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Abstract

This paper develops and implements an arbitrage-free DTSM within which we
are able to econometrically identify the contributions of macroeconomic variables to
variation in the market prices of level, slope, and curvature risks. A key property of
our macro-DTSM is that macro variables may have predictive content for excess
returns over and above the standard level, slope, and curvature factors of DTSMs.
That is, we explicitly accommodate macro risks that are theoretically unspanned by
bond yields. We quantify the impacts of unspanned variation in output growth and
inflation in the U.S. on the market prices of yield curve risks in swap markets over
the past twenty years. Our analysis reveals that both level and slope risks are priced
and that the model-implied excess returns associated with exposures to these risks
vary substantially over the business cycle, particularly with changes in real economic
activity. We also quantify the responses of forward term premiums to macroeconomic
shocks and, conversely, the response of output growth to shocks to term premiums.



1 Introduction

The cross-correlations of bond yields are well described by a low-dimensional factor
model in the sense that the first three principal components (PCs) of bond yields
– “level,” “slope,” and “curvature”– explain well over 95% of their variation (e.g.,
Litterman and Scheinkman (1991)). Very similar three-factor representations emerge
from arbitrage-free, dynamic term structure models (DTSMs), at least for a wide
range of maturities.1 Yet in spite of the central role of level, slope, and curvature
factors in both dynamic modeling and investment strategy, little is known about how
macroeconomic shocks affect the market prices of these risks.

There is compelling descriptive evidence that compensation for bearing exposure
to these risks is correlated with business cycle variables. For instance, Figure 1
displays the realized excess returns, over one-month and one-year holding periods, on
a portfolio of bonds that reflects pure slope risk. That is, its payoff tracks movement
in the slope of the U.S. swap curve, while being (locally) invariant to changes in the
level or curvature of the yield curve (see Section 3.1 for details). A striking feature of
these excess returns is how closely they track the negative of the growth rate of U.S.
industrial production (−GIP ) over the past twenty years.2

This paper develops and implements an arbitrage-free DTSM within which we
are able to econometrically identify the contributions of macroeconomic variables
to variation in the market prices of level, slope, and curvature risks. Specifically,
we quantify how variation in output growth and inflation in the U.S. influenced
the market prices of these risks in swap markets over the past twenty years. Our
analysis reveals that both level and slope risks are priced and that the model-implied
excess returns associated with exposures to these risks vary substantially over the
business cycle, particularly with changes in real economic activity. We also quantify
the responses of forward term premiums to macroeconomic shocks and, conversely,
the response of output growth to shocks to term premiums. Within our model, we
reassess some of Chairman Bernanke’s interpretations of the interplay between term

1See, for instance, Dai and Singleton (2000) and Duffee (2002). Dai and Singleton (2002) and
Piazzesi (2005) find that the addition of a fourth factor helps in capturing variation at the very
short end of the yield curve owing (in part) to institutional features of the money markets. We
focus largely on maturities between one- and ten-years. The introduction of longer-term maturities
would also likely require additional risk factors. All of our subsequent analysis is easily extended to
accommodate a wider span of maturities and additional priced yield-curve risks.

2GIP is measured at the inception of the investments in the slope-mimicking portfolios of bonds.
So Figure 1 says that output growth has substantial contemporaneous correlation with risk premiums
(expected excess returns) in swap markets. This is a distinct observation from the widely documented
result that the slope of yield curve itself has predictive content for future output growth. On the
latter, see for example Estrella and Mishkin (1998) and Wright (2006).
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Figure 1: This figure displays the one-month and one-year realized excess returns on
a portfolio of bonds with a payoff that, by construction, tracks changes in the slope
of the U.S. swap curve. GIP is a smoothed version of the monthly growth rate of
industrial production in the U.S.

premiums, the shape of the yield curve, and macroeconomic developments in the U.S.
A key motivating consideration in developing our macro-DTSM is that macro

variables have significant predictive content for excess returns over and above the
standard level, slope, and curvature factors of DTSMs (Cooper and Priestley (2008)
and Ludvigson and Ng (2009)).3 This predictive content of macro information cannot
be replicated in macro-DTSMs that have the macro variables entering directly
as pricing factors determining the short-term rate. By construction, such models
enforce the theoretical spanning of the macro variables by the model-implied PCs
of bond yields.4 Hence they preclude an incremental role for macro information in
the determination of risk premiums beyond the yield curve factors themselves. In

3Complementary supporting evidence comes from DTSMs fit to yields alone where it has been
found that the fourth and fifth PCs of bond yields forecast excess returns, but they contribute
little to explaining the cross-sectional distribution of yields (e.g., Cochrane and Piazzesi (2005) and
Duffee (2009a)). These higher-order PCs are correlated with macro information.

4Studies that enforce theoretical spanning include Ang and Piazzesi (2003), Ang, Dong, and
Piazzesi (2007), Rudebusch and Wu (2008), Ravenna and Seppala (2007a), Smith and Taylor (2009),
Bikbov and Chernov (2008), and Chernov and Mueller (2009). See Joslin and Singleton (2010) for a
more in depth discussion of the properties of models with spanned macro risks.
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contrast, our macro-DTSM explicitly accommodates macro risks that are theoretically
unspanned by bond yields and, therefore, we can quantify the impacts of these
unspanned macro risks on the market prices of yield curve risks.

The state vector in our macro-DTSM is comprised of a three-dimensional set
of pricing factors Pt

5 and the macro variables M ′
t ≡ (GIPt, INFt), where INFt is

CPI inflation and GIPt is the growth rate of industrial production. Model-implied
bond yields are determined by Pt under the pricing measure and we show that,
without loss of generality, we can choose Pt to be the yield-curve risks of interest, the
first three PCs of bond yields. The historical distribution of (Pt, Mt) is specified so
that, while Pt and Mt may be correlated, large components of INFt and GIPt that
are unspanned by bond yields are accommodated. Furthermore, forecasts of future
values of Pt may depend on the past history of Mt, so macro factors are potentially
important determinants of expected excess returns on exposures to PC risks.

Allowing the information determining expected excess returns to strictly nest
the information in model-implied bond yields (equivalently, the information in Pt)
is non-standard relative to many equilibrium models of bond price determination.
However, we have seen that macro information has incremental forecasting power
for excess returns over and above standard pricing factors. Moreover, Cochrane and
Piazzesi (2005) and Duffee (2009a) provide similarly compelling evidence of a nested
information structure using yield-curve information to forecast excess returns.

One of our primary objectives is an exploration of the effects of macro uncertainty
on the market prices of PC risks within a macro-DTSM that enforces the nested
information structure documented in these descriptive studies. Along the way,
we provide theoretical conditions for a macro-DTSM with a fully unconstrained
information structure to have the property that the dimensionality of Pt is smaller
than that of the state vector driving expected excess returns. This result is of interest
in its own right as it provides a means for researchers studying equilibrium affine
models to verify that their models are able to match the joint distribution of expected
excess returns and yields on bonds documented in reduced-form analyses.

Like the large empirical literature on DTSMs that precedes us, in implementing
our model, we face the practical problem of having a large number of free parameters.
To achieve parsimony researchers have arbitrarily set some parameters to zero or
set those parameters to zero that have insignificant individual t-statistics based on
a first-round analysis of a more flexible DTSM .6 We propose a more systematic

5The choice of three is consistent with both the PC evidence and previous studies of yield-based
DTSMs. See Dai and Singleton (2003) and Piazzesi (2006) for surveys of this literature.

6The first strategy is prevalent in the literature on macro-DTSMs, because of the large numbers
of parameters governing market prices of risk and the Q distribution of the pricing factors in
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approach that uses likelihood-based model selection criteria to search over all 215

nested parameterizations of the risk premiums on exposures to the PC risks P .7 In
this manner we end up with the most parsimonious model that preserves the essential
ingredients called for by the selection criteria to fit risk premiums in bond markets.
By design, this model selection exercise requires an arbitrage-free macro-DTSM to
identify the relevant market prices of risk.

While the literature on DTSMs is vast, we are unaware of any prior research
that explores the relationship between unspanned macro shocks and risk premiums
in bond markets within arbitrage-free pricing models. Independently, Duffee (2009a)
proposes a similar framework to ours for accommodating unspanned risks in bond
markets. However he does not explore the econometric identification of such a model,
nor does he empirically implement a DTSM with unspanned risks. We provide a
canonical framework for incorporating unspanned information that affects expected
excess returns into Gaussian DTSMs and provide a convenient normalization that
ensures econometric identification. Moreover, as we illustrate, the global optimum
of the associated likelihood function is achieved extremely quickly. Wright (2009)
and Barillas (2010) use our framework to explore the effects of inflation uncertainty
on bond market risk premiums using international data, and optimal bond portfolio
choice in the presence of macro-dependent market prices of risk, respectively.

2 A Canonical Observable Gaussian Macro-DTSM

with Unspanned Macro Risks

We define a (discrete-time) R-factor Gaussian DTSM as a model with an R-
dimensional vector of (possibly latent) pricing factors Pt that follows a Gaussian
Markov processes under the pricing (Q) distribution, and in which the short rate is
affine in Pt. More formally, letting (Ω, P,F) be a probability space with a discrete
filtration {Ft}, we suppose that there is a short-rate process {rt} that is related to
the adapted Markov process {Pt} according to:

ArQ : rt = ρ0 + ρP · Pt, for scalar ρ0 and R-vector ρP ;

high-dimensional factor models; see, for example, Ang, Dong, and Piazzesi (2007). Dai and Singleton
(2000) and Bikbov and Chernov (2008) are examples of papers that follow the second strategy.

