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ABSTRACT
Prediction models are increasingly used to complement
clinical reasoning and decision making in modern
medicine in general, and in the cardiovascular domain in
particular. Developed models first and foremost need to
provide accurate and (internally and externally) validated
estimates of probabilities of specific health conditions or
outcomes in targeted patients. The adoption of such
models must guide physician’s decision making and an
individual’s behaviour, and consequently improve
individual outcomes and the cost-effectiveness of
care. In a series of two articles we review the
consecutive steps generally advocated for risk
prediction model research. This first article focuses
on the different aspects of model development
studies, from design to reporting, how to estimate
a model’s predictive performance and the potential
optimism in these estimates using internal validation
techniques, and how to quantify the added or
incremental value of new predictors or biomarkers (of
whatever type) to existing predictors. Each step is
illustrated with empirical examples from the
cardiovascular field.

INTRODUCTION
Risk prediction models use predictors (covariates)
to estimate the absolute probability or risk that
a certain outcome is present (diagnostic prediction
model) or will occur within a specific time period
(prognostic prediction model) in an individual with
a particular predictor profile.1e5 A model refers to
the (mathematical) function which relates the
presence or occurrence of the outcome of interest to
a set of predictors. Predictors may range from
subject characteristics (eg, age and sex), history and
physical examination results, to imaging, electro-
physiology, blood, urine, coronary plaque or even
genetic markers. In the cardiovascular domain, well
known prediction models are the Framingham,6

SCORE,7 ASSIGN,8 EUROSCORE,9 PROCAM10

and Wells’ scores.11 12 Prediction models are devel-
oped, in most cases, to guide healthcare profes-
sionals and individuals in their decision making
regarding further managementdincluding addi-
tional testing and initiating or withholding
treatment(s) and lifestyle changesdto inform
individuals about their risks of having (diagnosis) or
developing (prognosis) a particular disease or
outcome.13 They are not meant to replace qualita-
tive reasoning of healthcare professionals or to take
over their job, but rather to supplement their

reasoning and decision making by providing more
objectively estimated probabilities.13e17

In the current era of risk-tailored and personalised
cardiovascular care, studies on prediction models are
abundant.18e20 This will only further increase with
the ever-increasing interest in searching for novel
(cardiovascular) biomarkers, varying from simple
blood markers, such as C-reactive protein, to more
invasively measured markers in atherosclerotic
plaque material,21 cellular markers22 and genetic or
proteomic markers.23 The recent statement of the
American Heart Association on criteria for the
(phased) evaluation of markers of cardiovascular
risk24 underlines this increase. A key term in this
statement was ‘multivariable prediction model’;
cardiovascular markers should not (simply) be
evaluated in isolation for their predictive abilities
but rather on their added predictive contribution
beyond existing or established predictors requiring
a multivariable approach in design, conduct, anal-
yses and reporting.25 Thus, if there are known
predictors or even existing prediction models for the
outcome under study, researchers should quantify
whether they may be usefully extended with the
new marker, or whether existing predictors may
even be replaced by it. This recommendation24 25 is
of utmost importance in the ‘omics’ setting
where huge numbers of markers are usually studied
in high-throughput studies, and frequently each
genetic marker is tested separately for its associa-
tion with the outcome. Besides the considerable
danger of false positive findings,26e28 the predictive
ability of a marker in isolation is no guarantee
of a true predictive role beyond established
predictors.29

This increased attention to multivariable predic-
tion models does not automatically imply that
prediction model research is well conducted and
reported. Various reviews have discussed the poor
reporting and conduct in the field of clinical
prediction modelling.30e35 This has also led to the
recent Genetic Risk Prediction Studies (GRIPS)
statement to strengthen the reporting and, indi-
rectly, conduct of risk prediction studies with
genetic predictors.36 37 Moreover, the number of
published prediction models, even for the same
disorder or clinical domain, has sharply increased in
the last decade.2 Currently, it is often hard for
practitioners to determine whether and when to
use which particular model, to support their deci-
sion making. A consequence may be lack of confi-
dence in the modelling approach to prediction and,
instead, a reliance on personal judgement alone.
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Prompted by these reviews, in a series of two articles we
provide an overview of the three successive steps in prediction
model research. As we recently described,13 38e40 these steps
involve studies aimed at developing and internally validating
a prediction model; testing, and if necessary, adjusting or updating
the model for other individuals (external validation); assessing the
model’s impact on therapeutic management and individual
outcomes. This first article of the series focuses on the first step,
including the assessment of the incremental value of a new
predictor, while the other two steps are covered in the second
article.41 For each step we discuss the main issues of design,
analysis and interpretation, and illustrate these with empirical
examples from the cardiovascular domain. Our aim is to better
guide healthcare professionals to interpret the massive number of
papers in the field of cardiovascular prediction modelling.

