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RISK OF BAYESIAN INFERENCE IN MISSPECIFIED MODELS,
AND THE SANDWICH COVARIANCE MATRIX

BY ULRICH K. MÜLLER1

It is well known that, in misspecified parametric models, the maximum likelihood es-
timator (MLE) is consistent for the pseudo-true value and has an asymptotically normal
sampling distribution with “sandwich” covariance matrix. Also, posteriors are asymp-
totically centered at the MLE, normal, and of asymptotic variance that is, in general,
different than the sandwich matrix. It is shown that due to this discrepancy, Bayesian
inference about the pseudo-true parameter value is, in general, of lower asymptotic fre-
quentist risk when the original posterior is substituted by an artificial normal posterior
centered at the MLE with sandwich covariance matrix. An algorithm is suggested that
allows the implementation of this artificial posterior also in models with high dimen-
sional nuisance parameters which cannot reasonably be estimated by maximizing the
likelihood.

KEYWORDS: Posterior variance, quasi-likelihood, pseudo-true parameter value, in-
terval estimation.

1. INTRODUCTION

EMPIRICAL WORK IN ECONOMICS RELIES more and more on Bayesian in-
ference, especially in macroeconomics. For simplicity and computational
tractability, applied Bayesian work typically makes strong parametric assump-
tions about the likelihood. The great majority of Bayesian estimations of dy-
namic stochastic general equilibrium (DSGE) models and VARs, for instance,
assume Gaussian innovations. Such strong parametric assumptions naturally
lead to a concern about potential misspecification.

This paper formally studies the impact of model misspecification on the
quality of standard Bayesian inference, and suggests a superior mode of in-
ference based on an artificial “sandwich” posterior. To fix ideas, consider the
linear regression

yi = z′
iθ+ εi� i= 1� � � � � n�(1)

where the fitted model treats εi as independent and identically distributed
(i.i.d.) N (0�1) independent of the fixed regressors zi. The parameter of in-
terest is the population regression coefficient θ, and the (improper) prior den-
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sity p of θ is constant p(θ) = 1. The model (“M”) log-likelihood is exactly
quadratic around the maximum likelihood estimator (MLE) θ̂,

LMn(θ)= C − 1
2
n(θ− θ̂)′Σ−1

M (θ− θ̂)�(2)

where ΣM = (n−1
∑n

i=1 ziz
′
i)

−1 and C is a generic constant. With the flat prior
on θ, the posterior density has the same shape as the likelihood, that is, the
posterior distribution is θ ∼ N (θ̂�ΣM). Now suppose the fitted model is mis-
specified, because the Gaussian innovations εi are, in fact, heteroskedastic
εi ∼ N (0�κ(zi)). The sampling distribution of θ̂ then is

θ̂∼ N (θ�ΣS/n)� ΣS = ΣMV ΣM�(3)

where V = n−1
∑n

i=1 κ(zi)ziz
′
i. Note that, under correct specification κ(zi)= 1,

the “sandwich” covariance matrix ΣS reduces to ΣM via V = Σ−1
M . But, in gen-

eral, misspecification leads to a discrepancy between the sampling distribution
of the MLE θ̂ and the shape of the model likelihood: the log-likelihood (2) is
exactly as if it was based on the single observation θ̂ ∼ N (θ�ΣM/n), whereas
the actual sampling distribution of θ̂ is as in (3). In other words, the model like-
lihood does not correctly reflect the sample information about θ contained in
θ̂. This suggests that one obtains systematically better inference about θ by re-
placing the original log-likelihood LMn by the artificial sandwich log-likelihood

LSn(θ)= C − 1
2
n(θ− θ̂)′Σ−1

S (θ− θ̂)�(4)

which yields the “sandwich posterior” θ ∼ N (θ̂�ΣS/n). Systematically better
here is meant in a classical decision theory sense: the model and sandwich
posterior distributions are employed to determine the posterior expected loss
minimizing action for some given loss function. Sandwich posterior inference is
then defined as superior to original Bayesian inference if it yields lower average
realized losses over repeated samples, that is, if it results in decisions of lower
frequentist risk.

In general, of course, log-likelihoods are not quadratic, the sampling distri-
bution of the MLE is not Gaussian, and priors are not necessarily flat. But the
seminal results of Huber (1967) and White (1982) showed that, in large sam-
ples, the sampling distribution of the MLE in misspecified models is centered
on the Kullback–Leibler divergence minimizing pseudo-true parameter value
and, to first asymptotic order, it is Gaussian with sandwich covariance matrix.
The general form of the sandwich matrix involves both the second derivative
of the log-likelihood and the variance of the scores, and can be consistently
estimated under weak regularity conditions. Similarly, also the asymptotic be-
havior of the posterior in misspecified parametric models is well understood:
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The variation in the likelihood dominates the variation in the prior, leading to
a Gaussian posterior centered at the MLE and with covariance matrix equal
to the inverse of the second derivative of the log-likelihood. See, for instance,
Chapter 11 of Hartigan (1983), Chapter 4.2 and Appendix B in Gelman, Car-
lin, Stern, and Rubin (2004), or Chapter 3.4 of Geweke (2005) for textbook
treatments. The small sample arguments above thus apply at least heuristi-
cally to large sample inference about pseudo-true values in general parametric
models.

The main point of this paper is to formalize this intuition: Under suitable
conditions, the large sample frequentist risk of decisions derived from the
sandwich posterior θ ∼ N (θ̂�ΣS/n) is (weakly) smaller than the risk of de-
cisions derived from the model posterior. This result does not imply that sand-
wich posterior inference yields the lowest possible asymptotic risk; in fact, only
in rather special cases does the sandwich posterior correspond to the posterior
computed from the correct model, even asymptotically. But with the correct
model unknown and difficult to specify, sandwich posterior inference consti-
tutes a pragmatic improvement for Bayesian inference in parametric models
under potential misspecification. We discuss an implementation that is poten-
tially suitable also for models with a high dimensional parameter in the context
of a factor model in Section 6.1 below.

It is important to keep in mind that the pseudo-true parameter of the mis-
specified model must remain the object of interest for sandwich posterior in-
ference to make sense.2 The pseudo-true parameter is jointly determined by
the true data generating process and the fitted model. For instance, with a sub-
stantive interest in the population regression coefficient in (1), an assumption
of Gaussian εi generally leads to a consistent MLE as long as E[ziεi] = 0. In
contrast, if the fitted model assumes εi to be mean-zero mixtures of normals
independent of the regressors, say, then the pseudo-true value does not, in gen-
eral, equal the population regression coefficient. In this setting, the ostensibly
weaker assumption of a mixture of normals distribution for εi thus yields less
robust inference in this sense, and it is potentially attractive to address poten-
tial misspecification of the baseline Gaussian model with sandwich posterior
inference instead. Section 5.1 below provides numerical evidence on this issue.

One might also question whether losses in decision problems exclusively con-
cern the value of parameters. For instance, the best conditional prediction of
y given z in the linear regression (1) is, in general, a function of the condi-
tional distribution of ε|z, and not simply a function of the population regres-
sion coefficient θ (unless the loss function is quadratic). At the same time,
most “decisions” in Bayesian applied work concern the description of uncer-
tainty about model parameters (and functions of model parameters, such as
impulse responses) by two-sided equal-tailed posterior probability intervals. In

2Also, Royall and Tsou (2003) and Freedman (2006) stressed that pseudo-true parameters do
not necessarily have an interesting interpretation.
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a correctly specified model, these intervals are optimal actions relative to a loss
function that penalizes long and mis-centered intervals. Under misspecifica-
tion with ΣS �= ΣM , the sandwich posterior two-sided equal-tailed intervals are
a systematically better description of parameter uncertainty in the sense that
they are of lower asymptotic risk under this loss function. In the empirical illus-
tration in Section 6.2, we find that the sandwich posterior implies substantially
more uncertainty about model parameters in a three-equation DSGE model
fitted to postwar U.S. data compared to standard Bayesian inference.

The relatively closest contribution in the literature to the results of this paper
seems to be a one-page discussion in Royall and Tsou (2003). They considered
Stafford’s (1996) robust adjustment to the (profile) likelihood, which raises
the original likelihood to a power such that, asymptotically, the inverse of the
second derivative of the resulting log-likelihood coincides with the sampling
variance of the scalar (profile) MLE to first order. In their Section 8, Royall
and Tsou verbally discussed asymptotic properties of posteriors based on the
adjusted likelihood, which is equivalent to the sandwich likelihood studied here
for a scalar parameter of interest. They accurately noted that the posterior
based on the adjusted likelihood is “correct” if the MLE in the misspecified
model is asymptotically identical to the MLE of a correctly specified model,
but went on to mistakenly claim that otherwise, the posterior based on the
adjusted likelihood is conservative in the sense of overstating the variance. See
Section 4.4 below for further discussion.

Since the sandwich posterior is a function of the MLE and its (estimated)
sampling variance only, the approach of this paper is also related to the liter-
ature that constructs robust, “limited information” likelihoods from a statis-
tic, such as a GMM estimator. The Gaussianity of the posterior can then be
motivated by the approximately Gaussian sampling distribution of the estima-
tor, as in Pratt, Raiffa, and Schlaifer (1965, Chapter 18.4), Doksum and Lo
(1990), and Kwan (1999), or by entropy arguments, as in Zellner (1997) and
Kim (2002). Similarly, Boos and Monahan (1986) suggested inversion of the
bootstrap distribution of θ̂ to construct a likelihood for θ. The contribution of
the current paper relative to this literature is the asymptotic decision theoretic
analysis, as well as the comparison to standard Bayesian inference based on
the model likelihood.

The remainder of the paper is organized as follows. Section 2 considers in
detail the simple setting where the log-likelihood is exactly quadratic and the
sampling distribution of the MLE is exactly Gaussian. Section 3 provides the
heuristics for the more general large sample result. The formal asymptotic
analysis is in Section 4. Sections 5 and 6 contain Monte Carlo results and an
empirical application in models with a small and large number of parameters,
respectively, and a discussion of implementation issues for sandwich posterior
inference. Section 7 concludes. Replication files for the simulations and empir-
ical examples may be found in Müller (2013).
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2. ANALYSIS WITH GAUSSIAN MLE AND QUADRATIC LOG-LIKELIHOOD

2.1. Set-up

The salient features of the inference regression problem of the Introduction
are that the log-likelihood of the fitted model LMn is exactly quadratic as in
(2), and that the sampling distribution of θ̂ in the misspecified model is exactly
Gaussian as in (3). In this section, we will assume that ΣM and ΣS are con-
stant across samples and do not depend on θ0. Also, we assume ΣS �= ΣM to be
known—in practice, of course, ΣS will need to be estimated.

If the misspecification is ignored, then Bayes inference about θ ∈ R
k leads to

a posterior that is proportional to the product of the prior p and the likelihood
(2). Specifically, given a set of actions A and a loss function � :Θ× A �→ [0�∞),
the Bayes action a ∈ A minimizes∫

�(θ�a)φΣM/n(θ− θ̂)p(θ)dθ�(5)

where φΣ is the density of a mean-zero normal with variance Σ. In contrast,
taking the sandwich log-likelihood (4) as the sole basis for the data information
about θ leads to a posterior expected loss of action a proportional to∫

�(θ�a)φΣS/n(θ− θ̂)p(θ)dθ�(6)

With ΣM �= ΣS , (5) and (6) are different functions of a. Thus, with the same
data, basing Bayes inference on the original log-likelihood LMn will generi-
cally lead to a different action than basing Bayes inference on the sandwich
log-likelihood LSn. Denote by D the set of functions Θ �→ A that associate
a realization of θ̂ with a particular action. Note that, with ΣM and ΣS fixed
over samples and independent of θ, the actions that minimize (5) and (6) are
elements of D. For future reference, denote these functions by d∗

M and d∗
S , re-

spectively. The frequentist risk of decision d is

r(θ�d)=Eθ
[
�
(
θ�d(θ̂)

)] =
∫
�
(
θ�d(θ̂)

)
φΣS/n(θ̂− θ)dθ̂�

Note that r(θ�d) involves the density φΣS/n, reflecting that the sandwich co-
variance matrix ΣS describes the variability of θ̂ over different samples. The
aim is a comparison of r(θ�d∗

M) and r(θ�d∗
S).

2.2. Bayes Risk

Since frequentist risk is a function of the true value θ, typically decisions
have risk functions that cross, so that no unambiguous ranking can be made.
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A scalar measure of the desirability of a decision d is Bayes riskR, the weighted
average of frequentist risk r with weights equal to some probability density η:

R(η�d)=
∫
r(θ�d)η(θ)dθ�

Note that with η= p, we can interchange the order of integration and obtain

R(p�d)=
∫ ∫

�
(
θ�d(θ̂)

)
φΣS/n(θ− θ̂)p(θ)dθdθ̂�

If d∗
S ∈ D is the decision that minimizes posterior expected loss (6) for each

observation θ̂, so that d∗
S satisfies∫

�
(
θ�d∗

S(θ̂)
)
φΣS/n(θ− θ̂)p(θ)dθ

= inf
a∈A

∫
�(θ�a)φΣS/n(θ− θ̂)p(θ)dθ�

then d∗
S also minimizes Bayes risk R(p�d) over d ∈ D, because minimizing

the integrand at all points is sufficient for minimizing the integral. Thus, by
construction, d∗

S is the systematically best decision in this weighted average
frequentist risk sense.

In contrast, the decision d∗
M that minimizes posterior expected loss (5) com-

puted from the original, misspecified likelihood satisfies∫
�
(
θ�d∗

M(θ̂)
)
φΣM/n(θ− θ̂)p(θ)dθ

= inf
a∈A

∫
�(θ�a)φΣM/n(θ− θ̂)p(θ)dθ�

Clearly, by the optimality of d∗
S , R(p�d

∗
M) ≥ R(p�d∗

S), and potentially R(p�
d∗
M) > R(p�d

∗
S).

2.3. Bayes Risk With a Flat Prior

Now suppose the prior underlying the posterior calculations (5) and (6) is
improper and equal to Lebesgue measure, p(θ)= 1. The shape of the poste-
rior is then identical to the shape of the likelihood, so that, for inference based
on the log-likelihood LJn, J =M�S, the posterior becomes

θ∼ N (θ̂�ΣJ/n)(7)

for each realization of θ̂, and the decisions d∗
J satisfy∫

�
(
θ�d∗

J(θ̂)
)
φΣJ/n(θ− θ̂) dθ= inf

a∈A

∫
�(θ�a)φΣJ/n(θ− θ̂) dθ�(8)
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Proceeding as in the last subsection, we obtain R(p�d∗
M)≥R(p�d∗

S), provided
R(p�d∗

S) exists.
What is more, if a probability density function η(θ) does not vary much

relative to �(θ�d(θ̂))φΣS/n(θ− θ̂) for any θ̂ ∈ R
k, one would expect that

R(η�d)=
∫ ∫

�
(
θ�d(θ̂)

)
φΣS/n(θ− θ̂)η(θ)dθdθ̂(9)

≈
∫ ∫

�
(
θ�d(θ̂)

)
φΣS/n(θ− θ̂) dθη(θ̂)dθ̂�

This suggests that also R(η�d∗
M)≥R(η�d∗

S), with a strict inequality if the pos-
terior expected loss minimizing action (8) is different for J =M�S.

