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In this paper, we study the unsteady flow past a circular cylinder subject to rotational

oscillations. The uncertainties induced by the unknown frequency, magnitude and phase

with respect to the vortex shedding are treated as sources of stochasticity, and we consider

the problem of quantifying the tail probability distribution of the aerodynamic forces.

Specifically we estimate the probability that the overall time-averaged drag exceeds a given

critical value. First we compare adjoint-based and Monte Carlo based estimates. Then,

we demonstrate that using an adjoint method, we can design a better statistical estimator

and an importance sampling strategy and obtain accurate predictions with a computational

cost orders of magnitude lower than brute force Monte-Carlo method.

I. Introduction

Discussed in this article is a method for failure and risk analysis. These types of analyses require
calculating tail probabilities of an objective function. More specifically, we want to calculate the small
probability that the objective function exceeds a certain critical value, usually representing the probability
that a system fails or suffers catastrophic losses. Mathematically, let J(ξ) be the objective function, which
depends on a vector of uncertain variables ξ. The probability distribution of ξ is known. Let JC be a known
constant. We want to calculate P (J > JC). This probability can be as high as 10%, and as small as 10−5

or even smaller.
Calculating such tail probabilities is challenging. Polynomial chaos and collocation based methods do

not represent tail probabilities accurately. Monte Carlo is the most commonly used method in this situation.
However, the brute force Monte Carlo method can be very computationally expensive and inefficient; if the
tail probability is small, only a small fraction of the samples would fall into the tail region, resulting in
insufficient sampling. In fact, let ξi, i = 1, . . . , N be samples of ξ. The brute force Monte Carlo method
approximates

P (J > JC) ≈ PN =
1

N

N
∑

i=1

I(J(ξi) > JC) ,

where I(J(ξi) > JC) is the indicator function. Its value is 1 if J(ξi) > JC is true and zero otherwise. The
variance of this estimator PN is

Var[PN ] =
1

N
Var[I(J(ξi) > JC)] =

P (J > JC) − P (J > JC)2

N
. (1)

The relative error of the Monte Carlo method can be characterized by the ratio of the standard deviation
and the mean of the estimator PN , which is

√

Var[PN ]

P (J > JC)
=

√

1 − P (J > JC)

N P (J > JC)
.
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This formula reveals the inefficiency of the brute force Monte Carlo method when the tail probability is
small. For a fixed number of samples, the smaller the tail probability P (J > JC), the larger the relative
error; for a fixed target relative error, the smaller the tail probability, the more samples must be used to meet
the target relative error. For example, if the tail probability P (J > JC) = 5%, and the target relative error
is 10%, about 2,000 samples should be used. But when the tail probability to be calculated is 0.1%, 100,000
samples should be used. In computationally intensive engineering problems, calculating J(ξi) for each ξi

is expensive. Therefore, it is impractical to use the brute force Monte Carlo method, and some method of
accelerating its convergence rate must be used.

This article presents an adjoint based approach for accelerating the Monte Carlo method. Section II
derives the adjoint equation for unsteady incompressible Navier-Stokes equations, and calculating sensitivity
derivatives using the adjoint solution. This section also briefly discusses our approach of solving the adjoint
equations, and presents an example of its numerical solution. Section III then discusses two methods of
using the adjoint solution to reduce the variance of Monte Carlo methods, and accelerate their convergence.
Section IV presents an numerical example of these accelerated Monte Carlo methods, and demonstrate their
effectiveness. Section V then concludes this work.

II. Adjoint equations for unsteady incompressible Navier-Stokes Equations

II.A. Mathematical Formulation

In this section, we derive the adjoint sensitivity gradient for uncertainty quantification problems related
to incompressible Navier-Stokes flow. The uncertainties affect both the boundaries and the flow in the
interior. The former describe The former describes uncertain wall roughness, unmodeled object movement /
oscillations etc. The latter describe numerical uncertainties and subgrid model uncertainties. The objective
function is assumed to be a measurable aerodynamic quantity, such as lift, drag or moment of a solid object
in the flowfield, which depends on the pressure and viscous stress on the boundary of the solid object. The
adjoint equations for Navier-Stokes flows have been derived and solved by [1, ] [2, ] and [3, ].

The incompressible unsteady Navier-Stokes and continuity equations with normalized density are

∂v

∂t
+ v · ∇v −∇ · (µ∇v) + ∇p = f(ξ)

∇ · v = 0 ,

in the spatial domain Ω and time period [0, T ]. The source term f(ξ) depends on ξ, the random variables
describing the sources of uncertainties. The initial condition is

v = u0, t = 0

and the boundary condition are dependent on the sources of uncertainties

v = vb(ξ), x ∈ ∂Ω.

The objective function is a time-integrated aerodynamic quantity, which depends on the pressure and viscous
stresses at the boundary:

J(v, ξ) =

∫ T

0

J(n · τ |∂Ω, p |∂Ω; t) dt ,

where the viscous stress tensor is τ = µ∇v, and n is the unit wall-normal.
Let ξ0 be the point of linearization, v0 and p0 be the solution of the Navier-Stokes equations with

boundary condition vb(ξ0) and forcing term f(ξ0). We can linearize both the Navier-Stokes equations and
the objective function. By defining δξ = ξ − ξ0, δv = v − v0 and δp = p − p0, the linearized incompressible
LES equation is

∂ δv

∂t
+ Lv0

δv + ∇δp =
∂f

∂ξ
δξ

∇ · δv = 0

(2)
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with boundary condition

δv =
∂vb

∂ξ
δξ, x ∈ ∂Ω,

and initial condition
δv = 0, t = 0.