FOCUS OF THE SERIES
We focus on prognostic prediction models in cardiovascular
medicine, but the issues addressed can be applied to diagnostic
prediction models. Diagnostic models typically focus on
prediction of the presence or absence of disease (binary
outcome). Prognostic models use similar reasoning and similar
binary outcomes if the follow-up period is relatively short,
although frequently prognostic outcomes are captured in the
form of times from a well defined time origin until their
occurrence much later (eg, years) in time (ie, time to event
outcome). Moreover, prognostic cardiovascular prediction
models can be developed for primary or secondary prevention.
Many cardiovascular disease (CVD) scores have been developed

from individuals selected from the general population to predict
future CVD events, such as the above-mentioned Framingham
risk score,6 or from more specific population subgroups, such as
the ADVANCE CVD risk score,42 which was developed from
individuals with diabetes. Finally, we focus on models developed
to predict the risk of developing (‘hard’) outcome events, such as
myocardial infarction, stroke or cardiovascular-related death,
rather than on the prediction of continuous outcomes (such as
blood pressure, haemoglobin A1c levels, coronary artery calcium
scores, or quality of life), simply because most prediction
models, by far, are risk prediction models.

DEVELOPING A PREDICTION MODEL
The development of a multivariable prediction model generally
requires identification of the important predictors out of a set of
preselected candidate predictors; assigning the relative weights
for each predictor in a combined risk score; estimating the
model’s predictive performance including its calibration,
discrimination and (re)classification properties; assessing its
potential for optimism using so-called internal validation tech-
niques; and, if necessary, adjusting the model for over fitting.13

Box 1 provides an overview of the most important issues in
studies aimed at developing a prediction model. Below we
highlight a few specific issues.

Source of data
The data for developing a prognostic prediction model would
ideally come from a prospective cohort, or cohorts. Randomised
trials are a special form of prospective cohort study,5 hence trial

Box 1 Guide on the main design and analysis issues for studies aimed at developing a prediction model, including estimating
the added value of a new predictor or (bio)marker

Design
< Objective: to develop a model/tool to enable objective estimation of outcome probabilities (risks) according to different combinations of

predictor values.
< Study participants: individuals with the same characteristic, for example, individuals with a particular symptom or sign suspected of

a particular disease or with a particular diagnosis, at risk of having (diagnostic prediction model) or developing (prognostic prediction
model) a specific health outcome.

< Sampling design: cohort, preferably prospective to allow for optimal documentation of predictors and outcomes, including a cohort of
individuals that participated in a randomised therapeutic trial. Caseecontrol studies are not suitable, except nested caseecontrol or
caseecohort studies.

< Outcomes: relevant to individuals, and preferably measured without knowledge of the measured predictor values. Methods for outcome
ascertainment, blinding for the studied predictors and duration of follow-up (if applicable) should be clearly defined.

< Candidate predictors: theoretically, all potential and not necessarily causal correlates of the outcome of interest. Commonly, however,
pre-selection based on subject matter knowledge is recommended. Similar to the outcomes, candidate predictors are clearly defined and
measured in a standardized and reproducible way.

Analysis
< Missing values: analysis of individuals with only completely observed data may lead to biased results. Imputation, preferably multiple

imputation, of missing values often yields less biased results.
< Continuous predictors: should not be turned into dichotomies and linearity should not be assumed. Simple predictor transformation can

be implemented to detect and model non-linearity, increasing the predictive accuracy of the prediction model.
< Predictor selection in the multivariable modelling: selection based on univariable analysis (single predictoreoutcome associations) is

discouraged. Preferably, if needed, backwards selection or a full model approach should be used, depending on a priori knowledge.
< Model performance measures: discrimination (eg, c-index), calibration (plots), and (re)classification measures.
< Internal validation: bootstrapping techniques can quantify the model’s potential for overfitting, its optimism in estimated model

