(95% CI, 0.74–0.79); E-values for the point estimate
and CI were 1.96 and 1.86, respectively. Because the
sHR for the time–influenza-vaccination interaction
term was 1.006 (95% CI, 1.003–1.009), the time-
adjusted sHR for influenza vaccinations is given by
sHR(t) = exp(–0.275 + 0.006∗t), where t is the num-
ber of months since the index date. This equation
illustrates that the effect of influenza vaccinations on
AD incidence diminished (i.e., became less protec-
tive) during the 4-year follow-up period.

DISCUSSION

This retrospective cohort study using the Optum
CDM revealed that in adults age ≥ 65 without demen-
tia, MCI, or encephalopathy, patients who received
at least one influenza vaccine were 40% less likely
than their non-vaccinated peers to develop incident
AD during the 4-year follow-up period. To account
for potential bias related to confounding by indica-
tion or the healthy-vaccinee effect [37], this study
used baseline demographic, medication, and comor-
bidity data to match patients according to propensity
for influenza vaccination. Similar to the ATT analy-
sis, the time-to-event analysis using the unmatched
sample found that prior influenza vaccination was
negatively associated with AD risk. E-values were
computed for both the primary and secondary anal-
yses to estimate robustness of these findings to



1070 A.S. Bukhbinder et al. / Risk of AD After Influenza Vaccination

unmeasured confounders. For example, the E-value
of 2.71 for the primary analysis’s point estimate indi-
cates that, in order to render the results statistically
insignificant, an unmeasured confounder would need
to have a relative risk association of ≥ 2.71 with both
influenza vaccination and incident AD while control-
ling for the covariates used in this study.

Hypothesized mechanism(s)

The mechanisms underlying the apparent protec-
tive effects of influenza vaccination on AD risk merit
further investigation. These mechanisms—and those
underlying the effects of adulthood vaccinations on
all-cause dementia risk in general—can be grouped
into at least three broad, non-exclusive categories:
1) influenza-specific mechanisms, including miti-
gation of damage secondary to influenza infection
and/or epitopic similarity between influenza pro-
teins and AD pathology; 2) non–influenza-specific
training of the innate immune system; and 3)
non–influenza-specific changes in adaptive immunity
via lymphocyte-mediated cross-reactivity.

The apparent effect of influenza vaccination on AD
risk may be secondary to influenza-specific immu-
nity conferred by the vaccine. CNS injury during
influenza infection can occur from direct viral inva-
sion of nervous tissues or as collateral damage from
the systemic immune response to peripheral infec-
tion [38, 39]. Neurologic complications associated
with influenza infection can occur in the absence
of overt CNS inflammation (e.g., lack of pleo-
cytosis or detectable virus in cerebrospinal fluid)
and comprise a range of manifestations including
headache, encephalopathy, demyelination, and long-
term neuropsychiatric sequelae such as depression
and persistent cognitive impairment [38, 39]. Com-
plications are especially concerning in patients 65
or older, who are at a significantly higher risk for
severe infections. During the 2018–2019 flu season,
adults age ≥ 65 constituted 57% of influenza-related
hospitalizations and 75% of influenza-related deaths
[40]. An association between flu infection and AD
risk is supported by mouse studies demonstrating
that peripheral infection of wild-type mice with
non-neurotropic influenza strains induces excessive
microglial activation and subsequent alteration of
neuronal morphology, particularly in the hippocam-
pus, that persists after infection resolution [38, 41]; in
APP/PS1 transgenic mice, peripheral influenza infec-
tion also induces persistent elevations of amyloid-�
(A�) plaque burden [42]. However, in contrast to

these mouse studies, a case-control study of 38,926
older adults found no association between the number
or severity of past influenza infections and AD risk
[43]. Another influenza-specific mechanism poten-
tially underlying the effects of influenza vaccination
on AD risk is epitopic similarity between an influenza
protein(s) and AD pathology. This hypothesis is sup-
ported by significant structural and peptide-sequence
similarities between the fusion domain of influenza
hemagglutinin and the 42-residue monomeric A�
peptide [44].