2.4. Loss Functions

The results of this paper are formulated for general decision problems and
loss functions. To fix ideas, however, it is useful to introduce some specific ex-
amples. Many of these examples concern a decision about a scalar element
of the k × 1 vector θ, which we denote by θ(1), and θ̂(1) is the corresponding
element of θ̂. In the following, d∗

J is the posterior expected loss minimizing
decision under a flat prior, that is, relative to the posterior θ∼ N (θ̂�ΣJ/n).

Estimation under quadratic loss: A = R, �(θ�a) = (θ(1) − a)2, and d∗
J(θ̂) =

θ̂(1). Under this standard symmetric loss function, the estimator does not de-
pend on the variance. Thus, sandwich posterior inference trivially has the same
risk as inference based on the model likelihood.

The results of this paper are more interesting for decision problems where
the best rule is a function of the variance ΣJ . This is naturally the case for
set estimation problems, but also holds for point estimation problems under
asymmetric loss.

Estimation under linex loss:A= R, �(θ�a)= exp[b(θ(1)−a)]−b(θ(1)−a)−1,
b �= 0, and d∗

J(θ̂)= θ̂(1) + 1
2bΣJ(1�1)/n, where ΣJ(1�1) is the (1�1) element of ΣJ .

For b > 0, linex loss is relatively larger if θ(1) − a is positive, so the optimal
decision tilts the estimator toward larger values, and the optimal degree of this
tilting depends on the variability of θ̂.

Interval estimation problem: A = (al� au) ∈ R
2, al ≤ au, �(θ�a) = au − al +

c(1[θ(1) < al](al − θ(1))+ 1[θ(1) > au](θ(1) − au)), d∗
J(θ̂)= [θ̂(1) −m∗

J� θ̂(1) +m∗
J]

with m∗
J the 1 − c−1 quantile of N (0�ΣJ(1�1)/n).3 This loss function was already

mentioned in the Introduction. It rationalizes the reporting of two-sided equal-
tailed posterior probability intervals, which is the prevalent method of report-
ing parameter uncertainty in Bayesian studies. This decision problem is there-
fore the leading example for the relevance of the results of this paper. The

3See Theorem 5.78 of Schervish (1995) for this form of d∗
J .
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Monte Carlo and empirical results in Sections 5 and 6 below rely heavily on
this loss function.

Multivariate set estimation problem: A = {all Borel subsets of R
k}, �(θ�a) =

μL(a)+ c1[θ /∈ a], where μL(a) is the Lebesgue measure of the set a⊂ R
k, and

d∗
J(θ̂) = {θ :φΣJ/n(θ − θ̂) ≥ 1/c}. This may be viewed as multivariate general-

ization of the interval estimation problem, and, in general, leads to the report-
ing of the highest posterior density set. Since the posterior θ∼ N (θ̂�ΣJ/n) is
symmetric and unimodal, it yields optimal decisions of the same form as the
interval estimation problem for k= 1.

Estimation with an indicator of its precision: A = R × {0�1}, a = (aE�aP),
�(θ�a) = (1 + aPcP)1[|θ(1) − aE| > cD] + (1 − aP)(1 − cP)1[|θ(1) − aE| ≤ cD],
where cD > 0 and 0< cP < 1, and d∗

J(θ̂)= (θ̂(1)�1[∫ cD−cD φΣJ/n(θ(1) − θ̂(1)) dθ(1) ≥
cP]). The problem here is to jointly decide about the value of θ(1) and whether
its guess aE is within cD of the true value.

The best decisions in the last four decision problems are functions of ΣJ . This
suggests that in these problems, R(η�d∗

M) > R(η�d
∗
S), at least for sufficiently

vague η. A more precise statement can be made by exploiting an invariance
property.

DEFINITION 1: A loss function � :Θ× A �→ R is invariant if, for all θ ∈Θ=
R
k and a ∈ A,

�(θ�a)= �(0� q(a�−θ))�
where q :Θ × A �→ A is a flow, that is, q(a�0) = a and q(q(a�θ1)�θ2) =
q(a�θ1 + θ2) for all θ1� θ2 ∈Θ.

It is not hard to see that the loss functions in all five examples satisfy Def-
inition 1; for the interval estimation problem, for instance, q(a�θ) = [al +
θ(1)� au + θ(1)].

2.5. Risk Under a Flat Prior and an Invariant Loss Function

If a∗
J , J = S�M minimizes posterior expected loss with p(θ)= 1 after observ-

ing θ̂= 0 under an invariant loss function,∫
�
(
θ�a∗

J

)
φΣJ/n(θ)dθ= inf

a∈A

∫
�(θ�a)φΣJ/n(θ)dθ�

then the invariant rule d∗
J(θ̂)= q(a∗

J� θ̂) minimizes posterior expected loss un-
der the log-likelihood LJn, since∫

�
(
θ�q(a� θ̂)

)
φΣJ/n(θ− θ̂) dθ=

∫
�(θ�a)φΣJ/n(θ)dθ�(10)
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Furthermore, for any invariant rule d(θ̂)= q(a� θ̂),

r(θ�d)=
∫
�
(
θ�q(a� θ̂)

)
φΣS/n(θ̂− θ)dθ̂

=
∫
�(θ̂� a)φΣS/n(θ̂)dθ̂�

Thus, for J = S�M ,

r
(
θ�d∗

J

) =
∫
�
(
θ̂� a∗

J

)
φΣS/n(θ̂)dθ̂�(11)

that is, the small sample frequentist risk r(θ�d∗
J ) of the invariant rule d∗

J is equal
to its posterior expected loss (10) with p(θ) = 1, and by definition, d∗

S mini-
mizes both. This is a special case of the general equivalence between posterior
expected loss under invariant priors and frequentist risk of invariant rules; see
Chapter 6.6 of Berger (1985) for further discussion and references. We con-
clude that, for each θ ∈Θ, r(θ�d∗

S)≤ r(θ�d∗
M), with equality only if the optimal

action a∗
J does not depend on the posterior variance ΣJ/n. Thus, for variance

dependent invariant decision problems and a flat prior, the small sample risk
of d∗

S is uniformly below the risk of d∗
M , and d∗

M is inadmissible. In particular,
this holds for all examples in Section 2.4 except for the estimation problem
under quadratic loss.

3. HEURISTIC LARGE SAMPLE ANALYSIS

3.1. Overview

The arguments in Sections 2.3 and 2.5 were based on (i) a quadratic model
log-likelihood; (ii) Gaussianity of the sampling distribution of the MLE θ̂;
(iii) a loss function that depends on the center of the sampling distribution
of θ̂; (iv) knowledge of the variance ΣS of the sampling distribution of θ̂; (v) a
flat prior. This section reviews standard distribution theory for maximum likeli-
hood estimators and Bernstein–von Mises arguments for misspecified models,
which imply these properties to approximately hold in large samples for a wide
range of parametric models.

3.2. Pseudo-True Parameter Values

Let xi, i = 1� � � � � n be an i.i.d. sample with density f (x) with respect to
some σ-finite measure μ. Suppose a model with density g(x�θ), θ ∈ Θ ⊂ R

k,
is fitted, yielding a model log-likelihood equal to LMn(θ) = ∑n

i=1 lng(xi� θ).
If f (x) �= g(x�θ) for all θ ∈ Θ, then the fitted model g(x�θ) is misspecified.
Let θ̂ be the MLE, LMn(θ̂) = supθ∈Θ Ln(θ). Since n−1LMn(θ)

p→ E lng(xi� θ)
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by a uniform law of large numbers, θ̂ will typically be consistent for the value
θ0 = arg maxθ∈Θ E lng(xi� θ), where the expectation here and below is relative
to the density f .4 If f is absolutely continuous with respect to g, then

E lng(xi� θ)−E ln f (xi)= −
∫
f (x) ln

f (x)

g(x�θ)
dμ(x)= −K(θ)�(12)

where K(θ) is the Kullback–Leibler divergence between f (x) and g(x�θ), so
θ0 is also the Kullback–Leibler minimizing value θ0 = arg minθ∈ΘK(θ). For
some set of misspecified models, this “pseudo-true” value θ0 sometimes re-
mains the natural object of interest. As mentioned before, the assumption of
Gaussian errors in a linear regression model, for instance, yields θ̂ equal to the
ordinary least squares estimator, which is consistent for the population regres-
sion coefficient θ0 as long as the errors are not correlated with the regressors.
More generally, then, it is useful to define a true model with density f (x�θ),
where, for each θ0 ∈Θ, K(θ)= E ln f (xi�θ0)

g(xi�θ)
= ∫

f (x�θ0) ln f (x�θ0)

g(x�θ)
dμ(x) is mini-

mized at θ0; that is, the parameter θ in the true model f is, by definition, the
pseudo-true parameter value relative to the fitted model g(x�θ). Pseudo-true
values with natural interpretations arise for fitted models in the exponential
family, as in Gourieroux, Monfort, and Trognon (1984), and in generalized lin-
ear models (see, for instance, Chapters 2.3.1 and 4.3.1 of Fahrmeir and Tutz
(2001)). We follow the frequentist quasi-likelihood literature and assume that
the object of interest in a misspecified model is this pseudo-true parameter
value, so that in the decision problem, the losses � depend on the action taken,
and the value of θ0. This assumption implicitly restricts the extent of the al-
lowed misspecification.

3.3. Large Sample Distribution of the Maximum Likelihood Estimator

Let si(θ) be the score of observation i, si(θ)= ∂ lng(xi� θ)/∂θ, and hi(θ)=
∂si(θ)/∂θ

′. Assuming an interior maximum, we have
∑n

i=1 si(θ̂) = 0, and by a
first-order Taylor expansion,

0 = n−1/2
n∑
i=1

si(θ0)+
(
n−1

n∑
i=1

hi(θ0)

)
n1/2(θ̂− θ0)+ op(1)(13)

= n−1/2
n∑
i=1

si(θ0)−Σ−1
M n

1/2(θ̂− θ0)+ op(1)�

4As shown by Berk (1966, 1970), though, if the argmax is not unique, then θ̂might not converge
at all.
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where Σ−1
M = −E[hi(θ0)] = ∂2K(θ)/∂θ∂θ′|θ=θ0 . Invoking a central limit theo-

rem for the mean-zero i.i.d. random variables si(θ0), we obtain from (13)

n1/2(θ̂− θ0)⇒ N (0�ΣS)�(14)

where ΣS = ΣMV ΣM and V =E[si(θ0)si(θ0)
′]. Note that in a correctly specified

model, ΣS = ΣM via the information equality V = Σ−1
M . Further, ΣS is typically

consistently estimated by Σ̂S = Σ̂MV̂ Σ̂M , where Σ̂−1
M = −n−1

∑n

i=1 hi(θ̂) and V̂ =
n−1

∑n

i=1 si(θ̂)si(θ̂)
′.

3.4. Large Sample Properties of the Likelihood and Prior

From a second-order Taylor expansion of LMn(θ) around θ̂, we obtain, for
all fixed u ∈ R

k,

LMn
(
θ̂+ n−1/2u

) −LMn(θ̂)(15)

= n−1/2u′
n∑
i=1

si(θ̂)+ n−1u′
n∑
i=1

hi(θ̂)u+ op(1)

p→ −1
2
u′Σ−1

M u�

because
∑n

i=1 si(θ̂) = 0 and n−1
∑n

i=1 hi(θ̂)
p→ E[hi(θ0)] = −Σ−1

M . Thus, in
large samples, the log-likelihood LMn is approximately quadratic in the n−1/2-
neighborhood of its peak θ̂. By (14), θ̂ − θ0 = Op(n

−1/2), and by a LLN,
n−1LMn(θ) − n−1LMn(θ0)

p→ E lng(xi� θ) − E lng(xi� θ0) < 0 for all θ �= θ0 by
the definition of θ0. Thus, LMn(θ)−LMn(θ̂) with θ �= θ0 diverges to minus in-
finity with probability converging to 1. This suggests that, in large samples, the
log-likelihood is globally accurately approximated by the quadratic function

LMn(θ)≈ C − 1
2
n(θ− θ̂)′Σ−1

M (θ− θ̂)�(16)

Furthermore, for any prior with Lebesgue density p on Θ that is continuous
at θ0, we obtain, for all fixed u ∈ R

k,

p
(
θ0 + n−1/2u

) → p(θ0)�

Thus, in the relevant n−1/2-neighborhood, the prior is effectively flat, and the
variation in the posterior density is entirely dominated by the variation in LMn.
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The large sample shape of the posterior then simply reflects the shape of the
likelihood exp[LMn(θ)], so that the posterior distribution obtained from LMn
in (16) becomes close to θ∼ N (θ̂�ΣM/n).5

4. FORMAL LARGE SAMPLE ANALYSIS

4.1. Overview

This section develops a rigorous argument for the large sample superiority
of sandwich posterior based inference in misspecified models. The heuristics of
the last section are not entirely convincing because the sampling distribution of
the MLE is only approximately Gaussian; the posterior from the misspecified
model is only approximately Gaussian; and the covariance matrix of the MLE
often depends on the true parameter value. The main Theorem 1 below also
covers mixed asymptotic normal models, where the covariance matrices ΣM
and ΣS are random even asymptotically.

4.2. Setup and Basic Assumptions

The observations in a sample of size n are vectors xi ∈ R
r , i= 1� � � � � n, with

the whole data denoted by Xn = (x1� � � � � xn). The model with log-likelihood
function LMn :Θ× R

r×n �→ R is fitted, where Θ⊂ R
k. In the actual data gener-

ating process,Xn is a measurable functionDn :Ω×Θ �→ R
r×n,Xn =Dn(ω�θ0),

where ω ∈Ω is an outcome in the probability space (Ω�F�P). Denote by Pn�θ0

the induced measure of Xn. The true model is parameterized such that θ0

is pseudo-true relative to the fitted model, that is,
∫
LMn(θ0�X)dPn�θ0(X) =

supθ
∫
LMn(θ�X)dPn�θ0(X) for all θ0 ∈Θ. The prior on θ ∈Θ is described by

the Lebesgue probability density p, and the data-dependent posterior com-
puted from the (potentially) misspecified model is denoted by Πn. Let θ̂ be
an estimator of θ (in this and the following sections, θ̂ is no longer necessarily
equal to the MLE), and let dTV(P1�P2) be the total variation distance between
two measures P1 and P2. Denote by Pk the space of positive definite k × k
matrices. We impose the following high-level condition.