performance measures and a shrinkage factor to adjust for this optimism.
< Added value of predictor/test/marker: should be pursued for subsequent (or new) predictors, certainly if its measurement is burdensome

and costly. Since overall performance measures (eg, c-index) are often insensitive for small improvements, reclassification measures
may be used for this purpose.
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data are also suitable for developing a prognostic prediction
model. However, the predictive effects of the randomised
treatments should be tested in the model. Prognostic models
obtained from randomised trial data may be less generalisable
due to, for example, strict eligibility criteria, increasing the need
for testing such models in a non-randomised setting.13 Retro-
spective cohort studies, using existing subject data usually
documented for other reasons such as routine care hospital
records, can address longer follow-up times but usually at the
expense of poorer, less systematically obtained data.13 Unfor-
tunately, the prognostic literature is dominated by retrospective
studies. Finally, typical caseecontrol studies, in which cases and
controls are sampled from a source population of unknown size,
are efficient for studies aimed at finding the independent
predictors of an outcome out of a larger set, but not for devel-
oping a prediction model. This is because this design does not
allow for estimation of absolute risks, as the correct baseline risk
or hazard cannot be retrieved from the data. This is only possible
when using a nested caseecontrol or caseecohort design.25 43

The latter designs are particularly cost-effective if predictor
measurements are relatively expensive (eg, for imaging markers)
or burdensome, if many predictors need to be measured (eg, in
proteomic and genomic marker studies), when the outcome is
rare and for reanalysis of human material stored in biobanks.25

Outcomes
Outcomes for (prognostic) prediction studies would preferably
be those that matter to individuals or patients. These could
include death and disease reoccurrence or remission of disease.
The duration of follow-up for outcome data collection and
methods for outcome measurement and ascertainment should
be clearly defined. Ideally, to avoid possible bias, outcome
measurement should be blinded to or independent of any
knowledge of the predictors under consideration.

Candidate predictors
Candidate predictors are variables that are chosen to be studied
for their predictive performance. We stress that these are
predictors that are eventually considered in the multivariable
analysis and certainly not those eventually included in the final
model derived after some predictor selection methods (see
below). Candidate predictors can include subject demographics,
clinical history, physical examination, disease characteristics,
test results and, as discussed above, previous treatments.
Theoretically, all variables suspected of being associated with the
outcome of interest could be considered as candidate predictors,
but this association does not need to be causal. Examples of
highly predictive, but non-causal, factors in prediction models
are skin colour in the Apgar score and tumour markers as
predictors of cancer progression or recurrence.13

Researchers frequently measure more predictors than can
reasonably be analysed, let alone be included, in the ensuing
model. To reduce the risk of false positive findings (predictors),
the so-called ‘EPV (events per variable) 1 to 10 rule of thumb’ is
often applied. This rule, which is not based on convincing
scientific reasoning, suggests that at least 10 individuals having
(developed) the event of interest are needed per candidate
variable/predictor to allow for reliable prediction modelling.44 45

Accordingly, some a priori predictor reduction is often
needed. For example, one may combine similar predictors to
a single one (eg, define ‘cardiovascular disease history ’ as one
predictor including all different types of cardiovascular disor-
ders) or exclude predictors that are highly correlated with
others.46

Finally, predictors should be clearly defined, and measured in
a standardised and reproducible way to improve the applicability
and predictive stability of the ensuing model by others in new
individuals.47 If one wants to formally quantify whether
a specific predictor (eg, some imaging test result) may replace
existing predictors (eg, some specific metabolomic or genetic
marker), the observer of the former should be blinded to
the results of the latter, and vice versa, to prevent so-called
incorporation bias.48

Data quality
There is unfortunately no consensus on how to evaluate the
quality of the data. Investigators must use their judgement. If
possible, measurements of the candidate predictors and
outcomes should be standardised across participating centres
and/or professionals. Predictors for which there is evidence of
considerable measurement error or inter-observer variability may
be less suitable because these will very likely yield a different
predictive ability of the model when tested or applied in other or
future individuals.