7What makes this computationally feasible is that our canonical form is such that we achieve
convergence to the global optimum of our likelihood function nearly instantaneously. A related
approach to model selection based on Bayesian posterior odds ratios has recently been proposed by
Bauer (2010). We say more about the differences in our approaches in Section 3.2.
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APQ : There is an equivalent pricing measure Q under which Pt follows the process

Pt = KQ
0P + KQ

PPPt−1 +
√

ΣPPǫQ
Pt, (1)

where ǫQ
Pt ∼ N(0, IR), {e−

P

t−1

s=0
rt+sPt} is a Q-martingale, and the price of a

τ -period zero coupon bond is EQ
t [e−

P

τ−1

s=0
rt+s ].

Assumptions Ar and APQ ensure “affine pricing” so yields on zero-coupon bonds are
affine functions of the pricing factors P (Duffie and Kan (1996)). We let yt denote
the model-implied counterparts of the J-vector of yields on zero-coupon bonds that
are being used in assessments of goodness-of-fit, where J ≥ R.

Starting from this generic Gaussian setup, we propose a new subfamily of Gaussian
macro-DTSMs that allows for macro factors Mt to influence expected excess returns
on bond portfolios, while ensuring that Mt is unspanned by the pricing factors Pt.
The construction of our canonical macro-DTSM with these properties maintains
ArQ. However we nest APQ as part of the Q representation of the expanded,
N -dimensional state vector X ′

t ≡ (P ′
t, M

′
t):

AXQ : Under Q, Xt follows the Gaussian process
[

Pt

Mt

]

=

[

KQ
0P

∗

]

+

[

KQ
PP 0
∗ ∗

] [

Pt−1

Mt−1

]

+
√

ΣXǫQ
Xt, (2)

where ǫQ
Xt ∼ N(0, IN ) and ΣPP is the upper 3 × 3 block of ΣX , and Mt is

assumed to be non-trivial so that N > R.

The specification of our macro-DTSM is completed with the assumption:

AXP : Under the historical measure P, the N -dimensional state Xt follows the
unconstrained V AR

[

Pt

Mt

]

=

[

KP
0P

KP
0M

]

+

[

KP
PP KP

PM

KP
MP KP

MM

] [

Pt−1

Mt−1

]

+
√

ΣXǫP
Xt, (3)

with ǫP
Xt ∼ N(0, IN ).

The implications of the (ArQ, AXQ, AXP) for pricing are identical to standard
R-factor Gaussian DTSMs, but their implications for how macro risks affect expected
excess returns are very different. Taking these issues in order, AQr together with
the assumption that Mt does not feed back on P under Q (the right upper block of
KQ

X in (2), KQ
PM , is zero) imply that bond prices are determined by an autonomous

R-factor Gaussian DTSM with pricing factors P .
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Elaborating, whether DTSMs adopt ArQ with latent pricing factors P as in Dai
and Singleton (2000) and Duffee (2002), or a representation of rt with a mix of latent
(Lt) and observed (Mt) pricing factors as in the specification

rt = ρ0 + ρM · Mt + ρL · Lt (4)

adopted by Ang, Piazzesi, and Wei (2003) and Bikbov and Chernov (2008), among
others, they all imply the same theoretical bond prices and that the same risks are
priced in the underlying economies.8 We will subsequently exploit this fact to show
that any canonical Gaussian R-factor DTSM can be normalized so that the R priced
risks Pt are the first R PCs of bond yields.

Where our macro-DTSM differs from the extant literature is in how we model
the effects of macro risk on expected excess returns on bonds or, equivalently, how we
model the market prices of risk (MPRs) of the pricing factors Pt. Assumption AXP

allows for general feedback between the pricing factors Pt and the macro factors Mt.
9

Moreover, Mt is unspanned by bond yields: in general, there is variation in Mt that
is orthogonal to variation in Pt and, in particular, to variation in the first R PCs of
bond yields.10

The accommodation of unspanned macro risk has potentially important implica-
tions for the properties of model-implied expected excess returns. The excess return
over h periods on a bond with maturity n issued at date t is

rxn,h
t+h = −yn−h

t+h (n − h) + yn
t n − yh

t h. (5)

Since (3) implies that yn−h
t+h is forecastable by both P and the unspanned components

of Mt, macro information has forecasting power over and above the first R PCs of
yields. In this manner we are able to accommodate the rich variation in risk premiums
documented in previous descriptive studies within an arbitrage-free, macro-DTSM .

8Though all of these models share the same priced risks, in practice the precise nature of the
risks being studied will depend on the set of bond yields used in estimation. Risks may differ not
only between treasury and swap rates, but also across the different splines that have been used to
extract zero yields from treasury coupon-bond yields.

9In this respect, (3) is very similar to the descriptive six-factor model studied by Diebold,
Rudebusch, and Aruoba (2006). As in their analysis, we emphasize the joint determination of the
macro and yield variables (potential two-way feedback). We add the structure of a no-arbitrage
pricing model so that it is possible to explore the properties of risk premiums in bond markets.

10More precisely, so long as ΣX is non-singular, σ(Mit) ( σ(Bt ∪ M
(−i)
t ), where Bt be the

information in fixed income security prices and M
(−i)
t is the vector of macro variables excluding

the ith variable Mit. Here we use the notation σ(·) for a σ-field or information set. We define the
information in fixed income prices at time t to be the σ-field generated by the prices of the payoffs
g(rt+t1 , rt+t2 , . . . , rt+tn

); that is, by {P (Xt) = EQ
t [g(rt+t1 , rt+t2 , . . . , rt+tn

)] : g ∈ C0}.
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In contrast, the typical way a Gaussian DTSM is extended to a macro-DTSM
is by assuming that, under P, P follows the process11

Pt = KP
0P + KP

PPPt−1 +
√

ΣPPǫP
Pt. (6)

Models that assume (6) have the strong theoretical implication that every element of
Mt is spanned by yt. This is an immediate implication of the fact that bond yields
in macro-DTSMs satisfying (4) are affine functions of P ′

t = (M ′
t , L

′
t). Therefore, by

inverting these pricing relations, Mt can be expressed as an affine function of yt.
Indirect evidence on the empirical validity of this spanning property comes from

the projection of GIP onto the first three PCs of swap yields:12 the R2 is only 14%.
In the light of this low R2, adopting (4) in a three-factor (R = 3) model with output
growth as an element of Mt seems tantamount to assuming that over 80% of the
variation in output growth arises from measurement error. Adding PC4 and PC5
as regressors – equivalently, increasing R to five – only raises the R2 for output
growth to 28%, suggesting that measurement errors also have to be huge to sustain a
five-factor macro-DTSM with rt given by (4).

Moreover, Gaussian macro-DTSMs based on (6) imply that, once one conditions
on the first R PCs of bond yields, the macro information Mt is irrelevant for
forecasting excess returns on portfolios of bonds. Compelling evidence against this
restriction is presented in the descriptive analysis of Ludvigson and Ng (2009), as
well as by Figure 1 and the evidence from our macro-DTSMs presented subsequently.
Macro information has forecasting power for risk premiums over and above the
information in the PCs of bond yields.

This heuristic derivation of our macro-DTSM leaves many questions unaddressed,
including: Are all N -factor, Gaussian DTSMs with unspanned macro risks ob-
servationally equivalent to a DTSM of this form? What is the minimal set of
normalizations that achieve an econometrically identified model with unspanned
macro risks? Are macro (e.g., inflation or output growth) risks priced in these
macro-DTSMs? The following proposition answers the first two of these questions,
with the proof given in Appendix A. We take up the last question in Section 2.2.
Notationally, we let UMAR

0 (N )denote the family of observable Gaussian DTSMs
with R pricing factors and N −R unspanned macro conditioning variables, analogous
to the notation of Dai and Singleton (2000).

11Examples of this modeling strategy include Ang, Dong, and Piazzesi (2007), Bikbov and Chernov
(2008), Chernov and Mueller (2009), and Smith and Taylor (2009). The following observations carry
over to the higher-order processes adopted in some of these studies.

12 See Section 2.1 for a detailed description of our data set.
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Proposition 1 Every canonical model13 for the family UMAR
0 (N ) is observationally

equivalent to the following canonical Gaussian macro-DTSM: the state vector is
Xt = (Pt, Mt), where Pt are the first R principal components of yt; rt = ρ0 + ρP · Pt;
and the P and Q representations of Xt are given by (3) and (2), respectively. Moreover,
there is a unique mapping between the parameters governing (ρ0, ρP , KQ

0P , KQ
PP) and

the parameter set (ΣPP , λQ, rQ
∞), where λQ denotes the R-vector of ordered non-

negative Q-eigenvalues of KQ
PP ,14 and rQ

∞ denotes the long-run mean of the short rate
under Q. Thus, the parameter vector for the full model is (KP

0 , KP
1 , ΣX , λQ, rQ

∞).

Several features of our canonical model warrant further discussion. First, we have
chosen to rotate P so that it becomes the first R PCs of the yields yt and, thus,
the pricing factors and macro variables are both observable in the sense that they
have immediately recognizable counterparts in the data. If fact, we are free to select
the pricing factors to be any R linearly independent combinations of yt,

15 with each
such linear combination defining a different and observationally equivalent canonical
model. This is a consequence of the fact that bond yields are affine functions of P so
we can invert the pricing model to replace any given set of pricing factors, including
latent factors, by portfolios of yields.

Second, a striking implication of Proposition 1 is that, regardless of a given choice
of yield portfolios P as the pricing factors, the associated Q distribution is fully
characterized by the parameter vector (ΣPP , λQ, rQ

∞). The matrix ΣPP depends, of
course, on the portfolio of yields comprising P. However, (λQ, rQ

∞) are rotation-
invariant (that is, independent of the choice of pricing factors) and, hence, are
economically interpretable parameters. Appendix A gives the explicit construction of
(ρ0, ρP , KQ

0P , KQ
PP) from (ΣPP , λQ, rQ

∞) for our choice of PCs as pricing factors.
Finally, given our choice of Pt and the way we have normalized its Q distribution,

our canonical model is an econometrically identified and maximally flexible model.
Any other model in UMAR

0 (N ) can be mapped uniquely to a special case of our
canonical model.