CONDITION 1: Under Pn�θ0 ,
(i)

√
n(θ̂ − θ0) ⇒ ΣS(θ0)

1/2Z with Z ∼ N (0� Ik) independent of ΣS(θ0),
ΣS(θ0) ∈ Pk almost surely, and there exists an estimator Σ̂S

p→ ΣS(θ0);
(ii) dTV(Πn�N (θ̂�ΣM(θ0)/n))

p→ 0, where ΣM(θ0) is independent of Z and
ΣM(θ0) ∈ Pk almost surely.

5Note that this convergence of the posterior is stronger than the convergence in distribution
(14), as the former is based on a convergence of densities, whereas the latter is a convergence of
cumulative distribution functions.
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For the case of almost surely constant ΣM(θ0) and ΣS(θ0), primitive condi-
tions that are sufficient for part (i) of Condition 1, with θ̂ equal to the MLE,
may be found in White (1982) for the i.i.d. case, and in Domowitz and White
(1982) for the non-i.i.d. case. As discussed in Domowitz and White (1982),
however, the existence of a consistent estimator Σ̂S becomes a more stringent
assumption in the general dependent case (also see Chow (1984) on this point).
Part (ii) of Condition 1 assumes that the posterior Πn computed from the mis-
specified model converges in probability to the measure of a normal variable
with mean θ̂ and variance ΣM(θ0)/n in total variation. Sufficient primitive con-
ditions with θ̂ equal to the MLE were provided by Bunke and Milhaud (1998)
and Kleijn and van der Vaart (2012) in models with i.i.d. observations. Shalizi
(2009) provided general results on the consistency (but not asymptotic normal-
ity) of posteriors under misspecification with dependent data, and the general
results of Chen (1985) can, in principle, be used to establish part (ii) also in the
non-i.i.d. case.

Condition 1 allows ΣM(θ0) and ΣS(θ0) to be random, so that the following
results also apply to locally asymptotic mixed normal (LAMN) models. See, for
instance, Jeganathan (1995) for an overview of LAMN theory. Prominent ex-
amples in econometrics are regressions with unit root regressors, and explosive
autoregressive models.6 Section 4.5 below provides a set of sufficient assump-
tions for Condition 1 that cover time series models with potentially random
ΣM(θ0) and ΣS(θ0).

The decision problem consists of choosing the action a from the topological
space of possible actions A. The quality of actions is determined by the sample
size dependent, measurable loss function �n : Rk × A �→ R. (A more natural
definition would be �n :Θ× A �→ R, but it eases notation if the domain of �n is
extended to R

k × A, with �n(θ�a)= 0 for θ /∈Θ.)

CONDITION 2: 0 ≤ �n(θ�a)≤ �̄ <∞ for all a ∈ A, θ ∈ R
k, n≥ 1.

Condition 2 restricts the loss to be nonnegative and bounded. Bounded loss
ensures that small probability events only have a small effect on overall risk,
which allows precise statements in combination with the weak convergence and
convergence in probability assumptions of Condition 1. In practice, many loss
functions are not necessarily bounded, but choosing a sufficiently large bound
often leads to similar or identical optimal actions. For instance, for the loss
functions introduced in Section 2.4, define a corresponding bounded version
as min(�(θ�a)� �̄). Then, at least for large enough �̄, the Bayes action in the
bounded version is identical to the Bayes action in the original version in the
estimation problem under quadratic loss and in the set estimation problem,

6The
√
n-convergence rate of Condition 1 may be obtained in such models through a suitable

rescaling of the data or the parameters.



1818 ULRICH K. MÜLLER

and they converge to the Bayes action in the original version in the other three
problems as �̄→ ∞.

The motivation for allowing sample size dependent loss functions is not nec-
essarily that more data lead to a different decision problem; rather, this de-
pendence is also introduced out of a concern for the approximation quality
of the large sample results. Because sample information about the parame-
ter θ increases linearly in n, asymptotically nontrivial decision problems are
those where differences in θ of the order O(n−1/2) lead to substantially dif-
ferent losses. With a fixed loss function, this is impossible, and asymptotic
results may be considered misleading. For example, in the scalar estimation
problem with bounded quadratic loss �n(θ�a) = min((θ − a)2� �̄), risk con-
verges to zero for any consistent estimator. Yet, the risk of

√
n-consistent,

asymptotically unbiased estimators with smaller asymptotic variance is rela-
tively smaller for large n, and a corresponding formal result is obtained by
choosing �n(θ�a)= min(n(θ− a)2� �̄).

In the general setting with dataXn ∈ R
r×n, decisions dn are measurable func-

tions from the data to the action space, dn : Rr×n �→ A. Given the loss function
�n and prior p, frequentist risk and Bayes risk of dn relative to the probability
density η are given by

rn(θ�dn)=
∫
�n

(
θ�dn(X)

)
dPn�θ(X)�

Rn(η�dn)=
∫
rn(θ�dn)η(θ)dθ�

respectively.
Bayesian decision theory prescribes to choose, for each observed sampleXn,

the action that minimizes posterior expected loss. Assuming that this results
in a measurable function, we obtain that the Bayes decision dMn : Rr×n �→ A
satisfies ∫

�n
(
θ�dMn(Xn)

)
dΠn(θ)= inf

a∈A

∫
�n(θ�a)dΠn(θ)(17)

for almost allXn. We will compare the risk of dMn with the decision rule that is
computed from the sandwich posterior

θ∼ N (θ̂� Σ̂S/n)�(18)

In particular, suppose dSn satisfies∫
�n

(
θ�dSn(Xn)

)
φΣ̂S/n(θ− θ̂) dθ= inf

a∈A

∫
�n(θ�a)φΣ̂S/n(θ− θ̂) dθ(19)

for almost all Xn. Note that dSn depends on Xn only through θ̂ and Σ̂S .
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4.3. Auxiliary Assumptions

The formal argument is easier to develop under a stronger-than-necessary
condition and with an initial focus on invariant loss functions.

CONDITION 3: For J =M�S:
(i) ΣJ0 = ΣJ(θ0) is nonrandom;
(ii) A = R

m, and for all θ ∈ Θ, a ∈ A, and n ≥ 1, �n(θ�a) = �̃(u� ã) with �̃
invariant in the sense of Definition 1, u= √

n(θ− θ0), and ã= √
nq(a�−θ0);

(iii) ã∗
J = arg mina∈A

∫
�̃(u�a)φΣJ0(u)du is unique, and for any sequence

of probability distribution Gn on R
k satisfying dTV(Gn�N (0�ΣJ0)) → 0,∫

�̃(u� ã∗
Gn)dGn(u)= infa∈A

∫
�̃(u�a)dGn(u) implies ã∗

Gn → ã∗
J ;

(iv) �̃ : Rk × A �→ [0� �̄] is continuous at (u� ã∗
J) for almost all u ∈ R

k.

Condition 3(ii) assumes a loss function that explicitly focuses on the
√
n-

neighborhood of θ0. The suitably rescaled loss function and actions are de-
noted by a tilde, and u = √

n(θ − θ0) is the local parameter value. Similarly,
define û= √

n(θ̂− θ0), and Π̃n as the scaled and centered posterior probabil-
ity measure such that Π̃n(A)=Πn({θ :n−1/2(θ− θ̂) ∈A}) for all Borel subsets
A ⊂ R

k. Thus Condition 1 implies û⇒ Σ1/2
S0 Z and dTV(Π̃n�N (0�ΣM0))

p→ 0.
Finally, let the tilde also indicate correspondingly recentered and rescaled de-
cisions, d̃n(Xn)= √

nq(dn(Xn)�−θ0).
For an interval estimation problem, for instance, one could set

�n(θ�a)= min
(√
n
(
au − al + c1[θ(1) < al](al − θ(1))(20)

+ c1[θ(1) > au](θ(1) − au)
)
� �̄

)
�

where the scaling by
√
n prevents all reasonable interval estimators to have

zero loss asymptotically. The tilde version �̃(u� ã) of (20) then recovers the
sample size independent, bounded version of the loss function introduced in
Section 2.4. Correspondingly, d̃Mn(Xn)= (û(1)−κL�̄mLn� û(1)+κR�̄mRn), where
û(1) is the first element of û, −mLn and mRn are the c−1 and (1 − c−1) quantiles
of the first element u(1) of u under u∼ Π̃n, and κL�̄ and κR�̄ are correction fac-
tors that account for the bound �̄ and that converge to 1 as as �̄→ ∞. Similarly,
d̃Sn(Xn)= (û(1) −κ�̄m̂n� û(1) +κ�̄m̂n), where m̂n is the (1 − c−1) quantile of u(1)
under u ∼ N (0� Σ̂S). It can be shown that Condition 3(iii) and (iv) also hold
for loss function (20).

With this notation in place, under Condition 3, the risk of the generic deci-
sion dn under θ0 is given by

rn(θ0� dn)=
∫
�̃
(
0� d̃n(X)

)
dPn�θ0(X)�(21)
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We want to show that, for J = S�M ,

rn(θ0� dJn)→E
[
�̃
(
Σ1/2
S0 Z� ã

∗
J

)]
�

with the right-hand side identical to the small sample result (11) of Section 2.5.
Now the posterior expected loss of the action d̃Mn(Xn) satisfies∫

�̃
(
u+ û� d̃Mn(Xn)

)
dΠ̃n(u)= inf

a∈A

∫
�̃(u+ û� a)dΠ̃n(u)�(22)

and by the invariance property of Condition 3(ii), (22) is also equal to∫
�̃
(
u�q

(
d̃Mn(Xn)�−û

))
dΠ̃n(u)(23)

= inf
a∈A

∫
�̃
(
u�q(a�−û))dΠ̃n(u)= inf

a∈A

∫
�̃(u�a)dΠ̃n(u)�

Thus, Condition 3(iii) implies that ãn(Xn) := q(d̃Mn(Xn)�−û) p→ ã∗
M , where

the convergence follows from dTV(Π̃n�N (0�ΣM0))
p→ 0. Therefore, by another

application of invariance, Condition 3(iv), and the continuous mapping theo-
rem,

�̃
(
0� d̃Mn(Xn)

) = �̃(−û� ãn(Xn)
) ⇒ �̃

(
Σ1/2
S0 Z� ã

∗
M

)
�(24)

But convergence in distribution of bounded random variables implies conver-
gence of their expectations, so (21) and (24) imply

rn(θ0� dMn)=
∫
�̃
(−û� ãn(X))dPn�θ0(X)→E

[
�̃
(
Σ1/2
S0 Z� ã

∗
M

)]
�(25)

as was to be shown. The argument for rn(θ0� dSn) → E[�̃(Σ1/2
S0 Z� ã

∗
S)] is en-

tirely analogous, with the distribution N (0� Σ̂S) playing the role of Π̃n and
dTV(N (0� Σ̂S)�N (0�ΣS0))

p→ 0 replacing dTV(Π̃n�N (0�ΣM0))
p→ 0.

While mathematically convenient, Condition 3 is potentially quite restric-
tive: posterior expected loss minimizing actions are not necessarily unique,
even relative to a Gaussian posterior (think of the set estimation problem of
Section 2.4), and a generalization to non-Euclidean action spaces A raises the
question of an appropriate metric that underlies the continuity properties in
parts (iii) and (iv).

To make further progress, note that as long as ã∗
M is expected loss minimizing

relative to N (0�ΣM0), it satisfies∫
�̃
(
u� ã∗

M

)
φΣM0(u)du= inf

a∈A

∫
�̃(u�a)φΣM0(u)du�
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Thus,

0 ≤
∫
�̃
(
u� ãn(Xn)

)
φΣM0(u)du−

∫
�̃
(
u� ã∗

M

)
φΣM0(u)du(26)

≤
∫
�̃
(
u� ãn(Xn)

)(
φΣM0(u)du− dΠ̃n(u)

)
−

∫
�̃
(
u� ã∗

M

)(
φΣM0(u)du− dΠ̃n(u)

)
�

where the second inequality follows from (23). But dTV(Π̃n�N (0�ΣM0))
p→ 0

and Condition 2 imply that, for any sequence an ∈ A,∣∣∣∣∫ �̃(u�an)
(
φΣM0(u)du− dΠ̃n(u)

)∣∣∣∣ ≤ �̄dTV

(
N (0�ΣM0)� Π̃n

) p→ 0�

With the middle expression in (26) bounded below by zero and above by a
random variable that converges in probability to zero, we conclude that∫

�̃
(
u� ãn(Xn)

)
φΣM0(u)du

p→
∫
�̃
(
u� ã∗

M

)
φΣM0(u)du�(27)

Thus, ãn(Xn) converges in probability to ã∗
M in the pseudo-metric dA(a1� a2)=

| ∫ �̃(u�a1)φΣM0(u)du − ∫
�̃(u�a2)φΣM0(u)du|. For (25) to go through, this

convergence must imply the convergence in distribution (24). Thus, it suf-
fices for �̃ to be twofold continuous as follows: if a (nonstochastic) sequence
of actions an comes close to minimizing expected loss relative to N (0�ΣM0),
then (a) it yields losses close to those of the optimal action ã∗

M , �̃(u�an) −
�̃(u� ã∗

M)→ 0 for almost all u ∈ R
k, and (b) losses incurred along the sequence

un → u are close to those obtained at u, �̃(un�an) − �̃(u�an)→ 0 for almost
all u ∈ R

k. Under this assumption, the analysis of dSn again follows entirely
analogously to dMn.

An additional restrictive feature of Condition 3 is the implicit scalability of
actions assumed in part (ii): without a vector space structure on the action
space A, ã = √

nq(a�−θ0) is not even defined (think of the estimation-and-
signal-of-precision problem of Section 2.4, for instance). In the initial argu-
ment leading to (24), Condition 3(ii) was useful to argue for the convergence
in probability ãn(Xn)

p→ ã∗
M . But the refined argument below (27) does not

rely on the convergence of actions, but only on the convergence of the implied
losses. This makes it possible to do without any scale normalization of actions.
A suitable general condition, which also covers random ΣJ(θ0) as well as loss
functions that are not sample size independent functions of

√
n(θ− θ0), even

asymptotically, is as follows.
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CONDITION 4: (i) �n is asymptotically locally invariant at θ0, that is, there
exists a sequence of invariant loss functions �in in the sense of Definition 1 such
that

sup
u∈Rk

lim
n→∞

sup
a∈A

∣∣�n(θ0 + u/√n�a)− �in(θ0 + u/√n�a)∣∣ = 0�

For J =M�S,
(ii) for sufficiently large n, there exists measurable a∗

n : Pk �→ A such
that, for P-almost all ΣJ(θ0),

∫
�in(θ�a

∗
n(ΣJ(θ0)))φΣJ(θ0)/n(θ)dθ= infa∈A

∫
�in(θ�

a)φΣJ(θ0)/n(θ)dθ;
(iii) for P-almost all ΣJ(θ0) and Lebesgue almost all u ∈ R

k :un → u and∫
�in(θ�an)φΣJ(θ0)/n(θ)dθ− ∫

�in(θ�a
∗
n(ΣJ(θ0)))φΣJ(θ0)/n(θ)dθ→ 0 for some se-

quences an ∈ A and un ∈ R
k imply �in(un/

√
n�an)− �in(u/

√
n�a∗

n(ΣJ(θ0)))→ 0.