Missing data
Missing values are common in medical research, including
prediction research.49 50 The potential influence of missing
values on study results increases with the percentage of data
that are missing. Missing data are usually related, directly or
indirectly, to other subject information or variables, including
the outcomes under investigation. Hence, missing data are
usually selectively missing. Therefore, simply excluding the
participants with missing values from the analysis reduces the
effective sample size and may also lead to inaccurate estimates
of the predictoreoutcome associations and the predictive
performance of the final model because the individuals with
completely observed data are then not a random subsample of
the original study sample.51e57 Imputation techniques, espe-
cially multiple imputation, have increasingly been advocated to
address the issue of missing values.51e55 57

In multiple imputation, for any variable (candidate predictors
or outcomes) with a missing value, so-called multivariable
imputation models are developed using the individuals with
observed data. These imputation models are subsequently
applied to each individual with a missing value, when the
individual’s other but observed variables are used to estimate
and replace the missing value, resulting in a full dataset called an
‘imputed dataset’. This process is performed multiple times (eg,
10 times) yielding different imputation models and thus
different imputed datasets. Typical prediction modelling anal-
yses (see below) can then be applied to each imputed dataset to
estimate the predictor ’s (for example HR’s or OR’s), and other
predictive performance statistics. Finally, using standard proce-
dures, these multiple analysis results are simply averaged to
produce one overall result, with accompanying standard errors
or CIs accounting for the fact that not all data were actually
observed but were partly estimated.51e55 57

Another consideration with missing data is whether a variable
that is used to develop the score and is frequently missing in the
study may also be unavailable in populations to which the score
will later be applied. If so, it is sensible to omit it from consid-
eration in the prediction model.

Modelling continuous predictors
The temptation to convert a continuous variable into categories
should be resisted, largely because it loses information compared
with when the continuous form of the variable is used.46 58e61

Heart 2012;98:683e690. doi:10.1136/heartjnl-2011-301246 685

Review

 group.bmj.com on December 2, 2013 - Published by heart.bmj.comDownloaded from 

http://heart.bmj.com/
http://heart.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


However, linearity of the continuous predictoreoutcome asso-
ciation should not automatically be assumeddto do so can
lead to incorrect interpretation of the effects of the predictor
and inaccurate predictions when the model is applied in new
individuals. Simple predictor transformations should be
systematically tested to explore non-linearity. Such trans-
formations include fractional polynomials and restricted cubic
splines.46 58e61

Developing the final model (predictor selection)
There is no consensus about the best method of arriving at the
final model; that is, how candidate predictors are to be selected
for inclusion in the multivariable analyses and subsequently
how predictors are selected for inclusion in the final prediction
model. Two broad common strategies are found in the literature,
with variants within each strategy: full model versus predictor
selection strategy.

In the full model approach, all a priori selected candidate
predictors are included in the multivariable analyses and no
further predictor selection is used: all candidate predictors are
included in the final prediction model. Proponents argue that this
avoids so-called predictor selection bias (eg, incorrectly including
spurious predictors in the final model) and overfitting.2 46 The
full model, however, is often not easy to define as it requires prior
knowledge about the most promising candidate predictors,
certainly when the number of events is limited and studying too
many candidate predictors must be avoided.46 62

The other main approach is the use of predictor selection in
the multivariable analyses. Here, candidate predictors that do
not contribute usefully in the multivariable model are removed.
Backward elimination starts with all candidate predictors in the
multivariable model and runs a sequence of tests to remove or
keep variables in the model based on a predefined nominal
significance level for variable exclusion, for example, using the
log likelihood ratio test for comparing two models. Conversely,
in the less preferable forward selection approach, the model is
built up in steps from the best candidate predictors.63 Compared
with backward elimination, forward selection does not provide
for a simultaneous assessment of the effects of all candidate
variables.29 In addition, correlated variables may remain in the
model using backward elimination, while none of them might
enter the model using forward selection.64

The choice of a relatively small significance level (eg, p<0.05
or even p<0.01) generates models with fewer predictors, though
missing potentially important predictors, while larger levels (eg,
p<0.20 or p<0.25) increase the risk of selecting less important
predictors. In both cases, so-called overfitted models may arise,
specifically in small datasets. Selection additionally leads to
unstable models because the selected predictors will vary
depending on the specifics of the dataset at hand. Therefore,
regardless of which type of variable selection and p value is used,
subsequent internal validation of the modelsdusing, for
example, bootstrapping techniques in which this predictor
selection process is repeated in every bootstrap sample (see
below)dis recommended to gain insight into the likelihood of
the model missing important variables, being overfitted or
unstable.46 62

Regardless of which predictor selection method is used in the
multivariable analyses, in line with previous studies, we suggest
not excluding predictors for multivariable analyses on the sole
consideration that a predictor is not statistically significantly
related to the outcome (eg, not having a p value<0.05) in the
univariable analysis.38 46 62 65e67 Univariable analyses estimate
each individual predictoreoutcome association.