The linearized Navier-Stokes operator Lv0
is defined as

Lv0
δv = δv · ∇v0 + v0 · ∇δv −∇ · (µ∇δv) .

Note that the operator depends on the point of linearization v0.
On the other hand, the linearized objective function is

δJ(v, ξ) = J(v, ξ) − J(v0, ξ0)

=

∫ T

0

∫∫

∂Ω

(a(x, t) · (n · δτ) + b(x, t) δp) ds dt

+

∫ T

0

∫∫∫

Ω

c(x, t) · δv dx dt .

(3)

where
δτ = τ − τ0 = µ0∇δv + δµ∇v0

a(x, t), b(x, t) and c(x, t) are the Frechet derivatives

a =
∂J

∂ (n · τ)
, b =

∂J

∂p
, c =

∂J

∂v

a is a vector function at the boundaries, b is a scalar function at the boundaries, and c is a vector function
in the interior.

Define the adjoint variables v̂, p̂ and µ̂ such that they satisfy the adjoint equation

−
∂v̂

∂t
+ L∗

v0
v̂ + ∇p̂ = −c

∇ · v̂ = 0
(4)

where L∗

v0
is the adjoint operator of Lv0

:

L∗

v0
v̂ = ∇v0 · v̂ − v0 · ∇v̂ −∇ · (µ0∇v̂) .

The adjoint variables also must satisfy the terminal condition

v̂ = 0, t = T

and the adjoint boundary condition

v̂ = a − n (b + a · n) , x ∈ ∂Ω . (5)

We now show that the sensitivity derivatives of the objective function J with respect to ξ can be calculated
using ξ and adjoint variables.

First, the adjoint boundary condition (5) implies that

δp n · v̂ = b δp (6)

and because n · τ · n ≡ 0 on the boundaries, (5) further implies

n · (µ∇δv) · v̂ = n · δτ · v̂ = −n · δτ · a . (7)
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In addition, from the adjoint equation,

c · δv = −δv ·

(

−
∂v̂

∂t
+ L∗

v0
v̂ + ∇p̂

)

(8)

and
0 = δp ∇ · v̂ (9)

Incorporating (6), (7), (8) and (9) into the linearized objective function (3), we get

δJ(v, ξ) =

∫ T

0

∫∫

∂Ω

(n · (µ∇δv) · v̂ − δp n · v̂) ds dt

−

∫ T

0

∫∫∫

Ω

δv ·

(

−
∂v̂

∂t
+ L∗

v0
v̂ + ∇p̂

)

dx dt

+

∫ T

0

∫∫∫

Ω

δp ∇ · v̂ dx dt

(10)

Furthermore, using integration by parts, and applying the initial and boundary conditions for both the
linearized Navier-Stokes equations and the adjoint equation, we get the following four equalities:

∫ T

0

v̂ ·
∂ δv

∂t
dt = −

∫ T

0

δv ·
∂v̂

∂t
dt (11)

∫∫∫

Ω

v̂ · Lv0
δv dx =

∫∫∫

Ω

δv · L∗

v0
v̂ dx

−

∫∫

∂Ω

n · (µ∇δv) · v̂ ds

+

∫∫

∂Ω

n · (µ∇v̂ − vwv̂) · δv ds

(12)

∫∫∫

Ω

v̂ · ∇δp dx = −

∫∫∫

Ω

δp ∇ · v̂ dx +

∫∫

∂Ω

δp n · v̂ ds (13)

∫∫∫

Ω

p̂ ∇ · δv dx = −

∫∫∫

Ω

δv · ∇p̂ dx +

∫∫

∂Ω

p̂ n · δv ds . (14)

Incorporating these four equations (6), (7), (8) and (9) into (10), we get

δJ(v, ξ) =

∫ T

0

∫∫

∂Ω

(n · (µ∇v̂) − n · vw v̂ − p̂ n) · δv ds

−

∫ T

0

∫∫∫

Ω

v̂ ·

(

∂ δv

∂t
+ Lv0

δv + ∇δp

)

dx dt

+

∫ T

0

∫∫∫

Ω

p̂ ∇ · δv dx dt

=

∫ T

0

∫∫

∂Ω

(n · (µ∇v̂) − n · vw v̂ − p̂ n) ·
∂vb

∂ξ
δξ ds

−

∫ T

0

∫∫∫

Ω

v̂ ·
∂f

∂ξ
δξ dx dt .

Therefore, the sensitivity gradient is

DJ

Dξ
=

∫ T

0

∫∫

∂Ω

(n · (µ∇v̂) − n · vw v̂ − p̂ n) ·
∂vb

∂ξ
ds

−

∫ T

0

∫∫∫

Ω

v̂ ·
∂f

∂ξ
dx dt .