It might be instructive to get some sense for Condition 4 by considering two
specific loss functions. In the following, assume ΣJ(θ0) is P-almost surely con-
stant, so that a∗

Jn = a∗
n(ΣJ(θ0)), J =M�S is not random.

Consider first the rescaled and bounded loss function (20) of the interval
estimation problem. Here a∗

Jn = (−κ�̄m∗
J/

√
n�κ�̄m

∗
J/

√
n), with m∗

J the 1 − c
quantile of the first element of N (0�ΣJ(θ0)) and κ�̄ < 1 a correction factor
accounting for the bound �̄ on �n = �in, and any sequence an that satisfies
the premise of part (iii) of Condition 4 must satisfy

√
n(an − a∗

Jn)→ 0. Thus
�n(un/

√
n�an)− �n(u/√n�a∗

Jn)→ 0 for all u ∈ R
k, so Condition 4 holds.

Second, consider the bounded and scaled set estimation problem of
Section 2.4 with A = {all Borel subsets of R

k} and �n(θ�a) = �in(θ�a) =
min(nk/2μL(a) + c1[θ /∈ a]� �̄) and �̄ large. It is quite preposterous, but nev-
ertheless compatible with Condition 1(ii), that the posterior distribution Πn

has a density that essentially looks like φΣM(θ0)/n(θ− θ̂), but with an additional
extremely thin (say, of base volume n−4) and very high (say, of height n2) peak
around θ0, almost surely. If that was the case, then dMn would, in addition to
the highest posterior density region computed from φΣM(θ0)/n(θ− θ̂), include a
small additional set of measure n−4 that always contains the true value θ0. The
presence of that additional peak induces a substantially different (i.e., lower)
risk. It is thus not possible to determine the asymptotic risk of dMn under Con-
dition 1 in this decision problem, and correspondingly it can be shown that
�n(θ�a) = min(nk/2μL(a) + c1[θ /∈ a]� �̄) does not satisfy Condition 4. In the
same decision problem with the action space restricted to A = {all convex sub-
sets of R

k}, however, the only actions an that satisfy the premise of part (iii)
in Condition 4 satisfy dH({u :u/

√
n ∈ an}� ã∗

J)→ 0, where ã∗
J = {u :φΣJ(θ0)(u)≥

1/c} and dH is the Hausdorff distance, and �in(un/
√
n�an)− �in(u/

√
n�a∗

Jn)→ 0
holds for all u that are not on the boundary of ã∗

J .
We now turn to suitable conditions without assuming that �n is locally in-

variant. It is then necessary to consider the properties of the random matrices
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ΣM(θ0) and ΣS(θ0) of Condition 1 at more than one point, that is, to view them
as stochastic processes ΣM(·) and ΣS(·), indexed by θ ∈Θ.

CONDITION 5: For η an absolutely continuous probability measure on Θ
and J = S�M ,

(i) Condition 1 holds pointwise for η-almost all θ0 and ΣJ(·) is P-almost
surely continuous on the support of η;

(ii) for sufficiently large n, there exists a sequence of measurable
functions d∗

n :Θ × Pk �→ A so that, for P-almost all ΣJ(·),
∫
�n(θ�d

∗
n(θ0�

ΣJ(θ0)))φΣJ(θ0)/n(θ−θ0)dθ= infa∈A
∫
�n(θ�a)φΣJ(θ0)/n(θ−θ0)dθ for η-almost

all θ0 ∈Θ;
(iii) for η-almost all θ0, P-almost all ΣJ(·), and Lebesgue almost all

u ∈ R
k :

∫
�n(θ�an)φΣJ(θn)/n(θ − θn)dθ − ∫

�n(θ�d
∗
n(θn�ΣJ(θn)))φΣJ(θn)/n(θ −

θn)dθ → 0 and
√
n(θn − θ0) → u for some sequences an ∈ A and θn ∈ R

k

imply �n(θ0� an)− �n(θ0� d
∗
n(θ0 + u/√n�ΣJ(θ0 + u/√n)))→ 0.

The decisions d∗
n in part (ii) correspond to the optimal decisions in (8) of

Section 2.3. Note, however, that in the Gaussian model with a covariance ma-
trix that depends on θ, θ̂ ∼ N (θ�ΣJ(θ)/n), Bayes actions in (8) would nat-
urally minimize

∫
�n(θ�a)φΣJ(θ)/n(θ − θ̂) dθ, whereas the assumption in part

(ii) assumes d∗
n to minimize the more straightforward Gaussian location prob-

lem with covariance matrix ΣJ(θ̂)/n that does not depend on θ. The proof of
Theorem 1 below shows that this discrepancy is of no importance asymptoti-
cally with the continuity assumption of part (i); correspondingly, the decision
dSn in (19) minimizes Gaussian risk relative to a covariance matrix Σ̂S that
does not vary with θ. Part (iii) of Condition 5 is similar to Condition 4(iii)
discussed above: If a sequence an comes close to minimizing the same risk as
d∗
n(θn�ΣJ(θn)) for some θn satisfying

√
n(θn−θ0)→ u, then the loss at θ0 of an

is similar to the loss of d∗
n(θ0 + u/

√
n�ΣJ(θ0 + u/

√
n)), at least for Lebesgue

almost all u.

4.4. Main Result and Discussion

The proof of the following theorem is in the Appendix.

THEOREM 1: (i) Under Conditions 1, 2, and 4,

rn(θ0� dMn)−E
[∫

�in
(
θ�a∗

n

(
ΣM(θ0)

))
φΣS(θ0)/n(θ)dθ

]
→ 0�

rn(θ0� dSn)−E
[∫

�in
(
θ�a∗

n

(
ΣS(θ0)

))
φΣS(θ0)/n(θ)dθ

]
→ 0�
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(ii) Under Conditions 2 and 5,

Rn(η�dMn)−E
[∫ ∫

�n
(
θ�d∗

n

(
θ̂�ΣM(θ̂)

))
φΣS(θ̂)/n(θ− θ̂) dθη(θ̂)dθ̂

]
→ 0�

Rn(η�dSn)−E
[∫ ∫

�n
(
θ�d∗

n

(
θ̂�ΣS(θ̂)

))
φΣS(θ̂)/n(θ− θ̂) dθη(θ̂)dθ̂

]
→ 0�

1. The results in the two parts of Theorem 1 mirror the discussion of Sec-
tions 2.3 and 2.5: For nonrandom ΣS and ΣM , the expectation operators are
unnecessary, and in large samples, the risk rn at θ0 under the (local) invari-
ance assumption, and the Bayes risks Rn of the Bayesian decision dMn and the
sandwich posterior (18) based decision dSn behave just like in the Gaussian
location problem discussed there. In particular, this implies that the decision
dSn is at least as good as dMn in large samples—formally, the two parts of The-
orem 1 yield as a corollary that lim supn→∞(rn(θ0� dSn)− rn(θ0� dMn)) ≤ 0 and
lim supn→∞(Rn(η�dSn)−Rn(η�dMn))≤ 0, respectively. What is more, these in-
equalities will be strict for many loss functions �n, since, as discussed in Sec-
tion 2, decisions obtained with the correct variance often have strictly smaller
risk than those obtained from an incorrect assumption about the variance.

2. While asymptotically at least as good as and often better than dMn, the
overall quality of the decision dSn depends both on the relationship between
the misspecified model and the true model, and on how one defines “overall
quality.” For simplicity, we assume the asymptotic variances to be nonrandom
in the following discussion.

First, suppose the data generating process is embedded in a correct para-
metric model with the same parameter space Θ as the fitted model, and
true parameter θ0. Denote by dCn and θ̂C the Bayes rule and MLE com-
puted from this correct model (which are, of course, infeasible if the cor-
rect model is not known). By the same reasoning as outlined in Section 3,
the posterior ΠCn computed from the correct likelihood converges to the dis-
tribution N (θ̂C�ΣC(θ0)/n), and θ̂C has the asymptotic sampling distribution√
n(θ̂C − θ0) ⇒ N (0�ΣC(θ0)). Now if the relationship between the correct

model and the misspecified fitted model is such that
√
n(θ̂C − θ̂) = op(1),

then
√
n(θ̂ − θ0)⇒ N (0�ΣS(θ0)) implies ΣS(θ0) = ΣC(θ0) (even if ΣM(θ0) �=

ΣS(θ0)), and under sufficient smoothness assumptions on �n, the decisions dSn
and dCn have the same asymptotic risk. Thus, in this case, dSn is asymptotically
fully efficient. This potential large sample equivalence between a “corrected”
posterior and the true posterior if

√
n(θ̂C − θ̂) = op(1) was already noted by

Royall and Tsou (2003) in the context of Stafford’s (1996) adjusted profile like-
lihood approach.
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Second, the sandwich posterior distribution θ ∼ N (θ̂� Σ̂S/n) yields the de-
cision with the smallest large sample risk among all artificial posterior distri-
butions centered at θ̂, and dSn might be considered optimal in this sense. For-
mally, let Q be a probability measure on R

k, and for given θ̄ ∈ R
k, let Qθ̄�n be

the induced measure of θ when
√
n(θ− θ̄) ∼Q. Let dQn be the decision that

satisfies ∫
�n

(
θ�dQn(Xn)

)
dQθ̂�n(θ)= inf

a∈A

∫
�n(θ�a)dQθ̂�n(θ)�

If a∗
Qn satisfies

∫
�in(θ�a

∗
Qn)dQ0�n(θ) = infa∈A

∫
�in(θ�a)dQ0�n(θ) and Condi-

tion 4(iii) also holds for Q0�n and a∗
Qn in place of N (0�ΣM(θ0)/n) and

a∗
n(ΣM(θ0)), respectively, then proceeding as in the proof of Theorem 1 yields
rn(θ0� dQn) − ∫

�in(θ�a
∗
Qn)φΣS(θ0)/n(θ)dθ→ 0, so that lim supn→∞(rn(θ0� dSn) −

rn(θ0� dQn))≤ 0. Thus, from a decision theoretic perspective, the best artificial
posterior centered at the MLE is the sandwich posterior. This is true whether
or not the sandwich posterior is fully efficient by virtue of

√
n(θ̂C − θ̂)= op(1),

as discussed above. In contrast, Royall and Tsou (2003) argued on page 402 that
“when the adjusted likelihood is not fully efficient, the Bayes posterior distribu-
tion calculated by using the adjusted likelihood is conservative in the sense that
it overstates the variance (and understates the precision).” This claim seems
to stem from the observation that ΣS(θ0) > ΣC(θ0) when

√
n(θ̂C − θ̂) �= op(1).

But without knowledge of the correct model, θ̂C is not feasible, and the best
artificial posterior centered at θ̂ is the Gaussian sandwich posterior.

Third, some misspecified models yield ΣS(θ0)= ΣM(θ0), so that no variance
adjustment to the original likelihood is necessary. For instance, in the estima-
tion of a linear regression model with Gaussian errors, the MLE for the re-
gression coefficient is the OLS estimator, and the posterior variance ΣM(θ0) is
asymptotically equivalent to the OLS variance estimator. Thus, as long as the
errors are independent of the regressors, the asymptotic variance of the MLE,
ΣS(θ0), equals ΣM(θ0). This is true even though, under non-Gaussian regres-
sion errors, knowledge of the correct model would lead to more efficient in-
ference, ΣC(θ0) < ΣS(θ0). Under the first-order asymptotics considered here,
inference based on the original, misspecified model and inference based on
sandwich posterior (18) are of the same quality when ΣS(θ0)= ΣM(θ0).

Finally, dSn could be an asymptotically optimal decision in some sense be-
cause a large sample posterior of the form N (θ̂� Σ̂S/n) can be rationalized
by some specific prior. In the context of a linear regression model, where the
sandwich covariance matrix estimator amounts to White (1980) standard er-
rors, Lancaster (2003) and Szpiro, Rice, and Lumley (2010) provided results
in this direction. Also see Schennach (2005) for related results in a General
Method of Moments framework.

3. A natural reaction to model misspecification is to enlarge the set of mod-
els under consideration, which from a Bayesian perspective simply amounts to
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a change of the prior on the model set (although such ex post changes to the
prior are not compatible with the textbook decision theoretic justification of
Bayesian inference). Model diagnostic checks are typically based on the de-
gree of “surprise” for some realization of a statistic relative to some reference
distribution; see Box (1980), Gelman, Meng, and Stern (1996), and Bayarri and
Berger (1997) for a review. The analysis here suggests Σ̂S − Σ̂M as a generally
relevant statistic to consider in these diagnostic checks, possibly formalized by
White’s (1982) information matrix equality test statistic.

4. For the problems of parameter interval estimation or set estimation un-
der the losses described in Section 2.4, the practical implication of Theorem 1,
part (i) is to report the standard frequentist confidence interval of correspond-
ing level. The large sample equivalence of Bayesian and frequentist description
of parameter uncertainty in correctly specified models thus extends to a large
sample equivalence of risk minimizing and frequentist description of parame-
ter uncertainty in misspecified models.

4.5. Justification of Condition 1 With Dependent Data

For models with dependent observations, such as time series or panel mod-
els, it is useful to write the log-likelihood LMn(θ) of Xn = (x1� � � � � xn) as
LMn(θ) = ∑n

t=1 lt(θ), where lt(θ) = LMt(θ) − LM�t−1(θ) and LM0(θ) = 0. De-
fine the scores st(θ)= ∂lt(θ)/∂θ and Hessians ht(θ)= ∂st(θ)/∂θ

′. Under reg-
ularity conditions about the true model, such as an assumption of {xt} to be
stationary and ergodic, a (uniform) law of large numbers can be applied to
n−1

∑n

t=1 ht(θ). Furthermore, note that exp[lt(θ)] is the conditional density of
xt given Xt−1 in the fitted model. In the correctly specified model, the scores
{st(θ0)} thus form a martingale difference sequence (m.d.s.) relative to the in-
formation Xt = (x1� � � � � xt), E[st(θ0)|Xt−1] = 0; cf. Chapter 6.2 of Hall and
Heyde (1980). This suggests that, in moderately misspecified models, {st(θ0)}
remains an m.d.s., or at least weakly dependent, so that an appropriate central
limit theorem can be applied to n−1/2Sn(θ0)= n−1/2

∑n

t=1 st(θ0). One would thus
expect the heuristic arguments in Section 3 to go through also for time series
models. The following theorem provides a corresponding formal result.