Assigning the relative weight per predictor
The multivariable analysis estimates regression coefficients (eg,
log odds or HR) of each predictor included in the final model,
which are mutually adjusted for the other predictors in the
model. The coefficients thus quantify the contribution of each
predictor to the outcome probability or risk estimation. More
technically, a regression coefficient indicates the effect of a one-
unit (or one-step in the case of categorical variables) increase in
the level of the relevant predictor on the estimated outcome risk
when other predictors in the model are kept constant. Another
important parameter from a regression analysis in prediction
modelling research is an estimate of the baseline probability or
risk (or hazard)dthe estimated risk (hazard) for an individual
with all predictor values being zero. For logistic regression the
baseline risk is indicated by the model’s intercept. For Cox
survival models, which have no intercept, the baseline event risk
can be estimated separately.2 Accordingly, predicted probabilities
for developing the event within a certain time period can be
calculated for individuals by combining the intercept or esti-
mated baseline hazard, the observed values of the predictors and
the corresponding regression coefficients in mathematical func-
tions that are specific to the statistical methods used to develop
the model. Below we provide various examples, with a logistic
model and a Cox model.

Assessing the predictive performance
Discrimination and calibration are key aspects of predictive
performance of prediction models. Calibration is the agreement
between the probability of developing the outcome of interest
within a certain time period as estimated by the model and the
observed outcome frequencies. It is ideally assessed graphically
by plotting the observed outcome frequencies against the mean
predicted outcome probabilities or risks, within subgroups of
participants that are ranked by increasing estimated proba-
bility.46 62 The plot can be supplemented with formal statistical
testing for goodness of fit. This is generally done by using the
Hosmer and Lemeshow test suitable for logistic68 or survival69

models, and equivalents,70 71 although these tests tend to reflect
good model fit due to their lack of statistical power.
Discrimination is the ability of a model to distinguish indi-

viduals who experienced the outcome from those who remained
event free, and can be estimated both for logistic models and
survival models. Several statistics are available to summarise
discrimination, though the c-index (equal to the area under the
receiver operating characteristic curve for logistic models)
seems the most widely used. Generalised versions of the c-index
for survival analysis, allowing for censoring, have been
developed.69 72e74 For a prognostic model, the c-index is the
chance that given two individuals, one who will develop
the event of interest and one who will remain event free, the
prediction model will assign a higher probability of an event to
the former.

Internal validation
Prediction models can be expected to perform optimistically in
the data sample from which they are developed compared with
the performance found when tested in new but comparable
individuals. This is simply because the model was designed to
optimally fit the development sample but becomes less accurate
when tested in new but similar individuals (overfitting). The
potential for optimism in model performance increases when
the number of outcomes/events in the development sample
decreases and the number of candidate predictors in the devel-
opment sample (relative to the number of events) increases.
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Furthermore, model performance is often best when no predic-
tion selection strategies are used.46 62 67 75

To estimate the potential for overfitting and optimism in
model performance, internal validation techniques are advo-
cated. Internal validation means that no other data than the
study sample are being used. Although this is commonly done
by randomly splitting the dataset into two subsets, a develop-
ment sample (eg, two-thirds of the original dataset) and a vali-
dation sample, this approach is statistically inefficient (ie, it
‘wastes data’) because not all available data are used to produce
the prediction model. Also, there is an issue of ‘replication
instability ’ in that different random splits give different
results. Bootstrapping is therefore the preferred method for
internal validation, certainly when the development sample is
relatively small and/or a high number of candidate predictors is
studied.38 46

