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Abstract

Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive 
progression. It places heavy burden on most low and middle income countries to treat HCC patients. Nowadays 
accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral 
therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing 
adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among 
cohorts of different populations for estimating HCC incidence have been presented recently by using simple, 
efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development 
can provide suggestions to improve clinical and public health approaches, making them more cost-effective and 
effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the 
features of risk prediction models of HCC across different populations were summarized, and the perspectives of 
HCC risk prediction models were discussed as well.
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Introduction

Liver cancer is one of the most aggressive malignant neoplasms 
worldwide, which ranks the 5th and 9th most common cancer 
among males and females, respectively, and the incidence 
of liver cancer is the highest in East and South-East Asia, 
Northern and Western Africa (1). An estimated 782,000 new 
cases and 745,000 deaths occurred worldwide during 2012 (2). 
During the last few decades, the incidence rate of liver cancer 
has increased in most developed countries (3).

The disease burden of hepatocellular carcinoma (HCC) is 
high and no effective treatments are available so far (4). But 
possible interventions, such as interferon therapy for chronic 
hepatitis B (CHB), chronic hepatitis C (CHC) or lifestyle 

changes are available to reduce the mortality or alter the 
course of the disease, on condition that individuals at high risk 
can be identified. Therefore, simple, easily administered, and 
applicable risk prediction models of HCC would be of great 
value in terms of public health view. Recently, several risk 
prediction models of HCC in different populations have been 
presented with simple, efficient, and ready-to-use parameters. 
In this review, the features of these prediction models were 
summarized, and perspectives of these prediction models were 
also discussed.

Risk factors of HCC

Approximately 85% of the HCC cases occur in developing 
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countries every year, and the highest incidence rates are 
described in regions where hepatitis B virus (HBV) infection 
is endemic: Southeast Asia and sub-Saharan Africa (5-8). 
Globally, over 350 million people are chronically infected with 
HBV (9), and HBV accounts for 53% of total HCC cases and 
virtually all childhood HCC cases (10,11).

Hepatitis C virus (HCV) infection predominates in Europe, 
North America, Japan, Pakistan, Mongolia, and Egypt (12). 
According to the statistics of World health Organization 
(WHO), about 3% of the world’s population has been infected 
with HCV and 170 million are chronic carriers. Prevention of 
HCC associated with HCV infection is currently one of the 
most important issues in public health worldwide.

Besides HBV or HCV carriers, HCC also occurs in non-
carriers of these viruses (13,14). This may be attributable to 
other potential risk factors, such as dietary aflatoxin exposure, 
alcohol consumption, smoking, obesity, diabetes, chronic liver 
diseases. In some western countries where HCC incidence 
is low, heavy alcohol consumption, obesity and diabetes 
mellitus (DM) played important roles in liver carcinogenesis 
development (15). In South China and sub-Saharan Africa, 
digestions of dietary aflatoxin could partly contribute to the 
risk of HCC (16). Approximately one-eighth of all HCC 
cases in Japan are unrelated to HBV or HCV infection 
(17,18). Lifestyle or chronic disease-related factors such as 
alcohol consumption, obesity and diabetes are considered to 
be independently associated with the risk of HCC (19-25). 
Some additional established risk factors of HCC include iron 
overload, family history of malignant liver tumors, and possibly 
tobacco exposure (26,27).

Risk prediction models of HCC in CHB patients

Chronic carriers of HBV have an increased risk of HCC ranges 
from 5-fold to 98-fold and with a population attributable risk 
of 8% to 94% (28). It is very important to identify high-risk 
patients among carriers of CHB. This will have important 
implications for treatment allocation and strategic screening of 
HCC.

Characteristics of study populations for model derivation

By October 2015, several risk prediction models of HCC were 
developed in CHB cohorts, of which, three studies named the 
GAG-HCC score (29), CU-HCC score (30) and LSM-HCC 
score (31) were from Hong Kong, China. The GAG-HCC 
score was derived from a cohort in Liver Clinic, Queen Mary 
Hospital, University of Hong Kong. Patients who had received 
or were receiving any form of established antiviral treatment 

for CHB were excluded and their follow-up time was censored 
at the time of initiation of treatment. The CU-HCC score 
and LSM-HCC score were developed from the CHB cohorts 
referred to Prince of Wales Hospital of Chinese University of 
Hong Kong. 

Another four studies named REACH-B score (32), 
REACH-B nomogram (33), Lin-HCC score (34) and Lee-
HCC score (35) were all derived from the cohorts consisted 
of CHB patients from the R.E.V.E.A.L.-HBV Study in 
Taiwan, China. Briefly, they were community-based cohorts of 
participants seropositive for hepatitis B surface antigen (HBsAg) 
and seronegative for antibodies against hepatitis C virus (anti-
HCV). The participants did not have cirrhosis at study entry 
and did not receive antiviral treatment during follow-up. The 
last one was named Kim-HCC score (36) which was built 
from a cohort of patients with CHB who visited the outpatient 
clinic and received a transient elastography examination in the 
Institute of Gastroenterology, Korea.