13A canonical form for the family UMAR
0 (N ) is a family of models (called canonical models) that

are maximally flexible, in the sense that a minimal set of normalizations is imposed to achieve
econometric identification.

14Building upon the yields-based analysis in Joslin, Singleton, and Zhu (2010), we can construct
similar canonical models for the cases where the Q eigenvalues of KQ

PP
are not distinct or where

some of these eigenvalues are zero.
15One such choice would be to select R distinct yields on zero-coupon bonds.
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2.1 Empirical Motivations and Economic Underpinnings for

For the Family UMAR
0 (N ) of Macro-DTSMs

From the empirical literature on affine DTSMs, there is growing evidence that bond
yields and their associated expected excess returns are better described by a DTSM
in which the set of pricing factors P is of lower dimension than that of the state
vector Xt determining risk premiums; that is, that N > R. Cochrane and Piazzesi
(2005) found that there is information in the higher order PCs of bond yields that is
useful for forecasting excess returns on bonds, over and above the information in the
first three PCs. Duffee (2009a) finds that two of his factors (within a model with
N = R = 5) play essentially no role in fitting the cross-section of bond yields, while
having a quantitatively important effect on expected excess returns. These patterns
are consistent with a yield-based model in which N = 5 and R = 3.

We set R = 3 and normalize our macro-DTSM so that P is the first three PCs
of yt, a collection of zero-coupon bond yields constructed from the LIBOR and swap
yield curves.16 LIBOR/swap data are used instead of U.S. Treasury data to avoid
the large on- and off-the-run premiums in Treasury markets,17 and because this
is the benchmark curve underlying fixed-income operations at most large financial
institutions. PCi is the ith principal component of the continuously compounded 6
month, one- through five-year, seven-year, and ten-year nominal zero coupon bond
yields. For our data and range of maturities, over 99% of the variation in bond yields
is explained by their first three PCs, hence our choice of R = 3.

To complete our macro-DTSM we set N = 5 and include the core CPI inflation
rate from the Bureau of Labor Statistics (INF ) and the growth rate of industrial
production from the Federal Reserve’s G.17 release (GIP ) in our state vector Xt.
By including M ′

t = (INF, GIP ) we encompass the essential ingredients of standard
Taylor-style policy rules and include the two macro risks that have received the most
attention in prior studies of macro-DTSMs. The sample is monthly from January,
1989 through June, 2008.18

16On each date, these are bootstrapped from 6m LIBOR and the available subset of the 1y-10y
swap rates, under the assumption of constant forward rates between maturities. LIBOR rates are
provided by the British Bankers’ Association (downloaded from Datastream), and monthly swap
rates are mid-market rates from Bloomberg. Data were taken from the last trading day of the
month. On 5 occasions (9/99, 10/99, 12/99, 4/02, and 5/04), the 1y swap rate was unavailable in
Bloomberg and data from Datastream was used instead.

17See Duffee (1996) for a discussion of money-market effect on the short end of the Treasury curve,
and Feldhutter and Lando (2007) and Krishnamurthy and Vissing-Jorgensen (2008) for evidence
that U.S. Treasury yields embody a substantial, indigenous convenience premium.

18A disadvantage of working directly with monthly CPI inflation is that it is a highly volatile
series which seems to reflect large, transitory shocks, one source of which may be measurement error.
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Figure 2: Term Structure and Macro Variables This figure plots the time series
of (PC1, PC2, PC3) of swap-implied zero yields and smoothed growth in industrial
production and CPI inflation. The vertical bars mark NBER recessions.

Normalized values of the state variables used in our analysis of macro DTSMs are
displayed in Figure 2.19 The LIBOR-based swap market largely came into existence
in the late 1980’s and this explains the start date of our sample. During this period
there was a generally declining level of interest rates (PC1), accompanied by sizable
swings in both the level and slope of the swap curve. Clearly visible in the GIP series
are the recessions during the early 1990’s and 2001. Inflation was relatively benign.

Though our canonical framework fully accommodates inclusion of both higher-
order PCs and macro variables in Xt, for our case of swap yields, we found that
adding higher-order PCs to our choice of Xt was not informative about expected
excess returns. Table 1 displays the R2s of the projections of realized excess returns

To filter out this noise, we construct an exponentially decaying weighted average of past inflation,
in the spirit of a hidden components model whereby true inflation follows an AR(1) process and
observed inflation is equal to true inflation plus an i.i.d. measurement error. The growth rate of
industrial production is filtered similarly. Wachter (2006) and Kim (2008) apply similar filters.

19 Letting ℓj,i denote the loading on yield i in the construction of PCj, the PCs have been

rescaled so that (1)
∑8

i=1 ℓ1,i/8 = 1, (2) ℓ2,10y − ℓ2,6m = 1, and (3) ℓ3,10y − 2ℓ3,2y + ℓ3,6m = 1. This
puts all the PCs on similar scales. We then convert INF and GIP to an annual scale. Now all
variables take on values in [−5%, 10%].

10



P
P

P
P

P
P

P
P

P
LHS

RHS
PC1-PC3 PC1-PC5

PC1-PC3,
GIP , INF

rx
(24)
t+12 0.20 0.32 0.39

rx
(60)
t+12 0.30 0.36 0.38

rx
(120)
t+12 0.34 0.36 0.39

Table 1: Regression R2s from Excess Return Regressions

from holding an n-month bond from time t to time t + 12, rx
(n)
t+12, onto the yield-

based PCs, GIP , and INF . The R2s from the projections onto PC1 − PC5 are
comparable to those reported by Cochrane and Piazzesi (2005),20 confirming that
there is incremental informational content to PC4 and PC5 for forecasting excess
returns. Inclusion of GIP and INF in these projections renders PC4 and PC5
statistically insignificant, and inclusion of (GIP, INF ) leads to a larger increase in
R2 than inclusion of (PC4, PC5). These findings suggest that it is macroeconomic
risk that underlies a large part of the variation in excess returns in swap markets that
is not captured by Pt. Therefore, our subsequent analysis focuses on macro variables
alone in Mt, and explores how these variables impact the MPRs in bond markets.

Fixing N = 5, it might seem innocuous to proceed with a model in which R = 5,
as such a model fully encompasses our more restrictive formulation with R = 3.
However, Joslin, Singleton, and Zhu (2010) and Duffee (2009b) provide compelling
evidence of over-fitting in their Gaussian DTSMs with Pt chosen to be the first five
PCs of bond yields. With R = 5, model-implied Sharpe ratios for various bond
portfolios are implausibly large and volatile, and the fitted values of yields on bonds
with maturities outside the range used in estimation take on wildly implausible,
in-sample values. These issues do not arise in our more parsimonious framework with
a small number of pricing factors (R = 3) and a rich conditioning information set for
risk premiums (N = 5).

2.2 Priced Risks in the Family UMAR
0 (N )

An inherent feature of any macro-DTSM is that the only risks that are potentially
priced are the shocks to the pricing factors Pt. From (3) we obtain the drift µP

P(Xt)
of Pt under P. The drift of Pt under Q, µQ

P(Pt), comes from (2) and it depends only

20Our PCs are not identical to those used by Cochrane and Piazzesi, because we construct PCs
using bonds with maturities out to ten years, whereas their maximum maturity is five years.
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on Pt. Combining these components gives the market price of Pt risk:

ΛP(Xt) = Σ
−1/2
PP

(

µP
P(Xt) − µQ

P(Pt)
)

. (7)

What differentiates our model from standard formulations of three-factor macro-
DTSMs are: (i) macro information contributes incremental forecasting power for
excess returns over and above our Pt, and (ii) these macro risks are priced as distinct
risks from the PCs comprising Pt. In contrast, in macro-DTSMs in which Mt is
spanned by the first R PCs, Mt is not a priced risk other than in the degenerate
sense that its MPR is an affine function of the MPRs of these PCs.

Though our canonical model fully accommodates unspanned macro risks that
are priced in fixed-income markets, using bond yield information alone, we cannot
identify the MPRs of such unspanned risks. The P drift of Xt, µP

Xt, is again taken
directly from (3). However, the component of µQ

Xt associated with Mt plays no role

in pricing. Hence the subvector of ΛXt = Σ
−1/2
X (µP

Xt − µQ
Xt) associated with Mt, ΛMt,

is not identified from historical information on Xt and bond prices.21

Nevertheless, the effects of macro risks – both spanned and unspanned – on the
risk premiums and expected excess returns for exposures to P risks are fully identified
in our canonical model. Accordingly we are able to quantitatively explore the effects
of shocks to unspanned macro risks on term premiums. Moreover, by accommodating
the unspanned macro risks called for by the historical data, we are likely to obtain
more reliable assessments of the properties of ΛP(Xt) and, thereby, more reliable
measurement of the MPRs of spanned macro risks as well.

2.3 Interpreting the Error From Projecting Mt onto Pt

Given the importance of this distinction between spanned and unspanned macro
risks, and the emphasis in the literature on spanned risks, it is instructive to briefly
elaborate. Suppose that, as in our model, the short rate satisfies ArQ. However,
instead of imposing (2), suppose that Mt is related to the pricing factors according
to Mt = γ0 + γ1Pt. This is the theoretical spanning condition implied by (4).

