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Abstract 

In this paper the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin 
with an infected subject for a 30-min journey is estimated through an integrated approach combining 
a recently developed predictive emission-to-risk approach and a validated CFD numerical model 
numerically solved using the open-source OpenFOAM software. Different scenarios were 
investigated to evaluate the effect of the infected subject position within the car cabin, the air flow 
rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. 
speaking). 
The numerical simulations here performed reveal that the risk of infection is strongly influenced by 
several key parameter: as an example, under the same ventilation mode and emitting scenario, the 
risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results 
obtained also demonstrate that: (i) simplified zero-dimensional approaches limit proper evaluation of 
the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the 
complex fluid-dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor 
environments characterized by fixed seats can be in principle controlled by properly designing the 
flow patterns of the environment. 
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Practical Implications 

The study investigated the risk of infection in car cabins combing a predictive emission-to-risk 
approach and a validated CFD approach. The findings illustrate a methodology for designing proper 
ventilation systems for car cabin in view of reducing and controlling the risk of infection of 
passengers. 
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1 Introduction 

Transport microenvironments are confined spaces of concern in terms of SARS-CoV-2 risk of 
infection due to the high crowding indexes (number of people relative to the size of the confined 
space) and the possible inadequate clean (pathogen-free) air supply. Indeed, a number of outbreaks 
occurred  worldwide in buses, airplanes, and ships 1–8. These outbreaks are mainly due to the airborne 
transmission of inhalable virus-laden airborne respiratory particles (i.e. particles below 100 μm in 
diameter) which are capable of remaining suspended in the air then likely infecting simultaneously 



numerous susceptible subjects that share the same confined space of the infected subject. This route 
of transmission was accepted as the main pathway of infection transmission only in the spring 2021 
when, faced with the accumulating scientific evidence 9–15, both US CDC and WHO released updated 
guidelines reporting the negligible role of the sprayborne particles (larger particles >100 μm quickly 
settling due to their inertia) and fomites (i.e. contaminated surfaces) with respect to the airborne 
respiratory particles (WHO, April 30th, 2021; US CDC, May 7th, 2021). Indeed, SARS-CoV-2 virus 
has been detected in airborne samples collected in indoor environments such as hospital 
microenvironments 12–14,16 (where certain presence of infected subjects allows simpler particle 
samplings) but also in transport microenvironments 17,18, including passenger cars 19. Thus, despite 
the implementation of sprayborne and surface touch mitigation strategies (i.e. wearing cloth or 
surgical masks, washing hands), whose effectiveness on airborne respiratory particles is questionable, 
reducing the airborne SARS-CoV-2 concentration in such environments is essential in view of 
reducing the risk of infection of susceptible people exposed. To this end, providing appropriate 
pathogen-free air supply rates (i.e. air exchange rates) represent a key approach in view of reducing 
the airborne SARS-CoV-2 concentration in those environments 10,20–22. Beyond increased dilution, 
improved ventilation strategies (e.g. personal, displacement) are also needed that can more effectively 
remove airborne contaminants from the breathing zone, instead of simply dispersing particles 
throughout the room. Although public transport microenvironments (trains, airplanes, buses) could 
provide, at least in principle, air exchange rates defined by technical standards (e.g. as a function of 
the occupancy), the ventilation rates in private cars are set by the passengers according to their air 
quality/thermal comfort perception rather than contaminant removal concerns. Indeed, an 
epidemiological study, recently carried out in Singapore in order to explore the transmission risk 
factors for COVID-19, recognized a significant risk of transmission among non-household contacts 
sharing a vehicle with an infected subject 23.  
A-priori estimates of the risk of infection in cars can be carried out adopting prospective assessments 
based on a known/estimated emission of virus-laden particles and then diluting them in the indoor 
environment through either simplified zero-dimensional approaches or complex 3D transient 
approaches 21,22,24–28. Zero-dimensional approaches are based on the simplified hypothesis of 
complete and instantaneous mixing of the emission to achieve a uniform spatial concentration within 
the environment; they represent a practical solution to easily obtain rough estimates of concentrations 
and risks when site-specific information regarding the ventilation, geometry, position of the source, 
etc. are not available 27,29. Nonetheless, perfectly mixed conditions (hereinafter referred to as “well-
mixed”) are unlikely in spaces with high ventilation rates 30,31, thus, such hypothesis is even less 
accurate for large indoor environments characterized by reduced mixing 32 or small confined spaces, 
as car cabins, where the position of inlet air vents of the HVAC system, the air flow rate entering the 
car cabin, the air recirculation and its filtration can significantly affect the airflow in the cabin, and 
then the exposure and risk of passengers 3334. Indeed, even if the average air exchange rate in car 
cabin can be quite high (e.g. >100 h-1 when high fan speeds are set or windows are kept open 33,35), 
stagnation regions can occur as a result of the specific airflows pattern across the cabin itself. 
Therefore, for these environments the average risk evaluated through well-mixed models could 
overestimate or underestimate the actual risk of some of the passengers in the car.  
For these reasons, Computational Fluid Dynamics (CFD) represent an essential approach to 
investigate the risk of infection in cabin cars as it provides detailed information about spatial and 
temporal virus-laden particle distribution, as a function of specific boundary conditions and 
ventilation scenarios, by solving the well-known mass, momentum and energy conservation 
equations alongside with a proper turbulence model 36–42. To this end, in our previous paper we 
investigated the particle dispersion in a car cabin through an Eulerian-Lagrangian approach able to 
perform transient non-isothermal numerical analyses 34. Such an approach was also experimentally 
validated against PIV measurements available in the scientific literature 43,44 then providing a 
validated and suitable approach which can be applied to investigate numerically particle dispersion 
problems in similar environments. 



In this paper we developed and applied an integrated approach aimed at estimating the risk of 
infection from SARS-CoV-2 Delta variant of susceptible persons sharing the car cabin with an 
infected person under the outside air intake conditions (i.e. HVAC system in operation, no 
recirculation, windows closed). The approach here presented integrates a predictive emission-to-risk 
approach able to determine the risk of infection from the viral load emitted by the infected subject 
20,45 with the abovementioned validated CFD approach numerically solved using the open-source 
OpenFOAM software. The integrated approach was applied to different scenarios to evaluate the 
effect of the following influence parameters: i) position of the infected subject within the car cabin, 
ii) air flow rate of the HVAC system, iii) HVAC ventilation mode and iv) expiratory activity 
(breathing vs. speaking). A further aim of the paper is demonstrating that the risk of infection in 
indoor environments characterized by fixed seats can be in principle controlled by properly designing 
the flow patterns of the environment. 

2 Materials and methods 

The integrated approach proposed is based on the following steps:  
i) application of a transient non-isothermal 3D Eulerian-Lagrangian numerical model, developed 

and validated by the authors in a previous study 34, to describe particle spread once emitted by 
an infected speaking/breathing passenger located in a car cabin compartment (section 2.1 and 
2.2); 

ii) description of the emission scenario, i.e. definition of the airborne respiratory particle emission 
rate of an adult while breathing/speaking 25,28,46 (section 2.3); 

iii) calculation of the dose inhaled by the susceptible car occupants for a 30-minute journey through 
the CFD simulations and estimate of the corresponding SARS-CoV-2 infection risk and number 
of secondary cases on the basis of the predictive emission-to-risk approach previously developed 
by the authors 20,45 based on the viral load emitted by the infected subject, the dose of viral load 
received by the exposed subject, and a dose-response model (section 2.4).   