THEOREM 2: If, under Pn�θ0 ,
(i) the prior density p(θ) is continuous and positive at θ= θ0;

(ii) θ0 is in the interior of Θ and {lt}nt=1 are twice continuously differentiable in
a neighborhood Θ0 of θ0;

(iii) supt≤n n
−1/2‖st(θ0)‖ p→ 0, n−1

∑n

t=1 st(θ0)st(θ0)
′ p→ V (θ0), where V (θ0) ∈

Pk almost surely, and n−1/2
∑n

t=1 st(θ0)⇒ V (θ0)
1/2Z withZ ∼ N (0� Ik) indepen-

dent of V (θ0);
(iv) for all ε > 0, there exists K(ε) > 0 so that Pn�θ0(sup‖θ−θ0‖≥ε n

−1(LMn(θ)−
LMn(θ0)) <−K(ε))→ 1;
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(v) n−1
∑n

t=1 ‖ht(θ0)‖ = Op(1), for any null sequence kn, sup‖θ−θ0‖<kn n
−1 ×∑n

t=1 ‖ht(θ) − ht(θ0)‖ p→ 0 and supt≤n�‖θ−θ0‖<kn n
−1‖ht(θ)‖ p→ 0, and n−1 ×∑n

t=1 ht(θ0)
p→ −Σ−1

M (θ0), where ΣM(θ0) ∈ Pk almost surely and ΣM(θ0) is in-
dependent of Z;
then Condition 1 holds with Σ̂S = Σ̂MV̂ Σ̂M , V̂ = n−1

∑n

t=1 st(θ̂)st(θ̂)
′, and either

(a) θ̂ equal to the MLE and Σ̂−1
M = −n−1

∑n

t=1 ht(θ̂) or (b) θ̂ the posterior median
and Σ̂M any consistent estimator of the asymptotic variance of the posterior Πn.

If also under the misspecified model, {st(θ0)} forms a m.d.s., then the last
assumption in part (iii) holds if maxt≤n E[st(θ0)

′st(θ0)] =O(1), by Theorem 3.2
of Hall and Heyde (1980) and the so-called Cramer–Wold device. Assumption
(iv) is the identification condition employed by Schervish (1995, p. 436) in the
context of the Bernstein–von Mises theorem in correctly specified models. It
ensures here that evaluation of the fitted log-likelihood at parameter values
away from the pseudo-true value yields a lower value with high probability in
large enough samples. Assumptions (v) are fairly standard regularity condi-
tions about the Hessians which can be established using the general results in
Andrews (1987).

5. APPLICATION: LINEAR REGRESSION

5.1. Monte Carlo Results

As a numerical illustration in a low dimensional model, consider a linear
regression with coefficient θ= (α�β)′ and a single nonconstant regressor wi,

yi = α+wiβ+ εi� (yi�wi)∼ i�i�d�� i= 1� � � � � n�(28)

We only consider data generating processes with E[εi|wi] = 0, and assume
throughout that the parameter of interest is given by β ∈ R, the population
regression slope. If a causal reading of the regression is warranted, interest in
βmight stem from its usual interpretation as the effect on the mean of yi of in-
creasing wi by one unit. Also, by construction, α+wiβ is the best predictor for
yi|wi under squared loss. Alternatively, a focus on βmight be justified because
economic theory implies E[εi|wi] = 0. Clearly, though, one can easily imagine
decision problems involving linear models where the natural object of interest
is not β; for instance, the best prediction of yi|wi under absolute value loss is
the median of yi|wi, which does not coincide with the population regression
function α+wiβ in general.

We consider six particular data generating processes (DGPs) satisfying (28).
In all of them, wi ∼ N (0�1). The first DGP is the baseline normal linear model
(DMOD) with εi|wi ∼ N (0�1). The second model has an error term that is a
mixture (DMIX) of two normals where εi|wi� s ∼ N (μs�σ

2
s ), P(s = 1) = 0�8,
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FIGURE 1.—Asymmetric mixture-of-two-normals density.

P(s = 2) = 0�2, μ1 = −0�25, σ1 = 0�75, μ2 = 1, and σ2 = √
1�5 � 1�225, so

that E[ε2
i ] = 1. Figure 1 plots the density of this mixture, and the density of

a standard normal for comparison. The third model is just like the mixture
model, but introduces a conditional asymmetry (DCAS) as a function of the
sign of wi: εi|wi� s ∼ N ((1 − 2 · 1[wi < 0])μs�σ2

s ), so that, for wi < 0, the dis-
tribution of εi is the same as the distribution of −εi for wi ≥ 0. The final
three DGPs are heteroskedastic versions of these homoskedastic DGPs, where
εi|wi� s= c(0�5 + |wi|)ε∗

i , ε
∗
i is the disturbance of the homoskedastic DGP, and

c = 0�454 � � � is the constant that ensures E[(wiεi)2] = 1.
Inference is based on one of the following three methods: First, Bayesian

inference with the baseline normal linear regression model (IMOD), where
εi|wi ∼ N (0�h−1), with priors θ∼ N (0�100I2) and 3h∼ χ2

3; second, Bayesian
inference with a normal mixture linear regression model (IMIX), where
εi|wi� s ∼ N (μs� (hhs)

−1), P(s = j) = πj , j = 1�2�3, with priors θ ∼ N (0�
100I2), 3h ∼ χ2

3, 3hj ∼ i�i�d� χ2
3, (π1�π2�π3) ∼ Dirichlet(3�3�3), and μj|h ∼

i�i�d� N (0�2�5h−1); third, inference based on the artificial sandwich poste-
rior θ ∼ N (θ̂� Σ̂S/n) (ISAND), where θ̂ = (α̂� β̂)′ is the MLE in the base-
line normal model (i.e., θ̂ is the OLS estimator), Σ̂S = Σ̂MV̂ Σ̂M , Σ̂M =
ĥ−1
n (n

−1
∑n

i=1 ziz
′
i)

−1, V̂ = n−1ĥ2
n

∑n

i=1 ziz
′
ie

2
i , ĥ

−1
n = n−1

∑n

i=1 e
2
i , zi = (1�wi)′, and

ei = yi − α̂−w′
iβ̂.

Table I contains the risk of Bayesian inference based on ISAND and IMIX
relative to IMOD at α= β= 0 for the scaled and bounded linex loss

�n(θ�a)= min
(
exp

[
2
√
n(β− a)] − 2

√
n(β− a)− 1�30

)
�(29)

with a ∈ R and scaled and bounded 95% interval estimation loss

�n(θ�a)= min
(√
n
(
au − al + 40 · 1[β< al](al −β)(30)

+ 40 · 1[β> au](β− au)
)
�80

)
�
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TABLE I

RISK OF DECISIONS ABOUT LINEAR REGRESSION COEFFICIENTa

Homoskedasticity Heteroskedasticity

DMOD DMIX DCAS DMOD DMIX DCAS

Linex Loss, n= 50
ISAND 1.02 1.00 1.09 0.90 0.88 0.97
IMIX 1.02 0.90 1.05 0.91 0.75 1.13

Linex Loss, n= 200
ISAND 1.01 1.00 1.05 0.87 0.85 0.89
IMIX 1.02 0.85 1.50 0.94 0.72 2.72

Linex Loss, n= 800
ISAND 1.00 1.00 1.02 0.84 0.85 0.87
IMIX 1.01 0.85 4.02 0.95 0.78 8.14

Interval Estimation Loss, n= 50
ISAND 1.04 1.02 1.03 0.85 0.84 0.85
IMIX 1.01 0.94 1.03 0.90 0.81 0.96

Interval Estimation Loss, n= 200
ISAND 1.01 1.01 1.01 0.77 0.75 0.76
IMIX 1.02 0.91 1.25 0.90 0.78 1.86

Interval Estimation Loss, n= 800
ISAND 1.00 1.00 1.00 0.74 0.74 0.73
IMIX 1.01 0.90 2.66 0.92 0.82 5.64

aData generating processes are in columns, modes of inference in rows. Entries are the risk under linex loss (29)
and interval estimation loss (30) relative to risk of standard normal linear regression Bayesian inference (IMOD).
Risks are estimated from 10,000 draws for each DGP. The Monte Carlo standard errors for the log of the table entries
are between 0.002 and 0.022.

with a= (al� au) ∈ R
2, au ≥ al, respectively. The bounds are approximately 20

times larger than the median loss for inference using ISAND; unreported sim-
ulations show that the following results are quite insensitive to this choice.

In general, IMOD is slightly better than ISAND under homoskedasticity,
with a somewhat more pronounced difference in the other direction under
heteroskedasticity. This is not surprising, as IMOD is large sample equivalent
to inference based on the artificial posterior θ ∼ N (θ̂� Σ̂M/n), and Σ̂M is pre-
sumably a slightly better estimator of ΣS(θ0) than Σ̂S under homoskedasticity,
but inconsistent under heteroskedasticity. IMIX performs substantially better
than IMOD in the correctly specified homoskedastic mixture model DMIX,
but it does very much worse under conditional asymmetry (DCAS) when n is
large. It is well known that the OLS estimator achieves the semiparametric ef-
ficiency bound in the homoskedastic regression model with E[εi|wi] = 0 (see,
for instance, Example 25.28 in van der Vaart (1998) for a textbook exposition),
so the lower risk under DMIX has to come at the cost of worse inference in
some other DGP. In fact, the pseudo-true value β0 in the mixture model under-
lying IMIX under DCAS is not the population regression coefficient β= 0, but
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a numerical calculation based on (12) shows β0 to be approximately equal to
−0�06. In large enough samples, the posterior for β in this model under DCAS
thus concentrates on a nonzero value, and the relative superiority of ISAND is
only limited by the bound in the loss functions. Intuitively, under DCAS, IMIX
downweighs observations with disturbances that are large in absolute value.
Since εi is right-skewed for wi ≥ 0 and left-skewed for wi < 0, this downweigh-
ing tends to occur mostly with positive disturbances when wi ≥ 0, and negative
disturbances if wi < 0, which leads to a negative bias in the estimation of β.

The much larger risk of IMIX relative to ISAND and IMOD under DCAS
suggests that one must be quite sure of the statistical independence of εi
and wi before it becomes worthwhile to try to gain efficiency in the non-
Gaussian model DMIX. In contrast, the textbook advice seems to favor mod-
els with more flexible disturbances as soon as there is substantial evidence of
non-Gaussianity. Alternatively, one might, of course, model a potential condi-
tional asymmetry of εi|wi, possibly along the lines recently suggested by Pelenis
(2010).

In summary, if the object of interest is the population regression coefficient,
then an important property of the normal linear regression model is that the
MLE remains consistent whenever the disturbances are mean independent of
the regressors. Further, in accordance with Theorem 1, replacing the posterior
of this model by the sandwich posterior θ ∼ N (θ̂� Σ̂S/n) yields systematically
lower risk in misspecified models, at least in medium and large samples.

5.2. Empirical Illustration

In Table 14.1 of their textbook, Gelman et al. (2004) reported empirical re-
sults on the effect of candidate incumbency on vote shares in congressional
elections, using data from 312 contested House of Representatives districts in
1988. The dependent variable is the vote share of the incumbent party, that is,
the party that won in 1986. The explanatory variable of interest is an indicator
whether the incumbent office holder runs for reelection. The incumbent party
(Democratic or Republican) and the vote share of the incumbent party in 1986
are included as controls. Gelman et al. (2004) considered a normal linear re-
gression model with a flat prior on the regression coefficient and the log error
variance, so that the posterior mean is exactly equal to the OLS coefficient.

Table II reports posterior mean and standard deviations for IMOD, ISAND,
and IMIX in this linear regression, with priors as described in the last subsec-
tion, except for h/100 ∼ χ2

3 and a four-dimensional N (0�100I4) prior on the
regression coefficients. The IMOD posterior is numerically very close to what
was reported in Gelman et al. (2004). The sandwich posterior of the incum-
bency coefficient has almost the same mean, but the variance is about twice
as large. This immediately implies that ISAND results in a substantially differ-
ent action compared to IMOD in decision problems that seek to describe the
uncertainty about the magnitude of the incumbency effect to other political
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TABLE II

POSTERIOR MEANS AND STANDARD DEVIATIONS IN INCUMBENCY ADVANTAGE REGRESSION

IMOD ISAND IMIX

Incumbency 0�114 0�114 0�119
(0�015) (0�020) (0�019)

Vote proportion in 1986 0�654 0�654 0�662
(0�039) (0�048) (0�043)

Incumbent party −0�007 −0�007 −0�007
(0�004) (0�004) (0�004)

Constant 0�127 0�127 0�115
(0�031) (0�039) (0�059)

scientists using the interval or set estimation loss functions of Section 2.4. It
is also easy to imagine other decision problems where the difference in uncer-
tainty leads to a different optimal action. For instance, suppose an incumbent
candidate credibly threatens the party leader not to run again unless she is
made chair of some committee. If the party leader views granting the commit-
tee chair as well as losing the district as costly, and the incumbency coefficient
is viewed as causal, then there will be a range of beliefs of the party leader
about his party’s reelection prospects in the district that leads to a different
optimal action under IMOD and ISAND.

The posterior mean of the incumbency variable under IMIX is noticeably
larger than under IMOD and ISAND. Figure 2 displays kernel estimates of
the error density for the two subgroups defined by the incumbency variable.
Not only are these two densities of different scale, underlying the difference
between the posterior standard deviation of IMOD and ISAND, but also their
shapes are quite different. This empirical example thus exhibits the same qual-
itative properties as the DCAS data generating process of the last subsec-
tion.

6. APPLICATION: MODELS WITH A HIGH DIMENSIONAL PARAMETER

6.1. Monte Carlo Results in a Factor Model

Consider the following model of the 10 observed time series {yj�t}nt=1, j =
1� � � � �10:

yj�t = αj +βjft + uj�t� t = 1� � � � � n�(31)

where ft is a scalar unobserved stochastic factor of unit variance V [ft] = 1, βj
is the factor loading of series j, and the idiosyncratic shocks uj�t are mutually
independent, independent of {ft}nt=1 and V [uj�t] = σ2

j . Suppose the model is es-
timated under the assumption that ft ∼ i�i�d� N (0�1) and uj�t ∼ i�i�d� N (0�σ2

j ),
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FIGURE 2.—Error densities in incumbency regression conditional on the two values of regres-
sor of interest. Densities are estimated with a Gaussian kernel using Silverman’s (1986, p. 48)
rule-of-thumb bandwidth.

so that there are three parameters per series and θ is of dimension 30. Call this
data generating process DMOD.

We consider two additional data generating processes for (31), under which
the fitted model is misspecified. In the first one, DSTDT,

√
4/3ft ∼ i�i�d� T8

and
√

4/3uj�t/σj ∼ i�i�d� T8, where T8 is a Student-t distribution with 8 degrees
of freedom, and the scaling by

√
4/3 ensures the variances are as in DMOD.

In the second one, DAR(1), ft and uj�t are independent mean-zero station-
ary Gaussian AR(1) processes with autoregressive coefficient 0.3 and the same
variance as under DMOD, so that the estimated model is dynamically misspec-
ified. Under all data generating processes, αj = βj = σ2

j = 1 for j = 1� � � � �10.
The baseline mode of inference is standard Bayesian inference with a

N ((1�1)′� I2) prior on (αj�βj) and an independent prior 3σ−2
j ∼ χ2

3, indepen-
dent across j. This is implemented via a standard Gibbs sampler.