To break the counterfactual empirical implication that the observed macro variables
(M o

t ) are spanned by Pt, one could introduce measurement errors: M o
t differs from

21More can be said about the market prices of unspanned macro risks if securities whose payoffs
depend directly on the unspanned risks are included in the analysis. For instance, the MPRs of
unspanned inflation risk are potentially identified from TIPS yields, as in D’Amico, Kim, and Wei
(2008) and Campbell, Sunderam, and Viceira (2009). Owing to the illiquidity and limited availability
of data on TIPS, most of the extant literature on macro-DTSMs focuses on nominal bond yields
alone, and we do so as well.
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its theoretical counterpart Mt by an additive error:22

Mt = γ0 + γ′
1 Pt + νt, (8)

where νt is say a Gaussian error satisfying EP[νt|Mt−s,Pt−s, s = 1, 2, . . .] = 0. While
this ensures that Mt is not literally a linear combination of the model-implied PCs,
the error νt plays no role in pricing or in forecasting excess returns. That is, once one
conditions expected excess returns on the PCs comprising Pt, Mt has no additional
forecasting power for these returns, contrary to the empirical evidence.

A more subtle way of breaking the perfect spanning condition is implicit in the
framework of Kim and Wright (2005), the model cited by Chairman Bernanke in
several of his assessments of the impact of the macro economy on bond market risk
premiums. Kim and Wright assume that Mt = INFt, and they arrive at their version
of (8) for inflation by assuming that expected inflation is an affine function of the
pricing factors in the bond market. They additionally assume that P follows an
autonomous Gaussian process under Q so their model and ours imply exactly the
same bond prices. However, the P-distribution of Xt implied by their assumptions is:

[

Pt

Mt

]

=

[

KP
0P

γ0

]

+

[

KP
PP 0

γ′
1K

P
PP 0

] [

Pt−1

Mt−1

]

+
√

ΣX

[

ǫP
Pt

ηt

]

, (9)

where ηt = (νt + γ′
1

√
ΣPPǫP

Pt). Thus, the Kim-Wright formulation leads to a con-
strained special case (3) in which the history of Mt has no forecasting power for
futures values of M or P, once one conditions on the history of P. As we will see,
the zero restrictions in (9) are not supported by our data.

2.4 The Likelihood Function for Our Canonical Model

We adopt the canonical form of Proposition 1. Initially, we suppose that the first
three PCs of yt (Pt) are priced perfectly by the model and that the higher order
PC4 − PC8 (PCe) are priced with i.i.d. N(0, Σe) errors. In this case, the joint
(conditional) likelihood function can be written as:

ℓ(Xt, PCe
t |Xt−1; Θ) = ℓ(PCe

t |Xt, Xt−1; Θ) × ℓ(Xt|Xt−1; Θ)

= ℓ(PCe
t |Xt, Xt−1; λ

Q, rQ
∞, LX , Le) × ℓ(Xt|Xt−1; K

P
X , KP

0 , LX),
(10)

22The properties of macro-DTSMs that assume rt follows (4) and that Mt is measured with error
are explored in Joslin and Singleton (2010).
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where LX and Le are the Cholesky factorizations of ΣX and Σe, respectively. The
conditional density ℓ(Xt|Xt−1; Θ) depends on (KP

0 , KP
X , LX), but not on (λQ, rQ

∞);
whereas the density of PCe

t depends only on the risk-neutral parameters and Σe.
Therefore, for any ΣX , the (KP

0 , KP
X) that maximize the likelihood are simply the

standard OLS estimates. So, in estimation, we need only maximize the likelihood
over (LX , rQ

∞, λQ) and Le.
In formulating our likelihood function we have assumed a first-order VAR rep-

resentation of our state X ′
t = (P ′

t, GIPt, INFt). Ang, Piazzesi, and Wei (2003) and
Jardet, Monfort, and Pegoraro (2009) posit higher-order VARs in studying DTSMs
with (spanned) macro pricing factors. However, neither of these studies include
inflation (a highly persistent process) nor PC3 in their state vector. Additionally,
their much longer sample period includes the economically significant structural shifts
in monetary policy in the late ’70’s and early ’80’s. In contrast, for our sample
period of 1989 – 2008, choice of bond yields, and expanded state vector, a variety
of formal model selection criteria all point to a first-order multivariate process (see
Appendix B), consistent with our maintained assumption.

Our canonical form offers three advantages over working with a latent factor
model directly as, for example, in Dai and Singleton (2000). First, the pricing factors
are the observable constructs of interest, namely the PCs that have interpretations
as level, slope, and curvature. Second, we end up searching over a low-dimensional
parameter space and, hence, convergence to the global optimum of our likelihood
function is extremely fast. Third, by having the primitive parameters be the readily
interpretable long-run Q mean of r and the eigenvalues of KQ

PP , one can often guess
reasonably good starting values for (rQ

∞, λQ). A good starting value for LX comes
directly from OLS estimation of (3).

3 Model Selection and Risk Premium Accounting

Within our canonical model there are sixty parameters governing the P distribution
of X (those comprising KP

0 , KP
X , and LX). There are an additional four parameters

governing the Q distribution of X (rQ
∞ and λQ). Faced with such a large number of

free parameters, standard practice has been to estimate a maximally flexible DTSM ,
set to zero many of the parameters in (KP

0 , KP
X) and (KQ

0 , KQ
X) that are statistically

insignificantly different from zero at a conventional significant level, and then to re-
estimate the more parsimoniously parameterized constrained model.23 The approach

23This was the parameter-reduction procedure followed, for example, by Dai and Singleton (2000),
Ang and Piazzesi (2003), and Bikbov and Chernov (2008).
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to model selection taken in our analysis is both more focused and more systematic in
that we use formal model selection criteria to pick our preferred parsimonious model.

For our empirical analysis we assume that all of the state variables, X ′
t =

(P ′
t, GIP, INF ), are measured without error. So, while each individual bond yield is

priced up to an additive error, the first three PCs of swap yields are assumed to be
priced perfectly by our macro-DTSM . In Section 3.4 we verify the robustness of our
findings to allowing all of the PCs to be priced up to additive errors.

3.1 Constraining the Market Prices of PC Risks

From (7) it follows that the state dependence of scaled MPRs of P risk, Σ
1/2
PPΛP(Xt),

is governed by the matrix K ≡ (KP
PX −KQ

PX), where KP
PX denotes the first three rows

of KX . We approach the model selection problem as one of finding the best set of zero
restrictions on K, where we trade off fit against the costs of over-parameterization. It
has been common practice to enforce zero restrictions on the MPRs of the pricing
factors in macro-DTSMs. We take a more systematic approach compared to say
setting parameters to zero based on individual t-statistics. Furthermore, we focus
on K, rather than the parameters governing ΛPt, since the latter depend on the
(arbitrary) choice of Σ

−1/2
PP . Our selection strategy is not implementable outside of a

DTSM as both KP
X and KQ

X must be econometrically identified.
We show in Appendix C that, to a first-order approximation, our constraints

on K can be interpreted directly as constraints on the expected excess returns to
pure exposures to the P risks. That is, the constraints on the first row of K can be
interpreted as the constraints on excess returns on the portfolio whose value changes
(locally) one-to-one with changes in PC1, but whose value is unresponsive to changes
in PC2 or PC3. Similar interpretations apply to the second and third rows of K
for PC2 and PC3, respectively. By examining the behavior of the expected excess
returns on these PC-mimicking portfolios, xPCjt (j = 1, 2, 3), we gain a different
perspective on the nature of priced risks in swap markets, and we are able to link up
with the striking patterns in Figure 1.

3.2 Selecting Among 215 Parameterizations of the MPRs

Since there are fifteen free parameters in K, there are 215 possible configurations of
DTSMs with some of its entries set to zero. Though 215 is large, the rapid convergence
to the global optimum of the likelihood function obtained using our normalization
scheme makes it feasible to undertake this search using formal model selection criteria.
For each of the 215 specifications examined, we compute full-information ML estimates

15



of the parameters and then evaluate the Akaike (AIC, Akaike (1973)), Hannan and
Quinn (HQIC, Hannan and Quinn (1979)), and Schwarz’s Bayesian (SBIC, Schwarz
(1978)) information criteria.24 The criteria HQIC and SBIC are consistent (i.e.,
asymptotically they select the correct configuration of zero restrictions on K), while
the AIC criterion may asymptotically over fit (have too few zero restrictions) with
positive probability.25

In applying these selection criteria we are mindful of the near unit-root behavior
of P under both P and Q. There is substantial evidence that bond yields are nearly
cointegrated (e.g., Giese (2008), Jardet, Monfort, and Pegoraro (2009)). We also
find that PC1, PC2, and INF exhibit behavior consistent with a near cointegrating
relationship, whereas PC3 and GIP appear stationary. We do not believe that
(PC1, PC2, INF ) literally embody unit-root components. At the same time we
feel that it is essential to enforce a high degree of persistence under P, since ML
estimators of drift parameters are known to be biased in small samples. Furthermore,
this bias tends to be proportionately larger the closer a process is to a unit root
process (Phillips and Yu (2005), Tang and Chen (2009)).

With these considerations in mind, we proceed as follows. First, we search over
all 215 specifications of zero restrictions in K, without consideration of the near
cointegration among the PCs and INF . The resulting frontier of maximal values of
the log-likelihood function achieved for each choice of the number of zero restrictions
in K is displayed in Figure 3. The tangent points of the information criteria show that
the AIC and HQIC criteria select ten zero restrictions in K, while the SBIC criterion
selects twelve restrictions (leaving five and three free parameters, respectively). All
three criteria indicate that most of the parameters in K are not needed within our
sample period to adequately describe the risk premiums on swap PC risks.