2.1 Eulerian-Lagrangian based model to simulate the airborne particle spread within the car cabin 
The mathematical-numerical model was developed using the open-source finite volume based 
OpenFOAM software, to have a fully open and flexible tool with complete control of the variables 
employed for particle dispersion assessment. It is based on a Eulerian-Lagrangian approach, in which 
the continuum equations are solved for the air flow (continuous phase) and Newton’s equation of 
motion is solved for each particle (discrete phase). 
Velocity, pressure and temperature fields in the car cabin were numerically predicted by solving the 
mass, momentum and energy conservation equations under the assumption of three-dimensional, 
unsteady, turbulent and compressible flow with ideal gas behavior. Details about governing Partial 
Differential Equations (PDEs) are widely available in the scientific literature 47 and are not reported 
here for brevity. 
Turbulence was modelled using the Unsteady Reynolds Averaged Navier Stokes (URANS) approach, 
and specifically the Shear Stress Transport (SST) k–ω model since the authors in a previous research 
activity showed that it is the most suitable one to predict airflow patterns within the car cabin under 
investigation 34. Details about the employed URANS turbulence model are available in the scientific 
literature and are not reported here for brevity.  
The computed numerical fields were averaged over a selected time interval to reach a quasi-steady 
state condition: once the quasi-steady state condition is achieved, the flow field is frozen and is used 
to transport the particles injected by the emitter (i.e. the infected subject) over time during speaking 
and breathing activities. This approach is exhaustively described in our previous paper 34 to which 
the interested reader may refer for further information. 
The particle motion inside the air flow was modelled by employing the Lagrangian Particle Tracking 
(LPT) approach, based on a dispersed dilute two-phase flow. In particular, the spacing between 
particles is sufficiently large and the volume fraction of the particles sufficiently low (< 10-3) to justify 



the use of a Eulerian-Lagrangian approach. The particle motion has been described solving eq. (1) 
and (2). 
 
 

𝑚ௗ

𝑑𝒖ௗ

𝑑𝑡
= 𝑭஽ + 𝑭௚ (1) 

 𝑑𝒙ௗ

𝑑𝑡
= 𝒖ௗ (2) 

 

where 𝑚ௗ  (𝑘𝑔) is the mass of the particle, 𝒖ௗ ቀ
௠

௦
ቁ represents the particle velocity, 𝑡 (𝑠) is the time, 

𝑭஽ (𝑁) and 𝑭௚(𝑁) are, respectively, the drag and gravity forces acting on the particle, 𝒙ௗ  (𝑚) 
represents the trajectory of the particle. The drag force is given by Crowe 48: 
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𝑅𝑒ௗ(𝒖 − 𝒖ௗ)

24
 (3) 

 

In eq. (3), 𝜌ௗ ቀ
௞௚

௠యቁ, 𝑑ௗ(𝑚) and 𝑅𝑒ௗ represent, respectively, the density, diameter and Reynolds 

number of the particle,  𝒖 ቀ
௠

௦
ቁ is the air velocity. The particle density was considered constant and 

equal to 1200 kg m-3. The 𝑅𝑒ௗ was calculated as: 
 
 

𝑅𝑒ௗ =
𝜌(|𝒖 − 𝒖ௗ|)𝑑ௗ

𝜇
 (4) 

 

where 𝜌 ቀ
௞௚

௠యቁ is the air density. 

The drag coefficient, 𝐶஽, in eq. (3), is evaluated as a function of the particle Reynolds number as: 
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⎪
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0.44                                    if 𝑅𝑒ௗ > 1000

 (5) 

 
Particle collisions were considered elastic and the equations of motion for the particles are solved 
assuming a one-way coupling between the continuum phase and the discrete phase: the flow field 
affects the particle motion whereas the effect of the particles on the airflow is negligible. 

2.2 Description of the domain and definition of the boundary conditions and of the scenarios. 
The Eulerian-Lagrangian based model, described in Section 2.1, was applied to the analysis of particle 
dispersion and inhalation in a car cabin evaluating the effects of different geometrical, emission and 
thermo-fluid-dynamic influence parameters. 
The car cabin sizes are 2.47 m × 1.53 m × 1.19 m, corresponding to a total internal volume of 3.46 
m3, which is representative of a “large car” according to the United States Environmental Protection 
Agency (EPA) Fuel Economy Regulations for 1977 and Later Model Year. Four occupants are 
present in the car cabin and three HVAC system ventilation modes were investigated: front ventilation 
mode (air entering the cabin through four front vents), windshield defrosting mode (air entering 
through one vent located under the windshield) and mixed ventilation (all the five vents enabled). All 
the ventilation modes were tested considering outside air intake provided by a HVAC system, which 
is with no air recirculation; the windows were considered closed for the entire duration of the journey. 
Different HVAC flow rates (from 10% to 100% of the maximum flow rate), Q (m3 h-1), were 



investigated: in particular, the intermediate air flow rate (flow rate at the 50% of the maximum fan 
capacity, hereinafter referred as Q50%) is set at 216 m3 h-1 on the basis of the value adopted by Pirouz 
et al. in their study 49; this value is consistent with the intermediate fan capacity reported by Ullrich 
et al. 50 for a real car whose internal volume is comparable to that of the cabin model employed for 
the scenarios under study. We point out that the flow rate also affects the velocity at the inlet sections 
and then the velocity field in the car cabin; moreover, in the simulations here performed a single angle 
of inlet air-flow rate was adopted. Outlet section positions also have an effect on the velocity field in 
the car cabin, here the outlet sections are placed behind the rear seats in the lower-left and lower-right 
corners as reported in the experimental case-study adopted to validate the CFD approach here 
proposed 43,44. 
The computational domains employed for numerical simulations are available in Figure 1. The 
adopted car cabin geometry was built by the authors in a previous study and its description is available 
in our previous paper 34, together with the explanation of the mesh construction strategy. 

 
Figure 1 – Computational domain with boundary patches. 

In the case of front and mixed ventilation mode, the computational domain is the one in the lower 
right corner of Figure 1: a rectangular duct is connected to each of the front supply openings, allowing 
the development of the flow velocity profile before entering the cabin through the air vents; when 
only front ventilation is enabled, the same computational domain is employed but the patch defining 
the windshield defrosting inlet is modelled as an adiabatic wall (i.e. the vent is closed). On the other 
hand, for simulation of scenarios where only windshield defrosting vent is enabled, the computational 
domain is the one in the lower left corner in Figure 1. Boundaries not specified in Figure 1 have been 
modelled as adiabatic walls. 
In Table 1, Table 2 and Table 3 the boundary conditions imposed for numerical simulations are 
detailed for the different ventilation modes considered in the present study. Assuming winter climatic 



conditions, a temperature of 283.15 K was applied to the car windows and inlet air temperature was 
set to 293.15 K. Passenger face temperatures were set to 306.15 K 51. Since a relatively high velocity 
fluid flow was numerically simulated and people in the car cabin were supposed to wear winter 
clothes with a superficial temperature roughly equal to surrounding air, body temperature plume was 
neglected. 
When both front and windshield defrosting inlets are enabled, the air flow rate is split as follows: 
each front vent introduces the 12.5% of the prescribed flow rate and the windshield vent the 50% 
remaining. For turbulent quantities the turbulence intensity I (%) and the turbulent mixing length 
𝓵(𝑚) were specified, the latter calculated as the 7% of the characteristic length 𝐿(𝑚)assumed equal 
to the jet width. 