In clinical practice, the GAG-score was the first model for 
risk prediction in evaluating the risk of HCC in CHB patients 
with the integration of possible independent factors. The 
REACH-B nomogram recruited the largest cohort of 3,653 
patients so far to develop the risk model which was predictive 
of HCC incidence in CHB patients with the longest period of 
follow-up for about 12 years. Selection bias in the development 
cohorts in Taiwan was minimized because the cohorts of CHB 
patients were taken from a population-based cohort. Table 1 
shows the cohorts’ characteristics of risk prediction models in 
CHB patients.

Characteristics of risk prediction models

Most risk prediction models of HCC in CHB patients 
included the following factors: age, gender, HBV-DNA 
(37), hepatitis B e antigen (HBeAg) (38) and alanine 
aminotransferase (ALT) (39). Considering that gender 
differences were usually in HBV-related HCC, even if gender 
was not statistically significant in the CU-score, LSM-score 
and Lin-score, the Lin-score was still including gender in its 
three risk models with an assigned score of 1. It was the first 
risk model that incorporates liver-related seromarkers such as 
alpha-fetoprotein (AFP) (40), serum aspartate transaminase 
(AST)/ALT ratio (AAR) (41), gamma-glutamyltransferase 
(GGT) (42) and alpha-1 globulin (43) to predict the risk of 
HCC. It is demonstrated that most of the predictors included 
in models were also seromarkers for cirrhosis and both risk 
models (model II and model III) of the Lin-score, which 
developed from the REACH-B score (model I), had good 
predictability for HCC risk, regardless of cirrhosis status.
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Among the studies which included the patients having 
cirrhosis at entry, cirrhosis/liver stiffness measure (LSM) was 
an indispensable factor (44-46). The LSM-score refined the 
CU-HCC score with LSM as the component replacing clinical 
cirrhosis. This new LSM-HCC score including LSM as a factor 
was superior in terms of accuracy and sensitivity to predict the 
risk of HCC than the CU-HCC score which classified cirrhosis 
only into two categories (yes or no).

As a factor, the point of quantitative serum HBsAg levels 
was noteworthy in the Lee-HCC score. The level of serum 
HBsAg was assessed to be an independent risk factor of 
HCC development as well as a response assessment to HCC 
surveillance and antiviral therapy. The Lee-HCC score was the 
first time simultaneously developing the prediction models to 
predict the risk of both long-term cirrhosis and HCC risk. But 
the models of risk factors were different in predicting cirrhosis 
and HCC. Supplementary Table S1 shows the characteristics of 
risk prediction models in CHB patients.

External validation and discrimination

Most of these risk prediction models were lack of external 
validation to a satisfactory extent except the REACH-B 
score. The REACH-B score had a validation on a cohort of 
1,505 patients from three hospitals in South Korea and Hong 
Kong, China. In the overall validation analyses, the model 
showed fairly good discrimination capabilities, with the area 
under receiver operating curve (AUROC) equal to 0.80 [95% 
confidence interval (95% CI), 0.78-0.82] for 5-year prediction, 
and 0.77 (95% CI, 0.75-0.79) for 10-year prediction, 
respectively. It did not show the sensitivity and specificity for 
cutoff score to detect HCC, while plotting ROC curves for 
3-year, 5-year, and 10-year risks with the 1,505 patients from 
the validation cohort. They also plotted a calibration chart for 
predicted and observed risks. The overall model showed a fairly 
good discrimination capability, with AUROC of 0.81 (95% CI 
0.79-0.83) for risk at 3 years, 0.80 (0.78-0.82) at 5 years, and 0.77 
(0.75-0.79) at 10 years. A calibration chart with both predicted 
and observed risks of HCC, showing good correlation in 
the validation cohort. The correlation coefficients between 
observed risk of HCC and mean predicted risk estimated by 
risk prediction model were greater than 0.9, showing excellent 
calibration characteristics of the risk prediction tool.

Limitations

The following are some common limitations in these risk 
prediction models. First, in the cohorts of Korea and Hong 

Kong, China, the patients recruited in hospital-based studies 
were more likely to have active disease. So the rate of HCC 
in training cohort is higher than that in patients with CHB 
infection only. However, more patients with chronic HBV 
would belong to the low-risk category in the primary care 
setting, and this would further increase the negative predictive 
value of the model for external validation.

Second, in the studies, all patients were from East Asians and 
risk factors for HCC may be different in other ethnic groups 
where fewer patients acquire HBV perinatally. The models 
needed to be independently validated before generalization to 
China Mainland, Northern and Western Africa and Southern 
Europe. It might also need to take into account diversities in 
age at infection (perinatal vs. adulthood), genetic background, 
HBV genotype or species and exposure to environmental 
factors such as dietary aflatoxin and alcohol intake. 

Third, the seromarkers in these risk prediction models may 
be dynamic and the changing patterns should be associated 
with clinical liver outcomes. Incorporating not only the baseline 
values of seromarkers, but also the follow-up values or changes 
which may increase the predictabilities of risk models and make 
them more reliable and accurate.