Next, to address the persistence issue, we recompute the frontier under the
constraint that the largest eigenvalue of KP

X is the same as the largest eigenvalue of
KQ

X . From the extant literature we know that the largest eigenvalue of KQ
X tends

to be close to unity: one of the pricing factors exhibits near unit-root behavior.
Without this constraint, the largest eigenvalue of KP

X tends to be sufficiently below
unity to imply that variation in long-dated forward term premiums is due entirely
to risk premiums – expected future short-term rates out ten years or longer are

24Bauer (2010) proposes a complementary approach to model selection based on the posterior
odds ratio from Bayesian analysis. Owing to the computational complexity of his approach, an
intermediate step is inserted to narrow down the set of models to be compared. Additionally, Bauer
considers a standard A0(3) DTSM , so there is no macro conditioning information used in estimation
or in specifying his MPRs. Nor does he address near-cointegration (see below).

25These properties apply both when the true process is stationary and when it contains unit roots,
as is discussed in Lutkepohl (2005), especially Propositions 4.2 and 8.1.
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Figure 3: Frontiers of values of the log-likelihood function over 215 specifications of K,
along with the tangency points for the AIC, HQIC, and SBIC information criteria.

virtually constant. This is inconsistent with surveys on interest rate forecasts (Kim
and Orphanides (2005)).26

Moreover, the cross-section of bond yields precisely identifies the parameters of
the Q distribution (in our case, rQ and λQ). Therefore, by enforcing this constraint,
we force the P distribution of the state to inherit the near-cointegrating pattern for
bond yields that arises under Q, and we exploit the high degree of precision with
which the cross-section of yields pins down this eigenvalue.

Both the AIC and HQIC information criteria trade our eigenvalue constraint for
one zero restriction in K. For both selection criteria, the best fitting DTSM now has
nine zero restrictions – six free parameters – in K. On the other hand, because of the
shape of the constrained EV frontier, the SBIC criterion now points to thirteen zero
restrictions, one more than in the unconstrained model. Given that two of our three
criteria point to nine zero restrictions on K and, as we will see, the extra parameter

26Similar considerations motivated Cochrane and Piazzesi (2008), among others, to enforce
unit-root behavior under P in their models.
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plays a statistically significant role in subsequent analysis, we take as our preferred
DTSM the model selected by (AIC, HQIC).

Consistent with these selection results, the likelihood ratio (LR) statistic for
testing our preferred model against the unconstrained canonical model is 6.76 with
probability value 0.82. The LR statistic for testing the best fitting model against the
canonical model that (only) imposes the eigenvalue constraint on (KP

X , KQ
X) is 3.40

with probability value 0.97.

3.3 Risk Premium Accounting: Model Comparison

To highlight the properties of the model selected from this extensive search we
compare the properties of three Gaussian DTSMs with (R = 3,N = 5): (1) the
unconstrained canonical model (CM); (2) the canonical model with the constraint
that the largest eigenvalue of KP

X equals the corresponding eigenvalue of KQ
X (CME);

and (3) the model imposing this eigenvalue constraint and the zero restrictions on
K selected by the AIC and HQIC criteria (CMR

E). It turns out that the last row of
K in model CMR

E is set entirely to zero: our model selection criteria reveal that the
expected excess returns over one month on exposure to curvature (PC3) risk are
either zero or constant, but they are not state-dependent. The estimated value of the
third entry of (KP

0 − KQ
0 ), which governs the the constant portion of xPC3t, is small

with a relatively large standard error, suggesting that PC3 risk is not priced at all
during our sample period. Therefore, in model CMR

E we also set this intercept term
to zero so as to gain some precision in estimating the levels of the risk premiums
associated with PC1 and PC2 risks.

Maximum likelihood estimates of the parameters governing the Q distributions
of Xt are displayed in Table 2a.27 These estimates are very similar across the three
models, regardless of the constraints imposed on our canonical model. Consistent
with our earlier discussion, this says that the parameters of the Q distribution are
determined largely by the cross-sectional restrictions on bond yields, and not by their
time-series properties under the P distribution. Models CME and CMR

E exploit this
fact to restrict the degree of persistence of the state under P.

The eigenvalues of KP
PP are displayed in Table 2b.28 The largest P-eigenvalue in

the unconstrained model CM is smaller than in the constrained models. Although
the latter difference might seem small, it is large enough to imply that expected

27Throughout our analysis asymptotic standard errors are computed by numerical approximation
to the Hessian and using the delta method.

28The fact that there are pairs of equal moduli in all three models means that there are complex
roots in KP

PP
. The complex parts were small in absolute value.
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Parameter CM CME CMR
E

rQ
∞ 0.1053 0.1054 0.1055

(0.0043) (0.0043) (0.0043)

λQ
1 0.9974 0.9974 0.9974

(0.0002) (0.0002) (0.0002)

λQ
2 0.9522 0.9522 0.9522

(0.0022) (0.0022) (0.0022)

λQ
3 0.8619 0.8619 0.8643

(0.0116) (0.0116) (0.0104)

(a) Parameters of the Q Distribution

Parameter CM CME CMR
E

|λP
1 | 0.9676 0.9974 0.9974

(0.0476) (0.0002) (0.0002)

|λP
2 | 0.9396 0.9415 0.9443

(0.0367) (0.0264) (0.0132)

|λP
3 | 0.9396 0.9415 0.9443

(0.0367) (0.0264) (0.0132)

|λP
4 | 0.8613 0.8544 0.8829

(0.0448) (0.0363) (0.0288)

|λP
5 | 0.8613 0.8544 0.8304

(0.0448) (0.0363) (0.0164)

(b) Moduli of Eigenvalues of KP
X

Table 2: ML estimates of the Q parameters and of the moduli of the eigenvalues of
KP

X for models CM, CME, and CMR
E. Standard errors are given in parentheses.

future short-term rates out ten years or longer are virtually constant in model CM.
As discussed above, this counterfactual implication of model CM motivates our
eigenvalue constraint in models CME and CMR

E.
Estimates for models CME and CMR

E of the matrix K governing one-month
expected excess returns on PC risk exposures are displayed in Table 3. Recall that
the ordering of the variables in Xt, corresponding to the columns in Table 3, is
(PC1, PC2, PC3, GIP, INF ). Focusing first on model CMR

E (Table 3b), we see that
the first and second rows of K have (statistically significant) non-zero entries, while
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P PC1 PC2 PC3 GIP INF
PC1 −0.0238 −0.0303 0.0072 0.0141 0.0436

(0.0241) (0.0226) (0.0524) (0.0077) (0.0515)

PC2 0.0144 −0.0119 −0.0279 −0.0197 0.0112
(0.0239) (0.0240) (0.0524) (0.0079) (0.0496)

PC3 −0.0233 −0.0099 −0.0096 0.0060 0.0368
(0.0204) (0.0180) (0.0449) (0.0067) (0.0438)

(a) K for model CME

P PC1 PC2 PC3 GIP INF
PC1 −0.0394 −0.0329 0.0000 0.0189 0.0659

(0.0150) (0.0136) (NA) (0.0055) (0.0290)

PC2 0.0159 0.0000 0.0000 −0.0169 0.0000
(0.0074) (NA) (NA) (0.0058) (NA)

PC3 0.0000 0.0000 0.0000 0.0000 0.0000
(NA) (NA) (NA) (NA) (NA)

(b) K for model CMR
E

Table 3: ML estimates of the matrix K governing expected excess returns on the PC
mimicking portfolios. Standard errors are given in parentheses.

the last row is chosen to be zero by our model selection criteria. It follows that
exposures to PC1 and PC2 risks are priced, but exposure to PC3 risk is not priced,
at the one month horizon and during our sample period.29 The finding that both level
and slope risks are priced differs from the conclusion in Cochrane and Piazzesi (2008)
that only level risk is priced. We attribute this difference to our having conditioned
risk premiums on macro information.

The expected excess returns xPC1t and xPC2t both depend in statistically
significant ways on PC1 and GIP . Expected excess returns on PC1 risk in model
CMR

E are also influenced by inflation and the slope of the swap curve (PC2). Note
that, for both of these conditioning variables, the estimates for CMR

E are larger (in
absolute value) and more precisely estimated than their counterparts in model CME.

29An alternative approach to analyzing risk premiums within a macro-DTSM would have been to
adapt the methods in Joslin, Singleton, and Zhu (2010) to enforce the constraint that risk premiums
lie in a two-dimensional space. This approach would have let us proceed without taking a stand
on which of the risks P are priced. However, this two-dimensional restriction is a much weaker
restriction on K than that of the best model chosen by our selection criteria.
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The positive signs on GIP and INF imply that risk premiums on PC1 expo-
sures are pro-cyclical (positively correlated with GIP and INF ). This can be seen
graphically in Figure 4a for all three versions of our canonical macro-DTSM , where
the shaded areas represent the NBER-designated recessions. Exposures to PC1 lose
money when rates fall, which is when investors holding long bond positions make
money. This explains the predominantly negative expected excess returns on the
level-mimicking portfolio in Figure 4a.

There is broad agreement across our three models about the (annualized) expected
excess return on a level-mimicking portfolio, xPC1t, with the biggest difference being
for model CM, particularly over the early part of our sample period. These excess
returns take on their largest (absolute) values during the 1990 and 2001 recessions.
More modest declines in xPC1t occur during 1994 and 2003–04. Notably, Chairman
Bernanke gave speeches on deflation risk in November, 2002 and and again in July,
2003 expressing concerns about possible deflation in the U.S.30 We see that, during
this window of time, expected excess returns to bearing level risk – which is nearly
cointegrated with inflation – fell sharply.

The negative sign on GIP in the second row of K implies that premiums on
exposure to slope risk are counter-cyclical. The finding that PC2 risk is priced when
we include macro information in Xt was anticipated by Figure 1. Nevertheless, it
is striking that, after searching over 215 specifications of the model-implied xPC2t,
our model-selection criteria place most of the weight on GIP and zero weights on
(PC2, PC3, INF ) in characterizing expected excess returns on exposure to slope risk.
The risk premium on PC2 risk achieves its lowest value (during our sample period)
around the time of the Asian crisis in 1997–98. The slope of the swap curve was
relatively flat during this period (see Figure 2). As the swap curve steepened during
the recession in 2000–01 and GIP fell, xPC2t increased substantially.