Table 1 - Boundary conditions adopted in case of mixed ventilation (the computational domain employed for such 
HVAC system operation mode is pictured in the lower right corner in Figure 1). 

surface BC for velocity BC for pressure 
BC for 

temperature 
BC for k BC for ω Lagrangian 

front inlets 

(10%) Q10% = 43.2 m3 h-1 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 293.15 𝐾 𝐼 = 5% 𝓵 = 0.07𝐿 rebound 

(25%) Q25% = 108 m3 h-1 
(50%) Q50% = 216 m3 h-1 
(75%) Q75% = 324 m3 h-1 

(100%) Q100% = 432 m3 h-1 

windshield 
defrosting 

inlet 

(10%) Q10% = 43.2 m3 h-1 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 293.15 𝐾 𝐼 = 5% 𝓵 = 0.07𝐿 rebound 

(25%) Q25% = 108 m3 h-1 
(50%) Q50% = 216 m3 h-1 
(75%) Q75% = 324 m3 h-1 

(100%) Q100% = 432 m3 h-1 
outlet 

sections 
𝜕𝒖

𝜕𝑛
= 0 𝑝 = 101325 𝑃𝑎 𝑇 = 293.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

adiabatic 
walls 

𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 

𝜕𝑇

𝜕𝑛
= 0 standard wall functions escape 

windows 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 283.15 𝐾 standard wall functions escape 

faces 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 306.15 𝐾 standard wall functions escape 

emitter 
mouth 

speaking 

|𝒖| = 1.11
𝑚

𝑠
 𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 rebound 

breathing 

|𝒖| = 0.32
𝑚

𝑠
 

receiver 
mouth 

|𝒖| = 0.32
𝑚

𝑠
 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

 
The emitter (infected subject) and receiver (susceptible subject) mouths were modelled as circular 
surfaces with a radius of 2 cm; a temperature equal to 308.15 K was imposed at the mouths of emitter 
and receiver. As boundary conditions for air velocity at the mouths of emitter and receiver, fixed 
velocities equal to 1.11 m/s and 0.32 m/s in magnitude for speaking and breathing activities were 
respectively imposed as mean values of sinusoidal during exhalation and inhalation reported by 
Abkarian et al. 52 and Cortellessa et al. 25. All subjects were assumed mouth-breathers, thus airborne 
particles were expired and inhaled through the mouth. For particle injection, a random velocity 
direction from the emitter’s mouth, was evaluated as Abkarian et al. 52 considering a conical jet flow 
with an angle equal to 22°. As concerns the velocity vector direction from the emitter's mouth, a 
conical jet flow was considered, adopting a cone angle equal to 22° with random velocity directions 
in intervals of 0.1 s. This adopted angle was calculated by Abkarian et al. 52 to enclose 90% of the 
particles in a cone passing through the mouth exit and was verified to remain stable with time after 
the initial cycles. Finally, as concern the boundary conditions of the particles, the Lagrangian Particle 
Tracking was solved applying an escape boundary condition over all the surfaces of the 



computational domain except for entry sections (for which a rebound boundary condition was 
adopted). In other words, the particles touching the external surfaces (of the domain and of the 
subjects) disappear and cannot re-enter the computational domain, thus avoiding accumulation of 
viral load in the environment. 

Table 2 - Boundary conditions adopted in case of front ventilation (the computational domain employed for such 
HVAC system operation mode is pictured in the lower right corner in Figure 1). 

surface BC for velocity BC for pressure 
BC for 

temperature 
BC for k BC for ω Lagrangian 

front inlets (50%) Q50% = 216 m3 h-1 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 293.15 𝐾 𝐼 = 5% 𝓵 = 0.07𝐿 rebound 

outlet 
sections 

𝜕𝒖

𝜕𝑛
= 0 𝑝 = 101325 𝑃𝑎 𝑇 = 293.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

 adiabatic 
walls 

𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 

𝜕𝑇

𝜕𝑛
= 0 standard wall functions escape 

windows 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 283.15 𝐾 standard wall functions escape 

faces 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 306.15 𝐾 standard wall functions escape 

emitter 
mouth 

speaking 

|𝒖| = 1.11
𝑚

𝑠
 𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 rebound 

breathing 

|𝒖| = 0.32
𝑚

𝑠
 

receiver 
mouth 

|𝒖| = 0.32
𝑚

𝑠
 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

 

Table 3 – Boundary conditions adopted in case of windshield defrosting ventilation (the computational domain 
employed for such HVAC system operation mode is pictured in the lower left corner in Figure 1). 

surface BC for velocity BC for pressure 
BC for 

temperature 
BC for k BC for ω Lagrangian 

windshield 
defrosting 

inlet 
(50%) Q50% = 216 m3 h-1 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 293.15 𝐾 𝐼 = 5% 𝓵 = 0.07𝐿 rebound 

outlet 
sections 

𝜕𝒖

𝜕𝑛
= 0 𝑝 = 101325 𝑃𝑎 𝑇 = 293.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

 adiabatic 
walls 

𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 

𝜕𝑇

𝜕𝑛
= 0 standard wall functions escape 

windows 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 283.15 𝐾 standard wall functions escape 

faces 𝒖 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇 = 306.15 𝐾 standard wall functions escape 

emitter 
mouth 

speaking 

|𝒖| = 1.11
𝑚

𝑠
 𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 rebound 

breathing 

|𝒖| = 0.32
𝑚

𝑠
 

receiver 
mouth 

|𝒖| = 0.32
𝑚

𝑠
 

𝜕𝑝

𝜕𝑛
= 0 𝑇 = 308.15 𝐾 𝑘 = 0.1 𝑚ଶ 𝑠ଶ⁄  

𝜕𝜔

𝜕𝑛
= 0 escape 

 



Careful attention was paid to the computational mesh construction: simulations were performed 
employing hexahedral-based unstructured computational grids, realized employing the open-source 
snappyHexMesh algorithm. The grid sensitivity analysis was well discussed by Arpino et al. 34 for 
the same car cabin computational domain and it is not illustrated here for brevity. The adopted grids 
are composed by 7899968 cells (mixed and front ventilation scenarios) and 7737311 cells (windshield 
defrosting ventilation scenario) and were properly refined in correspondence of solid walls and in the 
jet region, where significant velocity gradients are expected. By way of illustration, the computational 
grid employed for mixed ventilation and front ventilation scenarios is depicted in Figure 2. 
 

 
Figure 2 – Computational grid employed for mixed ventilation and front ventilation scenarios. 

The risk of infection was evaluated for different exposure scenarios aimed at evaluating the effect of 
influence parameters under investigation. In particular, the following influence parameters were 
analysed: i) influence of the position of the infected subject in the car cabin (i.e. driver vs. passenger 
sitting on the right rear seat), ii) influence of the HVAC system flow rate (i.e. from 10% to 100% of 
the maximum flow rate, hereinafter also referred as airflow ratio), iii) influence of the HVAC 
ventilation mode (i.e. mixed, front, and windshield defrosting), iv) influence of the expiratory activity 
(i.e. breathing vs speaking). The scenarios and the corresponding parameters adopted in the 
simulations are summarized in Table 4. Please note that the exposed susceptible subjects were 
considered breathing through the mouth while sitting. 

Table 4 – Scenarios investigated through CFD analyses: definition of the parameters adopted to evaluate the effect of 
the influence parameters. 