(15)
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It can be calculated by using the adjoint solution at each time step. This is a key motivation for obtaining
the adjoint solution in the first place.

II.B. The adjoint Navier-Stokes solver

This section describes the numerical scheme used to solve the adjoint Navier-Stokes equations. In designing
the numerical scheme, we follow the “discrete adjoint” approach. The numerical scheme we obtain by this
approach is not only a consistent discretization of the continuous adjoint Navier-Stokes equations, it is also
the direct discrete adjoint of the numerical scheme for solving the unsteady Navier-Stokes equations. This
approach has an important advantagea: the sensitivity gradient we obtained is not affected by discretization
error of either the Navier-Stokes equation or the adjoint Navier-Stokes equations. Since the discrete adjoint
scheme is dependent on the scheme for solving the Navier-Stokes equations, we start by describing CDP, our
unsteady Navier-Stokes solver on an unstructured hybrid mesh.

The 3-D unsteady Navier-Stokes solver is called CDP [4, ]. The solver uses a fractional-step method
to enforce the divergence-free condition. An implicit BDF-2 time integration scheme [5, ] is used for time
discretization. The spatial discretization is a node based finite volume method. Velocity and pressure are
stored in the dual-volume corresponding to each node. They are denoted as u without subscript, and p,
respectively. A separate velocity field is stored on the surfaces of the dual-volumes, precisely corresponding
to the face edges, to enforce the divergence-free condition. This auxiliary velocity field is denoted as um. The
simplex superposition scheme [6, ] is used for spatial discretization of the gradient, divergence, Laplacian
and convection operators. The scheme is second-order accurate both in space and time for arbitrarily shaped
elements.

A detailed description of the numerical scheme for solving the discrete adjoint equations can be found
in [7, ]. The adjoint equation evolves backward in time; its terminal condition is set at the last time step
of the Navier-Stokes time integration, and each evaluation of the adjoint scheme brings the adjoint solution
one time step backward. The adjoint scheme resembles a reversed prediction-correction scheme. Each time
step of the adjoint solver involves the following operations:

1. Obtain the Navier-Stokes state variables uk−1, uk−2, uk−1
m , uk−2

m and pk−1 from the checkpointing
scheme [8, ].

2. Solve the prediction part (first three lines) of the Navier-Stokes step.

3. Retrograde the correction part of the adjoint step.

4. Retrograde the prediction part of the adjoint step.

Since the adjoint equation is calculated retrograde in time, the Navier-Stokes state variables are needed in a
reverse-time order. The dynamic checkpointing scheme developed by [8, ] is used to fulfill this requirement.
Using the dynamic checkpointing scheme, the adjoint equation can be solved at a computational cost of
around 4 to 8 times that of the Navier-Stokes equations, with moderate increase in memory usage.

II.C. Numerical example of an adjoint solution

The last section discussed how to solve the adjoint Navier-Stokes equations for general objective functions.
This section gives an example of the process. We consider a Newtonian incompressible fluid flowing past
an infinitely long circular cylinder. The Reynolds number with respect to the far-field flow velocity and the
cylinder diameter is 100. At this Reynolds number, the flowfield is 2-D, unsteady and periodic in time [9, ].

The incompressible Navier-Stokes equations were solved in a 2-D domain of size 60 cylinder diameters
(flow direction) by 80 cylinder diameters (crossflow direction). The domain was discretized with approxi-
mately 10,000 unstructured quadrangle mesh elements. By taking advantage of the unstructured grid, most
of the mesh points were concentrated around the cylinder and in a band of length 10 cylinder diameters
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Figure 1. The mesh used for calculating the flowfield at Reynolds number 100. The left picture shows the entire
computational domain of 60 × 80; the right picture zooms in to a small region around the cylinder.

downstream of the cylinder. Figure 1 shows the unstructured mesh used. The flow velocity on the left
boundary of the domain was set to the freestream velocity, the upper and lower boundaries of the domain
were set to periodic, and an convective outlet boundary condition was used at the downstream boundary. An
algebraic multigrid solver was used to solve the Poisson equation in the corrector steps. We used a fixed time
step size, ∆t = 0.1, in this calculation. The corresponding CFL number was approximately 3 in the region
near the cylinder. All physical quantities were normalized with respect to the fluid density, the freestream
velocity and the cylinder diameter.

The uncertainty in the problem we consider comes from small rotational oscillations of the cylinder in
the flow. The specific form of the oscillation is unknown, and the rate of rotation ω is modeled as a random
time process. A no-slip boundary condition is used on the wall, which is

vx = ωy, vy = −ωx.

Oscillatory rotation of the cylinder has been shown to have significant effect on the drag coefficient [10, ].
The objective of this example is to analyze the effect of the small random rotational oscillations on the drag
coefficient. Specifically, we want to obtain the probability distribution of the time-averaged drag coefficient
of the cylinder from the random rotation. We describe this process as ‘’propagating” the uncertainties from
the sources, the random rotation in this example, to the objective quantity, the time-averaged drag coefficient
c̄d.

The objective function is

J = cd =
1

T

∫ T

0

cd dt ,

where cd is the instantaneous drag coefficient,

cd =
D(t)

1
2ρv2

∞
d

.