In medical research, a study sample is supposed to be
a random draw from a larger (theoretical) target or source
population. When a new sample is randomly drawn, it will be
similar but not identical, and estimated predictoreoutcome
associations and model performances (eg, c-index) may differ
due to this sampling effect. The larger the study sample, the
more it reflects the source population, and the less the perfor-
mance in the study sample deviates from the performance that
would theoretically be found in the source population. Boot-
strapping is a statistical method that aims to mimic this
sampling process using only the data at hand by sampling with
replacement a study sample of the same size (to preserve the
precision) from the original study sample in which the predic-
tion model was developed. Drawing with replacement mimics
that random component, making bootstrap samples similar but
not identical to the original study sample. In each bootstrap
sample (often 100 or 500 samples), the data are analysed as in
the original study sample, repeating each step of the model
development including applied predictor selection strategies.
This may yield a different model developed from each bootstrap
sample with corresponding c-index. Subsequently, each boot-
strap model is applied to the original study sample (mimicking
the source population), yielding a difference in c-index. The
average of all these ‘c-index differences’ indicates the optimism
in the apparent c-index of the prediction model that was initially
developed in the original study sample.2 46 76

With bootstrapping, all data are thus used for model devel-
opment and it provides insight into the extent to which the
developed model (in the original study sample) is overfitted and
too optimistic. Moreover, bootstrapping techniques can
account for the influences of all predictor selection steps taken
in the analyses by repeating the entire selection process in every
bootstrap sample. Finally, bootstrapping provides two key
estimates: an estimate of the optimism in predictive perfor-
mance of the developed model, with which the c-index can be
adjusted (lowered) to better approximate the expected model
performance in new samples; and a so-called shrinkage factor
which can be used to adjust the estimated regression coeffi-
cients in the final model for overfitting.2 46 76 Thus, bootstrap-
adjusted performance (eg, c-index) better reflects what can be
expected when the model is tested or applied in new individuals
from the same theoretical source population. Obviously, the
larger the development dataset, the smaller the chance that
bootstrapping will reduce optimism. This is not a failing of the
bootstrap; it is simply that model building is more reliable and
less data driven in larger study samples. We emphasise that no
internal validation methods can be a substitute for external
validation.41

Presentation of the model
The final prediction model should always be presented as the
original regression model equation, that is, regression coefficients
(including the intercept for a logistic model). Accordingly, future
researchers and users can apply the model to new individuals to
obtain predicted risk. Such a model can also be made available as
an online calculator (see eg, http://ASSIGN-score.com) or as
a nomogram.46

A model can also be presented as a simplified but approximate
model or scoring rule when the original predictor weights
(regression coefficients) are converted and rounded to numbers
that are easy to add, which are then related to absolute outcome
probabilities.77 How this approximation is done has implications
for the impact of the model in practice (as discussed in the next
paper of this series). Moreover, such rounding and simplification
typically leads to loss of information conveyed by the predictors,
and thus to a reduction in predictive performance (eg, c-index).
Hence, it is recommended to also provide the c-index of the
simplified model to enable readers to compare it with the
original, untransformed model performance.

EMPIRICAL EXAMPLE 1: DEVELOPMENT OF THE ADVANCE CVD
PREDICTION MODEL
The ADVANCE study was a randomised trial of the efficacy of
blood pressure and glucose control on macrovascular and
microvascular events among high-risk individuals with type 2
diabetes.78 These data were subsequently used to develop
a prediction model for the risk of developing major CVD in
individuals without a history of the disease: 66% (7550) of the
total study population.42 The model development included the
following steps:
< Cox proportional hazard (PH) analysis was used for model

development, accounting for the observed follow-up time for
all eligible participants, up to the 75th percentile (4.5 years)
of the total study duration. This choice was made to avoid
the likely influence of longer follow-up duration among few
participants on model estimates. The model was then fitted
over the first 4 years of follow-up as the participants had at
least been followed until this duration, such that the baseline
event or survival probability for 4 years could be accurately
derived.

< The authors a priori selected 26 candidate predictors,
including randomised treatment allocation, on the basis of
prior (clinical and literature) knowledge of their association
with the outcome and their ease of availability in routine
diabetes practice.

< A total of 473 major cardiovascular events were recorded
during the follow-up, yielding 18 events per candidate
predictor.44

< 5% of the 7550 participants had missing data. The authors
excluded these participants because the characteristics,
including outcome incidences, were largely similar to those
of participants with completely observed data.

< Because of their skewed distributions, urinary albumin/
creatinine ratio, serum creatinine and triglycerides were
transformed to approximate normality by taking logarithms.
All other continuous variables were modelled as linear after
testing for the assumption of linearity.