Scenarios investigated 
position of the infected 

subject 
HVAC system 

flow rate 
HVAC ventilation 

mode 

expiratory activity 
of the infected 

subject 

influence of the position 
of the infected subject 

driver, passenger sitting on 
the right rear seat (passenger 

3 of Figure 1) 
Q50% mixed speaking 

influence of the HVAC 
system flow rate 

driver 
Q10%, Q25%, Q50%, 

Q75%, Q100% 
mixed speaking 

influence of the HVAC 
ventilation mode 

driver Q50% 
mixed, front, 

windshield defrosting  
speaking 

influence of the 
expiratory activity 

driver Q50% windshield defrosting speaking, breathing 



2.3 Particle emission 
Particle emission from the infected subject was modelled as a function of the expiratory activity, i.e. 
speaking 25 and breathing 46. In particular, the particle number emission rate (ERN, particle s-1), i.e. 
the size dependent number of particles exhaled by the infected subject per unit time, was estimated 
for speaking and breathing on the basis of the experimental analyses carried out by Johnson et al. and 
Morawska et al. 53,54. Indeed, they measured the number distribution of the particles in the range 0.5-
1000 μm in the close proximity of the mouth of an adult person while breathing and speaking. This 
measurement is extremely complex due to the quick evaporation phenomenon typical of the 
respiratory particles as soon as they are emitted. For further details on the experimental apparatus and 
the methodology adopted, the readers are kindly suggested referring to the above-mentioned papers 
53,54. Here, for the sake of brevity, we just show the simplified particle number distributions 
considered to make the simulations affordable: indeed, we have fitted the original distributions 53,54 
through simplified distributions made up of five size ranges. Due to the negligible contribution to the 
infection risk of sprayborne respiratory particles demonstrated in previous papers 25,55,56, the five size 
ranges here considered are limited to the airborne respiratory particle range (<90 µm). Volume 
distributions and emission rates (ERV, µL s-1) were calculated considering the particles as sphere. 
Since the evaporation phenomenon occurs quickly as soon as the particles are emitted 57,58, the post-
evaporation number and volume distributions were considered in the CFD model. Indeed, the volume 
particle distribution before evaporation (i.e. as emitted) was reduced to that resulting from the quick 
evaporation considering a volume fraction of non-volatiles in the initial particle of 1% 57. This particle 
evaporation phenomenon reduces the particle diameter to about 20% of the emitted size. The particle 
number and volume distributions pre- and post-evaporation (fitted by five size ranges) adopted in the 
simulations and the corresponding number and volume emission rates are summarized in Table 5 for 
both the expiratory activities investigated. 

Table 5 – Particle number (dN/dlog(dd)) and volume (dV/dlog(dd)) distributions pre- and post-evaporation fitted by five 
size ranges as adopted in the simulations for breathing and speaking expiratory activities. Particle number (ERN) and 

volume (ERV) emission rates are also reported. 

Expiratory 
activity 

Pre-evaporation Post-evaporation 

Particle diameter 
(size range), dd 

(µm) 

dN/dlog(dd) 
(part. cm-3) 

dV/dlog(dd) 
(µL cm-3) 

ERN 
(part. s-1) 

ERV 
(µL s-1) 

Particle diameter 
(size range), dd 

(µm) 

dN/dlog(dd) 
(part. cm-3) 

dV/dlog(dd) 
(µL cm-3) 

breathing 

2.4 µm 
(<1.9 to 3.2 µm) 

0.312 2.33×10-9 32.6 2.43×10-7 
0.5 µm 

(<0.7 µm) 
0.312 2.33×10-11 

4.1 µm 
(3.2 to 5.4 µm) 

0.016 5.80×10-10 1.6 6.11×10-8 
0.9 µm 

(0.7 to 1.2 µm) 
0.016 5.80×10-12 

7.1 µm 
(5.4 to 9.3 µm) 

0.005 1.03×10-9 0.6 1.09×10-7 
1.5 µm 

(1.2 to 2.0 µm) 
0.005 1.03×10-11 

16.0 µm 
(9.3 to 27.3 µm) 

0.001 2.15×10-9 0.2 4.52×10-7 
3.4 µm 

(2.0 to 5.9 µm) 
0.001 2.15×10-11 

35.8 µm 
(27.3 to 46.9 µm) 

<0.001 3.44×10-13 <0.1 3.63×10-11 
7.7 µm 

(5.9 to 10.1 µm) 
<0.001 3.44×10-15 

Total 0.078 1.92×10-9 33.4 8.65×10-7 Total 0.078 1.92×10-11 

speaking 

4.6 µm 
(< 0.5 to 4.6 µm) 

0.266 1.39×10-8 217.6 1.14×10-5 
1 µm 

(< 1 µm) 
0.266 1.39×10-10 

9.0 µm 
(4.6 to 17.7 µm) 

0.035 1.33×10-8 20.3 7.81×10-6 
1.9 µm 

(1.0 to 3.8 µm) 
0.035 1.33×10-10 

23.2 µm 
(17.7 to 30.4 µm) 

0.013 8.75×10-8 3.1 2.05×10-5 
5 µm 

(3.8 to 6.6 µm) 
0.013 8.75×10-10 

45.5 µm 
(30.4 to 68.2 µm) 

0.016 8.08×10-7 5.7 2.83×10-4 
9.8 µm 

(6.6 to 14.7 µm) 
0.016 8.08×10-9 

78 µm 
(68 to 90 µm) 

0.015 3.83×10-6 1.8 4.48×10-4 
16.8 µm 

(14.7 to 19.2 µm) 
0.015 3.83×10-8 

Total 0.249 7.71×10-7 248.6 7.71×10-4 Total 0.249 7.71×10-9 



2.4 Estimation of the dose received by the susceptible subjects and infectious risk assessment 
The risk of infection of the exposed subjects can be calculated based on the dose of viral load (RNA 
copies considering the viable/infectious fraction) received by susceptible subjects as they inhale 
virus-laden respiratory particles emitted by the infected subject. Then, a dose-response model is 
adopted to convert the dose of viral load into a risk of infection. 
The dose of viral load is the product of the respiratory particle dose received by the susceptible 
subjects during the exposure event and the viral load carried by the airborne respiratory droplets 
emitted by the infected subject. The viral load (cv) carried by the particles was retrieved from data 
currently available from the scientific literature. Here we adopted the viral load of the Delta variant 
(B.1.617.2 SARS-CoV-2) which is dominant across much of the world at the time of writing. In 
particular, we fit the cv distribution data provided by Teyssou et al. 59 (median value of 7.83 log10 
RNA copies mL-1) with a quartile simulation approach, in other words we performed a Monte Carlo 
simulation using proportionally selecting random values within each quartile (1st quartile range 4.3-
6.3 log10 RNA copies mL-1, 2nd quartile range 6.3-7.8 log10 RNA copies mL-1, 3rd quartile range 7.8-
8.8 log10 RNA copies mL-1, 4th quartile range 8.8-9.4 log10 RNA copies mL-1) to obtain 20 000 cv 
values. The respiratory particle dose received by each susceptible subject in the car cabin is evaluated 
through both CFD analyses and well-mixed approach. 