Long-term, non–influenza-specific alteration of
the innate immune system presents another class of
mechanisms potentially underlying influenza vacci-
nation’s apparent effect on AD risk. Several vaccines,
including the influenza vaccine, are associated with
non-specific protective effects via long-term repro-
gramming of innate immune cells, a process
termed “trained immunity” [45, 46]. Manifestations
of vaccine-induced non–antigen-specific trained
immunity include alterations of cytokine levels in
the periphery and CNS as well as upregulation of
pattern recognition receptors (PRRs) among an array
of immunologic cell lineages, particularly natural
killer cells and monocytes [45–47]. The molecular
mechanisms driving the changes in cytokine sig-
naling and PRR expression following vaccination
include “epigenetic reprogramming” [47] of immune
cells through processes such as DNA methylation,
histone modification, or post-transcriptional miRNA
targeting of regulatory sequences related to cytokine
or PRR expression [45, 46, 48]. Several studies have
shown that the innate-related changes in peripheral
cytokines associated with vaccination can directly
affect microglial activity, including the efficiency
of microglia in clearing A� aggregates [3, 49, 50].
Another mechanism related to innate immunity that
potentially underlies the association between flu
vaccination and AD is alteration of the sustained
low-grade systemic elevation of proinflammatory
cytokines referred to as “inflammaging” that is
commonly observed among older adults [51].
Regardless of the exact mechanism, the relevance of
innate immune training is supported by the growing
literature that other adulthood vaccines (including
those for tetanus and diphtheria, zoster, and tubercu-
losis) are associated with reduced dementia risk [6,
11–21]. Of particular interest are studies from the US
and Israel that found a lower risk of AD in patients
with bladder cancer who had received intravesical
immunotherapy with BCG, a vaccine for tuberculo-
sis, compared to those who had not undergone BCG
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immunotherapy [14, 15]. Because the prevalence of
tuberculosis is low in the US [52], the association
of BCG exposure with lowered dementia risk argues
against an avoidance-of-infection mechanism and
instead supports a non–microbe-specific mechanism
such as trained immunity.

Vaccine-induced changes in the adaptive immune
system may also have a role in the flu vaccine’s
apparent effect on AD risk through mechanisms such
as vaccine-induced heterologous adaptive immunity,
a phenomenon associated with a variety of vac-
cines [47, 53]. Moreover, studies of senescent T
cells have found an apparent age-related convergence
between the adaptive and innate immune systems.
While immune senescence has known implications
for the effectiveness of vaccines in conferring immu-
nity to infection among older adults [54, 55], the
interaction between immune senescence and the
non–microbe-specific effects of vaccines merits fur-
ther investigation.

Strengths and limitations

Strengths of this study include the large sample size
afforded by the CDM; even after PSM, the matched
sample had 935,887 pairs. In comparison, a recent
meta-analysis of the association between flu vacci-
nation and dementia had an aggregate sample size
of 292,157 [21]. Secondly, the CDM is more rep-
resentative of US insured older adults than datasets
previously used to investigate influenza vaccina-
tions and dementia risk. Third, although the CDM
captures influenza vaccinations billed through insur-
ance regardless of whether administration occurs
in a clinic or a pharmacy, vaccinations not billed
through insurance (e.g., due to out-of-pocket pay-
ment or receipt from a free vaccination source such
as employer-sponsored vaccination programs) would
not be captured in this dataset. While the frequency
of out-of-pocket payments for influenza vaccina-
tions is presumably low in the CDM given that
medical and pharmacy coverage are required for
inclusion in this dataset, the proportion of patients in
the CDM receiving influenza vaccinations from free
sources is unknown. Finally, the temporal separation
of exposure and outcome via use of distinct multi-
year look-back and follow-up periods, in tandem with
the reduction of treatment-selection bias provided by
PSM, allows for cautious inferences regarding causal
treatment effects [28].

There are several limitations that must be con-
sidered. First, the CDM includes only patients with

both medical and prescription coverage. Although the
database includes patients with private insurance or
Medicare Advantage with Part D, it lacks patients
without medical or prescription coverage and patients
with traditional Medicare plans, thereby limiting the
generalizability of these findings to the entire 65-and-
older US population.