Given the large number of parameters and the presence of the latent factor
ft , it would be numerically difficult and presumably quite unreliable to imple-
ment sandwich posterior inference in a maximum likelihood framework for
this (and similar) models. Instead, recall from the discussion in Section 3.4 and
Theorem 2 that the posterior distribution obtained from the misspecified like-
lihood and prior p is approximately θ∼ N (θ̂�ΣM/n). The center and scale of
the usual Monte Carlo posterior draws can thus be used to construct an appro-
priate pair (θ̂� Σ̂M/n). Since the posterior approximation N (θ̂�ΣM/n) might
not be accurate in the tails, it makes sense to rely on the median, interquar-
tile range, and rank correlations of the posterior as follows: With QΠ(q) the
element-wise qth quantile of the k× 1 posterior draws, set θ̂ = QΠ(0�5) and
Σ̂M/n = D̂R̂D̂, where D̂ = diag(QΠ(0�75) − QΠ(0�25))/1�349, the i� lth ele-
ment of the k × k matrix R̂ is equal to 2 sin(πρi�l/6), and ρi�l is Spearman’s
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rank correlation between the ith and lth element of the posterior draws of θ.7

The only remaining missing piece for the sandwich posterior θ∼ N (θ̂� Σ̂S)with
Σ̂S = Σ̂MV̂ Σ̂M now is an estimator V̂ of the variance of the scores V .

A natural starting point for the estimation of V is the usual average of outer
products of scores, n−1

∑n

t=1 st(θ̂)st(θ̂)
′, evaluated at the posterior median θ̂.

As a small sample correction, it makes sense to add the curvature −Hp(θ) =
−∂2 lnp(θ)/∂θ∂θ′ of the prior density at θ̂,

V̂ = n−1
n∑
t=1

st(θ̂)st(θ̂)
′ − n−1Hp(θ̂)�(32)

The idea is that the curvature of the posterior as measured by Σ̂−1
M is the

sum of the curvature of the likelihood, −n−1
∑n

t=1 ht(θ), and the curvature of
the prior −n−1Hp(θ). In a correctly specified model, one would like to have
Σ̂S = Σ̂MV̂ Σ̂M close to Σ̂M—after all, under correct specification, inference
based on the exact posterior distribution is small sample Bayes risk minimizing.
But without the correction for V̂ , Σ̂S is systematically smaller than Σ̂M , as the
variance of the scores only captures the −n−1

∑n

t=1 ht(θ) component of Σ̂−1
M .8

Finally, to avoid the issue of sandwich posterior mass outside Θ, it makes
sense to pick a parameterization for θ in which Θ= R

k. We therefore param-
eterize the 30 parameters of the factor model (31) as {αj�βj� lnσ2

j }10
j=1. Infer-

ence based on this form of sandwich posterior is denoted IS-IID. Under po-
tential dynamic misspecification, such as the data generating process DAR(1),
a Newey and West (1987)–type HAC variance estimator should replace the
simple outerproduct of scores in (32). For the factor model application, we
choose a lag-length of 4 and denote the resulting sandwich posterior inference
by IS-NW.

Table III reports the risks of the interval estimation problem (30) about α1,
β1, and σ1 (note that σ1 is a nonlinear function of θ). Despite the rather moder-
ate sample sizes, sandwich posterior inference does not lead to large increases
in risk under correct specification (i.e., DMOD). At the same time, Student-t
innovations favor sandwich inference about the covariance parameters β1 and
σ1, and the Newey–West (1987)-version of the sandwich matrix estimator also
leads to improved risk for the mean parameter α1 under autocorrelation.

One might wonder why sandwich posterior inference does reasonably well
here; after all, when k is large, then n needs to be very large for V̂ in (32)

7Moran (1948) derived the underlying relationship between the correlation and Spearman’s
rank correlation of a bivariate normal vector.

8Another way of thinking about the correction is as follows: Bayes inference in the Gaussian
shift model Y ∼ N (θ�Σ) with prior θ ∼ N (0�H−1

p ) is equivalent to Bayes inference with a flat
prior and observations (Y�Yp), where Yp ∼ N (θ�H−1

p ) is independent of Y conditional on θ.
The correction term then captures the variance of the score of the additional Yp observation.
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TABLE III

RISK OF INTERVAL ESTIMATION DECISIONS IN FACTOR MODELa

α1 β1 σ1

DMOD DSTDT DAR(1) DMOD DSTDT DAR(1) DMOD DSTDT DAR(1)

n= 50
IS-IDD 1�00 1�00 1�05 1�01 0�96 1�01 1�01 0�98 1�03
IS-NW 1�03 1�02 0�99 1�02 0�99 1�03 1�03 0�99 1�05

n= 100
IS-IDD 1�00 1�00 1�03 1�00 0�97 1�01 1�00 0�94 1�02
IS-NW 1�02 1�02 0�93 1�01 0�98 1�01 1�02 0�95 1�03

n= 200
IS-IDD 1�00 1�00 1�02 1�01 0�97 1�01 1�00 0�94 1�00
IS-NW 1�01 1�01 0�90 1�01 0�98 1�00 1�01 0�95 1�00

aData generating processes are in columns, modes of inference in rows. Entries are the risk under interval esti-
mation loss (30) relative to risk of standard Bayesian inference assuming Gaussian innovations in model (31), IMOD.
Implementation is as in Table I. Monte Carlo standard errors are between 0.002 and 0.01.

to be an accurate estimator of the k× k matrix V . But for decision problems
that effectively depend on a low dimensional function of θ, such as those in Ta-
ble III, it is not necessary to estimate the whole matrix V accurately. The (esti-
mated) sandwich posterior for a scalar parameter of interest ι′θ, say, is given by
ι′θ∼ N (ι′θ̂� ι′Σ̂MV̂ Σ̂Mι). Thus, the law of large numbers in (32) only needs to
provide a good approximation for the scalar random variables ι′Σ̂Mst(θ̂), and
moderately large n might well be sufficient for that purpose.

In the simple static factor model (31), it is fairly straightforward to de-
rive the scores st(θ̂) from the n observations xt = {yj�t}10

j=1 analytically. In
more complicated models, however, it might not be feasible to integrate out
the latent factors in closed form. The following identity might then be use-
ful: Let ξ be the unobserved stochastic component with probability den-
sity pc(ξ|θ) given θ, and denote by Lct (θ�ξ) the (misspecified) model log-
likelihood of Xt = (x1� � � � � xt) conditional on ξ (and Lc0(θ�ξ) = 0). In the
factor model, for instance, ξ = {ft}nt=1, pc(ξ|θ) does not depend on θ and
Lct (θ�ξ)= − 1

2

∑t

s=1

∑10
j=1(lnσ

2
j + (yj�s − αj − βjfs)2/σ2

j ) up to a constant. The
overall model log-likelihood LMt(θ) equals ln

∫
exp[Lct (θ�ξ)]pc(ξ|θ)dξ, so

that a calculation yields

st(θ)=
∫
T ct (θ�ξ)dΠ

c
t (ξ|θ)−

∫
T ct−1(θ�ξ)dΠ

c
t−1(ξ|θ)�

where T ct (θ�ξ) = ∂Lct (θ�ξ)/∂θ + ∂ lnpc(ξ|θ)/∂θ and Πc
t (ξ|θ) is the condi-

tional distribution of ξ given (θ�Xt) implied by the fitted model. One can
therefore employ n Monte Carlo samplers for ξ using data X1� � � � �Xn condi-
tional on θ= θ̂ and compute the posterior averages of the derivatives T ct (θ̂� ξ)
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to obtain {st(θ̂)}nt=1. In the factor model example, for the component of st(θ̂)
corresponding to the derivative with respect to βi, say, one could take many
draws {f (l)s }ns=1, l = 1�2� � � � of the factor {fs}ns=1 from its conditional distri-
bution given Xt and θ = θ̂, and compute the simple average of the draws
∂Lct (θ�ξ)/∂βi|θ=θ̂�ξ={f (l)s }ns=1

= ∑t

s=1(yi�s − α̂i − β̂if
(l)
s )f

(l)
s /σ̂

2
i . The difference of

these averages for t and t − 1 yields the element in st(θ̂) corresponding to βi.

6.2. Empirical Illustration

An important area of applied Bayesian work in economics is the estima-
tion of dynamic stochastic general equilibrium models. For instance, Lubik
and Schorfheide (2004; henceforth, LS) estimated a model which, after log-
linearization, is given by the three equations

yt =Et[yt+1] − τ(Rt −Et[πt+1]
) + gt�(33)

πt = βEt[πt+1] + κ(yt − zt)�(34)

Rt = ρRRt−1 + (1 − ρR)
(
ψ1πt +ψ2(yt − zt)

) + εR�t�(35)

where yt , πt , and Rt are percentage deviations from steady state output, in-
flation, and interest rate, respectively. The steady state of yearly inflation and
real interest rates are π∗ and r∗, and the quarterly discount factor β is approx-
imated by β= (1 + r∗/100)−1/4. In addition to the i.i.d. monetary policy shock
εR�t ∼ (0�σ2

R), the two additional shock processes are the demand shock gt and
the productivity shock zt

gt = ρggt−1 + εg�t� zt = ρzzt−1 + εz�t�(36)

where (εg�t� εz�t) are i.i.d. with V [εg�t] = σ2
g , V [εz�t] = σ2

z , and E[εg�tεz�t] =
ρzgσgσz . Let θ be a parameterization of the 13 unknowns of this model.

LS estimated this model under the assumption that the i.i.d. shock process
εt = (εR�t� εg�t� εz�t)

′ is Gaussian. This is convenient, since the Kalman filter
can then be applied to evaluate the likelihood after casting the linear sys-
tem (33), (34), and (35) in state space form Yt = (yt�πt�Rt)

′ = μY +A(θ)ξt ,
ξt =G(θ)ξt−1 +Q(θ)εt . Gaussianity of εt , however, is not a defining feature of
the model: All white noise processes for εt lead to identical second-order prop-
erties Yt , and thus to the same pseudo-true value for θ relative to the Gaussian
model. At the same time, the informativeness of the data about θ depends on
fourth-order properties of Yt , which are taken into account by the sandwich
posterior, but not by the Gaussian likelihood.

As long as the state space representation is invertible, the state ξt−1 can ef-
fectively be computed from {Ys}t−1

s=1 (at least for t large enough so that the im-
pact of unobserved initial values has died out). Thus, conditional on the true
value of θ, the error in the Kalman prediction of Yt given {Ys}t−1

s=1 is a linear
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TABLE IV

PRIOR AND POSTERIOR IN LUBIK AND SCHORFHEIDE’S (2004) DSGE MODELa

Prior 95% Posterior Probability Interval

trans shape mean stdev IMOD IS-IID IS-NW

ψ1 ln(ψ1) G 1�50 0�25 [1�06�1�57] [0�99�1�72] [1�00�1�70]
ψ2 ln(ψ2) G 0�25 0�15 [0�02�0�32] [0�03�0�35] [0�03�0�38]
ρR ln( ρR

1−ρR ) B 0�50 0�20 [0�66�0�79] [0�64�0�81] [0�64�0�81]
π∗ ln(π∗) G 4�00 2�00 [3�21�5�23] [3�30�5�41] [3�28�5�44]
r∗ ln(r∗) G 2�00 1�00 [1�37�2�78] [1�47�2�90] [1�40�3�04]
κ ln(κ) G 0�50 0�20 [0�16�0�88] [0�12�1�75] [0�14�1�56]
τ−1 ln(τ−1) G 2�00 0�50 [2�03�4�54] [1�90�5�27] [1�91�5�22]
ρg ln(ρg) B 0�70 0�10 [0�81�0�91] [0�76�0�93] [0�77�0�93]
ρz ln(ρz) B 0�70 0�10 [0�74�0�86] [0�70�0�86] [0�71�0�86]
ρgz ln( 1+ρgz

1−ρgz ) N[−1�1] 0�00 0�40 [0�38�0�92] [0�26�0�97] [0�27�0�97]
ωR ln(ωR) I G 0�31 0�16 [0�25�0�33] [0�22�0�36] [0�21�0�38]
ωg ln(ωg) I G 0�38 0�20 [0�12�0�21] [0�11�0�22] [0�10�0�23]
ωz ln(ωz) I G 1�00 0�52 [0�83�1�16] [0�78�1�19] [0�78�1�20]

a B, G , and N[−1�1] , are Beta, Gamma, and Normal (restricted to the [−1�1] interval) prior distributions, and I G
are Gamma prior distributions on 1/ω2 that imply the indicated mean and standard deviations for ω. The “trans”
column specifies the reparameterization underlying the sandwich posterior approximation in R

13.

combination of εt . With εt an m.d.s., this implies that the scores computed
from the Kalman filter remain an m.d.s., justifying the estimator Σ̂S described
in the previous subsection via Theorem 2.9

Following LS, we re-estimate model (33), (34), and (35) on quarterly U.S.
data from 1960:I to 1997:IV, so that n= 132.10 Table IV reports the prior and
95% equal-tailed posterior probability intervals from the model implied pos-
terior, and the two sandwich posteriors of the last subsection. Except for the
mean parameters π∗ and r∗, the sandwich posterior indicates more uncertainty
about the model parameters, and often by a substantial amount. A particularly
drastic case is the slope of the Phillips curve κ; this is in line with a general
fragility of inference about κ across models and specifications discussed by
Schorfheide (2008).

The differences between model and sandwich posterior probability intervals
are driven by severe departures from Gaussianity: The Kalman forecast errors
for yt ,πt , andRt display an excess kurtosis of 1.28, 0.82, and 7.61, respectively.11

9The scores {st(θ̂)} were computed via numerically differentiating the conditional likelihoods
lt(θ), t = 1� � � � �132, which are a by-product of the Kalman filter employed by LS.

10In contrast to LS, we impose a determinate monetary policy regime throughout. Correspond-
ingly, we adopt Del Negro and Schorfheide’s (2004) prior on ψ1 with little mass on the indeter-
minacy region.

11In a similar context, Christiano (2007) found overwhelming evidence against Gaussianity of
DSGE shocks.
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An alternative to sandwich posterior inference would be to directly model εt as,
say, i.i.d. mixtures of normals. But such an approach has the same drawback as
the non-Gaussian modelling of regression errors discussed in Section 5.1: The
pseudo-true parameter in such a mixture specification is no longer a function
of the second-order properties of Yt , so that m.d.s.-type dependence in εt may
well lead to an estimator of θ that is no longer consistent for the value that
generates the second-order properties of Yt .

7. CONCLUSION

In misspecified parametric models, the shape of the likelihood is asymptot-
ically Gaussian and centered at the MLE, but of a different variance than the
asymptotically normal sampling distribution of the MLE. We show that poste-
rior beliefs constructed from such a misspecified likelihood are unreasonable
in the sense that they lead to inadmissible decisions about pseudo-true values
in general. Asymptotically uniformly lower risk decisions are obtained by re-
placing the original posterior by an artificial Gaussian posterior centered at
the MLE with the sandwich covariance matrix. The sandwich covariance ma-
trix correction, which is routinely applied for the construction of confidence
regions in frequentist analyses, thus has a potentially constructive role also in
Bayesian studies of potentially misspecified models.