2.4.1 CFD analyses 
Thus, the dose of RNA copies carried by respiratory airborne particles and then inhaled by the 
susceptible subject for each cv value (D(cv)) was calculated as 

 𝐷(𝑐௩) = 𝑐௩ ∫ 𝑉௣ି௣௥௘(𝑡)𝑑𝑡
்

଴
                 (RNA copies) (6) 

where Vp-pre(t) is the doses of airborne particles inhaled as a function of the exposure time (t), and T 
is the total exposure time (here considered equal to 30 min). We highlight that the viral load carried 
by the respiratory particle is related to the initial particle volume (i.e. before evaporation) since the 
evaporation leads to a reduction in the particle volume (the RNA copies do not evaporate); thus, the 
Vp-pre term has been adopted as the dose of airborne particles calculated with the initial (pre-
evaporation) volume. On the contrary, the actual dose in terms of volume of respiratory particles 
inhaled by the susceptible occupants is referred to the actual volume at the time of inhalation (i.e. 
post-evaporation; hereinafter referred as Vp-post). Indeed, we highlight that the respiratory particles 
dynamics is driven by the post-evaporation particle size, whereas the viral load they carry is a function 
of the pre-evaporation particle size.  
From the dose viral load (i.e. the dose of RNA copies), the probability of infection of the exposed 
subject for each cv ((PI(cv)) was calculated adopting a well-known exponential dose-response model 
29,60: 

 𝑃ூ(𝑐௩) = 1 − 𝑒
ି

ವ(೎ೡ)

ಹ಺ವలయ                  (%) (7) 

where HID63 represents the human infectious dose for 63% of susceptible subjects, i.e. the number of 
RNA copies needed to initiate the infection with a probability of 63%. For SARS-CoV-2, a HID63 
value of 7×102 RNA copies was applied as recently estimated by Gale 61. We note that in subsequent 
work Gale 62 increased the RNA copy-to-plaque-forming unit (pfu) ratio used in the thermodynamic 
dose-response model from 3.6×102 (based on Vicenzi et al. 63) to 104 RNA copies:pfu, which 
improves agreement with the dose-response estimates of Zhang and Wang 64. This adjustment 
increases the HID63 value approximately thirtyfold to 2×104 RNA copies 62. However, using the 
golden Syrian hamster model, Hawks et al. 65 found RNA levels in air samples to be ~200 times 
higher than pfu levels one and two days postinoculation, with infectious virus non-detect afterwards 
despite the persistence of RNA detections. This indicates a kinetic aspect to the RNA:pfu ratio likely 
associated with the immune response that affects the infectious virus fraction 66. As we are focused 
on modeling the early time period of infection for an infected host previously naïve to SARS-CoV-
2, we maintain use of the HID63 value of 7×102 RNA copies herein, which is also generally consistent 
with the predictions of a novel dose-response approach developed by Henriques et al. 66. Furthermore, 
variants of concern such as Delta and Omicron may have greater infectiousness with a lower HID63, 



providing another reason to continue with the original model of Gale 61 given the great uncertainty in 
the dose-response model for humans. 
In order to consider the range of possible viral load values, the individual risk of infection (R) of each 
exposed passenger was calculated through a Monte Carlo simulation with 20 000 realizations, in 
which the viral load (cv) was sampled randomly from the previously defined distribution and then 
assigned as the RNA concentration of the exhaled particle volume to calculate the inhaled dose of 
RNA copies (D) and resulting probability of infection (PI) for each realization. The mean of the 
20 000 PI values is calculated as the individual risk (R) for each passenger based on their respective 
inhaled doses. 

2.4.2 Well-mixed approach 
To compare the risks of infection obtained through the detailed CFD analyses proposed here with to 
this we would have calculated adopting the well-mixed hypothesis, the risk of infection of the 
susceptible subjects was also assessed adopting the simplified zero-dimensional model assuming 
complete and instantaneous mixing of the viral emission. In this case the dose of RNA copies received 
by the susceptibles was estimated on the basis of the average well-mixed viral load concentration in 
the car cabin Cvl,avg (RNA copies m-3) over the course of the 30-minute journey, based on the 
analytical solution of Miller et al. [26]:  

 𝐶௩௟,௔௩௚(𝑐௩ , 𝑡) =
ாೡ೗(௖ೡ)

௏೎ೌ್೔೙∙ூ௏ோோ
ቂ1 −

ଵ

ூ௏ோோ∙௧
(1 − eିூ௏ோோ∙௧)ቃ                 (RNA copies m-3) (9) 

where Vcabin (m3) is the volume of the car cabin under investigation, IVRR (h-1) represents the 
infectious virus removal rate in the space investigated, and Evl is the viral load emission rate (RNA 
copies h-1). IVRR is the sum of three contributions 67: the particle deposition on surfaces (k, here 
assumed equal to 0.24 h-1 68), the viral inactivation (λ, here assumed equal to 0.63 h-1 69), and the 
average air exchange rate via ventilation (AER, h-1). The latter was calculated as the ratio between 
the airflow rate provided by the HVAC systems and the cabin volume: AERs were equal to 12.5, 
31.2, 62.4, 93.6, and 124.9 h-1 at Q10%, Q25%, Q50%, Q75%, and Q100% flow rates, respectively. Evl was 
calculated as the product of the viral load (cv, obtained from simulation as described previously) and 
the cumulative, pre-evaporation airborne volume emission rate (ERV) obtained from Table 5 (i.e. 
7.71×10-4 and 8.65×10-7 µL s-1 for speaking and breathing, respectively. 
The dose of RNA copies inhaled by the exposed subject was then estimated as: 

 𝐷(𝑐௩, 𝑡) = 𝐼𝑅 ∙ 𝐶௩௟,௔௩௚(𝑐௩ , 𝑡) ∙ 𝑡                 (RNA copies) (10) 

with IR being the inhalation rate and assumed to be 0.54 m3 h-1. 
As with the analysis based on the CFD results, a Monte Carlo simulation was performed to estimate 
the individual risk (R) of each susceptible passenger based on the viral load of the emitting host. For 
speaking, a simulation to calculate R using eq. (7) was performed for each of the three ERv values 
presented earlier. The distribution of secondary cases and Revent were calculated using the Bernoulli 
trial approach (eq. [8]) for the most representative well-mixed scenarios as further described in 
Section 3. 
In terms of the emission rate in units of infectious doses of Delta SARS-CoV-2, or “quanta” when 
considering the HID63, the equivalent values modeled herein for the 25th, 50th, and 75th percentile viral 
loads for speaking are 8.0, 252, and 2524 quanta h-1 for the pre-evaporation volume up to 90 µm in 
diameter. There are no literature values for comparison for the Delta or Omicron variants, but a recent 
Omicron outbreak at a party in a restaurant in Norway 70 suggests high emission rates are likely. For 
example, using eqs. (7), (9), and (10) for a ca. 145 m2 room with 3 m ceilings and a 74% probability 
of infection for a 4.5-hour exposure leads to emission rate estimates of 470 and 1650 quanta h-1 for 
IVRR values of 1.5 and 6.0 h-1, respectively, using an IR of ~0.5 m3 h-1. Thus, the emission rates 
evaluated herein appear plausible also considering the rapid spread of both Delta and Omicron 
variants. 



2.4.3 Probability of secondary transmission 
Beyond the individual risk, which is the mean of an overdispersed distribution and thus masks 
substantial variability in outcomes, it is of interest to calculate the probability of secondary 
transmission from the car journey, which is a function of the number of susceptible occupants of the 
car (S). Specifically, the probability of discrete numbers of secondary cases (C) arising can be 
estimated using a Bernoulli trial approach, which is an improvement over past works 21,28 using the 
percentile values of a continuous distribution of C obtained from the simple product of R and S for 
each realization. Similar to the methodology of Goyal et al. 71 we model successful transmission for 
each passenger (assuming all passengers are fully susceptible) by drawing a random uniform variable 
U(0,1) and comparing it with the PI value for that passenger, with successful transmission occurring 
when U(0,1) < PI.  This was performed for each of the three susceptible passengers for each 
realization, and the number of secondary cases (C) for an individual realization was calculated by 
summing up the successful trials as follows: 

 𝐶 = ∑ 𝐵𝑒𝑟(𝑃ூ)ௌ
ௌୀଷ
ௌୀଵ          (secondary cases) (8) 

The end result of the simulation is a discrete probability distribution of secondary cases (C), with the 
mean value representing the event reproduction number (Revent) of the 30-minute car journey in 
accordance with the definition of Tupper et al. 72. 