D(t) is the instantaneous drag on the cylinder per spanwise length, ρ is fluid density, v∞ is freestream
velocity and d is the cylinder diameter. Since all quantities are normalized with ρ, v∞ and d, ρv2

∞
d = 1, and

cd = 2D(t) .

aThe discrete adjoint also have disadvantages compared to the continuous adjoint, such as its dependency on the primal

scheme, and generally greater complexity.
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The instantaneous unit-span drag D(t) consists of pressure drag Dp and viscous drag Dv, which are

Dp = −

∮

pn · exds

Dv =

∮

n · τ · exds

and

cd = 2

∮

(n · τ − pn) · ex ds

where n is wall-normal unit vector, µ is viscosity, ex = (1, 0, 0) is the unit vector in the x-direction, and the
integration is on the circumference of the cylinder cross-section.

A numerical approximation of the time-averaged drag coefficient is

J =
2

T

T
∑

k=1

∆t
∑

i∈sfc

(ni · τi − pini) · exdsi . (16)

In the formula, sfc represents mesh nodes on the wall boundary of the cylinder, pi is the pressure, and τi is
the viscous stress at node i, which can be directly calculated from the velocity of its neighboring nodes:

τi =
1

Re
∇v|i =

1

Re

∑

j∈nbr(i)

κi jvj ,

where κi j is the Simplex-Superposition discretization of the gradient operator, its specific value depends on
the cell types and geometry. We note that this objective function is linear with respect to the velocity and
pressure. The source term of the adjoint equation corresponding to this objective function is

Jv i =
∑

j∈sfc∪nbr(i)

nj · κj iex

Jp i =







ni · ex i ∈ sfc

0 i /∈ sfc .

(17)

We solve the discrete adjoint equations with objective function being the time-averaged drag coefficient
(16). Several snapshots of the adjoint solution are depicted in Figure 2. The left side of the figure shows
the streamwise velocity ux at four time instances; the right side shows the corresponding adjoint streamwise
velocity ûx. These adjoint fields reveals the sensitivity derivative of the objective function with respect to
changes in the flowfield. In these plots, red is positive values of ûx, indicating that a positive change in
the streamwise velocity would increase the drag of the cylinder. Such regions include the upstream of the
cylinder, where an increase in ux would generate more skin friction drag, and unsteady bands in the shear
layers on the sides of the cylinder, where an increase in ux would temporarily widen the wake, creating more
pressure drag on the cylinder. In contrast, blue is negative values of ûx, indicating that a positive change
in the streamwise velocity would reduce the drag of the cylinder. These regions are unsteady bands in the
shear layers where an increase in ux would temporarily narrow the wake, decreasing the pressure drag.

By integrating the adjoint solution using (15), we obtain the sensitivity gradient of the objective function
with respect to the random variables describing the sources of uncertainty. In this case, it is the sensitivity
gradient of the time-averaged drag coefficient with respect to the rate of rotation ω. Since ω is a random

time process, the sensitivity gradient obtained is a function of time. This function ω̂ =
∂J

∂ω

∣

∣

∣

∣

t

is plotted in

Figure 3, along with the time history of the instantaneous lift and drag coefficients on the cylinder.
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Figure 2. Flow and adjoint solutions at t = 125.0, 126.5, 128.0, 129.5 (upper-left, upper-right, lower-left, lower-right)
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Figure 3. The time history of cl, cd and ω̂ = ∂J

∂ω
of flow past a non-rotating circular cylinder at Re = 100. The objective

function for the adjoint equation is the time-integrated drag on the cylinder. The time averaged drag coefficient 1.3345
is plotted as a dotted line in the cd plot.

III. Accelerating Monte Carlo using adjoint sensitivity gradient

Acceleration of convergence for Monte Carlo methods can be achieved by reducing the variance of its
estimator. For a fixed target approximation error, the number of samples required is proportional to the
variance of an unbiased estimator. This section discusses variance-reduction techniques for calculating the
tail probability P (J > JC) based on a single adjoint calculation. The adjoint calculation can be used
to calculate the sensitivity gradient, which can be used to approximate the objective function as a linear
function of the random variables describing the sources of uncertainty. Suppose the adjoint is evaluated at
ξ0, and the sensitivity gradient J′(ξ0) is calculated from the adjoint solution. The objective function can be
approximated in the vicinity of ξ0 as

J(ξ) ≈ JL(ξ) = J(ξ0) + ∇J(ξ0) · (ξ − ξ0) .

The information provided by this linear approximation enables us to reduce the variance of the Monte Carlo
method using control variate and importance sampling. Section III.A discusses the control variate technique,
and Section III.B combines control variate with importance sampling to further reduce the variance.

III.A. Control variates

The idea of control variate [11, ] explores the similarity between the real objective function J and its linear
approximation JL. In this method, we approximate the target tail probability P (J > JC) with the estimator

P (J > JC) ≈ PCV
N = P (JL > JC) +

1

N

N
∑

i=1

(I(J(ξi) > JC) − I(JL(ξi) > JC)) .
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This estimator PCV
N is unbiased for P (J > JC) because

E
[

PCV
N

]

= P (JL > JC) + E[I(J(ξi) > JC)] − E[I(JL(ξi) > JC)]

= P (JL > JC) + P (J > JC) − P (JL > JC)

= P (J > JC) .