ML estimates of KP
0 and KP

X governing the P-drift of Xt are displayed in Table 4
for model CMR

E.31 Note that the non-zero coefficients on (GIPt−1, INFt−1) in the rows
for (PC1, PC2) are all statistically different from zero at conventional significance
levels, confirming our earlier findings outside of a DTSM that macro information
is useful for forecasting future bond yields. Additionally, and not surprisingly, the
coefficients on the own lags of GIP and INF are large and significantly different
from zero. We conclude that the zero restrictions on the P-drift of Xt implicit in the
Kim and Wright (2005) model are strongly rejected by our data.

30See Chairman Bernanke’s remarks “Deflation: Making Sure ’It’ Doesn’t Happen Here” before
the National Economists Club on November 21, 2002 and “An Unwelcome Fall in Inflation?” before
the Economists Roundtable on July 23, 2003.

31The zero entries are implied by the constraints on K selected by our model-selection criteria.

21



‐4%

‐3%

‐2%

‐1%

0%

1%

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

XXXXXX

XXXXXX

XXXXXX

CM

CME

CM
R

E

(a) Excess Return on Level-Mimicking Portfolio

‐1%

0%

1%

2%

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

XXXXXX

XXXXXX

XXXXXXXXXXXX

CM

CME

CM
R

E

(b) Excess Return on Slope-Mimicking Portfolio

Figure 4: Expected excess returns on the level- and the slope-mimicking portfolios
implied by models CM, CME, and CMR

E.
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KP
0 KP

X

X PC1 PC2 PC3 GIP INF
PC1 0.0008 0.9566 −0.0031 −0.0593 0.0189 0.0659

(0.0004) (0.0149) (0.0136) (0.0026) (0.0055) (0.0290)

PC2 −0.0009 0.0059 0.9750 0.1642 −0.0169 0.0000
(0.0005) (0.0074) (0.0014) (0.0071) (0.0058) (NA)

PC3 0.0011 0.0157 −0.0066 0.8429 0.0000 0.0000
(0.0001) (0.0013) (0.0020) (0.0097) (NA) (NA)

GIP 0.0027 0.0373 0.1516 −0.3958 0.9109 −0.1119
(0.0044) (0.0881) (0.0797) (0.1885) (0.0298) (0.1832)

INF −0.0008 0.0445 0.0160 0.0347 −0.0064 0.9105
(0.0005) (0.0108) (0.0099) (0.0235) (0.0037) (0.0232)

Table 4: Maximum Likelihood Estimates of KP
0 and KP

X for Model CMR
E. Standard

errors are reported in parentheses.

3.4 Robustness To Pricing Errors in Bond Markets

Up to this point we have assumed that the PCs comprising Pt are priced perfectly by
our macro-DTSMs. The literature has often assumed instead that all bond yields (and
hence their PCs) are priced up to additive measurement errors (e.g., Ang, Dong, and
Piazzesi (2007), Duffee (2009a)). To assess the robustness of our analysis to relaxation
of the assumption that P is priced perfectly by the model (observed Po

t = Pt), we
compute ML estimates of model CM assuming that (yo

t − yt) ∼ N(0, σ2
mI).32 The

likelihood function is constructed with the observation equation

yo
t = A + BPt + ηt, (11)

where P represents the model-implied PCs computed with loadings based on the
historical bond yields, yo

t . With the addition of measurement errors, ML estimation
involves the use of the Kalman filter. To set up the Kalman filtering problem we
start with our normalization with theoretical pricing factors (Pt, Mt). With an initial
guess of (λQ, rQ

∞, LX), we construct (KQ
0P , KQ

PP , ρ0, ρP). Based on the no-arbitrage
pricing of bonds we then construct A ∈ RJ and B ∈ RJ×N with yt = A + BPt. These
theoretical pricing relations are linked to the data by the observation equation (11).

32The results presented here assume that Σm = σIm, consistent with the assumption in the
previously cited literature.
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Figure 5: Filtered PC2 and PC3 implied by model CM.

To distinguish filtered values of the pricing factors from their theoretical and observed
counterparts we use the notation PF

t .33

Figures 5a and 5b display the pairs of the observed PCs and their filtered, model-
implied values (PC2o

t , PC2F
t ) and (PC3o

t , PC3F
t ). For PC2 these series are virtually

on top of each other (this is even more so for PC1, not shown), and the differences
for PC3 are small. These patterns show that the conclusions drawn from our models
are robust to the introduction of pricing errors.34

4 Forward Term Premiums

Excess holding period returns on portfolios of individual bonds reflect the risk
premiums for every segment of the yield curve up to the maturity of the underlying
bond. A different perspective on market risk premiums comes from inspection of the
forward term premiums, the differences between forward rates for a q-period loan
to be initiated in p periods and the expected yield on a q-period bond purchased p
periods from now. Figure 6 displays the forward term premiums (FTP ) based on
the point estimates of model CMR

E for “in-p-for-1” loans (one-year loans initiated in
p years) for p = 2 and 9. These premiums tend to drift downward during our sample

33For our data and sample period the smoothed values (ET [Pt]) are similar to these filtered values.
34We focus on the model without pricing errors, since the introduction such errors adds computa-

tional complexity, given our eigenvalue restriction and use of model selection criteria. With pricing
errors, we would need to filter for the latent states.
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periods, as the level of rates fell, and are increasing in p.
Within our canonical model both forward rates and expected future one-year rates

are affine functions of the state Xt: FTP p,1
t = ςp,1

0 +ςp,1
X ·Xt. Based on this relationship

and the ML estimates of model CMR
E, we compute the 95% confidence bands for

our estimated FTP s. The darker shaded areas in Figure 6 represent the confidence
bands based on the precision of the ML estimates of ςp,1

X , and the wider, light-shaded
bands reflect the sampling variability of the entire parameter set (ςp,1

0 , ςp,1
X ). For the

case of FTP 2,1
t , the two confidence bands roughly coincide, implying that most of the

imprecision in estimating FTP 2,1
t derives from sampling variability in ς2,1

X (forward
premium dynamics). In contrast, for the longer-horizon premium FTP 9,1

t , most of
the imprecision derives from sampling variability in ς9,1

0 , the level of this premium. In
fact, the state-dependent component of FTP 9,1

t is measured more precisely than its
counterpart for FTP 2,1

t over much of our sample period. Though pinning down the
level of these term premiums is challenging, model CMR

E gives quite precise measures
of the dynamic properties of premiums.

The “in-2-for-1” forward term premium implied by model CMR
E exhibits com-

parable high-frequency (i.e., shorter than business cycle frequency) variation as the
“in-2-for-0.25” forward term premium computed by Kim and Orphanides (2005). Their
premium was inferred from a three-factor Gaussian DTSM model (without a com-
parable eigenvalue restriction imposed) estimated using survey forecasts of future
interest rates. Professional forecasters are conditioning (at least) on similar macro
information as that embodied in GIP and INF , and so we find it reassuring that
our implied forward term premiums show similar patterns.

Additional insight into the properties of the term premiums in model CMR
E comes

from Figure 7 which displays standardized FTP s along with standardized versions
of the PMI index constructed by the Institute for Supply Management35 and of the
Coincident Economic Index (CEI) as published by the Conference Board.36 The CEI
is constructed to be an indicator of current economic conditions. Though the PMI
is sometimes viewed as a leading indicator, and is followed by the Federal Reserve
in setting monetary policy (Koenig (2002)), during our sample period the PMI and
CEI track each other closely. Two exceptions are the period of the Asian crisis in the
late 1990’s and the 2003–04 period. In the former case managers expressed a more

35The PMI index is a composite index for the five business cycle indicators new orders, production,
employment, supplier deliveries, and inventories, each with a weight of 20%. It reflects the sentiment
of its membership about future activity in the manufacturing sector of the U.S. economy.

36The Conference Board takes into account (with weight) employees on nonagricultural payrolls
(0.5439), personal income less transfer payments (0.1873), industrial production (0.1497), and
manufacturing and trade sales (0.1191).
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(b) In-9-For-1 Forward Term Premium

Figure 6: Decomposition of forward rates into expected future spot rates and forward
term premiums for “in-p-for-1” forward contracts, p = 2 and 9, implied by model
CMR

E. The shaded areas are confidence bands for the forward term premiums.
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Figure 7: Standardized forward term premiums for “in-p-for-1” forward contracts,
p = 2 and 9, implied by model CMR

E, plotted against the standardized Purchase Man-
agers’ Index (PMI) and smoothed growth rate in the Confidence Board’s Coincident
Economic Indicators Index. The shaded area is the 95% confidence band on FTP .
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const PC1 PC2 PC3 GIP INF
2-for-1 −0.0069 0.3757 0.1693 0.2748 −0.1041 −0.3092

(0.0098) (0.1418) (0.1945) (0.2250) (0.0494) (0.2640)

5-for-1 −0.0035 0.2923 0.3836 0.2290 −0.0142 −0.2859
(0.0123) (0.1012) (0.1414) (0.1650) (0.0292) (0.1536)

9-for-1 0.0032 0.2235 0.4271 0.3529 −0.0189 −0.2651
(0.0141) (0.0898) (0.1133) (0.1211) (0.0238) (0.1346)

Table 5: Coefficients ςp,1
0 and ςp,1

X determining the mapping between the forward term
premiums FTP p,1

t and the state Xt in model CMR
E.

pessimistic sentiment, while in the latter case they were more optimistic, than what
data comprising the CEI indicated about the economy’s strength.