3 Results and discussion 

3.1 Influence of the position of the infected subject in the car cabin 
Table 6 presents the results of doses in terms of volume of airborne respiratory particle inhaled (Vp-

post) by susceptible occupants of the car cabin and their individual infection risk for different position 
of the infected subject (driver vs. passenger #3) in case of mixed ventilation at 50% of the maximum 
HVAC flow rate (Q50%), speaking activity and 30-minute exposure scenario. Individual risks 
evaluated through the analytical, zero-dimension well-mixed approach are also reported. 
Results show that, in the case of driver infected, the highest dose (8.68×10-9 mL) and individual risk 
(26%) are received by the passenger #2 (left rear seat, i.e. just behind the driver), whereas the 
passenger #1 (front right seat, i.e. just on the right side of the driver) receives the lowest dose 
(1.89×10-9 mL) and risk (9.2%). Lower doses and risks are received by when the infected 
passenger #3: the highest dose (1.42×10-9 mL) and individual risk (7.2%) are received by the 
passenger #1, whereas risks lower than 1% are received by the driver and the passenger #2. 

Table 6 – Doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible occupants of the car 
cabin and their individual infection risk for different position of the infected subject (driver vs. passenger #3) in case of 

mixed ventilation at Q50%, speaking activity and 30-minute exposure scenario. Infection risks evaluated through the 
well-mixed approach are also reported. 

Driver infected Passenger #3 infected 

Susceptible 
subject 

Inhaled 
volume 
(mL) 

Individual infection 
risk (%) 

Susceptible 
subject 

Inhaled 
volume 
(mL) 

Individual infection risk (%) 

CFD Well-mixed CFD Well-mixed 
Driver emitter Driver 5.17×10-11 0.30% 

42% Passenger #1 1.89×10-9 9.2% 
42% 

Passenger #1 1.42×10-9 7.2% 
Passenger #2 8.68×10-9 26% Passenger #2 1.59×10-11 0.09% 
Passenger #3 4.49×10-9 18% Passenger #3 emitter 

 
The reason of such different exposure and risk conditions of the susceptible occupants, occurring as 
a function of the position of the infected subject, is strictly related to the specific airflow pattern in 
the car cabin. This is graphically reported in Figure 3 and Figure 4 where streamlines and mean 
velocity contours as well as the spatial distributions of the airborne respiratory particles after 30 min 
are reported for driver infected scenario. Figure 3 clearly shows that the streamlines move from the 
vents, carry the respiratory particles emitted by the driver (slightly moving upwards due to the warm 
buoyant air exhaled), and convey them towards the passenger just sitting behind him (passenger #2): 



therefore a higher exposure to respiratory particles of the passenger #2 occurs as also shown by the 
spatial distributions of the airborne respiratory particles (Figure 4).  

 
Figure 3 – Streamlines and mean velocity contours on x-y slices at z=-0.38 m and z=0.38 m in case of mixed ventilation 

mode at 50% (Q50%), speaking activity, driver infected. 

A completely different airborne particle distribution can be observed in Figure 5 when the passenger 
#3 is the infected. In such condition, the airborne particles are mainly confined in the rear seats, but 
the velocity of particles injected by the infected is sufficient to make them reach the passenger #1, 
i.e. the passenger sitting just ahead of the infected subject. 
For the well-mixed analytical solution, the individual risk is 42% for all passengers regardless of 
position. This value overestimates the risks received by susceptible subjects in the case of driver 
infected estimated through the CFD (maximum values 26%) and, even more, the one they receive for 
the case of passenger #3 being infected (maximum risk 7.2%). The overestimation resulting from the 
well-mixed approach demonstrates the effectiveness of the HVAC system in reducing the exposure 
of passengers to virus-laden particles through flow patterns allowing a cleaner air in their breathing 
zones. 



 
Figure 4 – Spatial particle distribution after 30 min in case of mixed ventilation mode at 50%, speaking activity, driver 

infected. 

 
Figure 5 – Spatial particle distribution after 30 min in case of mixed ventilation mode at 50%, speaking activity, 

passenger #3 infected. 

3.2 Influence of the HVAC system flow rate 
In Table 7 results of doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by 
susceptible occupants of the car cabin and their individual infection risk for different HVAC flow 
rates (expressed as air flow ratio with respect to the maximum flow rate) in case of mixed ventilation, 
driver infected, speaking activity, and 30-minute exposure scenario are reported. 
When the driver is the infected subject, as already shown in the previous section, the highest doses 
and risks are (in most of the cases) received by the passenger just sitting behind him/her (passenger 
#2). As expected, the dose and risk values are strongly influenced by the flow rate provided. As an 
example, for passenger #2, the risk is <1% for very high flow rates (i.e. ≥ Q75%) but it strongly 



increases with air flow ratios ≤ Q50% reaching an individual risk of ~50% for Q10%. Similar trends 
were found for the other passengers with maximum infection risks equal to 32% and 51%, at Q10%, 
for passengers #1 and #3, respectively. Nonetheless, despite a general decreasing trend of the risk as 
the HVAC flow rate increases, we point out that the risk of the passengers sitting on the back does 
not constantly reduce, e.g. the risks at Q25% and Q75% are lower than at Q50% and Q100%, respectively. 
This is due to the specific air flow patterns occurring at those flow rates which likely undermine the 
effectiveness of the particle removal towards the exit sections. 
In case of low air exchange rate (Q10%) the lowest difference amongst the passengers in terms of risk 
of infection was detected. This is likely related to the lowest efficiency of the HVAC system in 
conveying the virus-laden respiratory particles towards the outlet sections, then letting them disperse 
within the cabin car: indeed, the ratio between the maximum and minimum risk values decreases with 
the HVAC flow rate then demonstrating a more homogenous concentration. In this respect, it is not 
surprising that the closest match of the well-mixed results to the average passenger risk calculated 
through the CFD approach occurs with Q10% (~12.5 air changes per hour). In this case the CFD-based 
passenger risks for passenger #1 and #2 is >50% and in good agreement with the well-mixed approach 
(55%). Conversely, when the air flow ratio is > Q50%, as shown in the previous section, the risk is 
significantly overestimated using the well-mixed approach. 
We point out that all the scenarios here presented consider the HVAC system in operation under the 
outside air intake conditions; when the HVAC system is not in operation, or it is operated under 
recirculation ventilation conditions, the actual air exchange rate is clearly lower. Indeed, it is mainly 
due to the leakages of the car cabin and of the ducts, for this reason, it is strongly affected by the 
velocity of the vehicles: previous papers showed that the air exchange rate can be lower than 5 h-1 
35,73, i.e. well below that obtained under the outside air intake condition at Q10% flow rate here 
investigated. For such lower AER values, based on what we have shown above, the well-mixed 
approach can be considered a useful tool to roughly estimate the risk of exposed subjects: as an 
example, for a ventilation condition with air recirculation characterized by an AER equal to 2 h-1, the 
estimate of the risk of infection for the passengers provided by the well-mixed approach is >60%. 