< The multivariable model was fitted using backwards selection
by eliminating candidate predictors one by one using the 5%
significance level. Predictors eliminated were re-entered in the
eventual final multivariable model to ensure that no omitted
predictor significantly reduced the log likelihood (c2) of the
model.79

Heart 2012;98:683e690. doi:10.1136/heartjnl-2011-301246 687

Review

 group.bmj.com on December 2, 2013 - Published by heart.bmj.comDownloaded from 

http://heart.bmj.com/
http://heart.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


< The authors estimated the c-index and assessed calibration
using the modified Hosmer and Lemeshow test for survival
data69 in the cohort that was used to build the model
(apparent performance). The c-index was then adjusted for
optimism using bootstrapping techniques (internal valida-
tion). The Hosmer and Lemeshow test was computed by
comparing the estimated probability of CVD from the model
to the observed probability of CVD from KaplaneMeier
estimates within subgroups of participants ranked by
increasing estimated probabilities.69

Table 1 shows the final ADVANCE model. Positive regression
coefficients indicate an increased risk of CVD. The apparent c-
statistic was 0.702 (0.676e0.728); after bootstrapping this fell to
0.699 (0.695e0.702). The p value for the Hosmer and Lemeshow
test was 0.76, indicating good agreement between observed and
predicted probability overall and within subgroups of partici-
pants ranked by increasing predicted probabilities.

ASSESSING THE ADDED VALUE OF A NEW PREDICTOR
OR (BIO)MARKER
Every new predictor, test or (bio)marker differs in predictive
accuracy, invasiveness and cost of its measurement. Accordingly,
tests or markers, especially those whose collection requires more
burdensome and costly measurement, should not be evaluated
on their individual predictive abilities but rather on the incre-
mental predictive value beyond established, and easy to obtain,
predictors.24 25 80 Measures of discrimination such as the c-
statistic are insensitive to detecting (small) improvements in
model performance when a new marker is added to a model that
already includes important predictors.65 81e83 Prompted by this,
there has been a recent trend towards new metrics which esti-
mate the added value of predictors. These quantify the extent to
which an extended model (with addition of a subsequent
predictor or marker) improves the classification of participants
with and without the outcome compared with the basic model
without that predictor.82e86 For example, the net reclassification
improvement (NRI) does this by quantifying the number of
individuals that are correctly reclassified into clinically mean-
ingful higher or lower risk categories with the addition of
a new predictor, using pre-specified risk groups.84 Correct

reclassifications are shifts to a higher risk category in cases and
shifts to a lower risk category in non-cases. Definition of these
risk groups, however, is often arbitrary and differs across studies,
which may compromise comparisons of NRIs from different
studies. To circumvent this problem, a version of the NRI that
does not require stratification of the population into risk group
may be used.87 Alternatively, the integrated discrimination
improvement (IDI) may be useful. In contrast to the NRI, the
IDI does not require subjectively, predefined risk thresholds. The
IDI is the estimated improvement in the average sensitivity of
the basic model with addition of the new predictor minus the
estimated decrease in the mean specificity, summarised over all
possible risk thresholds.84

EMPIRICAL EXAMPLE 2: ADDED VALUE OF EGFR TO THE
ADVANCE CVD PREDICTION MODEL
The ADVANCE investigators tested whether an extended model
that additionally included the estimated glomerular filtration
rate (eGFR) could improve predictions. They calculated the
eGFR using the modification of diet in renal disease (MDRD)
formula.88 The apparent c-statistic for this extended model
(0.702) was similar to the basic model in table 1. They further
compared the two models by assessing the NRI for three
predefined risk categories (table 2).84 In 429 participants who
developed a major CVD event during follow-up, the extended
model reclassified only two participants correctly upward
(improvement) and three other participants incorrectly down-
ward (deterioration), with a net loss in reclassification among
the cases of 0.23%. In the 6739 participants who remained event
free during follow-up, the extended model reclassified 82
correctly downward (improvement) and 67 incorrectly upward
(deterioration), with a net gain in reclassification among the
non-cases of 0.24%. The overall NRI was thus 0.01% (p¼0.99),
giving another indication that the two models were similar,
with no indication that eGFR added additional prognostic value
over and above the variables shown in table 1.