Neither FTP 2,1 nor FTP 9,1 follow an unambiguously counter-cyclical pattern.
In fact, from roughly 1993 through 2000, the PMI and FTP 9,1 track each other
quite closely, so forward term premiums tended to be pro-cyclical during this period.
Inspection of the coefficients ςp,1

X relating FTP s and Xt in Table 5 reveals that the
negative weights on GIP and INF induce counter-cyclical movements in FTP s.
However, all three PCs have statistically significant, positive effects on FTP 9,1. PC1
in particular followed a pro-cyclical path during this period (Figure 2), and the FTP s
reflect a blending of the influences of the priced level and slope risks.

Starting in late 1993 there was a substantial narrowing of the 95% confidence bands
around FTP 9,1

t (Figure 6b). This coincides with the time at which the Federal Reserve
began announcing changes in its target for the federal funds rate. As documented by
Swanson (2006), these announcements led to a substantial improvement in accuracy
of private-sector forecasts of interest rates relative to the late 1980’s. Model CMR

E

seems to capture well this increased precision, at least with regard to the expected
future short-term rates embodied in forward term premiums.

Turning to the post-2000 sample, two periods stand out when there were partic-
ularly large differences between FTP 9,1

t and the business cycle indicators: around
the peak of the dot-com equity market bubble and the period of the bond market
“conundrum” during 2005 – 2006. At the time of the bursting of the dot-com bubble,
the economic indicators showed substantial weakness in the economy, while FTP s
remained high. This counter-cyclical pattern is plausible given the sharp drop-off
in output growth and the associated increased risk related to the debt financing of
corporations at this time. Speculative grade default rates in the U.S. reached their
highest level during 2001/02 since the 1990/91 recession (Moody’s (2009)). Given the
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role of swap transactions in corporate debt issuance, it is not surprising that forward
term premiums were high during both of these recessions.

Several authors have attributed the behavior of long-term rates during the co-
nundrum period to sharp declines in forward term premiums.37 The evidence in
Figure 7b is consistent with this. However it also suggests that falling forward term
premiums were not driven by weak real economic activity alone.38

We turn next to a more in depth exploration of the macroeconomic forces under-
lying variation in risk premiums.

5 More on Macro Risks and the Term Structure

To delve more deeply into the effects of macroeconomic information on the shape of
the swap curve it is instructive to distinguish between new information about spanned
macro variables (SGIPt, SINFt) – the components of (GIPt, INFt) explained by
linear projections onto Pt– and the unspanned residuals from these projections
(OGIPt, OINFt). As we discussed in Section 2, macro-DTSMs that include GIP
and INF as pricing factors enforce theoretical spanning and, thereby, rule out a
priori a role for (OGIP, OINF ) in forecasting risk premiums. In contrast, our family
of models UMA3

0(5) allows for the possibility that (OGIP, OINF ) predict excess
returns, and that their forecasting power is different from that of (SGIP, SINF ).

To gain insight into the roles of (OGIP, OINF ), we decompose the variation
in each FTP p,1 into two mutually orthogonal pieces: the component SPp

t obtained
by projecting FTP p,1

t onto Pt, and the component OMp
t obtained from projecting

FTP p,1
t onto (OGIPt, OINFt).

39 These two components are mutually orthogonal,
since (OGIPt, OINFt) are, by construction, orthogonal to Pt. Figure 8 displays
(SPp

t , OMp
t ), for p = 2, 9. In both cases SPp

t accounts for a majority of the variation
in the FTP s, an expected result given that SPP

t , rt, and yt are all affine in Pt. Of
greater interest is the finding that OM2

t accounts for 25% of the variation in FTP 2,1
t ,

with OM2
t being particularly large during recessions and in the aftermath of Hurricane

37 Recent papers on this issue, using both reduced-form and structural pricing models, include
Rudebusch, Swanson, and Wu (2006), Cochrane and Piazzesi (2008), Bandholz, Clostermann, and
Seitz (2007), and Backus and Wright (2007).

38 Wright (2009) conjectures that the relatively steep decline in forward term premiums during
the conundrum period may be attributable in part to declining uncertainty about future inflation
rates. Such a decline would likely be reflected in the shape of the swap curve and hence in FTP s
through these PCs.

39This decomposition is very different than the decomposition of rt studied by Bikbov and Chernov
(2008). They assume that Mt is spanned by Pt so (OGIPt, OINFt) are set to zero in their model.
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Figure 8: Decomposition of FTP p,1 into two orthogonal components: SPp
t spanned

by Pt and OMp
t spanned by (OGIPt, OINFt), based on estimates from model CMR

E.
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Katrina in 2005 when GIPt experienced a large, temporary decline. We conclude
that models that omit a role for macro risks that are unspanned by P are likely to
misrepresent the structure of excess returns on bond portfolio positions, at least over
short- to intermediate horizons.

Turning to the decomposition of FTP 9,1 in Figure 8b, at this maturity point over
95% of the variation is explained by variation in SP9

t (less than 5% is explained by
OM9

t ). This does not mean, of course, that unspanned macro risks can be reliably
omitted from DTSMs for studying long-dated term premiums. Accurate measurement
of these premiums will likely depend on accurate measurement of premiums along
the entire maturity spectrum, and we have just seen that unspanned macro risks are
important in explaining the variation of shorter-dated premiums.

Focusing more specifically on the decline in long-dated FTP s during the period of
the conundrum, the fall in FTP 9,1 is accounted for (almost) entirely by the information
embodied in P . Together, Figures 7b and 8b suggest that the conundrum is not easily
explained by economic weakness as captured by PMI and GCEI. Similarly, when
we project FTP 9,1

t onto (GIPt, INFt) during our sample period the resulting R2 is
only 37%. In fact, roughly 24% of the variation in FTP 9,1

t is due to factors that are
orthogonal to the expanded information set (SGIPt, SINFt, OGIPt, OINFt).

In speaking about the conundrum, Chairman Bernanke asserted that “a substantial
portion of the decline in distant-horizon forward rates of recent quarters can be
attributed to a drop in term premiums. ... the decline in the premium since last June
2004 appears to have been associated mainly with a drop in the compensation for
bearing real interest rate risk.”40 Figure 8b shows that the decline in distant-horizon
term premiums was not explained by changing unspanned macro risks. In the next
section we take up the question of how much of this drop might have been explained
by changes in spanned macro risks.

Yet a different perspective on the contributions of macro information to risk
premiums comes from inspection of the expected excess returns on the portfolios of
bonds with payoffs that are perfectly correlated with movements in the spanned macro
risks SGIP and SINF , xSGIPt and xSINFt.

41 We see from Figure 9 that xSINF
achieved its lowest levels (largest absolute values) during the 2001 recession and again
around the time of Chairman Bernanke’s expressions of concerns about deflation. In
this respect there is a parallel with the excess returns to the level-mimicking portfolio

40 See his speech before the Economic Club of New York on March 20, 2006 titled “Reflections on
the Yield Curve and Monetary Policy.”

41Both SGIP and SINF are affine functions of P . Using this fact and our construction of excess
returns on portfolios representing pure exposures to level, slope, and curvature risks, we computed
model-implied expected excess returns on pure exposures to SGIP and SINF .
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Figure 9: The monthly expected excess returns on bond portfolios with payoffs that
are perfectly correlated with the components of GIP (SGIP ) and INF (SINF )
that are spanned by Pt.

in Figure 4a. xGIP is near zero for most of the sample period, with the exceptions
of the recessions in 1990 and 2001.

Perhaps the most important take-away from Figure 9 is that both of these
(annualized) premiums on spanned macro risks are small in absolute magnitude. It is
(model-specific) variants of these risk premiums that most of the prior literature has
been measuring as “inflation” or “output growth” risk premiums. Unless securities
with macro-specific payoffs are included in pricing (e.g., TIPS for inflation risk),
DTSMs only reveal information about the risks of the spanned components of macro
risks. For our sample period and in swap markets, the premiums on spanned macro
risks are small, notably smaller than the (annualized) excess returns on level and
slope risks (Figure 4).

This finding leaves open the possibility that unspanned macro risks are priced
and, hence, that actual market premiums on inflation and output growth risks are
large. Using data in inflation-indexed bonds, Hordahl and Tristani (2007) found
that inflation risk premiums were insignificantly different from zero for the Eurozone.
Grishchenko and Huang (2010) study the inflation risk premium in the US using
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Figure 10: Each panel plots the impulse responses of FTP s to shocks to either
(SGIP, OGIP ) or (SINF, OINF ).

TIPS data for the period 2000 through 2008. Consistent with our analysis, they
find that this premium was negative during the first half of their sample, 2000-2004.
Moreover, just as in Figure 9, their premium increased substantially around 2004
and turned positive. Without TIPS data we find that the spanned premium was just
slightly positive late in our sample; using TIPS, Grishchenko and Huang (2010) find
that this premium was significantly positive, particularly at the long end of the yield
curve. This suggests that towards the end of our sample the premium on unspanned
inflation implicit in TIPS was large relative to the premium on spanned inflation.
Their analysis was outside of an arbitrage-free DTSM . We defer to future research
an exploration of risk premiums on unspanned inflation within an extended version
of our modeling framework.
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5.1 Responses of Term Premiums to Innovations in Mt

In the preceding section we found that (OGIP, OINF ) accounted for a substantial
fraction in the variation of FTP 2,1. We dig deeper into the impacts of unspanned
macro risks on the forward term premiums by examining the impulse response
functions of FTP p,1

t , p = 2, 9, to shocks to the spanned and unspanned components
of GIP and INF . At the two-year horizon, innovations in OGIP and OINF have
much larger effects on FTP 2,1 than innovations in SGIP and SINF (Figure 10a).
The effects of unspanned output shocks dissipate quickly (within about one year),
while the effects of spanned inflation shocks persist for several years (Figure 10c).
This difference is no doubt attributable to the near cointegration of INF with the
priced risk factors (PC1, PC2).