Table 7 - Doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible occupants of the car 
cabin and their individual infection risk for different HVAC flow rates (Q10% to Q100%) in case of mixed ventilation, 

driver infected, speaking activity, and 30-minute exposure scenario. Infection risks evaluated through the well-mixed 
approach are also reported. 

HVAC air 
flow ratio 

Inhaled volume (mL) Individual infection risk (%) 

Passenger #1 Passenger #2 Passenger #3 
Passenger #1 Passenger #2 Passenger #3 All Passengers 

CFD CFD CFD Well-mixed 

Q100% 0 1.32×10-10 5.22×10-10 0 0.76% 2.9% 35% 

Q75% 4.59×10-12 7.97×10-11 3.62×10-10 0.03% 0.46% 2.0% 38% 

Q50% 1.89×10-9 8.68×10-9 4.49×10-9 9.2% 26% 18% 42% 

Q25% 1.87×10-8 1.67×10-9 1.42×10-9 36% 8.3% 7.2% 48% 

Q10% 8.30×10-8 1.02×10-7 1.37×10-8 51% 53% 32% 55% 

3.3 Influence of the HVAC ventilation mode 
In Table 8 the doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible 
occupants of the car cabin and their individual infection risk for different HVAC ventilation mode in 
case of Q50% flow rate, driver infected, speaking activity, and 30-minute exposure scenario are 
reported.  
Data clearly highlight that the ventilation mode strongly affect the risk of the passengers. For mixed 
ventilation mode (air entering the cabin through four front vents), as shown in previous sections, the 
highest dose is received by the passenger #2 (individual risk 26% at Q50%). Nonetheless, the worst 
exposure condition is experienced by the passengers for windshield defrosting mode (air entering 
through one vent located under the windshield) since the risks their passengers range from 22% 
(passengers #3) to 59% (passenger #2). When a front ventilation mode is adopted the risks of the 



passengers sitting on the rear seats are almost negligible, whereas the one received by the passenger 
#1 is extremely high (53%). 

Table 8 - Doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible occupants of the car 
cabin and their individual infection risk for different HVAC ventilation mode in case of Q50% flow rate, driver infected, 
speaking activity, and 30-minute exposure scenario. Infection risks evaluated through the well-mixed approach are also 

reported. 

HVAC 
ventilation  

mode 

Inhaled volume (mL) Individual infection risk (%) 

Passenger #1 Passenger #2 Passenger #3 
Passenger #1 Passenger #2 Passenger #3 All Passengers 

CFD CFD CFD Well-mixed 

Front mode 1.13×10-7 2.99×10-11 9.74×10-12 53% 0.17% 0.06% 

42% 
Windshield 

defrosting mode 
1.36×10-8 2.29×10-7 6.31×10-9 32% 59% 22% 

Mixed mode 1.89×10-9 8.68×10-9 4.49×10-9 9.2% 26% 18% 

 

 
Figure 6 – Streamlines and mean velocity contours on x-y slices at z=-0.38 m and z=0.38 m in case of front ventilation 

mode at 50% (Q50%), speaking activity, driver infected. 

These data can be better explained by referring to the streamlines, main velocity contours and spatial 
particle distributions. Flow patterns for mixed ventilation mode have been already discussed in the 
section 3.1, where, for driver infected scenario, the accumulation of respiratory particles in the 
breathing zone of the passenger #2 has been demonstrated. In case of front ventilation mode, the air 
flow entering in the cabin impacts the front seats and passengers, changes its direction and forms a 
recirculation area (Figure 6), then higher concentrations of respiratory particles occur in the front 
compartment, preventing their spread towards the rear seats (Figure 7) during the whole journey. 



 

Figure 7 – Spatial particle distribution after 30 min in case of front ventilation mode at 50% (Q50%), speaking activity, 
driver infected. 

On the contrary, in the case of windshield defrosting mode, the respiratory particles emitted by the 
driver and moving upwards due to the buoyancy forces (Figure 8), are transported in the rear region 
of the car cabin by the air flow injected through the windshield vent not encountering any obstacle as 
graphically represented by the streamlines. As a direct consequence of both the airflow patterns and 
the infected subject position, the airborne particles are mainly confined in the left region of the car 
(Figure 9) then explaining the reason why the passenger #2 is the most exposed. 
Having shown these differences in terms of risk of infection amongst the ventilation modes, it is clear 
that the well-mixed solution provides a reasonable approximation of the results for the windshield 
defrosting mode, whereas the front ventilation mode is clearly the least well mixed within the car 
cabin, and therefore the zero-dimension model significantly overestimates the risk for the back seat 
passengers by over two orders of magnitude. 



 
Figure 8 – Streamlines and mean velocity contours on x-y slices at z=-0.38 m and z=0.38 m in case of windshield 

defrosting ventilation mode at 50% (Q50%), speaking activity, driver infected. 

 
Figure 9 - Spatial particle distribution after 30 min in case of windshield defrosting ventilation mode at 50% (Q50%), 

speaking activity, driver infected. 

3.4 Influence of the expiratory activity: breathing vs. speaking 
In Table 9 the doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible 
occupants of the car cabin and their individual infection risk are compared for the two expiratory 
activities (breathing and speaking) in case of Q50% flow rate, windshield defrosting ventilation mode, 
driver infected, and 30-minute exposure scenario (which represents the worst exposure condition 
amongst those reported in previous section). In the case of breathing, very low airborne particle 
volumes are inhaled by all the passengers leading to negligible risks of infection (well below 1%): 
this is due to the low amount of particles emitted and their reduced velocity at the exit of the infected 
subject’s mouth (please see the emission rate discussed in Section 2.3). In the case of breathing 
activity of the infected subject, the most exposed susceptible is the passenger #3 (not passenger #2 as 



resulting from speaking activity) and his/her risk (although negligible) is ten-fold the one received by 
the other two passengers. The difference amongst speaking and breathing activities can also be 
visually observed comparing the spatial particle distributions of Figure 9 (speaking activity) and 
Figure 10 (breathing activity) where the latter clearly shows a much lower particle concentration in 
the car cabin. For the case of breathing, as already reported for speaking, the well-mixed analytical 
solution provides a rough estimate of the average passenger risk (~0.2% versus ~0.07%). 

Table 9 - Doses in terms of volume of airborne respiratory particle (Vp-post) inhaled by susceptible occupants of the car 
cabin and their individual infection risk for different expiratory activities (breathing and speaking) in case of Q50% flow 
rate, windshield defrosting ventilation mode, driver infected, and 30-minute exposure scenario. Infection risks evaluated 

through the well-mixed approach are also reported. 

Expiratory 
Activity 

Inhaled volume (mL) Individual infection risk (%) 

Passenger #1 Passenger #2 Passenger #3 
Passenger #1 Passenger #2 Passenger #3 All Passengers 

CFD CFD CFD Well-mixed 

Breathing 2.53×10-12 2.18×10-12 3.06×10-11 0.01% 0.01% 0.18% 0.21% 

Speaking 1.36×10-8 2.29×10-7 6.31×10-9 32% 59% 22% 42% 

 

 
Figure 10 – Spatial particle distribution after 30 min in case of windshield defrosting ventilation mode at 50% (Q50%), 

breathing activity, driver infected. 