Last but not least, antiviral therapy created a confounding 
effect on the performance of the risk prediction model (47). But 
the patients in these HCC score studies did not receive antiviral 
therapy except the CU-HCC, LSM-HCC and Kim-HCC 
scores. The previous two models had the antiviral therapy rates 
of 15.1% and 38.0%, respectively, in the derivation cohort, and 
25.0% and 32.0%, respectively, in the validation cohorts. The 
Kim-HCC score having no validation cohort had the antiviral 
therapy rate of 37.8% in the whole cohort.

Risk prediction models of HCC in cirrhosis, 
CHC patients and general population

Most available risk prediction models for HCC were limited 
to individuals at elevated risk who were carrying HBV. There 
were small numbers of HCC risk prediction models for 
cirrhosis and CHC patients. And it was useful to estimate risk 
based not only on cirrhosis or hepatitis virus infection status, 
but also on prevalent and modifiable lifestyle-related factors. 
So simple and easy-to-administer risk prediction model which 
is based on commonly available data in general population 
would be also of great value. In a word, risk prediction models 
of HCC in cirrhosis, CHC patients and general population 
provided useful guides for people in high and average risk.
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Characteristics of study populations for model derivation

By October 2015, two risk prediction models termed ADRESS-
HCC score (48) and AFP-Based Algorithm (49) which were 
used for patients with cirrhosis were developed. The ADRESS-
HCC score based on a large U.S. cohort with cirrhosis of 
various etiologies and severe liver disease waitlisted for liver 
transplantation at 127 U.S. liver transplant centers. The AFP-
Based Algorithm identified 11,721 patients with HCV related 
cirrhosis from national Department of Veterans Affairs Clinical 
Case Registry, in whom 35,494 AFP tests were performed. A 
predictive model that included data on levels of AFP, ALT, and 
platelets, along with age at time of AFP test, best discriminated 
between patients who did and did not develop HCC. 

Two risk prediction models for patients with CHC came 
from the cohorts of patients who were from Chang Gung 
Memorial hospital of Taiwan, China. The first one was the 
Chang-HCC score (50) predicting the risk of HCC from 
patients who received combined pegylated interferon (PEG-
IFN) and ribavirin therapy to achieve sustained virological 
response (SVR). The second model was the Chang-HCC score 
(51) derived from a cohort of patients who were treated with 
interferon-based therapies. 

In general population, three predictive scoring systems for 
HCC had been introduced. The first one was the Michikawa-
HCC score (52) derived from the Japan Public Health Center-
based Prospective Study Cohort II, which covered a Japanese 
general population who participated in health checkups, 
including HBsAg and anti-HCV measurements. In Japan, 
screening for HBV and HCV is carried out during regular 
health checkups (4), so individuals can obtain information on 
their hepatitis virus infection status without further medical 
consultation. The Michikawa-HCC score also developed an 
additional model for subjects who were positive of anti-HCV 
and negative of HBsAg. The second one was the Wen-HCC 
score (53) which was established from a prospective cohort 
from a standard medical screening program conducted by 
the MJ Health Management Institution in Taiwan, China. 
Because tests for HCV infection were performed at an extra 
cost to members in Taiwan, only a subset of participants has 
the data on HCV status. So the studies divided the cohort 
into two subcohorts in order to provide more accurate risk 
prediction estimates: one cohort had the HCV test, and the 
other did not. The last model was the Hung-HCC score (54) 
which analyzed a large number (n=12,377) of subjects from 
three different observational cohorts (55-58) of Taiwan, China, 
heavily enriched in subjects with HBV infection. There were 
differences in the cohort compositions of gender, HBsAg status, 

and HCC family history because of the cohort recruitment 
policy for special interests.

It could be found that the ADRESS-HCC score and AFP-
Based Algorithm were the only two models derived from the 
U.S. cohorts, making applicability to calculate the annual 
incidence of HCC in North American population. The two 
Chang-HCC models were the only prediction models of HCC 
for patients who received antiviral therapy such as interferon, 
PEG-IFN and ribavirin combination therapy. Currently, the 
antiviral therapy can reduce HCC development and prolong 
survival in patients. So people with hepatitis virus infection 
were usually treated with antiviral therapy. However, patients 
who were able to achieve antiviral therapy remained at risk 
of developing HCC. Both of the two risk prediction models 
of HCC in general population had much larger sample size 
of subjects than risk prediction models in high-risk patients 
(Michikawa-HCC score: 17,654 subjects, Wen-HCC score: 
428,584 subjects). And the subjects in the Michikawa-HCC 
score and Wen-HCC score were from community-based 
cohorts, which help to minimize the selection bias. Table 1 
also shows the characteristics of the cohorts of risk prediction 
models in cirrhosis, CHC patients and general population.