APPENDIX

The following lemma is used in the proof of Theorem 1.

LEMMA 1: If Σn, n ≥ 0 is a sequence of stochastic matrices that are al-
most surely positive definite and Σn → Σ0 almost surely (in probability), then∫ |φΣn(u)−φΣ0(u)|du→ 0 almost surely (in probability).

PROOF: The almost sure version follows from Problem 1 of page 132 of
Dudley (2002). The convergence in probability version follows by consid-
ering almost surely converging subsequences (cf. Theorem 9.2.1 of Dudley
(2002)). Q.E.D.

PROOF OF THEOREM 1:
(i) For any dn, define rin(θ0� dn)= E[�i(θ0� dn(Xn))], where here and below,

the expectation is taken relative to Pn�θ0 . Note that |rin(θ0� dn) − rn(θ0� dn)| ≤
supa∈A |�n(θ0� a)− �in(θ0� a)| → 0 by Condition 4(i), so it suffices to show the
claim for rin(θ0� dn). Similarly to the notation of Section 4.3, define �̃n(u�a)=
�n(θ0 + u/

√
n�qn(a�θ0)), �̃in(u�a) = �in(u/

√
n�a) = �in(θ0 + u/

√
n�qn(a�θ0)),

ûn = √
n(θ̂−θ0), ΣS0 = ΣS(θ0), ΣM0 = ΣM(θ0), and Π̃n the scaled and centered

posterior probability measure such that Π̃n(A)=Πn({θ :n−1/2(θ− θ̂) ∈A}) for
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all Borel subsets A ⊂ R
k. By Condition 1(ii), δ̂n = dTV(Π̃n�N (0�ΣM))

p→ 0.
Note that Π̃n is random measure, a probability kernel from the Borel sigma
field of R

r×n to the Borel sigma field of R
k, indexed by the random element

Xn =Dn(ω�θ0), Dn :Ω×Θ �→ R
r×n.

The proof follows the logic outlined in Section 4.3. To reduce the computa-
tion of asymptotic risk to properties of nonstochastic sequences of actions, and
also to deal with the stochastic nature of ΣM0 and ΣS0, we begin by construct-
ing an almost sure representation of the weak convergences in Condition 1.
Consider first the claim about dMn.

Since (δ̂n� ûn�Z�ΣS0�ΣM0) ⇒ (0�Σ1/2
S0 Z�Z�ΣS0�ΣM0), by the Skorohod al-

most sure representation theorem (cf. Theorem 11.7.2 of Dudley (2002)),
there exists a probability space (Ω∗�F∗�P∗) and associated random elements
(δ̂∗

n� û
∗
n�Z

∗
n�Σ

∗
S0n�Σ

∗
M0n), n≥ 1 and (Z∗�Σ∗

S0�Σ
∗
M0) such that (i) (δ̂∗

n� û
∗
n�Z

∗
n�Σ

∗
S0n�

Σ∗
M0n) ∼ (δ̂n� ûn�Z�ΣS0�ΣM0) for all n ≥ 1 and (ii) (δ̂∗

n� û
∗
n�Z

∗
n�Σ

∗
S0n�Σ

∗
M0n)→

(0� (Σ∗
S0)

1/2Z∗�Z∗�Σ∗
S0�Σ

∗
M0) P

∗-almost surely. Furthermore, because R
n×r is a

Polish space, by Proposition 10.2.8 of Dudley (2002), the conditional distri-
bution of Xn given (δ̂n� ûn�Z�ΣS0�ΣM0) exists, for all n. Now using this con-
ditional distribution, we can construct from (Ω∗�F∗�P∗) a probability space
(Ω+�F+�P+) with associated random elements (δ̂+

n � û
+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n�X

+
n ),

n ≥ 1 and (Z+�Σ+
S0�Σ

+
M0) such that (i) (δ̂+

n � û
+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n�X

+
n ) ∼ (δ̂n� ûn�

Z�ΣS0�ΣM0�Xn) for all n and (ii) (δ̂+
n � û

+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n) → (0� (Σ+

S0)
1/2Z+�

Z+�Σ+
S0�Σ

+
M0) P

+-almost surely. Denote by Π̃+
n the posterior distribution in-

duced by X+
n , and write E+ for expectations relative to P+.

Now by definition (17), the definition of �̃n, and (û+
n �X

+
n )∼ (ûn�Xn),

inf
a∈A

∫
�̃n

(
u+ û+

n � a
)
dΠ̃+

n (u)(37)

=
∫
�̃n

(
u+ û+

n � qn
(
dMn

(
X+
n

)
�−θ0

))
dΠ̃+

n (u)

P+-almost surely. Also, by Condition 4(ii),
∫
�̃in(u�a

∗
n(Σ

+
M0))φΣ+

M0
(u)du ≤∫

�̃in(u� ân(X
+
n ))φΣ+

M0
(u)du = ∫

�̃in(u + û+
n � qn(ân(X

+
n )� û

+
n /

√
n))φΣ+

M0
(u)du

for ân(X+
n ) = qn(dMn(X

+
n )�−θ0 − û+

n /
√
n) almost surely for large enough n.

Thus, similarly to (26),

0 ≤
∫
�̃in

(
u� ân

(
X+
n

))
φΣ+

M0
(u)du−

∫
�̃in

(
u�a∗

n

(
Σ+
M0

))
φΣ+

M0
(u)du(38)

≤
∫ (

�̃in
(
u� ân

(
X+
n

)) − �̃n
(
u+ û+

n � qn
(
dMn

(
X+
n

)
�−θ0

)))
φΣ+

M0
(u)du

−
∫ (

�̃in
(
u�a∗

n

(
Σ+
M0

))
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− �̃n
(
u+ û+

n � qn
(
a∗
n

(
Σ+
M0

)
� û+

n /
√
n
)))
φΣ+

M0
(u)du

+
∫
�̃n

(
u+ û+

n � qn
(
dMn

(
X+
n

)
�−θ0

))(
φΣ+

M0
(u)du− dΠ̃+

n (u)
)

−
∫
�̃n

(
u+ û+

n � qn
(
a∗
n

(
Σ+
M0

)
� û+

n /
√
n
))(
φΣ+

M0
(u)du− dΠ̃+

n (u)
)
�

where the inequalities hold, for each n, P+-almost surely, so they also hold for
all n ≥ 1 P+-almost surely. Furthermore, for any sequence an ∈ A, by Condi-
tion 2, ∣∣∣∣∫ �̃n

(
u+ û+

n � an
)(
φΣ+

M0
(u)du− dΠ̃+

n (u)
)∣∣∣∣

≤ �̄dTV

(
Π̃+
n �N

(
0�Σ+

M0

))
≤ �̄δ̂+

n + �̄dTV

(
N

(
0�Σ+

M0n

)
�N

(
0�Σ+

M0

)) → 0

P+-almost surely, since δ̂+
n = dTV(Π̃

+
n �N (0�Σ+

M0n)) and dTV(N (0�Σ+
M0n)�N (0�

Σ+
M0))→ 0 P+-almost surely by Lemma 1. Also,∫ (

�̃in
(
u�qn

(
an�−û+

n /
√
n
)) − �̃n

(
u+ û+

n � an
))
φΣ+

M0
(u)du

=
∫ (
�̃in

(
u+ û+

n � an
) − �̃n

(
u+ û+

n � an
))
φΣ+

M0
(u)du→ 0

P+-almost surely by dominated convergence using Conditions 2 and 4(i). Thus,
for P+-almost all ω+ ∈Ω+, the upper bound in (38) converges to zero, so that
also ∫

�̃in
(
u� ân

(
X+
n

(
ω+)))

φΣ+
M0(ω

+)(u)du

−
∫
�̃in

(
u�a∗

n

(
Σ+
M0

(
ω+)))

φΣ+
M0(ω

+)(u)du→ 0

and û+
n (ω

+) → Σ+
S0(ω

+)1/2Z+(ω+) by construction of (Ω+�F+�P+). Condi-
tion 4(iii) therefore implies that also

�̃in
(−û+

n

(
ω+)

� ân
(
X+
n

(
ω+)))

− �̃in
(−Σ+

S0

(
ω+)1/2

Z+(
ω+)

� a∗
n

(
Σ+
M0

(
ω+))) → 0

for P+-almost all ω+ ∈ Ω+. As almost sure convergence and �̃in ≤ �̄ imply
convergence in expectation and (Σ+

S0�Σ
+
M0) ∼ (ΣS0�ΣM0) is independent

of Z+ ∼ N (0� Ik), we obtain E+[�̃in(−û+
n � ân(X

+
n ))] − E[∫ �̃in(u�a∗

n(ΣM0)) ×
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φΣS0(u)du] → 0. But this implies, via rin(θ0� dMn(Xn)) = E[�̃in(−ûn�
qn(dMn(Xn)�−θ0 − ûn/

√
n))] = E+[�̃in(−û+

n � ân(X
+
n ))], that also rin(θ0�

dMn(Xn))−E[∫ �̃in(u�a∗
n(ΣM0))φΣS0(u)du] → 0, as was to be shown.

The claim about dSn follows analogously after noting that
∫ |φΣ̂S(u) −

φΣS(θ0)(u)|du
p→ 0 by Lemma 1.

(ii) We again focus first on the proof of the first claim. For any εη > 0, one
can construct a continuous Lebesgue density η̇ with

∫ |η− η̇|dμL < εη that is
bounded away from zero and infinity and whose compact support is a subset of
the support of η—this follows from straightforward arguments after invoking,
say, Corollary 1.19 of Lieb and Loss (2001). Since |Rn(η�dn) − Rn(η̇�dn)| <
�̄εη, it suffices to show the claim for Rn(η̇�dMn).

Pick a θ0 in the support of η̇ for which Condition 1 holds. Proceed as in the
proof of part (i) and construct the random elements (δ̂∗

n� û
∗
n�Z

∗
n�Σ

∗
S0n�Σ

∗
M0n)

on the probability space (Ω∗�F∗�P∗). Since the stochastic processes ΣS(·)
and ΣM(·) may be viewed as random elements in the Polish space of con-
tinuous R

k×k valued functions on the support of η̇, the conditional distribu-
tion of (ΣS(·)�ΣM(·)) given (ΣS0�ΣM0) exists by Proposition 10.2.8 of Dudley
(2002). Further proceeding as in the proof of part (i), one can thus con-
struct a probability space (Ω+�F+�P+) with associated random elements
(δ̂+

n � û
+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n�X

+
n ), n ≥ 1 and (Z+�Σ+

S0�Σ
+
M0�Σ

+
S (·)�Σ+

M(·)) such
that (i) (δ̂+

n � û
+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n�X

+
n ) ∼ (δ̂n� ûn�Z�ΣS0�ΣM0�Xn) for all n ≥ 1,

(Σ+
S0�Σ

+
M0�Σ

+
S (·)�Σ+

M(·)) ∼ (ΣS(θ0)�ΣM(θ0)�ΣS(·)�ΣM(·)) and Z+ ∼ N (0� Ik)
is independent of (Σ+

S0�Σ
+
M0�Σ

+
S (·)�Σ+

M(·)) and (ii) (δ̂+
n � û

+
n �Z

+
n �Σ

+
S0n�Σ

+
M0n)→

(0� (Σ+
S0)

1/2Z+�Z+�Σ+
S0�Σ

+
M0) P

+-almost surely. Finally, for values of θ ∈ R
k

outside the support of η̇, define ΣJ(θ) and Σ+
J (θ), J = S�M to equal some

element of Pk in the support of ΣJ(θ0).
Now, similarly to the proof of part (i), define

δφ =
∫
�n

(
θ0 + (

u+ û+
n

)
/
√
n�dMn

(
X+
n

))
φΣ+

M(θ̂
+
n )
(u)du

−
∫
�n

(
θ0 + (

u+ û+
n

)
/
√
n�d∗

Mn

(
θ̂+
n �Σ

+
M

(
θ̂+
n

)))
φΣ+

M(θ̂
+
n )
(u)du�

where θ̂+
n = θ0 + û+

n /
√
n. By Condition 5(ii), δφ ≥ 0. Using (17), we obtain the

additional inequality

δφ ≤
∫
�n

(
θ0 + (

u+ û+
n

)
/
√
n�dMn

(
X+
n

))(
φΣ+

M(θ̂
+
n )
(u)du− dΠ̃+

n (u)
)

+
∫
�n

(
θ0 + (

u+ û+
n

)
/
√
n�d∗

Mn

(
θ̂+
n �Σ

+
M

(
θ̂+
n

)))
× (
dΠ̃+

n (u)−φΣ+
M(θ̂

+
n )
(u)du

) → 0�
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and the P+-almost sure convergence follows from dTV(N (0�Σ+
M0n)�N (0�

Σ+
M0))→ 0 P+-almost surely via Lemma 1 as Σ+

M0n → Σ+
M0 P

+-almost surely,
and δ̂+

n = dTV(Π̃
+
n �N (0�Σ+

M0n))→ 0 P+-almost surely by construction. Thus,
δφ → 0 P+-almost surely, too, and since û+

n → (Σ+
S0)

1/2Z+ P+-almost surely
by construction, Condition 5(iii) yields �n(θ0� dMn(X

+
n )) − �n(θ0� d

∗
n(θ0 +

(Σ+
S0)

1/2Z+/
√
n�ΣJ(θ0 + (Σ+

S0)
1/2Z+/

√
n)))→ 0 P+-almost surely. Also, Z+ ∼

N (0� Ik) is independent of (Σ+
S0�Σ

+
M0�Σ

+
S (·)�Σ+

M(·))∼ (ΣS(θ0)�ΣM(θ0)�ΣS(·)�
ΣM(·)) and X+

n ∼Xn, so that dominated convergence implies

rn(θ0� dMn)−E
[∫

�n
(
θ0� d

∗
Mn

(
θ0 + u/√n�ΣM(θ0 + u/√n)))(39)

×φΣS(θ0)(u)du

]
→ 0�

This argument can be invoked for η̇-almost all θ0, so (39) holds for η̇-almost
all θ0.

Pick a large K > 0, and define B = {θ ∈ R
k :‖ΣS(θ)‖ < K and ‖ΣS(θ)−1‖ <

K}, where ‖ · ‖ is the spectral norm, �̇n(θ�a)= 1[θ ∈ B]�n(θ�a) and ṙn(θ�dn)=
Eθ[�̇n(θ�dn)]. Then

Ṙn(η̇� dn)=
∫
ṙn(θ0� dn)η̇(θ0)dθ0 =Rn(η̇�dn)+ ε(K)�

where ε(K)→ 0 as K→ ∞ by monotone convergence. It therefore suffices to
show the claim for Ṙn(η̇� dMn).