For FTP 9,1 the responses to both OGIP and OINF are small, consistent with
the decomposition results in Figure 8. Figure 10d shows a large impact of SINF on
FTP 9,1 suggesting that it is largely spanned inflation risk, and not spanned output
risk, that explains the variation in FTP 9,1 attributable to the macro factors Mt.
This finding is not easily reconciled, it seems, with Chairman Bernanke’s explanation
of the conundrum as a decline in compensation for bearing real interest rate risk.
More likely, it seems, is that the decline in long-dated forward term premiums was
a consequence of changes in spanned inflation risks or changes in economic factors
that were orthogonal to (GIP, INF ). Recall that nearly a quarter of the variation in
FTP 9,1 during our sample period was attributable to such orthogonal factors.

5.2 Responses of Macro Variables to Term-Premiums Shocks

The existing theoretical and empirical literature has not reached clear-cut conclusions
on the relationship between term premiums and economic activity. Bernanke, in his
2006 speech, argues that a higher term premium will depress the portion of spending
that depends on long-term interest rates and thereby will have a dampening economic
impact. In linearized New Keynesian models in which output is determined by a
forward-looking IS equation (such as the model of Bekaert, Cho, and Moreno (2010)),
current output depends only on the expectation of future short rates, leaving no role
for a term premium effect. Time-varying term premiums do arise in models that are
linearized at least to the third order (e.g., Ravenna and Seppala (2007b)).

We examine the response of output growth and inflation to innovations in
FTP 9,1 in the context of model CMR

E, using the model-implied V AR with ordering
(SGIP, SINF, OGIP,OINF, FTP 9,1). As Figure 11 shows, a one standard deviation
increase in FTP 9,1 is followed by a decline in OGIP over a period of about 12 months,
and has virtually no effect on spanned SGIP . The latter result is consistent with
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Figure 11: The impulse responses of SGIP and OGIP to a one standard deviation
shock to FTP 9,1 implied by model CMR

E.

the results in Ang, Piazzesi, and Wei (2003) that term premiums are insignificant in
predicting future GDP growth within a Gaussian DTSM that enforces the theoretical
spanning of GDP growth by bond yields. The large impact on OGIP of shocks
to forward term premiums is a novel finding, one that we can identify by explicitly
accommodating unspanned macro risks in model CMR

E.
The initial negative response of OGIP is reversed after about 36 months, with the

long-term impact being close to zero. This finding raises several interesting questions
for future research, including: Is the mechanism underlying the response pattern of
OGIP the one that Bernanke articulated? Why do term-premium shocks affect the
component of output growth that is orthogonal to bond yields? Do bond market risk
premiums affect the compensation for bearing real output growth risk? Answering
the latter question in particular will require a more elaborate pricing model and the
inclusion of a richer set of financial instruments in the empirical analysis.

6 Concluding Observations

This paper develops and estimates an arbitrage-free, Gaussian DTSM in which the
state vector includes macroeconomic variables that are not perfectly spanned by
contemporaneous bond yields, and in which these macro variables have significant
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predictive content for excess returns on bonds over and above the information in
bond yields. We show that there is a canonical representation of this model that
lends itself to easy interpretation and for which the global maximum of the likelihood
function can be attained essentially instantaneously.

Our modeling framework, formally developed in Appendix A, is applicable to any
Gaussian pricing setting in which security prices or yields are affine functions of a
set of pricing factors Pt and the relevant state vector embodies information (over
and above the past history of P) that is useful for forecasting Pt under the physical
measure P. Accordingly, our framework is well suited to addressing a wide variety
of economic questions about characteristics of risk premium in financial markets,
including bond and currency markets, as well as equity markets when the latter
pricing problems maps into an affine pricing model (e.g., Bansal, Kiku, and Yaron
(2009)). The robust means by which we are able to restrict the dimensionality of
expected excess returns might be particularly advantageous in multi-market settings,
since such restrictions implicitly lead to reductions on the dimensionality of the
parameter space. Though neither the state variables nor the pricing factors exhibit
time-varying volatility in the settings examined in this paper, our basic framework and
its computational advantages are likely to extend to affine models with time-varying
volatility. Exploration of this extension is deferred to future research.
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Appendices

A Derivation of Results in Section 2

Proof of Proposition 1: From Joslin, Singleton, and Zhu (2010) we know that,
for any AQ

0 (3) pricing model with distinct, real eigenvalues of the feedback matrix
of the risk factors, there exists a three-dimensional, latent state vector Yt such that
rt = rQ

∞ + 1 · Yt and

∆Yt = diag(λQ)Yt−1 +
√

Σ0
Y ǫQ

t

for some 3×3 matrix Σ0
Y and vector λQ of eigenvalues of the feedback matrix governing

Y , with ǫQ
t ∼ N(0, I).

To derive a canonical version of (2), let B0(τ) be the loadings given by Ḃ0 =
diag(λQ)B0 − 1, B0(0) = 0. Let B0

PC(i) =
∑−ℓiB

0(τi)/τi, where PCi has loading
ℓi on yield maturity τi. Let B be the 3 × 3 matrix with ith row given by B0

PC(i). It
follows that the covariance matrix of the innovations to the PCs is BΣ0

Y B⊤. In order
that (2) is satisfied, it must be that Σ0

Y = (B⊤)−1ΣPB−1.
Now let A0(t) solve Ȧ0 = 1

2
(B0)⊤Σ0

Y B0 − rQ
∞, A0(0) = 0. Define A0

PC(i) =
∑−ℓiA

0
y(τi)/τi. Let a be the 3×1 vector with i-th entry A0

PC(i). Then Pt = a+BX0
t .

From an invariant affine transformation it follows that: KQ
X = B(diag(λQ)B−1,

KQ
0 = −(KQ

1 )−1a, ρ0 = rQ
∞ − 1⊤B−1a, and ρ1 = (B⊤)−11.

Since (2) is an invariant transformation of an identified, canonical model, we know
that (2) is also identified and canonical. The underlying parameters are (rQ

∞, λQ, LX),
where L is the Cholesky factorization of ΣX .

B Order Selection of Autoregressive Models

We compute three well-known information criteria based on unrestricted VARs with
one through twelve lags (the maximum lag length was chosen so that both seasonal and
annual effects would be captured): Akaike’s information criterion (AIC), Hannan and
Quinn’s information criterion (HQIC), and Schwarz’s Bayesian information criterion
(SBIC). When additional lags are included as explanatory variables, the in-sample
fit improves; the information criteria trade off this gain in likelihood against the
additional number of parameters introduced. The recommended lag length is that at
which the information criteria attain their minimum values. As Table 6 shows, all
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three criteria are minimized at a lag length of 1, suggesting that a first-order Markov
structure fits our data well.

Lags AIC HQIC SBIC
0 −41.6785 −41.6475 −41.6019
1 −54.1559∗ −53.9703∗ −53.6961∗

2 −54.1031 −53.7628 −53.2601
3 −54.0842 −53.5892 −52.858
6 −53.8453 −52.8861 −51.4695
9 −53.6811 −52.2579 −50.1558

12 −53.3595 −51.4721 −48.6846

Table 6: Assessments of Lag Length in V AR Models. The criteria-impled optimal
lag lengths are indicated by ‘∗’.

C Returns on Generalized Mimicking Portfolios

Consider a collection of N yields, {yn1

t , . . . , ynN

t }, and a given linear combination
ya

t =
∑N

i=1 aiy
ni

t of these yields (ya
t could be a principal component, or the projection

of a macro variable onto the yields). Our first goal is to find weights {wi}N
i=1 such

that the portfolio Pw
t =

∑N
i=1 wiP

ni

t of zero coupon bonds locally tracks changes in
ya

t , that is,

dPw
t

dya
t

=
N

∑

i=1

dPw
t

dyni

t

dyni

t

dya
t

= 1 (12)

Since, by definition, P ni

t = exp(−niy
ni

t ), we have dP ni

t /dyni

t = −niP
ni

t . Therefore,
(12) can be rewritten as

−
N

∑

i=1

winiP
ni

t

1

ai

= 1

which will hold for weights

wi = − ai

NniP
ni

t
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Next, consider the one-period excess return on portfolio Pw
t :

∑

i wi(P
ni−1
t+1 − ertP ni

t )

|∑i wiP
ni

t | =
−∑

i ai/ni(P
ni−1
t+1 /P ni

t − ert)

|∑i ai/ni|
.

This is a weighted average of the returns on the individual zero coupon bonds. Now,
it follows from Le, Singleton, and Dai (2009) that P ni

t = exp(−Ani
− Bni

Xt), and
further that

EP[P ni−1
t+1 /P ni

t ] = exp{Bni−1[(K
Q
0 − KP

0 ) + (KQ
1 − KP

1 )Xt] + rt}.

Therefore, to a first-order approximation, the expected excess return on portfolio Pw
t

is given by

∑

i ai/niBni−1[(K
P
0 − KQ

0 ) + (KP
1 − KQ

1 )Xt]

|∑i ai/ni|
.

Since we rotate our model such that the first R elements of Xt correspond to the first
R principal components of yields, and since by definition,

PCjt =
N

∑

i=1

ℓj
iy

ni

t =
N

∑

i=1

ℓj
i (Ani

/ni + Bni
/niXt)

it follows that
∑

i ℓ
j
iBni

/ni is the selection vector for the jth element, j ∈ {1, . . . ,R}.
Thus, under the further approximation that Bni−1 ≈ Bni

, the expected excess return
on the portfolio mimicking PCj, xPCj, is given by the jth row of

(KP
0 − KQ

0 ) + (KP
1 − KQ

1 )Xt

scaled by |∑i ℓ
j
i/ni|. While an approximation for the one-period expected excess

return in discrete time, this relationship is exact for the instantaneous expected excess
return in the continuous-time limit.
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