Characteristics of risk prediction models

Age and gender were still common factors in these risk 
prediction models. Compared with other prediction models, 
risk prediction models in patients with cirrhosis included some 
unique factors such as race (non-Hispanic white vs. other), 
etiology of cirrhosis (viral vs. metabolic/alcohol vs. autoimmune 
groups) and the child-turcotte-pugh (CTP) score. The CTP 
score was calculated for each individual at listing based on the 
individual values for total bilirubin, international normalized 
ratio, and albumin in addition to the documentation of ascites 
(none, slight, or moderate) and hepatic encephalopathy (none, 
grade 1/2, or grade 2/3) as previously described (59). 

SVR was a special factor in the risk prediction models of 
HCC in CHC patients. Patients with HCV infection were 
treated with IFN, PEG-IFN and ribavirin therapy, and 
achieved SVR (60-62). In the Chang-HCC score (SVR), all 
patients were achieving SVR while in the Chang-HCC score, 
SVR was used as a prediction factor for HCC. Even though 
patients were able to achieve a SVR, they remained at risk of 
developing HCC (63,64). SVR reduced the risk of HCC as it 
was showed in the Chang-HCC score. If patients can achieve 
SVR, the average 5-year risk reduction of HCC was 4.8%, and 
the 10-year risk reduction was 10.7% when taking into account 
the effects of other factors.
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An important output is the net benefit of surveillance, 
a weighted difference between true- and false-positive 
classifications. The Hung-HCC score was the only model 
using a decision curve analysis (DCA) to determine the level of 
risk that was associated with benefit to surveillance. The model 
was superior to the current age-based criteria for subjects when 
this was plotted against the threshold probability for developing 
HCC.

To our knowledge, detailed clinical data could be readily 
available for the high-risk individuals but much less available 
for those at average or unknown risk. Besides the factors 
included in prediction models for high-risk population, body 
mass index (BMI), physical activity, diabetes, smoking, alcohol 
consumption, coffee consumption, and other environmental 
factors should be considered in the risk prediction models for 
average-risk subjects in different populations. Supplementary 
Table S2 shows the characteristics of risk prediction models in 
cirrhosis, CHC patients and general population.

External validation and discrimination

Of the 5 risk prediction models of HCC in cirrhosis, CHC 
patients and general population, only the ADRESS-HCC 
score had the external validation to examine the performance 
of the model using patients with cirrhosis enrolled in the 
HALT-C cohort (62). Of 1,050 HCV patients enrolled in the 
HALT-C study, 426 had cirrhosis at the time of enrollment 
and were included in the validation analysis. Patients with 
other concomitant liver diseases or evidence of hepatic 
decompensation were excluded. The C-index, a measure of 
discrimination (an assessment of how well the model is able to 
separate individuals into those who will and will not develop 
HCC) (65), of the ADRESS-HCC score was 0.69 (95% CI, 
0.67-0.71). When comparing the low-risk group with the 
intermediate-risk and high-risk groups (ADRESS-HCC score 
of 4.71), the prediction model was found to have such a high 
sensitivity of 0.93. Calibration chart comparing predicted and 
observed risks of HCC was also plotted, and good correlation 
in validation cohort was observed in the chart. Some additional 
good performances of the model for patients with prevalent, 
incident HCC, or those without HCC increased our confidence 
in the applicability of the ADRESS-HCC score to individuals 
with varying severity of liver dysfunction. Moreover, the 
ADRESS-HCC score is appropriate to the cirrhosis patients in 
the U.S. who were potentially eligible for transplant and other 
populations whose etiology of liver disease was similar to that in 
the ADRESS-HCC model.

Limitations

The limitations of risk prediction models in cirrhosis, CHC 
patients and general population are partly similar to those in 
CHB patients which mentioned previously. Some additional 
limitations were presented as below.

First, the validation cohort for HCC risk prediction in CHC 
patients only included cirrhosis patients with confirmed HCV 
infection so the performance of model in patients with liver 
disease from other possible etiologies could not be examined.

In addition, whether the patients had ever received antiviral 
therapy was not mentioned in detail for AFP-based Algorithm 
and ADRESS-HCC score, which enrolled the subjects with 
cirrhosis. Based on clinical practice guidelines (66,67), subjects 
with compensated cirrhosis should receive antiviral therapy 
in the absence of contraindications. If these patients received 
antiviral therapy, both risk prediction models based on serum 
AFP levels, ALT or the severity of CTP could be biased (68,69). 
While the subjects in these studies, which derive the risk 
prediction models in CHC patients, were all received antiviral 
treatment. So there was a lack of standard guidance about the 
assessment of HCC risk in CHC patients without antiviral 
therapy.

Lastly, it had no information about the treatment of the 
participants with HBV and/or HCV infection received before 
or during the study period in the prediction models of HCC 
in general population. Since the possible effects of treatment 
were not considered in the development of the two prediction 
models, the risk estimations should be interpreted with caution.

Current difficulties and future directions in 
HCC risk prediction models

Additional molecular markers improving prediction

These risk prediction models above included mainly routine 
clinical indexes because they are more likely to be used in real-
life clinical practice and were already available in the study 
cohorts. But there are additional HCC risk factors, which are 
not commonly considered in those scores, for example, HBsAg 
level, HBV genotype, host mutations, HBV mutations, anti-
HCV and platelet.