Second, the CDM is a retrospective database of
routinely collected health data. Because the relation-
ship between influenza vaccination and AD was not
the main purpose of this data, there is risk of out-
come misclassification (e.g., due to underdiagnosis
or clerical error). This study attempted to reduce
outcome misclassification due to clerical errors by
requiring that incident AD cases have ≥ 2 AD-related
records and that control patients have zero AD-related
records. Third, this study counted cases of incident
“senile” or unspecified dementia as incident AD;
although 60–80% of these patients empirically have
AD, the actual percentage in the CDM is unknown.

Fourth, we chose not to include influenza infec-
tions in our analyses because of concerns surrounding
influenza infection misclassification in retrospec-
tive studies of administrative data [56]. Similar to
the authors of a recent study investigating the flu
vaccine’s association with dementia risk in a VA
cohort [20], we concluded that the potential bias
from frequent misclassification of infection status
outweighed the potential benefits of including this
factor in the analysis. Fifth, it is possible that cog-
nitive decline could prompt patients to seek medical
attention more often, thereby increasing the proba-
bility that these patients received flu vaccinations;
however, we attempted to minimize the possibility
of such reverse causality by excluding patients with
MCI during the look-back period.

Finally, although PSM was used to control for
confounding by measured covariates, unobserved
confounders remain an important consideration in
any observational study, especially for claims data
that was not generated for this analysis. Factors that
are known to be associated with both likelihood of
influenza vaccination and AD risk but that were not
examined in this study include social factors such as
social support and level of education [2, 57]. Access
to health care may partially underlie the associa-
tion of these social factors with AD risk and rate
of influenza vaccination; however, because the CDM
only includes patients with both medical and pharma-
ceutical coverage, confounding mediated by access
to health care is less likely to be an issue in this
study. Other potentially important factors that were
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not included are non-influenzal adulthood vaccina-
tions such as those for herpes zoster or tetanus and
diphtheria. The rate of influenza vaccination among
adults is likely correlated with the rates of other vac-
cinations. Because studies have found an association
between these other adult vaccinations and dementia
of any cause [6, 11–17], it is possible that the current
study’s findings regarding influenza vaccination and
AD risk are at least partially confounded by one of the
other adulthood vaccination(s). However, the other
adulthood vaccines are not as frequently indicated as
the influenza vaccine, and hence it seems unlikely
that they contributed significantly here. Nonetheless,
to provide an estimate of robustness to unmeasured
confounders, this study included E-values for point
estimates and confidence intervals.

Next steps

Several lines of future investigation are warranted.
A follow-up study using a prospective cohort design
would provide more robust reduction of confounding.
Studies with longer follow-up periods are particularly
desirable given that AD pathology begins decades
before symptom onset [1]. Animal studies will be
crucial in elucidating the relative contributions of
the aforementioned mechanisms in the association
between flu vaccination and AD risk. Moreover,
animal studies can help to address whether the asso-
ciation between vaccination and AD risk is secondary
to changes in AD-specific pathology, modulation of
non–AD–specific inflammatory processes such as
inflammaging, or both. Additionally, given mount-
ing evidence that training of the innate immune
system can alter neurodegeneration [3, 45, 47, 49,
55], future studies should explore whether vaccine
adjuvants moderate the association between flu vac-
cination and AD risk. Similarly, emerging evidence
suggests that the gut microbiome influences vaccine
efficacy [58, 59]; studies should therefore investigate
whether microbiota profiles modify the association
between influenza vaccination and AD risk. Future
investigations should also explore whether flu vacci-
nation affects the rates of MCI-to-AD conversion or
of clinical and/or pathological progression in patients
with symptomatic AD.

Concluding remarks

This study found that, through an uncertain mech-
anism, influenza vaccination was associated with a
40% decrease in the 4-year risk of developing AD in

patients 65 years or older. Although this study used a
large sample, the limited follow-up duration and ret-
rospective cohort design prevent strong conclusions
regarding causation. It will be critical for future inves-
tigations to clarify which mechanisms underlie the
apparent effect of flu vaccination on AD risk, whether
age at vaccination moderates the vaccine’s associa-
tion with AD risk, and whether influenza vaccination
also affects rate of progression in patients with MCI
or AD.
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