3.5 Distribution of Secondary Cases 
Results of the Bernoulli trial calculations reporting the probability of discrete numbers of secondary 
cases and the Revent are summarized in Table 10 for different scenarios. In particular, in the table all 
the scenarios tested through the CFD approach are reported as well as the two scenarios presenting 
well-mixed results comparable to the CFD ones, i.e mixed mode ventilation at Q10% flow rate for 
speaking and mixed mode ventilation at Q50% flow rate for breathing. 
The Bernoulli trial data show that there are three model scenarios where the average number of 
secondary cases (Revent) exceeds 1 (the Q10% flow rate condition for both well-mixed and CFD models, 
and the windshield defrosting mode at the Q50% flow rate). Supporting the use of the well-mixed 
approach for Q10% flow rate, the distribution of secondary cases (C) is also very similar to that 
obtained from CFD, with the probability of zero cases being ~40% and thus the probability of at least 
one transmission occurring being ~60%. There are three speaking scenarios for which there is over a 
90% probability of nobody being infected (C = 0) (mixed mode with driver infected at Q75% and 
Q100%, and mixed mode with passenger infected at Q50%). For the front mode scenario, there is high 



risk for the front seat passenger, but the probability that none of the backset passengers gets infected 
is over 99%. Thus, the front mode is a viable ventilation strategy when the driver is infected and no 
passenger sits in the front seat, as there is effective aerodynamic containment between the front and 
back of the car. For the breathing emission rates evaluated herein, there is very low probability of a 
secondary transmission (~0.2%) for the 30-minute journey. 

Table 10 – Results of Bernoulli trial calculations for Revent and the probability distribution of secondary cases (C) for 
scenarios under investigation. 

Modeling Scenario Revent 
Secondary Case (C) Probability 

C = 0  C = 1 C = 2 C = 3 

Well-mixed approach, Q10% flow rate 1.6 36.8% 8.9% 7.1% 47.3% 
CFD mixed mode, driver infected, Q10% flow rate 1.3 42.0% 10.9% 16.9% 30.2% 
CFD windshield defrosting mode, driver infected, Q50% flow rate 1.1 40.4% 23.7% 18.4% 17.5% 
CFD front mode, driver infected, Q50% flow rate 0.54 46.5% 53.3% 0.26% 0.00% 
CFD mixed mode, driver infected, Q50% flow rate 0.53 66.7% 17.5% 11.9% 3.9% 
CFD mixed mode, driver infected, Q25% flow rate 0.51 62.5% 25.5% 10.2% 1.8% 
CFD mixed mode, passenger infected, Q50% flow rate 0.077 92.4% 7.5% 0.11% 0.00% 
CFD mixed mode, driver infected, Q100% flow rate 0.036 96.3% 3.7% 0.06% 0.00% 
CFD mixed mode, driver infected, Q75% flow rate 0.024 97.5% 2.4% 0.03% 0.00% 

Well-mixed, breathing, Q50% flow rate 0.004 99.7% 0.35% 0.00% 0.00% 
CFD windshield defrosting mode, breathing, driver infected, Q50% flow rate 0.002 99.8% 0.21% 0.01% 0.00% 

3.6 Strengths and weaknesses 
The results showed in the previous sections highlight the strengths of the CFD approach for a proper 
evaluation of the risk of infection in small confined spaces affected by a particular fluid dynamics 
due to high flow rates entering the cabin, or ventilation systems not designed for mixing (e.g. front). 
Simplified analytical approaches, such as zero-dimensional models, may inaccurately estimate the 
risk of the exposed subject by a large amount. However, for the 10% flow condition and mixed mode 
ventilation, the zero-dimension well-mixed approach produces quite similar results in terms of both 
the average risk (and thus Revent) and the probability distribution of secondary cases. The parameters 
under which well-mixed approaches are most defensible requires further evaluation, using CFD and 
possibly field investigations (e.g. tracer tests) to inform such generalizations; nonetheless, it is clear 
that well-mixed models can perform very well in scenarios characterized by low air exchange rates 
where the flow patterns are not able to provide a proper particle removal from the breathing zone of 
the exposed subject: this is also typical of other larger indoor environments, such as naturally-
ventilated buildings 32, where well-mixed models were shown to predict the attack rates of 
documented SARS-CoV-2 outbreaks 21,27.  
We note the solutions here reported are very specific of the cabin car under investigation and of the 
boundary conditions set. Therefore, we point out that generalizing the obtained CFD results to other 
passenger vehicles could lead to mistakes too. Indeed, cabin cars comparable in terms of volume and 
emission rates could present different infection risks for the susceptible occupants as a function of 
the position of the inlet vents (some cars also have ducts to the rear-seat area), the adjustable angle of 
inlet air-flow rate, the air flow rate split amongst the different vents, and the position of the outlet 
sections (considering that in actual cars the particle exfiltration just relies upon leakages of the cabin): 
these aspects are here not considered and could be involved in future developments of the study. 
Regardless, our results show that CFD is necessary to evaluate the fate of these particles more 
accurately and that a proper design of the HVAC system (e.g. in terms of positioning of the inlet and 
outlet vents, etc.), in view of significantly reducing the risk of infection, is suitable. This is a key 
finding since it demonstrates that in indoor environments characterized by fixed seats the risk of 
infection can be in principle controlled by properly designing the flow patterns of the environment, 
i.e. moving towards an ad-hoc personalized ventilation 74,75. 



4 Conclusions 

In the paper we proposed and applied an integrated approach combining a validated CFD transient 
approach (numerically solved using the open-source software OpenFOAM) and a recently developed 
predictive emission-to-risk approach in order to estimate the SARS-CoV-2 Delta variant risk of 
infection in a car cabin under different conditions in terms of ventilation (ventilation mode and air 
flow rate of the HVAC system) and emission scenarios (expiratory activity, i.e. breathing vs. 
speaking, and position of the infected subject within the car cabin). 
The results of the study clearly showed that the risk of infection, and consequently the distribution of 
secondary cases, is strongly influenced by the ventilation mode, the HVAC flow rate, the position of 
the infected subject, and the expiratory activity. As an example, in case of driver infected speaking 
for the entire journey, a reduced ventilation (low flow rate) or a less effective ventilation (e.g. 
windshield defrosting mode) can cause high risk of infection then leading to a high probability of at 
least one secondary case in only 30-min of exposure. The risk of infection is clearly reduced when 
higher flow rates enter the car cabin then diluting the virus-laden respiratory droplets emitted by the 
infected subject or when the infected subject just breathes instead of speaking. 
CFD approaches are needed to properly address the individual risk in such confined spaces as the 
fluid-dynamic conditions significantly affect the airflow patterns and the spatial distribution of the 
virus-laden respiratory particles within the cabin. Thus, simplified zero-dimensional approaches 
assessing the average risk of the susceptible (not accounting for the specific flow patterns in the 
confined space), can lead to miscalculation of the risk of the exposed subjects, particularly when 
ventilation systems are not designed for mixing. Indeed, the well-mixed solutions for speaking 
infected subject here shown are roughly comparable with the CFD ones only in case of very low flow 
rates, i.e. when the reduced air flow rates do not effectively clean the breathing zone of the exposed 
subjects and the virus-laden concentration are likely homogenous within the car cabin. Furthermore, 
the front ventilation mode evaluated herein provides effective aerodynamic containment between the 
front and back of the vehicle, meaning passengers sitting in the back seats are better protected from 
an infected driver relative to mixing ventilation. 
Summarizing, CFD modeling is a valuable tool to produce such recommendations for specific 
applications, which are not possible with simple zero-dimension models and, even if the CFD results 
here provided are not directly transferable to other cars (due to the case-specific geometry, vent 
positions, etc.), the finding here indicates that ad-hoc designing of the air flow of closed environments 
in view of reducing and controlling the risk of infection is achievable, especially when the spatial 
locations of the occupants are fixed. 
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