HCC is genetically a heterogeneous cancer. Few gene 
polymorphisms conferred more than a 2-fold increase in 
HCC risk (70-72). It is unlikely that a single mutation will 
have sufficient impact on HCC prediction. While for HBV 
mutations, besides the GAG-score using it as a predict factor, 
the study by Yin et al. reported that combo mutations with 
C1653T, T1753V and A1762T/G1764A observably improved 
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the validity of HCC prediction by age, male and cirrhosis (73).
These molecular markers may be useful in clinical practice 

when they have become more widely available and are better 
evaluated in combination with traditional risk factors.

Interracial external validation

Different risk prediction models had different characteristics 
of cohorts and predicting factors. Even they had partly the 
same predicting factor, the weighting of risk factors was slightly 
different. So some concerns are needed to ensure that the 
score used most closely matches the population from which 
the patient comes. For example, in North America for patients 
with advanced liver disease, the ADRESS-HCC score and 
AFP-Based Algorithm are most likely to be the most accurate, 
whereas one of the Asian-derived scores is more likely to be 
appropriate for hepatitis B in Asians.

Nowadays the challenge is obvious whether risk prediction 
models can be applied to other ethnic groups and gradually 
build up the risk prediction models with more stability and 
applicability or not. Except for the REACH-B and ADRESS-
HCC scores, the other HCC predictive models have been 
either validated with samples drawn from the same cohort as 
the derivation sets, limited by a lack of stringent validation for 
the applicability to other population, or even have no internal 
validation.

Only 2 having-external-validation models, the REACH-B 
and ADRESS-HCC scores, had similar ethnic group or 
characteristics validation to the derivation sets. Therefore, 
interracial external validation taking into account diversities in 
age at infection, genetic background, virus genotype or species, 
etc., is urgently needed for HCC prediction models, because 
the most rigorous test of a risk prediction score is applying it to 
other populations with different characteristics.

Optimize HCC risk predictions for patients on antiviral 
therapy

Antiviral therapy is the common treatment in patients at the 
risk of HCC. Based on clinical practice guidelines, subjects with 
compensated cirrhosis should receive antiviral therapy in the 
absence of contraindications (66,67). If these patients received 
antiviral therapy, most virological risk factors and ALT, AFP, 
cirrhosis may alter (68,69,74). It is unclear how to interpret 
changes in risk scores after antiviral therapy.

Most risk prediction models in CHB patients were 
constructed in untreated patients. The performance of HCC 
risk scores in treated patients has been tested in a cohort of 
1,531 patients from Hong Kong, China (75). Although the 

study suggested that the HCC risk models can also be applied 
in treated patients to predict future HCC development, the 
risk is considerably lower than that of untreated patients and 
it should be noted that not all components of the risk scores 
were important HCC risk factors. In particular, a baseline 
or on-treatment HBV DNA level of ≥2,000 IU/mL was 
no longer associated with the incidence of HCC (75). This 
was consistent with a recent validation in the era of antiviral 
therapy, which modified REACH-B score where LSM values 
were incorporated into REACH-B score instead of serum 
HBV-DNA levels, having the better prognostic performances 
for HCC development at 3-/5-year in patients with antiviral 
therapy (n=848), compared to other prediction models (CU-
HCC, GAG-HCC, REACH-B, and LSM-HCC scores). 
However, in patients without antiviral therapy (n=460), it had 
the predictive performances comparable to those of other 
models (76).

Accurate diagnosis of cirrhosis

Current treatment guidelines recommended liver biopsy in 
patients with borderline treatment indications (67,77,78), 
but the procedure was limited by its poor patient acceptance 
and invasiveness. In routine clinical practice, the diagnosis of 
cirrhosis is commonly based on abdominal ultrasonography 
or clinical characteristics of portal hypertension. Early 
cirrhosis is often undiagnosed and the risk of HCC would be 
underestimated. The necessity of using ultrasonography as a 
surveillance tool for HCC is not altered in many models and 
accuracy of these models is greatly limited.

Recently, LSM using transient elastography has been 
introduced as a promising noninvasive method for assessing 
the degree of liver fibrosis, with considerable accuracy and high 
reproducibility (79,80). It is highly reproducible and has been 
validated against liver histology in patients with CHB (44,81,82). 
Because LSM can accurately be used for the diagnosis of 
cirrhosis, it comes as no surprise that patients with high LSM 
have increased risk of HCC. Besides transient elastography, 
acoustic radiation force impulse, shear-wave elsatography 
and magnetic resonance elastography also provide physical 
measurements of liver elasticity or stiffness and have been used 
for the diagnosis of cirrhosis (83-85). However, these new 
techniques have not been widely assessed. The optimal cut-offs 
and their roles in HCC prediction are yet to be defined.