From (39), dominated convergence, Fubini’s theorem, and a change of vari-
ables, ∫

ṙn(θ0� dMn)η̇(θ0)dθ0(40)

=E
∫ ∫

�̇n
(
θ0� d

∗
Mn

(
θ0 + u/√n�ΣM(θ0 + u/√n)))

×φΣS(θ0)(u)duη̇(θ0)dθ0 + o(1)
=E

∫ ∫
�̇n

(
θ+ u/√n�d∗

Mn

(
θ�ΣM(θ)

))
×φΣS(θ+u/√n)(u)η̇(θ+ u/√n)dudθ+ o(1)�

Now consider a realization of (ΣM(·)�ΣS(·)). Pick θ ∈ B inside the support of
η̇, and define φ̇ΣS(t)(u)= 1[t ∈ B]φΣS(t)(u). For K2 > 0,∫

‖u‖≤K2

φ̇ΣS(θ+u/
√
n)(u)du

≥ (2π)−k/2
∫

‖u‖≤K2

1[θ+ u/√n ∈ B]
[

inf
‖v‖≤K2

det
(
ΣS(θ+ v/√n))−1/2

]
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· exp
[
−1

2
sup

‖v‖≤K2

u′ΣS(θ+ v/√n)−1u

]
du

→
∫

‖u‖≤K2

φΣS(θ)(u)du

by monotone convergence. Note that
∫

‖u‖≤K2
φΣS(θ)(u)du → 1 as K2 → ∞.

Also ∫
‖u‖>K2

φ̇ΣS(θ+u/
√
n)(u)du≤ (2π)−k/2

∫
‖u‖>K2

Kk/2 exp
[
−1

2
‖u‖2K−1

]
du�

which is arbitrarily small for large enough K2. Thus,
∫
φ̇ΣS(θ+u/

√
n)(u)du→ 1,

and from φ̇ΣS(θ+u/
√
n)(u)→φΣS(θ)(u), also

∫ |φ̇ΣS(θ+u/√n)(u)−φΣS(θ)(u)|du→ 0
(see Problem 1 of page 132 of Dudley (2002)). Define ρ̇n : Rk × R

k �→ R as
ρ̇n(θ�u) = η̇(θ + u/

√
n)/η̇(θ) for θ in the support of η̇, and ρ̇n(θ�u) = 0

otherwise. Note that ρ̄ = supθ�u�n ρ̇n(θ�u) <∞ and ρ̇n(θ�u)→ 1 by construc-
tion of η̇, so that

∫ |ρ̇n(θ�u)− 1|φΣS(θ)(u)du→ 0 by dominated convergence.
Therefore,

∫ |ρ̇n(θ�u)φ̇ΣS(θ+u/√n)(u) − φΣS(θ)(u)|du ≤ ρ̄
∫ |φ̇ΣS(θ+u/√n)(u) −

φΣS(θ)(u)|du+ ∫ |ρ̇n(θ�u)− 1|φΣS(θ)(u)du→ 0, and thus∫
�̇n

(
θ+ u/√n�d∗

Mn

(
θ�ΣM(θ)

))
φΣS(θ+u/

√
n)(u)ρ̇n(θ�u)du

−
∫
�̇n

(
θ+ u/√n�d∗

Mn

(
θ�ΣM(θ)

))
φΣS(θ)(u)du→ 0�

This convergence holds for η̇-almost all θ, and ρ̇n and �̇n are bounded, so dom-
inated convergence implies∫ ∫

�̇n
(
θ+ u/√n�d∗

Mn

(
θ�ΣM(θ)

))
φΣS(θ+u/

√
n)(u)η̇(θ+ u/√n)dudθ(41)

−
∫ ∫

�̇n
(
θ+ u/√n�d∗

Mn

(
θ�ΣM(θ)

))
φΣS(θ)(u)duη̇(θ)dθ→ 0�

Since (40) holds for almost all (ΣM(·)�ΣS(·)), and the second term in (41) as
well as (40) are bounded, it also holds in expectation, and the result follows.

The second claim follows analogously, using dTV(N (0�ΣS(θ̂))�N (0�
Σ̂S)))

p→ 0 under Pn�θ0 for η-almost θ0 from Condition 1(i), the almost sure
continuity of ΣS(·) of Condition 5(i), and Lemma 1. Q.E.D.

PROOF OF THEOREM 2: By straightforward arguments, assumption (iv) im-
plies that the maximum likelihood estimator θ̂ = θ̂m is consistent, θ̂m

p→ θ0.
Thus, there exists a real sequence k′

n → 0 such that ETn ≥ 1 − k′
n, where
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Tn = 1[‖θ̂m − θ0‖ < k′
n]. From now on, assume n is large enough so that

{θ :‖θ− θ0‖<k′
n} ⊂Θ0. By condition (ii) and a Taylor expansion,

0 = Tnn
−1/2Sn

(
θ̂m

)
= Tnn

−1/2Sn(θ0)

+ Tn

(
n−1

∫ 1

0
Hn

(
θ0 + λ(θ̂m − θ0

))
dλ

)
n1/2

(
θ̂m − θ0

)
almost surely, where Hn(θ)= ∑n

t=1 ht(θ), and derivatives of the log-likelihood
outside Θ0 are defined to be zero. By assumption (v), Tnn

−1‖ ∫ 1
0 Hn(θ0 +

λ(θ̂m − θ0))dλ − Hn(θ0)‖ ≤ sup‖θ−θ0‖<k′
n
n−1

∑n

t=1 ‖ht(θ) − ht(θ0)‖ p→ 0 and

n−1Hn(θ)
p→ −Σ−1

M (θ0)= −Σ−1
M0, so that ETn → 1 implies

n1/2
(
θ̂m − θ0

) = −Σ−1
M0n

−1/2Sn(θ0)+ op(1)�(42)

The weak convergence in Condition 1(i) for θ̂ = θ̂m now follows from (42),
assumption (iii), and the continuous mapping theorem. The convergence
n−1Hn(θ̂

m)
p→ −ΣM(θ0)

−1 follows immediately from this result and assumption
(v). Furthermore, from

Tnst
(
θ̂m

) = Tnst(θ0)+ Tn

(∫ 1

0
ht

(
θ0 + λ(θ̂m − θ0

))
dλ

)(
θ̂m − θ0

)
for t = 1� � � � � n, we find

Tn

∥∥∥∥∥n−1
n∑
t=1

st
(
θ̂m

)
st
(
θ̂m

)′ − n−1
n∑
t=1

st(θ0)st(θ0)
′
∥∥∥∥∥

≤
(

sup
‖θ−θ0‖<k′

n

n−1
n∑
t=1

∥∥ht(θ)∥∥)

·
(

2Tnn
1/2

∥∥θ̂m − θ0

∥∥ ·
(

sup
t≤n
n−1/2

∥∥st(θ0)
∥∥)

+ Tnn
∥∥θ̂m − θ0

∥∥2 · sup
‖θ−θ0‖<k′

n�t≤n
n−1

∥∥ht(θ)∥∥)
�

and n−1
∑n

t=1 st(θ̂
m)st(θ̂

m)′
p→ V (θ0) follows from the previously established

n1/2‖θ̂m − θ0‖ =Op(1) and assumptions (iii) and (v).
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Define û= n1/2(θ̂m−θ), p̂= p(θ0), LRn(u)= exp[Ln(θ0 +n−1/2u)−Ln(θ0)],
and L̂Rn(u)= exp[− 1

2u
′Σ−1
M0u+ û′Σ−1

M0u]. Then

dTV

(
Πn�N

(
θ̂m�ΣM0/n

))
=

∫ ∣∣∣∣p(θ0 + n−1/2u)LRn(u)

an
− p̂L̂Rn(u)

ân

∣∣∣∣du
≤ â−1

n

∫ ∣∣p(
θ0 + n−1/2u

)
LRn(u)− p̂L̂Rn(u)

∣∣du+ â−1
n |an − ân|�

where an = ∫
p(θ0 + n−1/2u)LRn(u)du > 0 a.s. and ân = p̂

∫
L̂Rn(u)du > 0

a.s. Since

|ân − an| ≤
∫ ∣∣p(

θ0 + n−1/2u
)
LRn(u)− p̂L̂Rn(u)

∣∣du�(43)

it suffices to show that
∫ |p(θ0 +n−1/2u)LRn(u)− p̂L̂Rn(u)|du p→ 0 and â−1

n =
Op(1). By a direct calculation, ân = p̂(2π)k/2|ΣM0|1/2 exp[ 1

2 û
′Σ−1
M0û], so that û=

Op(1) implies ân =Op(1) and â−1
n =Op(1).

By assumption (iv), for any natural number m> 0, there exists n∗(m) such
that, for all n > n∗(m),

Pn�θ0

(
sup

‖θ−θ0‖≥m−1
n−1

(
Ln(θ)−Ln(θ0)

)
<−K(

m−1
)) ≥ 1 −m−1�

For any n, let mn be the smallest m such that simultaneously, n >
supm′≤m n

∗(m′), n1/2K(m−1) > 1, and n1/2m−1 > n1/4. Note that mn → ∞, since,
for any fixed m, n∗(m+ 1) and m+ 1 are finite and K((m+ 1)−1) > 0. Define
Mn : Rk �→ R as Mn(u)= 1[n−1/2‖u‖<m−1

n ]. Now∫ ∣∣p(
θ0 + n−1/2u

)
LRn(u)− p̂L̂Rn(u)

∣∣du
≤

∫ ∣∣p(
θ0 + n−1/2u

)
Mn(u)LRn(u)− p̂L̂Rn(u)

∣∣du
+

∫ (
1 − Mn(u)

)
p

(
θ0 + n−1/2u

)
LRn(u)du�

and by construction of Mn(u), with probability of at least 1 −m−1
n ,∫ (

1 − Mn(u)
)
p

(
θ0 + n−1/2u

)
LRn(u)du

≤
∫
p

(
θ0 + n−1/2u

)
du · sup

‖θ−θ0‖≥m−1
n

exp
[
Ln(θ)−Ln(θ0)

]
≤ nk/2 exp

[−n ·K(
m−1
n

)] ≤ nk/2 exp
[−n1/2

] → 0�



BAYESIAN INFERENCE AND SANDWICH COVARIANCE MATRIX 1845

Furthermore, with ζn = ∫ |Mn(u)LRn(u)− L̂Rn(u)|du,∫ ∣∣p(
θ0 + n−1/2u

)
Mn(u)LRn(u)− p̂L̂Rn(u)

∣∣du
≤

∫ ∣∣p(
θ0 + n−1/2u

) − p̂∣∣Mn(u)LRn(u)du+ p̂ζn

and ∫ ∣∣p(
θ0 + n−1/2u

) − p̂∣∣Mn(u)LRn(u)du

≤ (ζn + ân/p̂) · sup
‖θ−θ0‖≤m−1

n

∣∣p(θ)− p̂∣∣�
By assumption (i), p(θ) is continuous at θ0, so sup‖θ−θ0‖≤m−1

n
|p(θ) − p̂| → 0.

Furthermore, ân =Op(1) as shown above, so it suffices to prove that ζn
p→ 0 to

obtain dTV(Πn�N (θ̂m�ΣM0/n))
p→ 0.

By an exact Taylor expansion, for any u ∈ R
k satisfying θ0 + n−1/2u ∈

Θ0,

Ln
(
θ0 + n−1/2u

) −Ln(θ0)

= n−1/2Sn(θ0)+ 1
2
u′

(
n−1

∫ 1

0
Hn

(
θ0 + λn−1/2u

)
dλ

)
u

almost surely. Thus, for all n large enough to ensure {θ :‖θ− θ0‖<m−1
n } ⊂Θ0,

also

sup
u∈Rk

Mn(u)

∣∣∣∣LRn(u)/L̂Rn(u)− exp
[
δ′
nu+ 1

2
u′�n(u)u

]∣∣∣∣ = 0

almost surely, where δn = n−1/2Sn(θ0) − Σ−1
M0û and �n(u) = n−1

∫ 1
0 Hn(θ0 +

λn−1/2u)dλ+Σ−1
M0. By Jensen’s inequality,

ζn = ân

∫ ∣∣∣∣1 − Mn(u)exp
[
δ′
nu+ 1

2
u′�n(u)u

]∣∣∣∣φΣM0(u− û) du(44)

≤ ân
(∫ (

1 − Mn(u)exp
[
δ′
nu+ 1

2
u′�n(u)u

])2

×φΣM0(u− û) du
)1/2
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almost surely. By assumption (v),

Mn(u)
∥∥�n(u)∥∥ ≤ cn

= sup
‖θ−θ0‖≤m−1

n

n−1
∥∥Hn(θ)−Hn(θ0)

∥∥
+ ∥∥n−1Hn(θ0)+Σ−1

M0

∥∥ p→ 0

and ∫
Mn(u)exp

[
2δ′

nu+ u′�n(u)u
]
φΣM0(u− û) du

≤
∫

exp
[
2δ′

nu+ cnu′u
]
φΣM0(u− û) du�∫

Mn(u)exp
[
δ′
nu+ 1

2
u′�n(u)u

]
φΣM0(u− û) du

≥
∫

exp
[
δ′
nu− 1

2
cnu

′u
]
φΣM0(u− û) du

−
∫ (

1 − Mn(u)
)

exp
[
δ′
nu+ 1

2
cnu

′u
]
φΣM0(u− û) du

almost surely. From (42), δn
p→ 0, so that

∫
exp[2δ′

nu+cnu′u]φΣM0(u− û) du p→
1 and

∫
exp[δ′

nu− 1
2cnu

′u]φΣM0(u− û) du p→ 1. Finally, by another application
of the Cauchy–Schwarz inequality,(∫ (

1 − Mn(u)
)

exp
[
δ′
nu− 1

2
cnu

′u
]
φΣM0(u− û) du

)2

≤
∫ (

1 − Mn(u)
)
φΣM0(u− û) du

·
∫

exp
[
2δ′

nu+ cnu′u
]
φΣM0(u− û) du p→ 0�

and the convergence follows from
∫
(1 − Mn(u))φΣM0(u − û) du =∫

‖u‖≥n1/2m−1
n
φΣM0(u − û) du

p→ 0 and the same arguments as above. Thus, the
right-hand side of (44) converges in probability to zero, and ζn ≥ 0, so that
ζn

p→ 0.
Thus, dTV(Πn�N (θ̂m�ΣM0/n))

p→ 0, which implies that the posterior me-
dian θ̂Π satisfies n1/2(θ̂Π − θ̂m)

p→ 0, and n−1
∑n

t=1 st(θ̂
Π)st(θ̂

Π)′
p→ V (θ0) fol-

lows from the same arguments used for θ̂= θ̂m above. Finally, dTV(Πn�N (θ̂m�
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ΣM0/n))
p→ 0 also implies that the posterior asymptotic variance of Πn con-

verges in probability to ΣM0. Q.E.D.
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