CONCLUDING REMARKS
Modern medicine, in general, and cardiovascular medicine, in
particular, increasingly relies upon diagnostic and prognostic

Table 1 Regression coefficients (95% CI) and SE for predictors in the final ADVANCE cardiovascular disease prediction model42

Variable Coefficient (SE) p Value*

Age at diagnosis (per 1 year increase) 0.062 (0.008) <0.001

Sex (women vs men) �0.474 (0.098) <0.001

Known duration of diabetes (per 1 year increase) 0.083 (0.010) <0.001

Pulse pressure (per 1 mm Hg increase) 0.007 (0.003) 0.016

Retinopathy (yes vs no) 0.383 (0.101) <0.001

Atrial fibrillation (present vs absent) 0.601 (0.154) <0.001

HbA1c (per 1% increase) 0.099 (0.027) <0.001

Log of urinary albumin/creatinine ratio (per 1 log mg/g increase) 0.193 (0.033) <0.001

Non-HDL cholesterol (per 1 mmol/l increase) 0.126 (0.034) <0.001

Treated hypertension (yes vs no) 0.242 (0.106) 0.022

Consider for example, a man diagnosed with diabetes at the age of 50, with a known duration of diabetes of 3 years, a pulse pressure of 50 mm Hg and treated for hypertension, a urinary
albumin/creatinine ratio of 50 mg/g, an HbA1c of 7%, a non-HDL cholesterol of 3.3 mmol/litre, who has retinopathy and atrial fibrillation. The estimated risk based on the ADVANCE model is:
+p

i¼ 1 biXi ¼ 0:062 � 50þ 0:083 � 3þ 0:007 � 50þ 0:242 � 1þ 0:193 � logð50Þ þ 0:099 � 7þ 0:126 � 3:3þ 0:383 � 1þ 0:601 � 1� 0:474 � 0 ¼ 6:78882

+p
i¼ 1 biX

e

i ¼ 0:062 � 57:94þ 0:083 � 7:90þ 0:007 � 64:59þ 0:242 � 0:644þ 0:193 � 2:83þ 0:099 � 7:54þ 0:126 � 4þ 0:383 � 0:239þ 0:601 � 0:054� 0:474 � 0:464 ¼ 6:55666

bP ¼ 1� S0ðtÞexpð+
p
i¼1

bi Xi�+p
i¼1

bi X
e

i Þ ¼ 1� 0:951044expð6:78882�6:55666Þ ¼ 0:0613; or approximately; 6:1%

*Mutually adjusted. Baseline survival probability at 4 years S0(4) ¼0.951044. Based on the Cox model, the probability bP of an event at t years of follow-up is defined by the following formula:

bP ¼ 1� S0ðtÞexpð+
p
i¼1

bi Xi�+p
i¼1

bi X
e

i Þ , where S0(t) is the baseline survival at t years; bi is the estimated regression coefficient, Xi is the value of the predictor; X
e

i is the corresponding mean for
continuous predictors or proportion for categorical predictors (to account for the fact that the value of S0(t) is estimated at the mean level of predictors in the study population); and p denotes
the number of predictors.
HbA1c, haemoglobin A1c; HDL, high-density lipoprotein.
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prediction models to inform individuals and their healthcare
professionals about the risks of having or developing a particular
disease or outcome, and to guide decision making aimed at
mitigating such risks. To be useful for these purposes, a predic-
tion model must provide validated and accurate estimates of the
risks, and the uptake of those estimates obviously should
improve individual management and in turn (relevant) individ-
ual’s outcomes and cost-effectiveness of care. This is reflected in
major steps of prediction modelling research that include
prediction model development (including so-called internal
validation); (external) validation of the prediction model; and
analysis of the impact of using a prediction model on individual
outcomes. This article has focused on the first step, and the
second article of the series41 will address the other two steps.
Model development should follow a rigorous methodology.
Reporting of a newly developed prediction model should include
enough details on the actual development, and provide all
parameters, notably all estimated regression coefficients with
accompanying (im)precision estimates, that will allow future
researchers to comprehensively validate the model using their
own participants, and practitioners to actually apply the model
to their patients. New potentially predictive (bio)markers should
be assessed on their added value to existing prediction models or
predictors, rather than simply being tested on their predictive
ability alone.
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