Conclusions

Over 10 risk prediction models of HCC across different 
populations were constructed so far. Risk prediction models can 
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be used to predict the risk of subsequent HCC development 
in different populations such as CHB, cirrhosis, CHC and 
general population. No scoring system is going to have 
100% predictability. All the available risk scores performed 
well, although some were better than others. Generalized 
authorization of risk prediction models should be confirmed 
using internal and external validation with a prospective manner 
in different populations. These simple tools accurately assess 
HCC risk among different groups with average or high risk. It 
may be helpful for further pursuing public health and clinical 
approaches in reducing the risk of HCC. 

Risk prediction models have not yet been widely used 
in medical and health services, because they were not from 
homogeneous characteristics of the study. Moreover, all of 
them were constructed from different numbers of sample size, 
different median times of follow-up, different areas and different 
ways of validation as well. Simple, efficient and accurate 
prediction models of HCC development constructed from 
readily available variables on clinical, laboratory, community 
settings are necessary for performing strategic processes, such 
as screening, surveillance, diagnosis and treatment of HCC in 
different populations. It is expected that standardized consensus 
on HCC risk prediction models, combining host factors, 
environmental factors, virological factors and liver-related 
seromarkers, which is based on the simple, veracious and 
assessable characteristics and available in real clinical, laboratory 
and community settings, should be established. Moreover, 
generalized authorization of risk prediction models needs to 
be confirmed by internal and external validations designed by 
prospective method in different populations of regions with 
epidemiologic versatility of HCC.
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Table S1 Characteristics of risk prediction models in CHB patients

Factors
Risk predictors

 Prediction risk score in CHB patients (category)

GAG CU LSM REACH-B REACH-B (nomogram) Lin Lee Kim

No. of model 2 1 1 1 3 3 1 1

Host factors

Age Years entered as 
continuous variable

Years entered as 
continuous variable

0 (≤50 years) 0 (≤50 years) 0 (30-34 years) 0 (30-34 years) 0 (30-34 years) 0 (30-34 years) 0 (40-44 years) 0 (40-44 years) 0 (40-44 years) 0 (30-34 years) 0 (≤50 years)

3 (>50 years) 10 (>50 years) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 1 (5-year increments) 0.05306 (>50 
years)

Gender
0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female)

16 (male) 14 (male) 2 (male) 2 (male) 2 (male) 2 (male) 1 (male) 1 (male) 1 (male) 4 (male) 1.106 (male)

Family history
0 (no) 0 (no) 0 (no)

2 (yes) 2 (yes) 2 (yes)

Environmental factors Alcohol
0 (no) 0 (no) 0 (no)
1 (yes) 2 (yes) 2 (yes)

Virological factors

HBeAg
0 (negative) 0 (negative) 0 [negative/<300 (undetectable)]* 0 [negative/<300 (undetectable)]** 0 (negative/≤10,000)*** 0 

(negative/≤10,000)*** 0 (negative/<104/<100)****

2 (positive) 3 (positive) 1 (negative/300-9,999) 1 (negative/300-9,999 ) 3 (negative/>10,000) 3 (negative/>10,000) 2 (negative/<104/100-999)

HBV DNA
(copies/mL in 

log)×3 entered as 
continuous variable

(copies/mL in log)×3 
entered as continuous 

variable

0 (≤4 log copies/mL) 0 (≤20,000 IU/
mL) 0 (<9,999 copies/mL) 3 (negative/10,000-99,999) 3 (negative/10,000-99,999/B or B+C) 6 (positive) 5 (positive) 2 (negative/<104/≥1,000) 0 (≤20,000 IU/mL)

1 (4-6 log copies/mL) 5 (>20,000 IU/
mL)

3 (10,000-99,999 
copies/mL) 4 (negative/100,000-999,999) 4 (negative/10,000-99,999/C) 3 (negative/104-106/<100) 0.50969 (>20,000 

IU/mL)

4 (>6 log copies/mL) 5 (100,000-999,999 
copies/mL) 5 (negative/1,000,000) 3 (negative/100,000-999,999/B or 

B+C) 3 (negative/104-106/100-999)

4 (≥106 copies/mL) 6 (positive) 7 (negative/100,000-999,999/C ) 4 (negative/104-106/≥1,000)

HBV genotype
4 (negative/≥1,000,000/B or B+C ) 5 (negative/≥106/any level/B or B+C)

7 (negative/≥1,000,000/C ) 7 (negative/≥106/any level/C)

Quantitative serum HBsAg levels
6 (positive/B or B+C) 6 (positive/any level/any level/B or B+C)

6 (positive/C) 7 (positive/any level/any 
level/C)

Core promoter mutations
0 (wild-type)

19 (mutant)

Liver-related seromarkers

Cirrhosis/LSM

0 (no) 0 (no) 0 (no) 0 (≤8.0 kPa) 0 (≤7.7 kPa)

30 (yes) 33 (yes) 15 (yes) 8 (8.1-12.0 kPa) 0.04858 (>7.7 kPa)

14 (>12.0 kPa)

Albumin
0 (>35 g/L) 0 (>35 g/L) 0 (>4.1 g/dL) 0 (>4.1 g/dL)