The variance of this new estimator is

Var
[

PCV
N

]

=
1

N
Var [I(J > JC) − I(JL > JC)]

=
1

N

(

P (J > JC > JL or J < JC < JL) − (P (JL > JC) − P (J > JC))2
)

.

(18)

From this formula, we can see that the variance of the control variate estimator depends on the accuracy
the linear approximation JL. If the approximation is good, then J ≈ JL. As a result, P (J > JC >
JL or J < JC < JL), which is the probability that JC lies within the small interval [J,JL], is small. Since

Var
[

PCV
N

]

≤
1

N
P (J > JC > JL or J < JC < JL), the variance is small. In fact, if the approximation

is exact, i.e., JL = J, then the variance is zero. However, if the approximation is not accurate at all, this
estimator may not reduce the variance. For example, if the JL < JC is a constant, then P (J > JC >

JL or J < JC < JL) = P (J > JC), and Var
[

PCV
N

]

=
1

N

(

P (J > JC) − P (JL > JC)2
)

is the same as the

variance of the Naive Monte Carlo method. For this reason, this method offers the most improvement in
convergence when the linear approximation JL is at least a fairly accurate approximation.

In Section IV, we will apply the control variate technique in an unsteady fluid flow problem, and demon-
strate its variance-reduction effectiveness.

III.B. Importance sampling

The brute force Monte Carlo method is ineffective when the target failure probability is small because
only a small fraction of samples lay in the region where failure might occur. The importance sampling
technique [12, ] addresses this ineffectiveness by concentrating the samples in regions where the failure is
more likely to occur.

In our adjoint-based importance sampling, we select the concentration of sampling based on how likely
the objective function J and its linear approximation JL are on different sides of the critical value JC.
Therefore, the first step of our method is to estimate the error of this linear approximation; since it is

likely to grow as O(|ξ−ξ0|
2), we model the normalized approximation error

J − JL

||ξ − ξ0||2
as a random variable,

whose probability distribution is estimated by plotting the histogram of
J(ξi) − JL(ξi)

||ξi − ξ0||2
for a small number of

samples ξi. This step quantifies how much the objective function J may deviate from its linear approximation
JL. For each ξ, without going through the expensive process of calculating the objective function J(ξ), we
can estimate its prior probability distribution based only on its linear approximation JL(ξ) and |ξ − ξ0|

2.
Note that this probability distribution is defined in the Bayesian sense, in contrast to the tail probability
we intend to calculate, which is defined as a frequency probability. For the sake of clarity, we denote the
Bayesian probability as p and the frequency probability as P .

Now for each ξ, we can calculate the prior probability

p(J(ξ) > JC | JL(ξ)) = p

(

J(ξ) − JL(ξ)

||ξ − ξ0||2
>

JC − JL(ξ)

||ξ − ξ0||2

∣

∣

∣

∣

JL(ξ)

)

based on the value of JL(ξ) and the estimated probability distribution of
J(ξ) − JL(ξ)

||ξ − ξ0||2
. We call it a prior

probability because this probability is estimated prior to calculating the real value of the objective func-
tion J(ξ). Furthermore, we can calculate the prior probability that the objective function and its linear
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approximation are on different sides of JC. We denote this probability as pD,

pD(ξ) = p(J(ξ) > JC > JL(ξ) or J(ξ) < JC < JL(ξ) | JL(ξ))

=







p(J(ξ) > JC | JL(ξ)), JC > JL(ξ)

1 − p(J(ξ) > JC | JL(ξ)), JC < JL(ξ) .

Our importance sampling technique concentrates the samples based on this prior probability. For each
proposed sample ξi obtained according to the distribution of ξ, we calculate JL(ξi) and pD(ξ). This proba-
bility determines the rate at which the proposed sample is approved or rejected. Specifically, an independent
uniform pseudo-random number is generated and compared with this prior probability, and the sample is
rejected if the pseudo-random number is greater of the two. Calculations for J(ξi) are done for approved ξis
only. This mechanism concentrates the approved samples in regions where the linear approximation JL is
likely to give a false indication of whether the objective function exceeds the critical value JC.

In order to achieve an unbiased estimator, this concentration of samples must be compensated for by
weighing each sample differently. Let f(ξ) be the probability density function of ξ, then the probability

density function of the approved samples is
f(ξ)pD(ξ)

∫

pD(ξ)dP (ξ)
; if we denote this probability distribution as Q(ξ),

then the Radon-Nikodym derivative is given by

dQ

dP
=

pD(ξ)
∫

pD(ξ)dP (ξ)
. (19)

With the approved samples ξ1, ξ2, . . . , ξN distributed according to the new probability distribution Q, a
different estimator P IS

N is used.

P (J(ξ) > JC) ≈ P IS
N = P (JL > JC) +

1

N

N
∑

i=1

dP

dQ
(I(J(ξi) > JC) − I(JL(ξi) > JC)) .