20 (≤35 g/L) 1 (≤35 g/L) 4 (≤4.1 g/dL) 3 (≤4.1 g/dL)

Bilirubin
0 (>18 μmol/L)

1.5 (≤18 μmol/L)

ALT

0 (<15 IU/L) 0 (<15 IU/L) 0 (<15 IU/L) 0 (<15 IU/L) 0 (<28 IU/L) 0 (<28 IU/L) 0 (<28 IU/L) 0 (<15 IU/L)

1 (15-44 IU/L) 1 (15-44 IU/L) 1 (15-44 IU/L) 1 (≥15 IU/L) 2 (≥28 IU/L) 5 (≥28 IU/L) 3 (≥28 IU/L) 1 (15-44 IU/L)

2 (≥45 IU/L) 3 (≥45 IU/L) 2 (≥45 IU/L) 3 (≥45 IU/L)

AAR
0 (<1) 0 (<1)

7 (≥1) 6 (≥1)

AFP
0 (<5 ng/mL) 0 (<5 ng/mL)

5 (≥5 ng/mL) 4 (≥5 ng/mL)

GGT
0 (<41 IU/L) 0 (<41 IU/L)

4 (≥41 IU/L) 4 (≥41 IU/L)

Alpha-1 globulin
0 (>0.2 g/dL) 0 (>0.2 g/dL)

2 (≤0.2 g/dL) 2 (≤0.2 g/dL)

Sum − − 0-43.5 0-30 0-17 0-17 0-20 0-20 0-15 0-33 0-33 0-19 −

CHB, chronic hepatitis B; HBV, hepatitis B virus; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; LSM, liver stiffness measure; ALT, alanine aminotransferase; AST, serum aspartate transaminase; AAR, AST/ALT ratio; AFP, alpha-fetoprotein; GGT, gamma-glutamyltransferase; *, HBeAg/HBV DNA level (copies/mL); **, HBeAg/HBV DNA level (copies/mL)/HBV genotype; ***, HBeAg/HBV DNA 
level (copies/mL); ****, HBeAg/HBV DNA level (copies/mL)/HBsAg(IU/mL)/HBV genotype.
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Table S2 Characteristics of risk prediction models in cirrhosis, CHC patients and general population

Factors
Risk predictors

Prediction risk score in cirrhosis patients (category) Prediction risk score in CHC patients (category)

ADRESS AFP-Based Algorithm (no score) Chang Chang (SVR) Michikawa

No. of model 1 1 1 1 1

Host factors

Age
years×0.0532 entered as continuous variable

√ 0 (<60 years) 0 (<60 years) 0 (40-49 years)

1 (≥60 years) 5 (≥60 years) 2 (50-59 years)

3 (60-69 years)

Gender
0 (female) 0 (female) 0 (female)

0.5114 (male) 1 (male) 2 (male)

Race
0 (non-Hispanic white)

0.2058 (nonwhite or Hispanic)

BMI
0 (<25 kg/m2)

1 (≥25 kg/m2)

DM
0 (no)

0.2135 (yes)

Environmental factors Alcohol 

0 (<450 g/week ethanol or past)

1 (never)

2 (≥450 g/week ethanol)

Virological factors

HCV genotype

0 (non G1b) −1 (ribonucleic acid-negative)

1 (G1b) 0 (G2)

2 (G1)

SVR
0 (yes)

2 (no)

Liver-related seromarkers

Cirrhosis

0 (autoimmune) 0 (fibrosis stage: 0-2) 0 (fibrosis stage: 0-2)

0.3509 (alcohol/metabolic) 2 (fibrosis stage: 3-4) 6 (fibrosis stage: 3-4)

1.246 (viral)

Severity of CTP CTP score×0.0532  entered as continuous  variable

ALT

√ 0 (<30 IU/L)

3 (30-69 IU/L)

5 (≥70 IU/L)

AFP
√ 0 (<20 ng/mL) 0 (<20 ng/mL)

1 (≥20 ng/mL) 4 (≥20 ng/mL)

Platelet
√ 0(≥150×109/L) 0(≥150×109/L)

1(<150×109/L) 4(<150×109/L)

Sum − − 0-9 0-19 −1-15



Factors
Risk predictors

Prediction risk score in general population (category)

Michikawa Wen

No. of model 1 9

Host factors

Age

0 (40-49 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years)

2 (50-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years) 2 (40-59 years)

3 (60-69 years) 6 (≥60 years) 6 (≥60 years) 6 (≥60 years) 6 (≥60 years) 6 (≥60years) 6 (≥60 years) 6 (≥60 years) 6 (≥60 years) 6 (≥60 years)

Gender
0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female) 0 (female)

2 (male) 2 (male) 2 (male) 1 (male) 1 (male) 1 (male) 1 (male) 1 (male)

BMI
0 (<25 kg/m2)

1 (≥25 kg/m2)

Physical activity
0 (<3.75 MET-h) 0 (<7.5 MET-h) 0 (<7.5 MET-h) 0 (<7.5 MET-h)

−1 (≥3.75 MET-h) −1 (≥7.5 MET-h) −1 (≥7.5 MET-h) −1 (≥7.5 MET-h)

DM
0 (no) 0 (no) 0 (no) 0 (no) 0 (no) 0 (no) 0 (no) 0 (no)

1 (yes) 2 (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes)

Environmental factors

Smoking
0 (<1 pack-years) 0 (<1 pack-years) 0 (<10 pack-years) 0 (<10 pack-years) 0 (<10 pack-years) 0 (<10 pack-years) 0 (<10 pack-years)

1 (≥1 pack-years) 1 (≥1 pack-years) 1 (≥10 pack-years) 1 (≥10 pack-years) 1 (≥10 pack-years) 1 (≥10 pack-years) 1 (≥10 pack-years)

Alcohol

0 (<450 g/week ethanol) 0 (none or occasional) 0 (none or occasional) 0 (none or occasional) 0 (none or occasional) 0 (none or occasional) 0 (none or occasional) 0 (none or occasional)

1 (never or past) 1 (regular) 1 (regular) 1 (regular) 1 (regular) 1 (regular) 1 (regular) 1 (regular)

2 (≥450 g/week ethanol))

Coffee
0 (almost never to <1 cup/d)

−1 (≥1 cup/d)

Virological factors

Anti-HCV
0 (negative) 0 (negative)

6 (positive) 5 (positive)

 HBsAg
0 (negative) 0 (negative) 0 (negative) 0 (negative)

4 (positive) 4 (positive) 4 (positive) 6 (positive)

Liver-related seromarkers

ALT
0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L)

2 (≥25 IU/L) 1 (≥25 IU/L) 1 (≥25 IU/L) 3 (≥25 IU/L) 1 (≥25 IU/L) 2 (≥25 IU/L) 2 (≥25 IU/L)

AFP

0 (<2.5 ng/mL) 0 (<2.5 ng/mL) 0 (<2.5 ng/mL)

1 (2.5-4.9 ng/mL) 2 (2.5-4.9 ng/mL) 2 (2.5-4.9 ng/mL)

4 (5.0-9.9 ng/mL) 5 (5.0-9.9 ng/mL) 5 (5.0-9.9 ng/mL)

8 (≥10.0 ng/mL) 9 (≥10.0 ng/mL) 9 (≥10.0 ng/mL)

AST

0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L)

5 (25-39 IU/L) 4 (25-39 IU/L) 4 (25-39 IU/L) 4 (25-39 IU/L) 5 (25-39 IU/L) 4 (25-39 IU/L) 4 (25-39 IU/L)

9 (40-59 IU/L) 9 (40-59 IU/L) 7 (≥40 IU/L) 8 (40-59 IU/L) 8 (40-59 IU/L) 6 (40-59 IU/L) 6 (40-59 IU/L)

13 (≥60 IU/L) 12 (≥60 IU/L) 11 (≥60 IU/L) 11 (≥60 IU/L) 8 (≥60 IU/L) 7 (≥60 IU/L)

Sum −1-19 −1-12 0-23 −1-23 −1-30 −1-10 0-21 0-21 0-32 0-39



Factors
Risk predictors

Prediction risk score in general population (category)

Hung

No. of model 4

Host factors

Age

0 (20-39 years) 0 (20-39 years) 0 (20-39 years) 0 (20-39 years)

3 (40-49 years) 3 (40-49 years) 3 (40-49 years) 3 (40-49 years)

5 (50-59 years) 5 (50-59 years) 5 (50-59 years) 5 (50-59 years)

7 (≥60 years) 7 (≥60 years) 7 (≥60 years) 7 (≥60 years)

Gender
0 (female) 0 (female) 0 (female) 0 (female)

3 (male) 3 (male) 3 (male) 3 (male)

First-degree family history of HCC
0 (no) 0 (no) 0 (no)

2 (yes) 2 (yes) 2 (yes)

Environmental factors Smoking
0 (<18 pack-years) 0 (<18 pack-years) 0 (<18 pack-years)

1 (≥18 pack-years) 1 (≥18 pack-years) 1 (≥18 pack-years)

Virological factors

HBsAg or Anti-HCV
0 (negative)

9 (positive)

 HBsAg
0 (negative)

7 (positive)

Liver-related seromarkers

ALT
0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L) 0 (<25 IU/L)

3 (≥25 IU/L) 3 (≥25 IU/L) 3 (≥25 IU/L) 3 (≥25 IU/L)

Previous CLD
0 (no) 0 (no) 0 (no)

3 (yes) 3 (yes) 3 (yes)

Sum 0-13 0-19 0-26 0-28

CHC, chronic hepatitis C; HCV, hepatitis C virus; CLD, chronic liver disease; BMI, body mass index; DM, diabetes mellitus; Anti-HCV, anti-hepatitis C virus antibody; HBsAg, hepatitis B surface antigen; SVR, sustained 
virological response; CTP, Child-Turcotte-Pugh; ALT, alanine aminotransferase; AFP, alpha-fetoprotein; AST, serum aspartate transaminase; MET, metabolic equivalent.