This estimator P IS
N is unbiased for P (J > JC) because

EQ

[

P IS
N

]

= P (JL > JC) + EQ

[

dP

dQ
(I(J(ξi) > JC) − I(JL(ξi) > JC))

]

= P (JL > JC) + EP [I(J(ξi) > JC) − I(JL(ξi) > JC)]

= P (J > JC) .

The new estimator P IS
N with importance sampling can further reduce the variance of the Monte Carlo method

and accelerate its convergence. The variance of this importance sampling estimator is

VarQ

[

P IS
N

]

=
1

N
VarQ

[

dP

dQ
(I(J(ξi) > JC) − I(JL(ξi) > JC))

]

=
1

N
EQ

[

(

dP

dQ

)2

(I(J(ξi) > JC) − I(JL(ξi) > JC))
2

]

−
1

N
(P (J > JC) − P (JL > JC))2

=
1

N
EP

[

dP

dQ
I(J > JC > JL or J < JC < JL)

]

−
1

N
(P (J > JC) − P (JL > JC))2

=
1

N
EP

[

I(J > JC > JL or J < JC < JL)

p(J > JC > JL or J < JC < JL)

]
∫

pD(ξ)dP (ξ)

−
1

N
(P (J > JC) − P (JL > JC))2 .

(20)
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In the next section, we will demonstrate that the importance sampling technique indeed reduces the variance.

IV. Application to an unsteady fluid flow problem

We consider the laminar flow around a circular cylinder at a Reynolds number of 100. We use the same
mesh, problem setup and numerical methods as described in Section II.C. The objective function is the
time-averaged drag coefficient of the cylinder, and we want to calculate the probability that it is greater
than a critical value JC = 1.345.

The uncertainties in the problem come from small, unknown rotational oscillations of the cylinder in the
flow. We assume that this random rotation consists of 10 different frequencies, including the vortex-shedding
frequency and its subharmonics. The rotation at each frequency is described by two random numbers, making
each frequency component of the oscillation random both in magnitude and random in phase. Specifically, let
fV be the frequency of the vortex-shedding, the angular speed of the cylinder rotating about its symmetric
axis is

w(t) =

10
∑

i=1

ξ2i−1 cos(2πifV t) + ξ2i sin(2πifV t) , (21)

where ξ1, . . . , ξ20 are Gaussian random variables with mean 0 and standard deviation 0.01.
Although the magnitude of the random rotational oscillations are small, they have significant impact on

the flowfield. As a result, the forces exerted on the cylinder by the fluid can be significantly affected. Figure
4 plots the time history of the drag coefficient cd and lift coefficient cl of the cylinder for 1000 samples of
the random oscillations. These non-dimensionalized quantities cd and cl are defined as

cd =
D

1
2ρv2

∞
D b

cl =
L

1
2ρv2

∞
D b

where D is the drag of the cylinder, i.e., the component of the aerodynamic force that is parallel to the
freestream; L is the lift of the cylinder, i.e the component of the aerodynamic force that is perpendicular to
the freestream; ρ is the density of the fluid; v∞ is the speed of the freestream flow; D is the diameter of the
cylinder, and b is the spanwise length of the cylinder.

In Figure 4, the white lines represent the lift and drag coefficients with no random oscillations. The
black dotted lines show the lift and drag coefficients of cylinders undergoing rotational oscillations described
by equation (21) with 1000 samples of the random vector (ξ1, . . . , ξ20). As can be seen, the drag coefficient
can be significantly changed by the random rotational oscillations. Therefore, our objective function, the
time-averaged drag coefficient J, should also depend on the specific form of the rotational oscillation, which
is specified by the random vector (ξ1, . . . , ξ20).

Figure 5 shows that the objective function is indeed modified by the random rotational oscillations. This
histogram shows the empirical density function for the time-averaged drag coefficient, our objective function
J. The dotted vertical line represents the critical value JC = 1.345. As can be seen, there is a small but
non-trivial probability that our objective function is higher than this critical value. We can also roughly
estimate this tail probability from the histogram. Since the objective function exceeds the critical value in
48 of the 1000 samples we calculated, an unbiased estimate of the tail probability is P (J > JC) ≈ 4.8%.
However, the standard deviation of this estimate is 0.007, making the 3σ confidence interval of the tail
probability

P (J > JC) = 4.8 ± 2.0%. (22)

These numbers reveal the inefficiency of the brute force Monte Carlo method. Despite of calculating the
objective function for 1000 samples, the fraction of the samples whose objective function is higher than
the critical value is small. As a result, the probability calculated by this method has a large variance and
therefore is not accurate.
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Figure 4. Realizations of the cl (the top figure) and cd (the bottom figure). The white lines indicate cl and cd with no
rotations.

IV.A. Adjoint linear approximation

The adjoint equation for this problem is solved with the method described in Chapters 3 and 4. From the
adjoint solution, we can calculate the gradient of the objective function with respect to the rate of rotation
of the cylinder.

ω̂(t) =
∂J

∂ω(t)

Figure 3 shows the time history of ω̂. With ω̂ calculated, we can obtain the sensitivity gradient of the
objective function with respect to ξ1, . . . , ξ20, the random variables describing the rotational oscillation.

∂J

∂ξi

=

∫ T1

T0

∂J

∂ω(t)

∂ω(t)

∂ξi

dt

=















∫ T1

T0

ω̂ cos

(

2π
i + 1

2
fV t

)

dt, i is odd
∫ T1

T0

ω̂ sin

(

2π
i

2
fV t

)

dt, i is even

Calculating this sensitivity derivatives for each i = 1, . . . , 20 generates the sensitivity gradient vector of J as
a function of the random variables ξ = (ξ1, . . . , ξ20).

∇J =

(

∂J

∂ξ1
, . . . ,

∂J

∂ξ20

)
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Figure 5. The histogram of the objective function J = cd. The dashed vertical line indicates J with no rotation. The
dotted vertical line indicates JC = 1.345.

With this sensitivity gradient, we can construct a linear approximation of the objective function

J(ξ) ≈ JL(ξ) = J0 + ∇J · ξ (23)

where J0 = J(0) is the value of the objective function when ξ = 0, i.e., when the cylinder is not rotating. This
adjoint linear approximation can be obtained with one Navier-Stokes solution, from which J0 is calculated,
and one adjoint solution, from which the sensitivity gradient ∇J is calculated. Once we have J0 and ∇J, the
adjoint linear approximation JL(ξ) can be calculated using (23) at essentially no additional computational
cost.

Figure 6 shows the true value of the objective function J(ξi) against its adjoint linear approximation
JL(ξi) for 1000 randomly sampled ξ1, . . . , ξ1000. Each cross on the plot represents one sample. As can
be seen, although some samples deviate from the diagonal line, indicating large approximation errors, the
adjoint linear approximation is a sufficiently accurate approximation to the objective function.

The adjoint linear approximation can be directly used to obtain a very efficient first-order estimate
of P (J > JC), the probability we want to calculate. Because JL(ξ) can be evaluated with essential no
computational cost, a very large number of Monte Carlo samples can be used to accurately calculate P (JL >
JC). This probability that the linear approximation exceeds the critical value can be used to approximate
the probability that the objective function exceeds the critical value. P (J > JC) ≈ P (JL > JC).

Figure 7 shows the application of this approach to our cylinder problem. The solid line is the empirical
distribution function obtained from 10,000,000 samples of the adjoint linear approximation JL. For com-
parison, the bars are the same empirical distribution function obtained from the 1000 samples of J. The
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Figure 6. The correlation between adjoint approximation (horizontal axis) and true objective function (vertical axis).
The horizontal and vertical dotted lines indicates the critical value JC. The circular symbol at the center indicates the
objective function without rotation.

vertical dotted line indicates the critical value JC. As can be seen, the distribution function of the adjoint
linear approximation is close to the distribution of the true objective function. In addition, because the
distribution of the adjoint approximation is obtained with many more samples, it is much smoother than the
empirical distribution of the true objective function. At the same time, the tail probability for the adjoint
approximation P (JL > JC) can be obtained with little variance. In this case, we calculated

P (J > JC) ≈ P (JL > JC) = 3.6%. (24)

We compare this result with the value calculated using the brute force Monte Carlo method (22). The
accuracy of their results are similar, because the true value of P (J > JC) is 4.1 ± 0.5% (as calculated in
Equation (26) later in this article). Nevertheless, the error of this adjoint approximation method is different
in nature from the error of the brute force Monte Carlo method. The error of the brute force Monte
Carlo method comes from its large variance of the estimator, while the result of the adjoint approximation
method has very little variance due to the large number of samples used. Instead, the error of the adjoint
approximation method is a consequence of approximating P (J > JC) with P (JL > JC). The difference
between these two probabilities can be illustrated using Figure 6. In the plot, the vertical axis is J, and the
horizontal axis is JL. The probability P (J > JC) we want to calculate is the proportion of samples above
the horizontal dotted line. In contrast, P (JL > JC), the probability we use to approximate P (J > JC), is
the proportion of samples to the right of the vertical line. By using this approximation, we underestimate
the samples to the upper-left of the intersection of the two dotted lines, and overestimate the samples to the
lower-right of the intersection.
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Figure 7. The empirical density function of the objective function obtained using the brute-force Monte Carlo (vertical
bars), and the empirical density function of the adjoint approximation obtained using adjoint method (solid line). The
dashed vertical line indicates J with no rotation. The dotted vertical line indicates JC = 1.345.

Although the adjoint approximation method has a similar large error to the brute force Monte Carlo
method in our example, it is by far less expensive. The brute force Monte Carlo method requires 1000 Navier-
Stokes calculations, while the adjoint approximation method involves only one Navier-Stokes calculation and
one adjoint calculation. Since the adjoint calculation requires about 4 times the computational resources
of a Navier-Stokes calculation, the brute force Monte Carlo method is 200 times more expensive than the
adjoint approximation method. This extreme efficiency makes the adjoint method the first choice for a rough
estimate of the tail probability.

IV.B. Accelerated Monte Carlo

Although the adjoint approximation method of estimating P (J > JC) is computationally economical, it does
not produce very accurate results. In this section, we use the methods described in the previous section to
reduce the variance of the Monte Carlo method. With these variance-reduction techniques, we produce more
accurate results with the same cost as the brute force Monte Carlo method.

We first apply the control variates technique to this problem, as described in Section III.A. With this
technique, we use the same samples as in the brute force Monte Carlo method, but change the estimator to

PCV
N = P (JL > JC) +

1

N

N
∑

i=1

(I(J(ξi) > JC) − I(JL(ξi) > JC)) .

We note that the first term in the estimator is simply the result we obtain from the adjoint approximation
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method, and the second term is simply an unbiased estimator of the difference between the true tail proba-
bility P (J > JC) and the estimated tail probability by adjoint approximation P (JL > JC). In Figure 6, this
estimator is counting the proportion of samples to the upper-left of the intersection, minus the proportion of
samples to the lower-right of the intersection. With this estimator and the same 1000 samples as the brute
force Monte Carlo method, we calculate

P (J > JC) = 4.1 ± 1.2%, (25)

where the 3σ confidence interval is obtained from the variance formula (18). Comparing to (22), the variance
of the Monte Carlo method is significantly reduced. To achieve the same variance-reduction using the brute
force Monte Carlo method, 1778 more Navier-Stokes equations must be solved. In contrast, we achieved the
same reduction in variance with merely one additional Navier-Stokes solution and one adjoint solution. This
implies that one single adjoint solution, whose cost is 4 times that of a Navier-Stokes solution, achieves the
same effect as 1,777 Navier-Stokes equations in this example.

Figure 8. Monte Carlo samples with importance sampling. The horizontal axis is the adjoint approximation; the
vertical axis is true objective function. The circular symbol at the center indicates the objective function without
rotation.

The variance can be further reduced using the importance sampling technique as discussed in Section

III.B. We use 25 samples to calculate the variance of the normalized approximation error
J − JL

||ξ − ξ0||2
, and

approximate it with a Gaussian distribution with zero mean and same variance. This Gaussian distribution
is used to calculate p(J(ξ) > JC) for each ξ, the probability that a proposed sample is approved. The
resulting samples distribute according to probability Q (19), and concentrate in areas where the adjoint
approximation P (JL > JC) ≈ P (J > JC) is likely to be erroneous. This includes the regions where J is
close to JC, and areas where J may be significantly different from its adjoint approximation JL.
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Figure 8 shows the concentration of the approved samples used in importance sampling. We plot the
true value of the objective function J(ξi) against its adjoint linear approximation JL(ξi) for ξ1, . . . , ξ1000

sampled from probability distribution Q. Each cross on the plot represents one sample. The diagonal
dotted line indicates where the horizontal axis is equal to the vertical axis; the horizontal and vertical dotted
lines indicate the critical value JC. As can be seen, most of the samples concentrate near this critical
value. Compared to Figure 6, there are many more samples to the upper-left and to the lower-right of the
intersection. These additional samples allows a much-reduced variance in estimating the errors made by the
adjoint approximation P (JL > JC), and returns a significantly more accurate results. With this method,
we calculated

P (J > JC) = 4.1 ± 0.5%, (26)

where the 3σ confidence interval is based on the variance formula (20). Comparing to the result obtained by
the brute force Monte Carlo method (22), the variance of the Monte Carlo method is significantly reduced
by 75%. To achieve the same variance-reduction using the brute force Monte Carlo method, 15,000 more
Navier-Stokes equations would have to be solved. In contrast, we achieved the same reduction in variance
with 26 additional Navier-Stokes solutions and one adjoint solution. This implies that one single adjoint
solution, whose cost is 4 times that of a Navier-Stokes solution, achieves the same effect as 14974 Navier-
Stokes equations in this example.

Figure 9. Convergence history of three different Monte Carlo methods: Red is brute-force Monte Carlo method; blue
is Monte Carlo with control variate; black is Monte Carlo method with control variates and importance sampling. The
horizontal axis indicates the number of samples; the solid lines are the P (J > JC) calculated by the estimators of each
method; the dotted lines are the 3σ confidence interval bounds of the estimators.

Figure 9 compares the convergence of three different Monte Carlo methods. Different colors represent
different methods: red is brute-force Monte Carlo, blue is with redesigned estimator but without importance
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sampling, and black is with importance sampling. It can be seen that using the better estimator with
importance sampling reduces the standard deviation by a factor of 4, which implies that the number of
samples required is reduced by a factor of 16.

V. Conclusion

Table 1 compares the computational cost, accuracy and efficiency of the four methods discussed in this
article. As can be seen, using the adjoint equation can significantly increase the accuracy and reduce the

Table 1. Comparison of the methods for estimating P (J > JC).

Computational time 3σ Equivalent samples

Brute force Monte Carlo 240 hours 2.0% 1,000

Adjoint approximation 1 hour — —

Control variate 241 hours 1.2% 2,778

Importance sampling 247 hours 0.5% 16,000

computational time in quantification of margins and risk. The adjoint approximation method is by far less
expensive than any Monte Carlo method, and is often sufficiently accurate for a first estimate. However,
it is difficult to evaluate the accuracy of its result. Both the control variate method and the importance
sampling method are accelerated Monte Carlo with adjoint solution. They are marginally more expensive
than the brute force Monte Carlo method, but the accuracy is significantly improved.
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